1 | /* |
2 | * jdhuff.c |
3 | * |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. |
5 | * Modified 2006-2012 by Guido Vollbeding. |
6 | * This file is part of the Independent JPEG Group's software. |
7 | * For conditions of distribution and use, see the accompanying README file. |
8 | * |
9 | * This file contains Huffman entropy decoding routines. |
10 | * Both sequential and progressive modes are supported in this single module. |
11 | * |
12 | * Much of the complexity here has to do with supporting input suspension. |
13 | * If the data source module demands suspension, we want to be able to back |
14 | * up to the start of the current MCU. To do this, we copy state variables |
15 | * into local working storage, and update them back to the permanent |
16 | * storage only upon successful completion of an MCU. |
17 | */ |
18 | |
19 | #define JPEG_INTERNALS |
20 | #include "jinclude.h" |
21 | #include "jpeglib.h" |
22 | |
23 | |
24 | /* Derived data constructed for each Huffman table */ |
25 | |
26 | #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ |
27 | |
28 | typedef struct { |
29 | /* Basic tables: (element [0] of each array is unused) */ |
30 | INT32 maxcode[18]; /* largest code of length k (-1 if none) */ |
31 | /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ |
32 | INT32 valoffset[17]; /* huffval[] offset for codes of length k */ |
33 | /* valoffset[k] = huffval[] index of 1st symbol of code length k, less |
34 | * the smallest code of length k; so given a code of length k, the |
35 | * corresponding symbol is huffval[code + valoffset[k]] |
36 | */ |
37 | |
38 | /* Link to public Huffman table (needed only in jpeg_huff_decode) */ |
39 | JHUFF_TBL *pub; |
40 | |
41 | /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of |
42 | * the input data stream. If the next Huffman code is no more |
43 | * than HUFF_LOOKAHEAD bits long, we can obtain its length and |
44 | * the corresponding symbol directly from these tables. |
45 | */ |
46 | int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ |
47 | UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ |
48 | } d_derived_tbl; |
49 | |
50 | |
51 | /* |
52 | * Fetching the next N bits from the input stream is a time-critical operation |
53 | * for the Huffman decoders. We implement it with a combination of inline |
54 | * macros and out-of-line subroutines. Note that N (the number of bits |
55 | * demanded at one time) never exceeds 15 for JPEG use. |
56 | * |
57 | * We read source bytes into get_buffer and dole out bits as needed. |
58 | * If get_buffer already contains enough bits, they are fetched in-line |
59 | * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough |
60 | * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer |
61 | * as full as possible (not just to the number of bits needed; this |
62 | * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). |
63 | * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. |
64 | * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains |
65 | * at least the requested number of bits --- dummy zeroes are inserted if |
66 | * necessary. |
67 | */ |
68 | |
69 | typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ |
70 | #define BIT_BUF_SIZE 32 /* size of buffer in bits */ |
71 | |
72 | /* If long is > 32 bits on your machine, and shifting/masking longs is |
73 | * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE |
74 | * appropriately should be a win. Unfortunately we can't define the size |
75 | * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) |
76 | * because not all machines measure sizeof in 8-bit bytes. |
77 | */ |
78 | |
79 | typedef struct { /* Bitreading state saved across MCUs */ |
80 | bit_buf_type get_buffer; /* current bit-extraction buffer */ |
81 | int bits_left; /* # of unused bits in it */ |
82 | } bitread_perm_state; |
83 | |
84 | typedef struct { /* Bitreading working state within an MCU */ |
85 | /* Current data source location */ |
86 | /* We need a copy, rather than munging the original, in case of suspension */ |
87 | const JOCTET * next_input_byte; /* => next byte to read from source */ |
88 | size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ |
89 | /* Bit input buffer --- note these values are kept in register variables, |
90 | * not in this struct, inside the inner loops. |
91 | */ |
92 | bit_buf_type get_buffer; /* current bit-extraction buffer */ |
93 | int bits_left; /* # of unused bits in it */ |
94 | /* Pointer needed by jpeg_fill_bit_buffer. */ |
95 | j_decompress_ptr cinfo; /* back link to decompress master record */ |
96 | } bitread_working_state; |
97 | |
98 | /* Macros to declare and load/save bitread local variables. */ |
99 | #define BITREAD_STATE_VARS \ |
100 | register bit_buf_type get_buffer; \ |
101 | register int bits_left; \ |
102 | bitread_working_state br_state |
103 | |
104 | #define BITREAD_LOAD_STATE(cinfop,permstate) \ |
105 | br_state.cinfo = cinfop; \ |
106 | br_state.next_input_byte = cinfop->src->next_input_byte; \ |
107 | br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ |
108 | get_buffer = permstate.get_buffer; \ |
109 | bits_left = permstate.bits_left; |
110 | |
111 | #define BITREAD_SAVE_STATE(cinfop,permstate) \ |
112 | cinfop->src->next_input_byte = br_state.next_input_byte; \ |
113 | cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ |
114 | permstate.get_buffer = get_buffer; \ |
115 | permstate.bits_left = bits_left |
116 | |
117 | /* |
118 | * These macros provide the in-line portion of bit fetching. |
119 | * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer |
120 | * before using GET_BITS, PEEK_BITS, or DROP_BITS. |
121 | * The variables get_buffer and bits_left are assumed to be locals, |
122 | * but the state struct might not be (jpeg_huff_decode needs this). |
123 | * CHECK_BIT_BUFFER(state,n,action); |
124 | * Ensure there are N bits in get_buffer; if suspend, take action. |
125 | * val = GET_BITS(n); |
126 | * Fetch next N bits. |
127 | * val = PEEK_BITS(n); |
128 | * Fetch next N bits without removing them from the buffer. |
129 | * DROP_BITS(n); |
130 | * Discard next N bits. |
131 | * The value N should be a simple variable, not an expression, because it |
132 | * is evaluated multiple times. |
133 | */ |
134 | |
135 | #define CHECK_BIT_BUFFER(state,nbits,action) \ |
136 | { if (bits_left < (nbits)) { \ |
137 | if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ |
138 | { action; } \ |
139 | get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } |
140 | |
141 | #define GET_BITS(nbits) \ |
142 | (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) |
143 | |
144 | #define PEEK_BITS(nbits) \ |
145 | (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) |
146 | |
147 | #define DROP_BITS(nbits) \ |
148 | (bits_left -= (nbits)) |
149 | |
150 | |
151 | /* |
152 | * Code for extracting next Huffman-coded symbol from input bit stream. |
153 | * Again, this is time-critical and we make the main paths be macros. |
