1 | /* |
2 | * jfdctint.c |
3 | * |
4 | * Copyright (C) 1991-1996, Thomas G. Lane. |
5 | * Modification developed 2003-2009 by Guido Vollbeding. |
6 | * This file is part of the Independent JPEG Group's software. |
7 | * For conditions of distribution and use, see the accompanying README file. |
8 | * |
9 | * This file contains a slow-but-accurate integer implementation of the |
10 | * forward DCT (Discrete Cosine Transform). |
11 | * |
12 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT |
13 | * on each column. Direct algorithms are also available, but they are |
14 | * much more complex and seem not to be any faster when reduced to code. |
15 | * |
16 | * This implementation is based on an algorithm described in |
17 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
18 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
19 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
20 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
21 | * We use their alternate method with 12 multiplies and 32 adds. |
22 | * The advantage of this method is that no data path contains more than one |
23 | * multiplication; this allows a very simple and accurate implementation in |
24 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
25 | * |
26 | * We also provide FDCT routines with various input sample block sizes for |
27 | * direct resolution reduction or enlargement and for direct resolving the |
28 | * common 2x1 and 1x2 subsampling cases without additional resampling: NxN |
29 | * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block. |
30 | * |
31 | * For N<8 we fill the remaining block coefficients with zero. |
32 | * For N>8 we apply a partial N-point FDCT on the input samples, computing |
33 | * just the lower 8 frequency coefficients and discarding the rest. |
34 | * |
35 | * We must scale the output coefficients of the N-point FDCT appropriately |
36 | * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling |
37 | * is folded into the constant multipliers (pass 2) and/or final/initial |
38 | * shifting. |
39 | * |
40 | * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases |
41 | * since there would be too many additional constants to pre-calculate. |
42 | */ |
43 | |
44 | #define JPEG_INTERNALS |
45 | #include "jinclude.h" |
46 | #include "jpeglib.h" |
47 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
48 | |
49 | #ifdef DCT_ISLOW_SUPPORTED |
50 | |
51 | |
52 | /* |
53 | * This module is specialized to the case DCTSIZE = 8. |
54 | */ |
55 | |
56 | #if DCTSIZE != 8 |
57 | Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
58 | #endif |
59 | |
60 | |
61 | /* |
62 | * The poop on this scaling stuff is as follows: |
63 | * |
64 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) |
65 | * larger than the true DCT outputs. The final outputs are therefore |
66 | * a factor of N larger than desired; since N=8 this can be cured by |
67 | * a simple right shift at the end of the algorithm. The advantage of |
68 | * this arrangement is that we save two multiplications per 1-D DCT, |
69 | * because the y0 and y4 outputs need not be divided by sqrt(N). |
70 | * In the IJG code, this factor of 8 is removed by the quantization step |
71 | * (in jcdctmgr.c), NOT in this module. |
72 | * |
73 | * We have to do addition and subtraction of the integer inputs, which |
74 | * is no problem, and multiplication by fractional constants, which is |
75 | * a problem to do in integer arithmetic. We multiply all the constants |
76 | * by CONST_SCALE and convert them to integer constants (thus retaining |
77 | * CONST_BITS bits of precision in the constants). After doing a |
78 | * multiplication we have to divide the product by CONST_SCALE, with proper |
79 | * rounding, to produce the correct output. This division can be done |
80 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
81 | * as long as possible so that partial sums can be added together with |
82 | * full fractional precision. |
83 | * |
84 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
85 | * they are represented to better-than-integral precision. These outputs |
86 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
87 | * with the recommended scaling. (For 12-bit sample data, the intermediate |
88 | * array is INT32 anyway.) |
89 | * |
90 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
91 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
92 | * shows that the values given below are the most effective. |
93 | */ |
94 | |
95 | #if BITS_IN_JSAMPLE == 8 |
96 | #define CONST_BITS 13 |
97 | #define PASS1_BITS 2 |
98 | #else |
99 | #define CONST_BITS 13 |
100 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
101 | #endif |
102 | |
103 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
104 | * causing a lot of useless floating-point operations at run time. |
105 | * To get around this we use the following pre-calculated constants. |
106 | * If you change CONST_BITS you may want to add appropriate values. |
107 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
108 | */ |
109 | |
110 | #if CONST_BITS == 13 |
111 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
112 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
113 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
114 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
115 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
116 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
117 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
118 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
119 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
120 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
121 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
122 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
123 | #else |
124 | #define FIX_0_298631336 FIX(0.298631336) |
125 | #define FIX_0_390180644 FIX(0.390180644) |
126 | #define FIX_0_541196100 FIX(0.541196100) |
127 | #define FIX_0_765366865 FIX(0.765366865) |
128 | #define FIX_0_899976223 FIX(0.899976223) |
129 | #define FIX_1_175875602 FIX(1.175875602) |
130 | #define FIX_1_501321110 FIX(1.501321110) |
131 | #define FIX_1_847759065 FIX(1.847759065) |
132 | #define FIX_1_961570560 FIX(1.961570560) |
133 | #define FIX_2_053119869 FIX(2.053119869) |
134 | #define FIX_2_562915447 FIX(2.562915447) |
135 | #define FIX_3_072711026 FIX(3.072711026) |
136 | #endif |
137 | |
138 | |
139 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
140 | * For 8-bit samples with the recommended scaling, all the variable |
141 | * and constant values involved are no more than 16 bits wide, so a |
