1 | /* |
2 | * jfdctfst.c |
3 | * |
4 | * Copyright (C) 1994-1996, Thomas G. Lane. |
5 | * Modified 2003-2009 by Guido Vollbeding. |
6 | * This file is part of the Independent JPEG Group's software. |
7 | * For conditions of distribution and use, see the accompanying README file. |
8 | * |
9 | * This file contains a fast, not so accurate integer implementation of the |
10 | * forward DCT (Discrete Cosine Transform). |
11 | * |
12 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
13 | * on each column. Direct algorithms are also available, but they are |
14 | * much more complex and seem not to be any faster when reduced to code. |
15 | * |
16 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for |
17 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in |
18 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell |
19 | * JPEG textbook (see REFERENCES section in file README). The following code |
20 | * is based directly on figure 4-8 in P&M. |
21 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is |
22 | * possible to arrange the computation so that many of the multiplies are |
23 | * simple scalings of the final outputs. These multiplies can then be |
24 | * folded into the multiplications or divisions by the JPEG quantization |
25 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds |
26 | * to be done in the DCT itself. |
27 | * The primary disadvantage of this method is that with fixed-point math, |
28 | * accuracy is lost due to imprecise representation of the scaled |
29 | * quantization values. The smaller the quantization table entry, the less |
30 | * precise the scaled value, so this implementation does worse with high- |
31 | * quality-setting files than with low-quality ones. |
32 | */ |
33 | |
34 | #define JPEG_INTERNALS |
35 | #include "jinclude.h" |
36 | #include "jpeglib.h" |
37 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
38 | |
39 | #ifdef DCT_IFAST_SUPPORTED |
40 | |
41 | |
42 | /* |
43 | * This module is specialized to the case DCTSIZE = 8. |
44 | */ |
45 | |
46 | #if DCTSIZE != 8 |
47 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
48 | #endif |
49 | |
50 | |
51 | /* Scaling decisions are generally the same as in the LL&M algorithm; |
52 | * see jfdctint.c for more details. However, we choose to descale |
53 | * (right shift) multiplication products as soon as they are formed, |
54 | * rather than carrying additional fractional bits into subsequent additions. |
55 | * This compromises accuracy slightly, but it lets us save a few shifts. |
56 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) |
57 | * everywhere except in the multiplications proper; this saves a good deal |
58 | * of work on 16-bit-int machines. |
59 | * |
60 | * Again to save a few shifts, the intermediate results between pass 1 and |
61 | * pass 2 are not upscaled, but are represented only to integral precision. |
62 | * |
63 | * A final compromise is to represent the multiplicative constants to only |
64 | * 8 fractional bits, rather than 13. This saves some shifting work on some |
65 | * machines, and may also reduce the cost of multiplication (since there |
66 | * are fewer one-bits in the constants). |
67 | */ |
68 | |
69 | #define CONST_BITS 8 |
70 | |
71 | |
72 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
73 | * causing a lot of useless floating-point operations at run time. |
74 | * To get around this we use the following pre-calculated constants. |
75 | * If you change CONST_BITS you may want to add appropriate values. |
76 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
77 | */ |
78 | |
79 | #if CONST_BITS == 8 |
80 | #define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ |
81 | #define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ |
82 | #define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ |
83 | #define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ |
84 | #else |
85 | #define FIX_0_382683433 FIX(0.382683433) |
86 | #define FIX_0_541196100 FIX(0.541196100) |
87 | #define FIX_0_707106781 FIX(0.707106781) |
88 | #define FIX_1_306562965 FIX(1.306562965) |
89 | #endif |
90 | |
91 | |
92 | /* We can gain a little more speed, with a further compromise in accuracy, |
93 | * by omitting the addition in a descaling shift. This yields an incorrectly |
94 | * rounded result half the time... |
95 | */ |
96 | |
97 | #ifndef USE_ACCURATE_ROUNDING |
98 | #undef DESCALE |
99 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) |
100 | #endif |