154 | * |
155 | * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits |
156 | * without looping. Usually, more than 95% of the Huffman codes will be 8 |
157 | * or fewer bits long. The few overlength codes are handled with a loop, |
158 | * which need not be inline code. |
159 | * |
160 | * Notes about the HUFF_DECODE macro: |
161 | * 1. Near the end of the data segment, we may fail to get enough bits |
162 | * for a lookahead. In that case, we do it the hard way. |
163 | * 2. If the lookahead table contains no entry, the next code must be |
164 | * more than HUFF_LOOKAHEAD bits long. |
165 | * 3. jpeg_huff_decode returns -1 if forced to suspend. |
166 | */ |
167 | |
168 | #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ |
169 | { register int nb, look; \ |
170 | if (bits_left < HUFF_LOOKAHEAD) { \ |
171 | if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ |
172 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ |
173 | if (bits_left < HUFF_LOOKAHEAD) { \ |
174 | nb = 1; goto slowlabel; \ |
175 | } \ |
176 | } \ |
177 | look = PEEK_BITS(HUFF_LOOKAHEAD); \ |
178 | if ((nb = htbl->look_nbits[look]) != 0) { \ |
179 | DROP_BITS(nb); \ |
180 | result = htbl->look_sym[look]; \ |
181 | } else { \ |
182 | nb = HUFF_LOOKAHEAD+1; \ |
183 | slowlabel: \ |
184 | if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ |
185 | { failaction; } \ |
186 | get_buffer = state.get_buffer; bits_left = state.bits_left; \ |
187 | } \ |
188 | } |
189 | |
190 | |
191 | /* |
192 | * Expanded entropy decoder object for Huffman decoding. |
193 | * |
194 | * The savable_state subrecord contains fields that change within an MCU, |
195 | * but must not be updated permanently until we complete the MCU. |
196 | */ |
197 | |
198 | typedef struct { |
199 | unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ |
200 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
201 | } savable_state; |
202 | |
203 | /* This macro is to work around compilers with missing or broken |
204 | * structure assignment. You'll need to fix this code if you have |
205 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
206 | */ |
207 | |
208 | #ifndef NO_STRUCT_ASSIGN |
209 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
210 | #else |
211 | #if MAX_COMPS_IN_SCAN == 4 |
212 | #define ASSIGN_STATE(dest,src) \ |
213 | ((dest).EOBRUN = (src).EOBRUN, \ |
214 | (dest).last_dc_val[0] = (src).last_dc_val[0], \ |
215 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
216 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
217 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
218 | #endif |
219 | #endif |
220 | |
221 | |
222 | typedef struct { |
223 | struct jpeg_entropy_decoder pub; /* public fields */ |
224 | |
225 | /* These fields are loaded into local variables at start of each MCU. |
226 | * In case of suspension, we exit WITHOUT updating them. |
227 | */ |
228 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
229 | savable_state saved; /* Other state at start of MCU */ |
230 | |
231 | /* These fields are NOT loaded into local working state. */ |
232 | boolean insufficient_data; /* set TRUE after emitting warning */ |
233 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
234 | |
235 | /* Following two fields used only in progressive mode */ |
236 | |
237 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
238 | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; |
239 | |
240 | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ |
241 | |
242 | /* Following fields used only in sequential mode */ |
243 | |
244 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
245 | d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; |
246 | d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; |
247 | |
248 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
249 | |
250 | /* Pointers to derived tables to be used for each block within an MCU */ |
251 | d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
252 | d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
253 | /* Whether we care about the DC and AC coefficient values for each block */ |
254 | int coef_limit[D_MAX_BLOCKS_IN_MCU]; |
255 | } huff_entropy_decoder; |
256 | |
257 | typedef huff_entropy_decoder * huff_entropy_ptr; |
258 | |
259 | |
260 | static const int jpeg_zigzag_order[8][8] = { |
261 | { 0, 1, 5, 6, 14, 15, 27, 28 }, |
262 | { 2, 4, 7, 13, 16, 26, 29, 42 }, |
263 | { 3, 8, 12, 17, 25, 30, 41, 43 }, |
264 | { 9, 11, 18, 24, 31, 40, 44, 53 }, |
265 | { 10, 19, 23, 32, 39, 45, 52, 54 }, |
266 | { 20, 22, 33, 38, 46, 51, 55, 60 }, |
267 | { 21, 34, 37, 47, 50, 56, 59, 61 }, |
268 | { 35, 36, 48, 49, 57, 58, 62, 63 } |
269 | }; |
270 | |
271 | static const int jpeg_zigzag_order7[7][7] = { |
272 | { 0, 1, 5, 6, 14, 15, 27 }, |
273 | { 2, 4, 7, 13, 16, 26, 28 }, |
274 | { 3, 8, 12, 17, 25, 29, 38 }, |
275 | { 9, 11, 18, 24, 30, 37, 39 }, |
276 | { 10, 19, 23, 31, 36, 40, 45 }, |
277 | { 20, 22, 32, 35, 41, 44, 46 }, |
278 | { 21, 33, 34, 42, 43, 47, 48 } |
279 | }; |
280 | |
281 | static const int jpeg_zigzag_order6[6][6] = { |
282 | { 0, 1, 5, 6, 14, 15 }, |
283 | { 2, 4, 7, 13, 16, 25 }, |
284 | { 3, 8, 12, 17, 24, 26 }, |
285 | { 9, 11, 18, 23, 27, 32 }, |
286 | { 10, 19, 22, 28, 31, 33 }, |
287 | { 20, 21, 29, 30, 34, 35 } |
288 | }; |
289 | |
290 | static const int jpeg_zigzag_order5[5][5] = { |
291 | { 0, 1, 5, 6, 14 }, |
292 | { 2, 4, 7, 13, 15 }, |
293 | { 3, 8, 12, 16, 21 }, |
294 | { 9, 11, 17, 20, 22 }, |
295 | { 10, 18, 19, 23, 24 } |
296 | }; |
297 | |
298 | static const int jpeg_zigzag_order4[4][4] = { |
299 | { 0, 1, 5, 6 }, |
300 | { 2, 4, 7, 12 }, |
301 | { 3, 8, 11, 13 }, |
302 | { 9, 10, 14, 15 } |
303 | }; |
304 | |
305 | static const int jpeg_zigzag_order3[3][3] = { |
306 | { 0, 1, 5 }, |
307 | { 2, 4, 6 }, |
308 | { 3, 7, 8 } |
309 | }; |
310 | |
311 | static const int jpeg_zigzag_order2[2][2] = { |
312 | { 0, 1 }, |
313 | { 2, 3 } |
314 | }; |
315 | |
316 | |
317 | /* |
318 | * Compute the derived values for a Huffman table. |
319 | * This routine also performs some validation checks on the table. |
320 | */ |
321 | |
322 | LOCAL(void) |
323 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
324 | d_derived_tbl ** pdtbl) |
325 | { |
326 | JHUFF_TBL *htbl; |
327 | d_derived_tbl *dtbl; |
328 | int p, i, l, si, numsymbols; |
329 | int lookbits, ctr; |
330 | char huffsize[257]; |
331 | unsigned int huffcode[257]; |
332 | unsigned int code; |
333 | |
334 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
335 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
336 | */ |
337 | |
338 | /* Find the input Huffman table */ |
339 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
340 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
341 | htbl = |
342 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
343 | if (htbl == NULL) |
344 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
345 | |
346 | /* Allocate a workspace if we haven't already done so. */ |