142 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
143 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
144 | */ |
145 | |
146 | #if BITS_IN_JSAMPLE == 8 |
147 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
148 | #else |
149 | #define MULTIPLY(var,const) ((var) * (const)) |
150 | #endif |
151 | |
152 | |
153 | /* |
154 | * Perform the forward DCT on one block of samples. |
155 | */ |
156 | |
157 | GLOBAL(void) |
158 | jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
159 | { |
160 | INT32 tmp0, tmp1, tmp2, tmp3; |
161 | INT32 tmp10, tmp11, tmp12, tmp13; |
162 | INT32 z1; |
163 | DCTELEM *dataptr; |
164 | JSAMPROW elemptr; |
165 | int ctr; |
166 | SHIFT_TEMPS |
167 | |
168 | /* Pass 1: process rows. */ |
169 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
170 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
171 | |
172 | dataptr = data; |
173 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
174 | elemptr = sample_data[ctr] + start_col; |
175 | |
176 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
177 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
178 | */ |
179 | |
180 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
181 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
182 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
183 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
184 | |
185 | tmp10 = tmp0 + tmp3; |
186 | tmp12 = tmp0 - tmp3; |
187 | tmp11 = tmp1 + tmp2; |
188 | tmp13 = tmp1 - tmp2; |
189 | |
190 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
191 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
192 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
193 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
194 | |
195 | /* Apply unsigned->signed conversion */ |
196 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
197 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
198 | |
199 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
200 | /* Add fudge factor here for final descale. */ |
201 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
202 | dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
203 | CONST_BITS-PASS1_BITS); |
204 | dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
205 | CONST_BITS-PASS1_BITS); |
206 | |
207 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
208 | * cK represents sqrt(2) * cos(K*pi/16). |
209 | * i0..i3 in the paper are tmp0..tmp3 here. |
210 | */ |
211 | |
212 | tmp10 = tmp0 + tmp3; |
213 | tmp11 = tmp1 + tmp2; |
214 | tmp12 = tmp0 + tmp2; |
215 | tmp13 = tmp1 + tmp3; |
216 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
217 | /* Add fudge factor here for final descale. */ |
218 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
219 | |
220 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
221 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
222 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
223 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
224 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
225 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
226 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
227 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
228 | |
229 | tmp12 += z1; |
230 | tmp13 += z1; |
231 | |
232 | dataptr[1] = (DCTELEM) |
233 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
234 | dataptr[3] = (DCTELEM) |
235 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
236 | dataptr[5] = (DCTELEM) |
237 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
238 | dataptr[7] = (DCTELEM) |
239 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
240 | |
241 | dataptr += DCTSIZE; /* advance pointer to next row */ |
242 | } |
243 | |
244 | /* Pass 2: process columns. |
245 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
246 | * by an overall factor of 8. |
247 | */ |
248 | |
249 | dataptr = data; |
250 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
251 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
252 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
253 | */ |
254 | |
255 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
256 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
257 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
258 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
259 | |
260 | /* Add fudge factor here for final descale. */ |
261 | tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
262 | tmp12 = tmp0 - tmp3; |
263 | tmp11 = tmp1 + tmp2; |
264 | tmp13 = tmp1 - tmp2; |
265 | |
266 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
267 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
268 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
269 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
270 | |
271 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
272 | dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
273 | |
274 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
275 | /* Add fudge factor here for final descale. */ |
276 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
277 | dataptr[DCTSIZE*2] = (DCTELEM) |
278 | RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
279 | dataptr[DCTSIZE*6] = (DCTELEM) |
280 | RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
281 | |
282 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
283 | * cK represents sqrt(2) * cos(K*pi/16). |
284 | * i0..i3 in the paper are tmp0..tmp3 here. |
285 | */ |
286 | |
287 | tmp10 = tmp0 + tmp3; |
288 | tmp11 = tmp1 + tmp2; |
289 | tmp12 = tmp0 + tmp2; |
290 | tmp13 = tmp1 + tmp3; |
291 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
292 | /* Add fudge factor here for final descale. */ |
293 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
294 | |
295 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
296 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
297 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
298 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
299 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
300 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
301 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
302 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
303 | |
304 | tmp12 += z1; |
305 | tmp13 += z1; |
306 | |
307 | dataptr[DCTSIZE*1] = (DCTELEM) |
308 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
309 | dataptr[DCTSIZE*3] = (DCTELEM) |
310 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
311 | dataptr[DCTSIZE*5] = (DCTELEM) |
312 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
313 | dataptr[DCTSIZE*7] = (DCTELEM) |