101 | |
102 | |
103 | /* Multiply a DCTELEM variable by an INT32 constant, and immediately |
104 | * descale to yield a DCTELEM result. |
105 | */ |
106 | |
107 | #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
108 | |
109 | |
110 | /* |
111 | * Perform the forward DCT on one block of samples. |
112 | */ |
113 | |
114 | GLOBAL(void) |
115 | jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
116 | { |
117 | DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
118 | DCTELEM tmp10, tmp11, tmp12, tmp13; |
119 | DCTELEM z1, z2, z3, z4, z5, z11, z13; |
120 | DCTELEM *dataptr; |
121 | JSAMPROW elemptr; |
122 | int ctr; |
123 | SHIFT_TEMPS |
124 | |
125 | /* Pass 1: process rows. */ |
126 | |
127 | dataptr = data; |
128 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
129 | elemptr = sample_data[ctr] + start_col; |
130 | |
131 | /* Load data into workspace */ |
132 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
133 | tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
134 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
135 | tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
136 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
137 | tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
138 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
139 | tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
140 | |
141 | /* Even part */ |
142 | |
143 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
144 | tmp13 = tmp0 - tmp3; |
145 | tmp11 = tmp1 + tmp2; |
146 | tmp12 = tmp1 - tmp2; |
147 | |
148 | /* Apply unsigned->signed conversion */ |
149 | dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ |
150 | dataptr[4] = tmp10 - tmp11; |
151 | |
152 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
153 | dataptr[2] = tmp13 + z1; /* phase 5 */ |
154 | dataptr[6] = tmp13 - z1; |
155 | |
156 | /* Odd part */ |
157 | |
158 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
159 | tmp11 = tmp5 + tmp6; |
160 | tmp12 = tmp6 + tmp7; |
161 | |
162 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
163 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
164 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
165 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
166 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
167 | |
168 | z11 = tmp7 + z3; /* phase 5 */ |
169 | z13 = tmp7 - z3; |
170 | |
171 | dataptr[5] = z13 + z2; /* phase 6 */ |
172 | dataptr[3] = z13 - z2; |
173 | dataptr[1] = z11 + z4; |
174 | dataptr[7] = z11 - z4; |
175 | |
176 | dataptr += DCTSIZE; /* advance pointer to next row */ |
177 | } |
178 | |
179 | /* Pass 2: process columns. */ |
180 | |
181 | dataptr = data; |
182 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
183 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
184 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
185 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
186 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
187 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
188 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
189 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
190 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
191 | |
192 | /* Even part */ |
193 | |
194 | tmp10 = tmp0 + tmp3; /* phase 2 */ |
195 | tmp13 = tmp0 - tmp3; |
196 | tmp11 = tmp1 + tmp2; |
197 | tmp12 = tmp1 - tmp2; |
198 | |
199 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
200 | dataptr[DCTSIZE*4] = tmp10 - tmp11; |
201 | |
202 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ |
203 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
204 | dataptr[DCTSIZE*6] = tmp13 - z1; |
205 | |
206 | /* Odd part */ |
207 | |
208 | tmp10 = tmp4 + tmp5; /* phase 2 */ |
209 | tmp11 = tmp5 + tmp6; |
210 | tmp12 = tmp6 + tmp7; |
211 | |
212 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ |
213 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ |
214 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ |
215 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ |
216 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ |
217 | |
218 | z11 = tmp7 + z3; /* phase 5 */ |
219 | z13 = tmp7 - z3; |
220 | |
221 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
222 | dataptr[DCTSIZE*3] = z13 - z2; |
223 | dataptr[DCTSIZE*1] = z11 + z4; |
224 | dataptr[DCTSIZE*7] = z11 - z4; |
225 | |
226 | dataptr++; /* advance pointer to next column */ |
227 | } |
228 | } |
229 | |
230 | #endif /* DCT_IFAST_SUPPORTED */ |
231 | |