347 | if (*pdtbl == NULL) |
348 | *pdtbl = (d_derived_tbl *) |
349 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
350 | SIZEOF(d_derived_tbl)); |
351 | dtbl = *pdtbl; |
352 | dtbl->pub = htbl; /* fill in back link */ |
353 | |
354 | /* Figure C.1: make table of Huffman code length for each symbol */ |
355 | |
356 | p = 0; |
357 | for (l = 1; l <= 16; l++) { |
358 | i = (int) htbl->bits[l]; |
359 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
360 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
361 | while (i--) |
362 | huffsize[p++] = (char) l; |
363 | } |
364 | huffsize[p] = 0; |
365 | numsymbols = p; |
366 | |
367 | /* Figure C.2: generate the codes themselves */ |
368 | /* We also validate that the counts represent a legal Huffman code tree. */ |
369 | |
370 | code = 0; |
371 | si = huffsize[0]; |
372 | p = 0; |
373 | while (huffsize[p]) { |
374 | while (((int) huffsize[p]) == si) { |
375 | huffcode[p++] = code; |
376 | code++; |
377 | } |
378 | /* code is now 1 more than the last code used for codelength si; but |
379 | * it must still fit in si bits, since no code is allowed to be all ones. |
380 | */ |
381 | if (((INT32) code) >= (((INT32) 1) << si)) |
382 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
383 | code <<= 1; |
384 | si++; |
385 | } |
386 | |
387 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
388 | |
389 | p = 0; |
390 | for (l = 1; l <= 16; l++) { |
391 | if (htbl->bits[l]) { |
392 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
393 | * minus the minimum code of length l |
394 | */ |
395 | dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; |
396 | p += htbl->bits[l]; |
397 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
398 | } else { |
399 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
400 | } |
401 | } |
402 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
403 | |
404 | /* Compute lookahead tables to speed up decoding. |
405 | * First we set all the table entries to 0, indicating "too long"; |
406 | * then we iterate through the Huffman codes that are short enough and |
407 | * fill in all the entries that correspond to bit sequences starting |
408 | * with that code. |
409 | */ |
410 | |
411 | MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); |
412 | |
413 | p = 0; |
414 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
415 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
416 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
417 | /* Generate left-justified code followed by all possible bit sequences */ |
418 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
419 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
420 | dtbl->look_nbits[lookbits] = l; |
421 | dtbl->look_sym[lookbits] = htbl->huffval[p]; |
422 | lookbits++; |
423 | } |
424 | } |
425 | } |
426 | |
427 | /* Validate symbols as being reasonable. |
428 | * For AC tables, we make no check, but accept all byte values 0..255. |
429 | * For DC tables, we require the symbols to be in range 0..15. |
430 | * (Tighter bounds could be applied depending on the data depth and mode, |
431 | * but this is sufficient to ensure safe decoding.) |
432 | */ |
433 | if (isDC) { |
434 | for (i = 0; i < numsymbols; i++) { |
435 | int sym = htbl->huffval[i]; |
436 | if (sym < 0 || sym > 15) |
437 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
438 | } |
439 | } |
440 | } |
441 | |
442 | |
443 | /* |
444 | * Out-of-line code for bit fetching. |
445 | * Note: current values of get_buffer and bits_left are passed as parameters, |
446 | * but are returned in the corresponding fields of the state struct. |
447 | * |
448 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
449 | * of get_buffer to be used. (On machines with wider words, an even larger |
450 | * buffer could be used.) However, on some machines 32-bit shifts are |
451 | * quite slow and take time proportional to the number of places shifted. |
452 | * (This is true with most PC compilers, for instance.) In this case it may |
453 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
454 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
455 | */ |
456 | |
457 | #ifdef SLOW_SHIFT_32 |
458 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
459 | #else |
460 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
461 | #endif |
462 | |
463 | |
464 | LOCAL(boolean) |
465 | jpeg_fill_bit_buffer (bitread_working_state * state, |
466 | register bit_buf_type get_buffer, register int bits_left, |
467 | int nbits) |
468 | /* Load up the bit buffer to a depth of at least nbits */ |
469 | { |
470 | /* Copy heavily used state fields into locals (hopefully registers) */ |
471 | register const JOCTET * next_input_byte = state->next_input_byte; |
472 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
473 | j_decompress_ptr cinfo = state->cinfo; |
474 | |
475 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
476 | /* (It is assumed that no request will be for more than that many bits.) */ |
477 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
478 | |
479 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
480 | while (bits_left < MIN_GET_BITS) { |
481 | register int c; |
482 | |
483 | /* Attempt to read a byte */ |
484 | if (bytes_in_buffer == 0) { |
485 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
486 | return FALSE; |
487 | next_input_byte = cinfo->src->next_input_byte; |
488 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
489 | } |
490 | bytes_in_buffer--; |
491 | c = GETJOCTET(*next_input_byte++); |
492 | |
493 | /* If it's 0xFF, check and discard stuffed zero byte */ |
494 | if (c == 0xFF) { |
495 | /* Loop here to discard any padding FF's on terminating marker, |
496 | * so that we can save a valid unread_marker value. NOTE: we will |
497 | * accept multiple FF's followed by a 0 as meaning a single FF data |
498 | * byte. This data pattern is not valid according to the standard. |
499 | */ |
500 | do { |
501 | if (bytes_in_buffer == 0) { |
502 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
503 | return FALSE; |
504 | next_input_byte = cinfo->src->next_input_byte; |
505 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
506 | } |
507 | bytes_in_buffer--; |
508 | c = GETJOCTET(*next_input_byte++); |
509 | } while (c == 0xFF); |
510 | |
511 | if (c == 0) { |
512 | /* Found FF/00, which represents an FF data byte */ |
513 | c = 0xFF; |
514 | } else { |
515 | /* Oops, it's actually a marker indicating end of compressed data. |
516 | * Save the marker code for later use. |
517 | * Fine point: it might appear that we should save the marker into |
518 | * bitread working state, not straight into permanent state. But |
519 | * once we have hit a marker, we cannot need to suspend within the |
520 | * current MCU, because we will read no more bytes from the data |
521 | * source. So it is OK to update permanent state right away. |
522 | */ |
523 | cinfo->unread_marker = c; |
524 | /* See if we need to insert some fake zero bits. */ |