314 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
315 | |
316 | dataptr++; /* advance pointer to next column */ |
317 | } |
318 | } |
319 | |
320 | #ifdef DCT_SCALING_SUPPORTED |
321 | |
322 | |
323 | /* |
324 | * Perform the forward DCT on a 7x7 sample block. |
325 | */ |
326 | |
327 | GLOBAL(void) |
328 | jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
329 | { |
330 | INT32 tmp0, tmp1, tmp2, tmp3; |
331 | INT32 tmp10, tmp11, tmp12; |
332 | INT32 z1, z2, z3; |
333 | DCTELEM *dataptr; |
334 | JSAMPROW elemptr; |
335 | int ctr; |
336 | SHIFT_TEMPS |
337 | |
338 | /* Pre-zero output coefficient block. */ |
339 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
340 | |
341 | /* Pass 1: process rows. */ |
342 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
343 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
344 | /* cK represents sqrt(2) * cos(K*pi/14). */ |
345 | |
346 | dataptr = data; |
347 | for (ctr = 0; ctr < 7; ctr++) { |
348 | elemptr = sample_data[ctr] + start_col; |
349 | |
350 | /* Even part */ |
351 | |
352 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
353 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
354 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
355 | tmp3 = GETJSAMPLE(elemptr[3]); |
356 | |
357 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
358 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
359 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
360 | |
361 | z1 = tmp0 + tmp2; |
362 | /* Apply unsigned->signed conversion */ |
363 | dataptr[0] = (DCTELEM) |
364 | ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
365 | tmp3 += tmp3; |
366 | z1 -= tmp3; |
367 | z1 -= tmp3; |
368 | z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
369 | z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
370 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
371 | dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
372 | z1 -= z2; |
373 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
374 | dataptr[4] = (DCTELEM) |
375 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
376 | CONST_BITS-PASS1_BITS); |
377 | dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
378 | |
379 | /* Odd part */ |
380 | |
381 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
382 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
383 | tmp0 = tmp1 - tmp2; |
384 | tmp1 += tmp2; |
385 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
386 | tmp1 += tmp2; |
387 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
388 | tmp0 += tmp3; |
389 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
390 | |
391 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
392 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
393 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
394 | |
395 | dataptr += DCTSIZE; /* advance pointer to next row */ |
396 | } |
397 | |
398 | /* Pass 2: process columns. |
399 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
400 | * by an overall factor of 8. |
401 | * We must also scale the output by (8/7)**2 = 64/49, which we fold |
402 | * into the constant multipliers: |
403 | * cK now represents sqrt(2) * cos(K*pi/14) * 64/49. |
404 | */ |
405 | |
406 | dataptr = data; |
407 | for (ctr = 0; ctr < 7; ctr++) { |
408 | /* Even part */ |
409 | |
410 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
411 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
412 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
413 | tmp3 = dataptr[DCTSIZE*3]; |
414 | |
415 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
416 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
417 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
418 | |
419 | z1 = tmp0 + tmp2; |
420 | dataptr[DCTSIZE*0] = (DCTELEM) |
421 | DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
422 | CONST_BITS+PASS1_BITS); |
423 | tmp3 += tmp3; |
424 | z1 -= tmp3; |
425 | z1 -= tmp3; |
426 | z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
427 | z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
428 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
429 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS); |
430 | z1 -= z2; |
431 | z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
432 | dataptr[DCTSIZE*4] = (DCTELEM) |
433 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
434 | CONST_BITS+PASS1_BITS); |
435 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS); |
436 | |
437 | /* Odd part */ |
438 | |
439 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
440 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
441 | tmp0 = tmp1 - tmp2; |
442 | tmp1 += tmp2; |
443 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
444 | tmp1 += tmp2; |
445 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
446 | tmp0 += tmp3; |
447 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
448 | |
449 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS); |
450 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS); |
451 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS); |
452 | |
453 | dataptr++; /* advance pointer to next column */ |
454 | } |
455 | } |
456 | |
457 | |
458 | /* |
459 | * Perform the forward DCT on a 6x6 sample block. |
460 | */ |
461 | |
462 | GLOBAL(void) |
463 | jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
464 | { |
465 | INT32 tmp0, tmp1, tmp2; |
466 | INT32 tmp10, tmp11, tmp12; |
467 | DCTELEM *dataptr; |
468 | JSAMPROW elemptr; |
469 | int ctr; |
470 | SHIFT_TEMPS |
471 | |
472 | /* Pre-zero output coefficient block. */ |
473 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
474 | |
475 | /* Pass 1: process rows. */ |
476 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
477 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
478 | /* cK represents sqrt(2) * cos(K*pi/12). */ |
479 | |
480 | dataptr = data; |
481 | for (ctr = 0; ctr < 6; ctr++) { |
482 | elemptr = sample_data[ctr] + start_col; |
483 | |
484 | /* Even part */ |
485 | |
486 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
487 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
488 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
489 | |
490 | tmp10 = tmp0 + tmp2; |
491 | tmp12 = tmp0 - tmp2; |
492 | |
493 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
494 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
495 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
496 | |
497 | /* Apply unsigned->signed conversion */ |
498 | dataptr[0] = (DCTELEM) |
499 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
500 | dataptr[2] = (DCTELEM) |
501 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
502 | CONST_BITS-PASS1_BITS); |