525 | goto no_more_bytes; |
526 | } |
527 | } |
528 | |
529 | /* OK, load c into get_buffer */ |
530 | get_buffer = (get_buffer << 8) | c; |
531 | bits_left += 8; |
532 | } /* end while */ |
533 | } else { |
534 | no_more_bytes: |
535 | /* We get here if we've read the marker that terminates the compressed |
536 | * data segment. There should be enough bits in the buffer register |
537 | * to satisfy the request; if so, no problem. |
538 | */ |
539 | if (nbits > bits_left) { |
540 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
541 | * the data stream, so that we can produce some kind of image. |
542 | * We use a nonvolatile flag to ensure that only one warning message |
543 | * appears per data segment. |
544 | */ |
545 | if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { |
546 | WARNMS(cinfo, JWRN_HIT_MARKER); |
547 | ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; |
548 | } |
549 | /* Fill the buffer with zero bits */ |
550 | get_buffer <<= MIN_GET_BITS - bits_left; |
551 | bits_left = MIN_GET_BITS; |
552 | } |
553 | } |
554 | |
555 | /* Unload the local registers */ |
556 | state->next_input_byte = next_input_byte; |
557 | state->bytes_in_buffer = bytes_in_buffer; |
558 | state->get_buffer = get_buffer; |
559 | state->bits_left = bits_left; |
560 | |
561 | return TRUE; |
562 | } |
563 | |
564 | |
565 | /* |
566 | * Figure F.12: extend sign bit. |
567 | * On some machines, a shift and sub will be faster than a table lookup. |
568 | */ |
569 | |
570 | #ifdef AVOID_TABLES |
571 | |
572 | #define BIT_MASK(nbits) ((1<<(nbits))-1) |
573 | #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) |
574 | |
575 | #else |
576 | |
577 | #define BIT_MASK(nbits) bmask[nbits] |
578 | #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) |
579 | |
580 | static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ |
581 | { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, |
582 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; |
583 | |
584 | #endif /* AVOID_TABLES */ |
585 | |
586 | |
587 | /* |
588 | * Out-of-line code for Huffman code decoding. |
589 | */ |
590 | |
591 | LOCAL(int) |
592 | jpeg_huff_decode (bitread_working_state * state, |
593 | register bit_buf_type get_buffer, register int bits_left, |
594 | d_derived_tbl * htbl, int min_bits) |
595 | { |
596 | register int l = min_bits; |
597 | register INT32 code; |
598 | |
599 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
600 | /* bits long, so fetch that many bits in one swoop. */ |
601 | |
602 | CHECK_BIT_BUFFER(*state, l, return -1); |
603 | code = GET_BITS(l); |
604 | |
605 | /* Collect the rest of the Huffman code one bit at a time. */ |
606 | /* This is per Figure F.16 in the JPEG spec. */ |
607 | |
608 | while (code > htbl->maxcode[l]) { |
609 | code <<= 1; |
610 | CHECK_BIT_BUFFER(*state, 1, return -1); |
611 | code |= GET_BITS(1); |
612 | l++; |
613 | } |
614 | |
615 | /* Unload the local registers */ |
616 | state->get_buffer = get_buffer; |
617 | state->bits_left = bits_left; |
618 | |
619 | /* With garbage input we may reach the sentinel value l = 17. */ |
620 | |
621 | if (l > 16) { |
622 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
623 | return 0; /* fake a zero as the safest result */ |
624 | } |
625 | |
626 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
627 | } |
628 | |
629 | |
630 | /* |
631 | * Check for a restart marker & resynchronize decoder. |
632 | * Returns FALSE if must suspend. |
633 | */ |
634 | |
635 | LOCAL(boolean) |
636 | process_restart (j_decompress_ptr cinfo) |
637 | { |
638 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
639 | int ci; |
640 | |
641 | /* Throw away any unused bits remaining in bit buffer; */ |
642 | /* include any full bytes in next_marker's count of discarded bytes */ |
643 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
644 | entropy->bitstate.bits_left = 0; |
645 | |
646 | /* Advance past the RSTn marker */ |
647 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
648 | return FALSE; |
649 | |
650 | /* Re-initialize DC predictions to 0 */ |
651 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
652 | entropy->saved.last_dc_val[ci] = 0; |
653 | /* Re-init EOB run count, too */ |
654 | entropy->saved.EOBRUN = 0; |
655 | |
656 | /* Reset restart counter */ |
657 | entropy->restarts_to_go = cinfo->restart_interval; |
658 | |
659 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
660 | * against a marker. In that case we will end up treating the next data |
661 | * segment as empty, and we can avoid producing bogus output pixels by |
662 | * leaving the flag set. |
663 | */ |
664 | if (cinfo->unread_marker == 0) |
665 | entropy->insufficient_data = FALSE; |
666 | |
667 | return TRUE; |
668 | } |
669 | |
670 | |
671 | /* |
672 | * Huffman MCU decoding. |
673 | * Each of these routines decodes and returns one MCU's worth of |
674 | * Huffman-compressed coefficients. |
675 | * The coefficients are reordered from zigzag order into natural array order, |
676 | * but are not dequantized. |
677 | * |
678 | * The i'th block of the MCU is stored into the block pointed to by |
679 | * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. |
680 | * (Wholesale zeroing is usually a little faster than retail...) |
681 | * |
682 | * We return FALSE if data source requested suspension. In that case no |
683 | * changes have been made to permanent state. (Exception: some output |
684 | * coefficients may already have been assigned. This is harmless for |
685 | * spectral selection, since we'll just re-assign them on the next call. |
686 | * Successive approximation AC refinement has to be more careful, however.) |
687 | */ |
688 | |
689 | /* |
690 | * MCU decoding for DC initial scan (either spectral selection, |
691 | * or first pass of successive approximation). |
692 | */ |
693 | |
694 | METHODDEF(boolean) |
695 | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
696 | { |
697 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
698 | int Al = cinfo->Al; |
699 | register int s, r; |
700 | int blkn, ci; |
701 | JBLOCKROW block; |
702 | BITREAD_STATE_VARS; |
703 | savable_state state; |
704 | d_derived_tbl * tbl; |
705 | jpeg_component_info * compptr; |
706 | |
707 | /* Process restart marker if needed; may have to suspend */ |
708 | if (cinfo->restart_interval) { |
709 | if (entropy->restarts_to_go == 0) |
710 | if (! process_restart(cinfo)) |
711 | return FALSE; |
712 | } |
713 | |
714 | /* If we've run out of data, just leave the MCU set to zeroes. |
715 | * This way, we return uniform gray for the remainder of the segment. |
716 | */ |
717 | if (! entropy->insufficient_data) { |
718 | |
719 | /* Load up working state */ |
720 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
721 | ASSIGN_STATE(state, entropy->saved); |
722 | |
723 | /* Outer loop handles each block in the MCU */ |
724 | |
725 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
726 | block = MCU_data[blkn]; |