503 | dataptr[4] = (DCTELEM) |
504 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
505 | CONST_BITS-PASS1_BITS); |
506 | |
507 | /* Odd part */ |
508 | |
509 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
510 | CONST_BITS-PASS1_BITS); |
511 | |
512 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
513 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
514 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
515 | |
516 | dataptr += DCTSIZE; /* advance pointer to next row */ |
517 | } |
518 | |
519 | /* Pass 2: process columns. |
520 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
521 | * by an overall factor of 8. |
522 | * We must also scale the output by (8/6)**2 = 16/9, which we fold |
523 | * into the constant multipliers: |
524 | * cK now represents sqrt(2) * cos(K*pi/12) * 16/9. |
525 | */ |
526 | |
527 | dataptr = data; |
528 | for (ctr = 0; ctr < 6; ctr++) { |
529 | /* Even part */ |
530 | |
531 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
532 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
533 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
534 | |
535 | tmp10 = tmp0 + tmp2; |
536 | tmp12 = tmp0 - tmp2; |
537 | |
538 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
539 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
540 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
541 | |
542 | dataptr[DCTSIZE*0] = (DCTELEM) |
543 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
544 | CONST_BITS+PASS1_BITS); |
545 | dataptr[DCTSIZE*2] = (DCTELEM) |
546 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
547 | CONST_BITS+PASS1_BITS); |
548 | dataptr[DCTSIZE*4] = (DCTELEM) |
549 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
550 | CONST_BITS+PASS1_BITS); |
551 | |
552 | /* Odd part */ |
553 | |
554 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
555 | |
556 | dataptr[DCTSIZE*1] = (DCTELEM) |
557 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
558 | CONST_BITS+PASS1_BITS); |
559 | dataptr[DCTSIZE*3] = (DCTELEM) |
560 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
561 | CONST_BITS+PASS1_BITS); |
562 | dataptr[DCTSIZE*5] = (DCTELEM) |
563 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
564 | CONST_BITS+PASS1_BITS); |
565 | |
566 | dataptr++; /* advance pointer to next column */ |
567 | } |
568 | } |
569 | |
570 | |
571 | /* |
572 | * Perform the forward DCT on a 5x5 sample block. |
573 | */ |
574 | |
575 | GLOBAL(void) |
576 | jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
577 | { |
578 | INT32 tmp0, tmp1, tmp2; |
579 | INT32 tmp10, tmp11; |
580 | DCTELEM *dataptr; |
581 | JSAMPROW elemptr; |
582 | int ctr; |
583 | SHIFT_TEMPS |
584 | |
585 | /* Pre-zero output coefficient block. */ |
586 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
587 | |
588 | /* Pass 1: process rows. */ |
589 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
590 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
591 | /* We scale the results further by 2 as part of output adaption */ |
592 | /* scaling for different DCT size. */ |
593 | /* cK represents sqrt(2) * cos(K*pi/10). */ |
594 | |
595 | dataptr = data; |
596 | for (ctr = 0; ctr < 5; ctr++) { |
597 | elemptr = sample_data[ctr] + start_col; |
598 | |
599 | /* Even part */ |
600 | |
601 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
602 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
603 | tmp2 = GETJSAMPLE(elemptr[2]); |
604 | |
605 | tmp10 = tmp0 + tmp1; |
606 | tmp11 = tmp0 - tmp1; |
607 | |
608 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
609 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
610 | |
611 | /* Apply unsigned->signed conversion */ |
612 | dataptr[0] = (DCTELEM) |
613 | ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
614 | tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
615 | tmp10 -= tmp2 << 2; |
616 | tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
617 | dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1); |
618 | dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1); |
619 | |
620 | /* Odd part */ |
621 | |
622 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
623 | |
624 | dataptr[1] = (DCTELEM) |
625 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
626 | CONST_BITS-PASS1_BITS-1); |
627 | dataptr[3] = (DCTELEM) |
628 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
629 | CONST_BITS-PASS1_BITS-1); |
630 | |
631 | dataptr += DCTSIZE; /* advance pointer to next row */ |
632 | } |
633 | |
634 | /* Pass 2: process columns. |
635 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
636 | * by an overall factor of 8. |
637 | * We must also scale the output by (8/5)**2 = 64/25, which we partially |
638 | * fold into the constant multipliers (other part was done in pass 1): |
639 | * cK now represents sqrt(2) * cos(K*pi/10) * 32/25. |
640 | */ |
641 | |
642 | dataptr = data; |
643 | for (ctr = 0; ctr < 5; ctr++) { |
644 | /* Even part */ |
645 | |
646 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
647 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
648 | tmp2 = dataptr[DCTSIZE*2]; |
649 | |
650 | tmp10 = tmp0 + tmp1; |
651 | tmp11 = tmp0 - tmp1; |
652 | |
653 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
654 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
655 | |
656 | dataptr[DCTSIZE*0] = (DCTELEM) |
657 | DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
658 | CONST_BITS+PASS1_BITS); |
659 | tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
660 | tmp10 -= tmp2 << 2; |
661 | tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
662 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
663 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
664 | |
665 | /* Odd part */ |
666 | |
667 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
668 | |
669 | dataptr[DCTSIZE*1] = (DCTELEM) |
670 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
671 | CONST_BITS+PASS1_BITS); |
672 | dataptr[DCTSIZE*3] = (DCTELEM) |
673 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
674 | CONST_BITS+PASS1_BITS); |
675 | |
676 | dataptr++; /* advance pointer to next column */ |
677 | } |
678 | } |
679 | |
680 | |
681 | /* |
682 | * Perform the forward DCT on a 4x4 sample block. |
683 | */ |
684 | |
685 | GLOBAL(void) |
686 | jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
687 | { |
688 | INT32 tmp0, tmp1; |
689 | INT32 tmp10, tmp11; |
690 | DCTELEM *dataptr; |
691 | JSAMPROW elemptr; |
692 | int ctr; |
693 | SHIFT_TEMPS |
694 | |
695 | /* Pre-zero output coefficient block. */ |
696 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
697 | |
698 | /* Pass 1: process rows. */ |
699 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
700 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
701 | /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */ |
702 | /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
703 | |
704 | dataptr = data; |
705 | for (ctr = 0; ctr < 4; ctr++) { |
706 | elemptr = sample_data[ctr] + start_col; |
707 | |
708 | /* Even part */ |
709 | |
710 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
711 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
712 | |
713 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
714 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
715 | |
716 | /* Apply unsigned->signed conversion */ |
717 | dataptr[0] = (DCTELEM) |
718 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
719 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2)); |
720 | |
721 | /* Odd part */ |
722 | |
723 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
724 | /* Add fudge factor here for final descale. */ |
725 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-3); |
726 | |
727 | dataptr[1] = (DCTELEM) |
728 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
729 | CONST_BITS-PASS1_BITS-2); |
730 | dataptr[3] = (DCTELEM) |
731 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
732 | CONST_BITS-PASS1_BITS-2); |
733 | |
734 | dataptr += DCTSIZE; /* advance pointer to next row */ |
735 | } |
736 | |
737 | /* Pass 2: process columns. |
738 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
739 | * by an overall factor of 8. |
740 | */ |
741 | |
742 | dataptr = data; |
743 | for (ctr = 0; ctr < 4; ctr++) { |
744 | /* Even part */ |
745 | |
746 | /* Add fudge factor here for final descale. */ |
747 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
748 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
749 | |
750 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
751 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
752 | |
753 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
754 | dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
755 | |
756 | /* Odd part */ |
757 | |
758 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
759 | /* Add fudge factor here for final descale. */ |
760 | tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
761 | |
762 | dataptr[DCTSIZE*1] = (DCTELEM) |
763 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
764 | CONST_BITS+PASS1_BITS); |
765 | dataptr[DCTSIZE*3] = (DCTELEM) |
766 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
767 | CONST_BITS+PASS1_BITS); |
768 | |
769 | dataptr++; /* advance pointer to next column */ |
770 | } |
771 | } |
772 | |
773 | |
774 | /* |
775 | * Perform the forward DCT on a 3x3 sample block. |
776 | */ |
777 | |
778 | GLOBAL(void) |
779 | jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
780 | { |
781 | INT32 tmp0, tmp1, tmp2; |
782 | DCTELEM *dataptr; |
783 | JSAMPROW elemptr; |
784 | int ctr; |
785 | SHIFT_TEMPS |
786 | |
787 | /* Pre-zero output coefficient block. */ |
788 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
789 | |
790 | /* Pass 1: process rows. */ |
791 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
792 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
793 | /* We scale the results further by 2**2 as part of output adaption */ |
794 | /* scaling for different DCT size. */ |
795 | /* cK represents sqrt(2) * cos(K*pi/6). */ |
796 | |
797 | dataptr = data; |
798 | for (ctr = 0; ctr < 3; ctr++) { |
799 | elemptr = sample_data[ctr] + start_col; |
800 | |
801 | /* Even part */ |
802 | |
803 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
804 | tmp1 = GETJSAMPLE(elemptr[1]); |
805 | |
806 | tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
807 | |
808 | /* Apply unsigned->signed conversion */ |
809 | dataptr[0] = (DCTELEM) |
810 | ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2)); |
811 | dataptr[2] = (DCTELEM) |
812 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
813 | CONST_BITS-PASS1_BITS-2); |
814 | |
815 | /* Odd part */ |
816 | |
817 | dataptr[1] = (DCTELEM) |
818 | DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
819 | CONST_BITS-PASS1_BITS-2); |
820 | |
821 | dataptr += DCTSIZE; /* advance pointer to next row */ |
822 | } |
823 | |
824 | /* Pass 2: process columns. |
825 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
826 | * by an overall factor of 8. |
827 | * We must also scale the output by (8/3)**2 = 64/9, which we partially |
828 | * fold into the constant multipliers (other part was done in pass 1): |
829 | * cK now represents sqrt(2) * cos(K*pi/6) * 16/9. |
830 | */ |
831 | |
832 | dataptr = data; |
833 | for (ctr = 0; ctr < 3; ctr++) { |
834 | /* Even part */ |
835 | |
836 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
837 | tmp1 = dataptr[DCTSIZE*1]; |
838 | |
839 | tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
840 | |
841 | dataptr[DCTSIZE*0] = (DCTELEM) |
842 | DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
843 | CONST_BITS+PASS1_BITS); |
844 | dataptr[DCTSIZE*2] = (DCTELEM) |
845 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
846 | CONST_BITS+PASS1_BITS); |
847 | |
848 | /* Odd part */ |
849 | |
850 | dataptr[DCTSIZE*1] = (DCTELEM) |
851 | DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
852 | CONST_BITS+PASS1_BITS); |
853 | |
854 | dataptr++; /* advance pointer to next column */ |
855 | } |
856 | } |
857 | |
858 | |
859 | /* |
860 | * Perform the forward DCT on a 2x2 sample block. |
861 | */ |
862 | |
863 | GLOBAL(void) |
864 | jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
865 | { |
866 | INT32 tmp0, tmp1, tmp2, tmp3; |
867 | JSAMPROW elemptr; |
868 | |
869 | /* Pre-zero output coefficient block. */ |
870 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
871 | |
872 | /* Pass 1: process rows. */ |
873 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
874 | |
875 | /* Row 0 */ |
876 | elemptr = sample_data[0] + start_col; |
877 | |
878 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
879 | tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
880 | |
881 | /* Row 1 */ |
882 | elemptr = sample_data[1] + start_col; |
883 | |
884 | tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); |
885 | tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); |
886 | |
887 | /* Pass 2: process columns. |
888 | * We leave the results scaled up by an overall factor of 8. |
889 | * We must also scale the output by (8/2)**2 = 2**4. |
890 | */ |
891 | |
892 | /* Column 0 */ |
893 | /* Apply unsigned->signed conversion */ |