727 | ci = cinfo->MCU_membership[blkn]; |
728 | compptr = cinfo->cur_comp_info[ci]; |
729 | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; |
730 | |
731 | /* Decode a single block's worth of coefficients */ |
732 | |
733 | /* Section F.2.2.1: decode the DC coefficient difference */ |
734 | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); |
735 | if (s) { |
736 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
737 | r = GET_BITS(s); |
738 | s = HUFF_EXTEND(r, s); |
739 | } |
740 | |
741 | /* Convert DC difference to actual value, update last_dc_val */ |
742 | s += state.last_dc_val[ci]; |
743 | state.last_dc_val[ci] = s; |
744 | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ |
745 | (*block)[0] = (JCOEF) (s << Al); |
746 | } |
747 | |
748 | /* Completed MCU, so update state */ |
749 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
750 | ASSIGN_STATE(entropy->saved, state); |
751 | } |
752 | |
753 | /* Account for restart interval (no-op if not using restarts) */ |
754 | entropy->restarts_to_go--; |
755 | |
756 | return TRUE; |
757 | } |
758 | |
759 | |
760 | /* |
761 | * MCU decoding for AC initial scan (either spectral selection, |
762 | * or first pass of successive approximation). |
763 | */ |
764 | |
765 | METHODDEF(boolean) |
766 | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
767 | { |
768 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
769 | register int s, k, r; |
770 | unsigned int EOBRUN; |
771 | int Se, Al; |
772 | const int * natural_order; |
773 | JBLOCKROW block; |
774 | BITREAD_STATE_VARS; |
775 | d_derived_tbl * tbl; |
776 | |
777 | /* Process restart marker if needed; may have to suspend */ |
778 | if (cinfo->restart_interval) { |
779 | if (entropy->restarts_to_go == 0) |
780 | if (! process_restart(cinfo)) |
781 | return FALSE; |
782 | } |
783 | |
784 | /* If we've run out of data, just leave the MCU set to zeroes. |
785 | * This way, we return uniform gray for the remainder of the segment. |
786 | */ |
787 | if (! entropy->insufficient_data) { |
788 | |
789 | Se = cinfo->Se; |
790 | Al = cinfo->Al; |
791 | natural_order = cinfo->natural_order; |
792 | |
793 | /* Load up working state. |
794 | * We can avoid loading/saving bitread state if in an EOB run. |
795 | */ |
796 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
797 | |
798 | /* There is always only one block per MCU */ |
799 | |
800 | if (EOBRUN) /* if it's a band of zeroes... */ |
801 | EOBRUN--; /* ...process it now (we do nothing) */ |
802 | else { |
803 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
804 | block = MCU_data[0]; |
805 | tbl = entropy->ac_derived_tbl; |
806 | |
807 | for (k = cinfo->Ss; k <= Se; k++) { |
808 | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); |
809 | r = s >> 4; |
810 | s &= 15; |
811 | if (s) { |
812 | k += r; |
813 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
814 | r = GET_BITS(s); |
815 | s = HUFF_EXTEND(r, s); |
816 | /* Scale and output coefficient in natural (dezigzagged) order */ |
817 | (*block)[natural_order[k]] = (JCOEF) (s << Al); |
818 | } else { |
819 | if (r != 15) { /* EOBr, run length is 2^r + appended bits */ |
820 | if (r) { /* EOBr, r > 0 */ |
821 | EOBRUN = 1 << r; |
822 | CHECK_BIT_BUFFER(br_state, r, return FALSE); |
823 | r = GET_BITS(r); |
824 | EOBRUN += r; |
825 | EOBRUN--; /* this band is processed at this moment */ |
826 | } |
827 | break; /* force end-of-band */ |
828 | } |
829 | k += 15; /* ZRL: skip 15 zeroes in band */ |
830 | } |
831 | } |
832 | |
833 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
834 | } |
835 | |
836 | /* Completed MCU, so update state */ |
837 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
838 | } |
839 | |
840 | /* Account for restart interval (no-op if not using restarts) */ |
841 | entropy->restarts_to_go--; |
842 | |
843 | return TRUE; |
844 | } |
845 | |
846 | |
847 | /* |
848 | * MCU decoding for DC successive approximation refinement scan. |
849 | * Note: we assume such scans can be multi-component, although the spec |
850 | * is not very clear on the point. |
851 | */ |
852 | |
853 | METHODDEF(boolean) |
854 | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
855 | { |
856 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
857 | int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
858 | int blkn; |
859 | JBLOCKROW block; |
860 | BITREAD_STATE_VARS; |
861 | |
862 | /* Process restart marker if needed; may have to suspend */ |
863 | if (cinfo->restart_interval) { |
864 | if (entropy->restarts_to_go == 0) |
865 | if (! process_restart(cinfo)) |
866 | return FALSE; |
867 | } |
868 | |
869 | /* Not worth the cycles to check insufficient_data here, |
870 | * since we will not change the data anyway if we read zeroes. |
871 | */ |
872 | |
873 | /* Load up working state */ |
874 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
875 | |
876 | /* Outer loop handles each block in the MCU */ |
877 | |
878 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
879 | block = MCU_data[blkn]; |
880 | |
881 | /* Encoded data is simply the next bit of the two's-complement DC value */ |
882 | CHECK_BIT_BUFFER(br_state, 1, return FALSE); |
883 | if (GET_BITS(1)) |
884 | (*block)[0] |= p1; |
885 | /* Note: since we use |=, repeating the assignment later is safe */ |
886 | } |
887 | |
888 | /* Completed MCU, so update state */ |
889 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
890 | |
891 | /* Account for restart interval (no-op if not using restarts) */ |
892 | entropy->restarts_to_go--; |
893 | |
894 | return TRUE; |
895 | } |
896 | |
897 | |
898 | /* |
899 | * MCU decoding for AC successive approximation refinement scan. |
900 | */ |
901 | |
902 | METHODDEF(boolean) |
903 | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
904 | { |
905 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
906 | register int s, k, r; |
907 | unsigned int EOBRUN; |
908 | int Se, p1, m1; |
909 | const int * natural_order; |
910 | JBLOCKROW block; |
911 | JCOEFPTR thiscoef; |
912 | BITREAD_STATE_VARS; |
913 | d_derived_tbl * tbl; |
914 | int num_newnz; |
915 | int newnz_pos[DCTSIZE2]; |
916 | |
917 | /* Process restart marker if needed; may have to suspend */ |
918 | if (cinfo->restart_interval) { |
919 | if (entropy->restarts_to_go == 0) |
920 | if (! process_restart(cinfo)) |
921 | return FALSE; |
922 | } |
923 | |
924 | /* If we've run out of data, don't modify the MCU. |
925 | */ |
926 | if (! entropy->insufficient_data) { |
927 | |
928 | Se = cinfo->Se; |
929 | p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ |
930 | m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ |
931 | natural_order = cinfo->natural_order; |
932 | |
933 | /* Load up working state */ |
934 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
935 | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ |
936 | |
937 | /* There is always only one block per MCU */ |
938 | block = MCU_data[0]; |
939 | tbl = entropy->ac_derived_tbl; |