894 | data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4); |
895 | data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4); |
896 | |
897 | /* Column 1 */ |
898 | data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4); |
899 | data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4); |
900 | } |
901 | |
902 | |
903 | /* |
904 | * Perform the forward DCT on a 1x1 sample block. |
905 | */ |
906 | |
907 | GLOBAL(void) |
908 | jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
909 | { |
910 | /* Pre-zero output coefficient block. */ |
911 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
912 | |
913 | /* We leave the result scaled up by an overall factor of 8. */ |
914 | /* We must also scale the output by (8/1)**2 = 2**6. */ |
915 | /* Apply unsigned->signed conversion */ |
916 | data[0] = (DCTELEM) |
917 | ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6); |
918 | } |
919 | |
920 | |
921 | /* |
922 | * Perform the forward DCT on a 9x9 sample block. |
923 | */ |
924 | |
925 | GLOBAL(void) |
926 | jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
927 | { |
928 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
929 | INT32 tmp10, tmp11, tmp12, tmp13; |
930 | INT32 z1, z2; |
931 | DCTELEM workspace[8]; |
932 | DCTELEM *dataptr; |
933 | DCTELEM *wsptr; |
934 | JSAMPROW elemptr; |
935 | int ctr; |
936 | SHIFT_TEMPS |
937 | |
938 | /* Pass 1: process rows. */ |
939 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
940 | /* we scale the results further by 2 as part of output adaption */ |
941 | /* scaling for different DCT size. */ |
942 | /* cK represents sqrt(2) * cos(K*pi/18). */ |
943 | |
944 | dataptr = data; |
945 | ctr = 0; |
946 | for (;;) { |
947 | elemptr = sample_data[ctr] + start_col; |
948 | |
949 | /* Even part */ |
950 | |
951 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]); |
952 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]); |
953 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]); |
954 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]); |
955 | tmp4 = GETJSAMPLE(elemptr[4]); |
956 | |
957 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]); |
958 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]); |
959 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]); |
960 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]); |
961 | |
962 | z1 = tmp0 + tmp2 + tmp3; |
963 | z2 = tmp1 + tmp4; |
964 | /* Apply unsigned->signed conversion */ |
965 | dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1); |
966 | dataptr[6] = (DCTELEM) |
967 | DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */ |
968 | CONST_BITS-1); |
969 | z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */ |
970 | z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */ |
971 | dataptr[2] = (DCTELEM) |
972 | DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */ |
973 | + z1 + z2, CONST_BITS-1); |
974 | dataptr[4] = (DCTELEM) |
975 | DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */ |
976 | + z1 - z2, CONST_BITS-1); |
977 | |
978 | /* Odd part */ |
979 | |
980 | dataptr[3] = (DCTELEM) |
981 | DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */ |
982 | CONST_BITS-1); |
983 | |
984 | tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */ |
985 | tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */ |
986 | tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */ |
987 | |
988 | dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1); |
989 | |
990 | tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */ |
991 | |
992 | dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1); |
993 | dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1); |
994 | |
995 | ctr++; |
996 | |
997 | if (ctr != DCTSIZE) { |
998 | if (ctr == 9) |
999 | break; /* Done. */ |
1000 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1001 | } else |
1002 | dataptr = workspace; /* switch pointer to extended workspace */ |
1003 | } |
1004 | |
1005 | /* Pass 2: process columns. |
1006 | * We leave the results scaled up by an overall factor of 8. |
1007 | * We must also scale the output by (8/9)**2 = 64/81, which we partially |
1008 | * fold into the constant multipliers and final/initial shifting: |
1009 | * cK now represents sqrt(2) * cos(K*pi/18) * 128/81. |
1010 | */ |
1011 | |
1012 | dataptr = data; |
1013 | wsptr = workspace; |
1014 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1015 | /* Even part */ |
1016 | |
1017 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0]; |
1018 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7]; |
1019 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6]; |
1020 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5]; |
1021 | tmp4 = dataptr[DCTSIZE*4]; |
1022 | |
1023 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0]; |
1024 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7]; |
1025 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6]; |
1026 | tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5]; |
1027 | |
1028 | z1 = tmp0 + tmp2 + tmp3; |
1029 | z2 = tmp1 + tmp4; |
1030 | dataptr[DCTSIZE*0] = (DCTELEM) |
1031 | DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */ |
1032 | CONST_BITS+2); |
1033 | dataptr[DCTSIZE*6] = (DCTELEM) |
1034 | DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */ |
1035 | CONST_BITS+2); |
1036 | z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */ |
1037 | z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */ |
1038 | dataptr[DCTSIZE*2] = (DCTELEM) |
1039 | DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */ |
1040 | + z1 + z2, CONST_BITS+2); |
1041 | dataptr[DCTSIZE*4] = (DCTELEM) |
1042 | DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */ |
1043 | + z1 - z2, CONST_BITS+2); |
1044 | |
1045 | /* Odd part */ |
1046 | |
1047 | dataptr[DCTSIZE*3] = (DCTELEM) |
1048 | DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */ |
1049 | CONST_BITS+2); |
1050 | |
1051 | tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */ |
1052 | tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */ |
1053 | tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */ |
1054 | |
1055 | dataptr[DCTSIZE*1] = (DCTELEM) |
1056 | DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2); |
1057 | |
1058 | tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */ |
1059 | |
1060 | dataptr[DCTSIZE*5] = (DCTELEM) |
1061 | DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2); |
1062 | dataptr[DCTSIZE*7] = (DCTELEM) |
1063 | DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2); |
1064 | |
1065 | dataptr++; /* advance pointer to next column */ |
1066 | wsptr++; /* advance pointer to next column */ |