940 | |
941 | /* If we are forced to suspend, we must undo the assignments to any newly |
942 | * nonzero coefficients in the block, because otherwise we'd get confused |
943 | * next time about which coefficients were already nonzero. |
944 | * But we need not undo addition of bits to already-nonzero coefficients; |
945 | * instead, we can test the current bit to see if we already did it. |
946 | */ |
947 | num_newnz = 0; |
948 | |
949 | /* initialize coefficient loop counter to start of band */ |
950 | k = cinfo->Ss; |
951 | |
952 | if (EOBRUN == 0) { |
953 | do { |
954 | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); |
955 | r = s >> 4; |
956 | s &= 15; |
957 | if (s) { |
958 | if (s != 1) /* size of new coef should always be 1 */ |
959 | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); |
960 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
961 | if (GET_BITS(1)) |
962 | s = p1; /* newly nonzero coef is positive */ |
963 | else |
964 | s = m1; /* newly nonzero coef is negative */ |
965 | } else { |
966 | if (r != 15) { |
967 | EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ |
968 | if (r) { |
969 | CHECK_BIT_BUFFER(br_state, r, goto undoit); |
970 | r = GET_BITS(r); |
971 | EOBRUN += r; |
972 | } |
973 | break; /* rest of block is handled by EOB logic */ |
974 | } |
975 | /* note s = 0 for processing ZRL */ |
976 | } |
977 | /* Advance over already-nonzero coefs and r still-zero coefs, |
978 | * appending correction bits to the nonzeroes. A correction bit is 1 |
979 | * if the absolute value of the coefficient must be increased. |
980 | */ |
981 | do { |
982 | thiscoef = *block + natural_order[k]; |
983 | if (*thiscoef) { |
984 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
985 | if (GET_BITS(1)) { |
986 | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ |
987 | if (*thiscoef >= 0) |
988 | *thiscoef += p1; |
989 | else |
990 | *thiscoef += m1; |
991 | } |
992 | } |
993 | } else { |
994 | if (--r < 0) |
995 | break; /* reached target zero coefficient */ |
996 | } |
997 | k++; |
998 | } while (k <= Se); |
999 | if (s) { |
1000 | int pos = natural_order[k]; |
1001 | /* Output newly nonzero coefficient */ |
1002 | (*block)[pos] = (JCOEF) s; |
1003 | /* Remember its position in case we have to suspend */ |
1004 | newnz_pos[num_newnz++] = pos; |
1005 | } |
1006 | k++; |
1007 | } while (k <= Se); |
1008 | } |
1009 | |
1010 | if (EOBRUN) { |
1011 | /* Scan any remaining coefficient positions after the end-of-band |
1012 | * (the last newly nonzero coefficient, if any). Append a correction |
1013 | * bit to each already-nonzero coefficient. A correction bit is 1 |
1014 | * if the absolute value of the coefficient must be increased. |
1015 | */ |
1016 | do { |
1017 | thiscoef = *block + natural_order[k]; |
1018 | if (*thiscoef) { |
1019 | CHECK_BIT_BUFFER(br_state, 1, goto undoit); |
1020 | if (GET_BITS(1)) { |
1021 | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ |
1022 | if (*thiscoef >= 0) |
1023 | *thiscoef += p1; |
1024 | else |
1025 | *thiscoef += m1; |
1026 | } |
1027 | } |
1028 | } |
1029 | k++; |
1030 | } while (k <= Se); |
1031 | /* Count one block completed in EOB run */ |
1032 | EOBRUN--; |
1033 | } |
1034 | |
1035 | /* Completed MCU, so update state */ |
1036 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1037 | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ |
1038 | } |
1039 | |
1040 | /* Account for restart interval (no-op if not using restarts) */ |
1041 | entropy->restarts_to_go--; |
1042 | |
1043 | return TRUE; |
1044 | |
1045 | undoit: |
1046 | /* Re-zero any output coefficients that we made newly nonzero */ |
1047 | while (num_newnz) |
1048 | (*block)[newnz_pos[--num_newnz]] = 0; |
1049 | |
1050 | return FALSE; |
1051 | } |
1052 | |
1053 | |
1054 | /* |
1055 | * Decode one MCU's worth of Huffman-compressed coefficients, |
1056 | * partial blocks. |
1057 | */ |
1058 | |
1059 | METHODDEF(boolean) |
1060 | decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
1061 | { |
1062 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1063 | const int * natural_order; |
1064 | int Se, blkn; |
1065 | BITREAD_STATE_VARS; |
1066 | savable_state state; |
1067 | |
1068 | /* Process restart marker if needed; may have to suspend */ |
1069 | if (cinfo->restart_interval) { |
1070 | if (entropy->restarts_to_go == 0) |
1071 | if (! process_restart(cinfo)) |
1072 | return FALSE; |
1073 | } |
1074 | |
1075 | /* If we've run out of data, just leave the MCU set to zeroes. |
1076 | * This way, we return uniform gray for the remainder of the segment. |
1077 | */ |
1078 | if (! entropy->insufficient_data) { |
1079 | |
1080 | natural_order = cinfo->natural_order; |
1081 | Se = cinfo->lim_Se; |
1082 | |
1083 | /* Load up working state */ |
1084 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
1085 | ASSIGN_STATE(state, entropy->saved); |
1086 | |
1087 | /* Outer loop handles each block in the MCU */ |
1088 | |
1089 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1090 | JBLOCKROW block = MCU_data[blkn]; |
1091 | d_derived_tbl * htbl; |
1092 | register int s, k, r; |
1093 | int coef_limit, ci; |
1094 | |
1095 | /* Decode a single block's worth of coefficients */ |
1096 | |
1097 | /* Section F.2.2.1: decode the DC coefficient difference */ |
1098 | htbl = entropy->dc_cur_tbls[blkn]; |
1099 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); |
1100 | |
1101 | htbl = entropy->ac_cur_tbls[blkn]; |
1102 | k = 1; |
1103 | coef_limit = entropy->coef_limit[blkn]; |
1104 | if (coef_limit) { |
1105 | /* Convert DC difference to actual value, update last_dc_val */ |
1106 | if (s) { |
1107 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1108 | r = GET_BITS(s); |
1109 | s = HUFF_EXTEND(r, s); |
1110 | } |
1111 | ci = cinfo->MCU_membership[blkn]; |
1112 | s += state.last_dc_val[ci]; |
1113 | state.last_dc_val[ci] = s; |
1114 | /* Output the DC coefficient */ |
1115 | (*block)[0] = (JCOEF) s; |
1116 | |
1117 | /* Section F.2.2.2: decode the AC coefficients */ |
1118 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
1119 | for (; k < coef_limit; k++) { |
1120 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); |
1121 | |
1122 | r = s >> 4; |
1123 | s &= 15; |
1124 | |
1125 | if (s) { |
1126 | k += r; |
1127 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1128 | r = GET_BITS(s); |
1129 | s = HUFF_EXTEND(r, s); |
1130 | /* Output coefficient in natural (dezigzagged) order. |
1131 | * Note: the extra entries in natural_order[] will save us |
1132 | * if k > Se, which could happen if the data is corrupted. |
1133 | */ |
1134 | (*block)[natural_order[k]] = (JCOEF) s; |
1135 | } else { |
1136 | if (r != 15) |
1137 | goto EndOfBlock; |
1138 | k += 15; |
1139 | } |
1140 | } |
1141 | } else { |
1142 | if (s) { |
1143 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1144 | DROP_BITS(s); |
1145 | } |
1146 | } |
1147 | |
1148 | /* Section F.2.2.2: decode the AC coefficients */ |
1149 | /* In this path we just discard the values */ |
1150 | for (; k <= Se; k++) { |
1151 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); |
1152 | |
1153 | r = s >> 4; |
1154 | s &= 15; |
1155 | |
1156 | if (s) { |
1157 | k += r; |
1158 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1159 | DROP_BITS(s); |
1160 | } else { |
1161 | if (r != 15) |
1162 | break; |
1163 | k += 15; |
1164 | } |
1165 | } |
1166 | |
1167 | EndOfBlock: ; |
1168 | } |
1169 | |
1170 | /* Completed MCU, so update state */ |
1171 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1172 | ASSIGN_STATE(entropy->saved, state); |
1173 | } |
1174 | |
1175 | /* Account for restart interval (no-op if not using restarts) */ |
1176 | entropy->restarts_to_go--; |
1177 | |
1178 | return TRUE; |
1179 | } |
1180 | |
1181 | |
1182 | /* |
1183 | * Decode one MCU's worth of Huffman-compressed coefficients, |
1184 | * full-size blocks. |
1185 | */ |
1186 | |
1187 | METHODDEF(boolean) |
1188 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
1189 | { |
1190 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1191 | int blkn; |
1192 | BITREAD_STATE_VARS; |
1193 | savable_state state; |
1194 | |
1195 | /* Process restart marker if needed; may have to suspend */ |
1196 | if (cinfo->restart_interval) { |
1197 | if (entropy->restarts_to_go == 0) |
1198 | if (! process_restart(cinfo)) |
1199 | return FALSE; |
1200 | } |
1201 | |
1202 | /* If we've run out of data, just leave the MCU set to zeroes. |
1203 | * This way, we return uniform gray for the remainder of the segment. |
1204 | */ |
1205 | if (! entropy->insufficient_data) { |
1206 | |
1207 | /* Load up working state */ |
1208 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
1209 | ASSIGN_STATE(state, entropy->saved); |
1210 | |
1211 | /* Outer loop handles each block in the MCU */ |
1212 | |
1213 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1214 | JBLOCKROW block = MCU_data[blkn]; |
1215 | d_derived_tbl * htbl; |
1216 | register int s, k, r; |
1217 | int coef_limit, ci; |
1218 | |
1219 | /* Decode a single block's worth of coefficients */ |
1220 | |
1221 | /* Section F.2.2.1: decode the DC coefficient difference */ |
1222 | htbl = entropy->dc_cur_tbls[blkn]; |
1223 | HUFF_DECODE(s, br_state, htbl, return FALSE, label1); |
1224 | |
1225 | htbl = entropy->ac_cur_tbls[blkn]; |
1226 | k = 1; |
1227 | coef_limit = entropy->coef_limit[blkn]; |
1228 | if (coef_limit) { |
1229 | /* Convert DC difference to actual value, update last_dc_val */ |
1230 | if (s) { |
1231 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1232 | r = GET_BITS(s); |
1233 | s = HUFF_EXTEND(r, s); |
1234 | } |
1235 | ci = cinfo->MCU_membership[blkn]; |
1236 | s += state.last_dc_val[ci]; |
1237 | state.last_dc_val[ci] = s; |
1238 | /* Output the DC coefficient */ |
1239 | (*block)[0] = (JCOEF) s; |
1240 | |
1241 | /* Section F.2.2.2: decode the AC coefficients */ |
1242 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
1243 | for (; k < coef_limit; k++) { |
1244 | HUFF_DECODE(s, br_state, htbl, return FALSE, label2); |
1245 | |
1246 | r = s >> 4; |
1247 | s &= 15; |
1248 | |
1249 | if (s) { |
1250 | k += r; |
1251 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1252 | r = GET_BITS(s); |
1253 | s = HUFF_EXTEND(r, s); |
1254 | /* Output coefficient in natural (dezigzagged) order. |
1255 | * Note: the extra entries in jpeg_natural_order[] will save us |
1256 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
1257 | */ |
1258 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
1259 | } else { |
1260 | if (r != 15) |
1261 | goto EndOfBlock; |
1262 | k += 15; |
1263 | } |
1264 | } |
1265 | } else { |
1266 | if (s) { |
1267 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1268 | DROP_BITS(s); |
1269 | } |
1270 | } |
1271 | |
1272 | /* Section F.2.2.2: decode the AC coefficients */ |
1273 | /* In this path we just discard the values */ |
1274 | for (; k < DCTSIZE2; k++) { |
1275 | HUFF_DECODE(s, br_state, htbl, return FALSE, label3); |
1276 | |
1277 | r = s >> 4; |
1278 | s &= 15; |
1279 | |
1280 | if (s) { |
1281 | k += r; |
1282 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
1283 | DROP_BITS(s); |
1284 | } else { |
1285 | if (r != 15) |
1286 | break; |
1287 | k += 15; |
1288 | } |
1289 | } |
1290 | |
1291 | EndOfBlock: ; |
1292 | } |
1293 | |
1294 | /* Completed MCU, so update state */ |
1295 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
1296 | ASSIGN_STATE(entropy->saved, state); |
1297 | } |
1298 | |
1299 | /* Account for restart interval (no-op if not using restarts) */ |
1300 | entropy->restarts_to_go--; |
1301 | |
1302 | return TRUE; |
1303 | } |
1304 | |
1305 | |
1306 | /* |
1307 | * Initialize for a Huffman-compressed scan. |
1308 | */ |
1309 | |
1310 | METHODDEF(void) |
1311 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
1312 | { |
1313 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
1314 | int ci, blkn, tbl, i; |
1315 | jpeg_component_info * compptr; |
1316 | |
1317 | if (cinfo->progressive_mode) { |
1318 | /* Validate progressive scan parameters */ |
1319 | if (cinfo->Ss == 0) { |
1320 | if (cinfo->Se != 0) |
1321 | goto bad; |
1322 | } else { |
1323 | /* need not check Ss/Se < 0 since they came from unsigned bytes */ |
1324 | if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) |
1325 | goto bad; |
1326 | /* AC scans may have only one component */ |
1327 | if (cinfo->comps_in_scan != 1) |
1328 | goto bad; |
1329 | } |
1330 | if (cinfo->Ah != 0) { |
1331 | /* Successive approximation refinement scan: must have Al = Ah-1. */ |
1332 | if (cinfo->Ah-1 != cinfo->Al) |
1333 | goto bad; |
1334 | } |
1335 | if (cinfo->Al > 13) { /* need not check for < 0 */ |
1336 | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, |
1337 | * but the spec doesn't say so, and we try to be liberal about what we |
1338 | * accept. Note: large Al values could result in out-of-range DC |
1339 | * coefficients during early scans, leading to bizarre displays due to |
1340 | * overflows in the IDCT math. But we won't crash. |
1341 | */ |
1342 | bad: |
1343 | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, |
1344 | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); |
1345 | } |
1346 | /* Update progression status, and verify that scan order is legal. |
1347 | * Note that inter-scan inconsistencies are treated as warnings |
1348 | * not fatal errors ... not clear if this is right way to behave. |
1349 | */ |
1350 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1351 | int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; |
1352 | int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; |
1353 | if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ |
1354 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); |
1355 | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { |
1356 | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; |
1357 | if (cinfo->Ah != expected) |
1358 | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); |