1067 | } |
1068 | } |
1069 | |
1070 | |
1071 | /* |
1072 | * Perform the forward DCT on a 10x10 sample block. |
1073 | */ |
1074 | |
1075 | GLOBAL(void) |
1076 | jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1077 | { |
1078 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
1079 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1080 | DCTELEM workspace[8*2]; |
1081 | DCTELEM *dataptr; |
1082 | DCTELEM *wsptr; |
1083 | JSAMPROW elemptr; |
1084 | int ctr; |
1085 | SHIFT_TEMPS |
1086 | |
1087 | /* Pass 1: process rows. */ |
1088 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
1089 | /* we scale the results further by 2 as part of output adaption */ |
1090 | /* scaling for different DCT size. */ |
1091 | /* cK represents sqrt(2) * cos(K*pi/20). */ |
1092 | |
1093 | dataptr = data; |
1094 | ctr = 0; |
1095 | for (;;) { |
1096 | elemptr = sample_data[ctr] + start_col; |
1097 | |
1098 | /* Even part */ |
1099 | |
1100 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
1101 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
1102 | tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
1103 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
1104 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
1105 | |
1106 | tmp10 = tmp0 + tmp4; |
1107 | tmp13 = tmp0 - tmp4; |
1108 | tmp11 = tmp1 + tmp3; |
1109 | tmp14 = tmp1 - tmp3; |
1110 | |
1111 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
1112 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
1113 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
1114 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
1115 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
1116 | |
1117 | /* Apply unsigned->signed conversion */ |
1118 | dataptr[0] = (DCTELEM) |
1119 | ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1); |
1120 | tmp12 += tmp12; |
1121 | dataptr[4] = (DCTELEM) |
1122 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
1123 | MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
1124 | CONST_BITS-1); |
1125 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
1126 | dataptr[2] = (DCTELEM) |
1127 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
1128 | CONST_BITS-1); |
1129 | dataptr[6] = (DCTELEM) |
1130 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
1131 | CONST_BITS-1); |
1132 | |
1133 | /* Odd part */ |
1134 | |
1135 | tmp10 = tmp0 + tmp4; |
1136 | tmp11 = tmp1 - tmp3; |
1137 | dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1); |
1138 | tmp2 <<= CONST_BITS; |
1139 | dataptr[1] = (DCTELEM) |
1140 | DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
1141 | MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
1142 | MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
1143 | MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
1144 | CONST_BITS-1); |
1145 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
1146 | MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
1147 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
1148 | (tmp11 << (CONST_BITS - 1)) - tmp2; |
1149 | dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1); |
1150 | dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1); |
1151 | |
1152 | ctr++; |
1153 | |
1154 | if (ctr != DCTSIZE) { |
1155 | if (ctr == 10) |
1156 | break; /* Done. */ |
1157 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1158 | } else |
1159 | dataptr = workspace; /* switch pointer to extended workspace */ |
1160 | } |
1161 | |
1162 | /* Pass 2: process columns. |
1163 | * We leave the results scaled up by an overall factor of 8. |
1164 | * We must also scale the output by (8/10)**2 = 16/25, which we partially |
1165 | * fold into the constant multipliers and final/initial shifting: |
1166 | * cK now represents sqrt(2) * cos(K*pi/20) * 32/25. |
1167 | */ |
1168 | |
1169 | dataptr = data; |
1170 | wsptr = workspace; |
1171 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1172 | /* Even part */ |
1173 | |
1174 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
1175 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
1176 | tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
1177 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
1178 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
1179 | |
1180 | tmp10 = tmp0 + tmp4; |
1181 | tmp13 = tmp0 - tmp4; |
1182 | tmp11 = tmp1 + tmp3; |
1183 | tmp14 = tmp1 - tmp3; |
1184 | |
1185 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
1186 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
1187 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
1188 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
1189 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
1190 | |
1191 | dataptr[DCTSIZE*0] = (DCTELEM) |
1192 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
1193 | CONST_BITS+2); |
1194 | tmp12 += tmp12; |
1195 | dataptr[DCTSIZE*4] = (DCTELEM) |
1196 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
1197 | MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
1198 | CONST_BITS+2); |
1199 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
1200 | dataptr[DCTSIZE*2] = (DCTELEM) |
1201 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
1202 | CONST_BITS+2); |
1203 | dataptr[DCTSIZE*6] = (DCTELEM) |
1204 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
1205 | CONST_BITS+2); |
1206 | |
1207 | /* Odd part */ |
1208 | |
1209 | tmp10 = tmp0 + tmp4; |
1210 | tmp11 = tmp1 - tmp3; |
1211 | dataptr[DCTSIZE*5] = (DCTELEM) |
1212 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
1213 | CONST_BITS+2); |
1214 | tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
1215 | dataptr[DCTSIZE*1] = (DCTELEM) |
1216 | DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
1217 | MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
1218 | MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
1219 | MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
1220 | CONST_BITS+2); |
1221 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
1222 | MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
1223 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
1224 | MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
1225 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2); |
1226 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2); |
1227 | |
1228 | dataptr++; /* advance pointer to next column */ |
1229 | wsptr++; /* advance pointer to next column */ |
1230 | } |
1231 | } |
1232 | |
1233 | |
1234 | /* |
1235 | * Perform the forward DCT on an 11x11 sample block. |
1236 | */ |
1237 | |
1238 | GLOBAL(void) |