1359 | coef_bit_ptr[coefi] = cinfo->Al; |
1360 | } |
1361 | } |
1362 | |
1363 | /* Select MCU decoding routine */ |
1364 | if (cinfo->Ah == 0) { |
1365 | if (cinfo->Ss == 0) |
1366 | entropy->pub.decode_mcu = decode_mcu_DC_first; |
1367 | else |
1368 | entropy->pub.decode_mcu = decode_mcu_AC_first; |
1369 | } else { |
1370 | if (cinfo->Ss == 0) |
1371 | entropy->pub.decode_mcu = decode_mcu_DC_refine; |
1372 | else |
1373 | entropy->pub.decode_mcu = decode_mcu_AC_refine; |
1374 | } |
1375 | |
1376 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1377 | compptr = cinfo->cur_comp_info[ci]; |
1378 | /* Make sure requested tables are present, and compute derived tables. |
1379 | * We may build same derived table more than once, but it's not expensive. |
1380 | */ |
1381 | if (cinfo->Ss == 0) { |
1382 | if (cinfo->Ah == 0) { /* DC refinement needs no table */ |
1383 | tbl = compptr->dc_tbl_no; |
1384 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
1385 | & entropy->derived_tbls[tbl]); |
1386 | } |
1387 | } else { |
1388 | tbl = compptr->ac_tbl_no; |
1389 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
1390 | & entropy->derived_tbls[tbl]); |
1391 | /* remember the single active table */ |
1392 | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; |
1393 | } |
1394 | /* Initialize DC predictions to 0 */ |
1395 | entropy->saved.last_dc_val[ci] = 0; |
1396 | } |
1397 | |
1398 | /* Initialize private state variables */ |
1399 | entropy->saved.EOBRUN = 0; |
1400 | } else { |
1401 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
1402 | * This ought to be an error condition, but we make it a warning because |
1403 | * there are some baseline files out there with all zeroes in these bytes. |
1404 | */ |
1405 | if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || |
1406 | ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && |
1407 | cinfo->Se != cinfo->lim_Se)) |
1408 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
1409 | |
1410 | /* Select MCU decoding routine */ |
1411 | /* We retain the hard-coded case for full-size blocks. |
1412 | * This is not necessary, but it appears that this version is slightly |
1413 | * more performant in the given implementation. |
1414 | * With an improved implementation we would prefer a single optimized |
1415 | * function. |
1416 | */ |
1417 | if (cinfo->lim_Se != DCTSIZE2-1) |
1418 | entropy->pub.decode_mcu = decode_mcu_sub; |
1419 | else |
1420 | entropy->pub.decode_mcu = decode_mcu; |
1421 | |
1422 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
1423 | compptr = cinfo->cur_comp_info[ci]; |
1424 | /* Compute derived values for Huffman tables */ |
1425 | /* We may do this more than once for a table, but it's not expensive */ |
1426 | tbl = compptr->dc_tbl_no; |
1427 | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, |
1428 | & entropy->dc_derived_tbls[tbl]); |
1429 | if (cinfo->lim_Se) { /* AC needs no table when not present */ |
1430 | tbl = compptr->ac_tbl_no; |
1431 | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, |
1432 | & entropy->ac_derived_tbls[tbl]); |
1433 | } |
1434 | /* Initialize DC predictions to 0 */ |
1435 | entropy->saved.last_dc_val[ci] = 0; |
1436 | } |
1437 | |
1438 | /* Precalculate decoding info for each block in an MCU of this scan */ |
1439 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
1440 | ci = cinfo->MCU_membership[blkn]; |
1441 | compptr = cinfo->cur_comp_info[ci]; |
1442 | /* Precalculate which table to use for each block */ |
1443 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
1444 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
1445 | /* Decide whether we really care about the coefficient values */ |
1446 | if (compptr->component_needed) { |
1447 | ci = compptr->DCT_v_scaled_size; |
1448 | i = compptr->DCT_h_scaled_size; |
1449 | switch (cinfo->lim_Se) { |
1450 | case (1*1-1): |
1451 | entropy->coef_limit[blkn] = 1; |
1452 | break; |
1453 | case (2*2-1): |
1454 | if (ci <= 0 || ci > 2) ci = 2; |
1455 | if (i <= 0 || i > 2) i = 2; |
1456 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; |
1457 | break; |
1458 | case (3*3-1): |
1459 | if (ci <= 0 || ci > 3) ci = 3; |
1460 | if (i <= 0 || i > 3) i = 3; |
1461 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; |
1462 | break; |
1463 | case (4*4-1): |
1464 | if (ci <= 0 || ci > 4) ci = 4; |
1465 | if (i <= 0 || i > 4) i = 4; |
1466 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; |
1467 | break; |
1468 | case (5*5-1): |
1469 | if (ci <= 0 || ci > 5) ci = 5; |
1470 | if (i <= 0 || i > 5) i = 5; |
1471 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; |
1472 | break; |
1473 | case (6*6-1): |
1474 | if (ci <= 0 || ci > 6) ci = 6; |
1475 | if (i <= 0 || i > 6) i = 6; |
1476 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; |
1477 | break; |
1478 | case (7*7-1): |
1479 | if (ci <= 0 || ci > 7) ci = 7; |
1480 | if (i <= 0 || i > 7) i = 7; |
1481 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; |
1482 | break; |
1483 | default: |
1484 | if (ci <= 0 || ci > 8) ci = 8; |
1485 | if (i <= 0 || i > 8) i = 8; |
1486 | entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; |
1487 | break; |
1488 | } |
1489 | } else { |
1490 | entropy->coef_limit[blkn] = 0; |
1491 | } |
1492 | } |
1493 | } |
1494 | |
1495 | /* Initialize bitread state variables */ |
1496 | entropy->bitstate.bits_left = 0; |
1497 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
1498 | entropy->insufficient_data = FALSE; |
1499 | |
1500 | /* Initialize restart counter */ |
1501 | entropy->restarts_to_go = cinfo->restart_interval; |
1502 | } |
1503 | |
1504 | |
1505 | /* |
1506 | * Module initialization routine for Huffman entropy decoding. |
1507 | */ |
1508 | |
1509 | GLOBAL(void) |
1510 | jinit_huff_decoder (j_decompress_ptr cinfo) |
1511 | { |
1512 | huff_entropy_ptr entropy; |
1513 | int i; |
1514 | |
1515 | entropy = (huff_entropy_ptr) |
1516 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1517 | SIZEOF(huff_entropy_decoder)); |
1518 | cinfo->entropy = &entropy->pub; |
1519 | entropy->pub.start_pass = start_pass_huff_decoder; |
1520 | |
1521 | if (cinfo->progressive_mode) { |
1522 | /* Create progression status table */ |
1523 | int *coef_bit_ptr, ci; |
1524 | cinfo->coef_bits = (int (*)[DCTSIZE2]) |
1525 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1526 | cinfo->num_components*DCTSIZE2*SIZEOF(int)); |
1527 | coef_bit_ptr = & cinfo->coef_bits[0][0]; |
1528 | for (ci = 0; ci < cinfo->num_components; ci++) |
1529 | for (i = 0; i < DCTSIZE2; i++) |
1530 | *coef_bit_ptr++ = -1; |
1531 | |
1532 | /* Mark derived tables unallocated */ |
1533 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1534 | entropy->derived_tbls[i] = NULL; |
1535 | } |
1536 | } else { |
1537 | /* Mark tables unallocated */ |
1538 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
1539 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
1540 | } |
1541 | } |
1542 | } |
1543 | |