1239 | jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1240 | { |
1241 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
1242 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1243 | INT32 z1, z2, z3; |
1244 | DCTELEM workspace[8*3]; |
1245 | DCTELEM *dataptr; |
1246 | DCTELEM *wsptr; |
1247 | JSAMPROW elemptr; |
1248 | int ctr; |
1249 | SHIFT_TEMPS |
1250 | |
1251 | /* Pass 1: process rows. */ |
1252 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
1253 | /* we scale the results further by 2 as part of output adaption */ |
1254 | /* scaling for different DCT size. */ |
1255 | /* cK represents sqrt(2) * cos(K*pi/22). */ |
1256 | |
1257 | dataptr = data; |
1258 | ctr = 0; |
1259 | for (;;) { |
1260 | elemptr = sample_data[ctr] + start_col; |
1261 | |
1262 | /* Even part */ |
1263 | |
1264 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]); |
1265 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]); |
1266 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]); |
1267 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]); |
1268 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]); |
1269 | tmp5 = GETJSAMPLE(elemptr[5]); |
1270 | |
1271 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]); |
1272 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]); |
1273 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]); |
1274 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]); |
1275 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]); |
1276 | |
1277 | /* Apply unsigned->signed conversion */ |
1278 | dataptr[0] = (DCTELEM) |
1279 | ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1); |
1280 | tmp5 += tmp5; |
1281 | tmp0 -= tmp5; |
1282 | tmp1 -= tmp5; |
1283 | tmp2 -= tmp5; |
1284 | tmp3 -= tmp5; |
1285 | tmp4 -= tmp5; |
1286 | z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */ |
1287 | MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */ |
1288 | z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */ |
1289 | z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */ |
1290 | dataptr[2] = (DCTELEM) |
1291 | DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */ |
1292 | - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */ |
1293 | CONST_BITS-1); |
1294 | dataptr[4] = (DCTELEM) |
1295 | DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */ |
1296 | - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */ |
1297 | + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */ |
1298 | CONST_BITS-1); |
1299 | dataptr[6] = (DCTELEM) |
1300 | DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */ |
1301 | - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */ |
1302 | CONST_BITS-1); |
1303 | |
1304 | /* Odd part */ |
1305 | |
1306 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */ |
1307 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */ |
1308 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */ |
1309 | tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */ |
1310 | + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */ |
1311 | tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */ |
1312 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */ |
1313 | tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */ |
1314 | - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */ |
1315 | tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */ |
1316 | tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */ |
1317 | + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */ |
1318 | tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */ |
1319 | - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */ |
1320 | |
1321 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1); |
1322 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1); |
1323 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1); |
1324 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1); |
1325 | |
1326 | ctr++; |
1327 | |
1328 | if (ctr != DCTSIZE) { |
1329 | if (ctr == 11) |
1330 | break; /* Done. */ |
1331 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1332 | } else |
1333 | dataptr = workspace; /* switch pointer to extended workspace */ |
1334 | } |
1335 | |
1336 | /* Pass 2: process columns. |
1337 | * We leave the results scaled up by an overall factor of 8. |
1338 | * We must also scale the output by (8/11)**2 = 64/121, which we partially |
1339 | * fold into the constant multipliers and final/initial shifting: |
1340 | * cK now represents sqrt(2) * cos(K*pi/22) * 128/121. |
1341 | */ |
1342 | |
1343 | dataptr = data; |
1344 | wsptr = workspace; |
1345 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1346 | /* Even part */ |
1347 | |
1348 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2]; |
1349 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1]; |
1350 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0]; |
1351 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7]; |
1352 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6]; |
1353 | tmp5 = dataptr[DCTSIZE*5]; |
1354 | |
1355 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2]; |
1356 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1]; |
1357 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0]; |
1358 | tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7]; |
1359 | tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6]; |
1360 | |
1361 | dataptr[DCTSIZE*0] = (DCTELEM) |
1362 | DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5, |
1363 | FIX(1.057851240)), /* 128/121 */ |
1364 | CONST_BITS+2); |
1365 | tmp5 += tmp5; |
1366 | tmp0 -= tmp5; |
1367 | tmp1 -= tmp5; |
1368 | tmp2 -= tmp5; |
1369 | tmp3 -= tmp5; |
1370 | tmp4 -= tmp5; |
1371 | z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */ |
1372 | MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */ |
1373 | z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */ |
1374 | z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */ |
1375 | dataptr[DCTSIZE*2] = (DCTELEM) |
1376 | DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */ |
1377 | - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */ |
1378 | CONST_BITS+2); |
1379 | dataptr[DCTSIZE*4] = (DCTELEM) |
1380 | DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */ |
1381 | - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */ |
1382 | + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */ |
1383 | CONST_BITS+2); |
1384 | dataptr[DCTSIZE*6] = (DCTELEM) |
1385 | DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */ |
1386 | - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */ |
1387 | CONST_BITS+2); |
1388 | |
1389 | /* Odd part */ |
1390 | |
1391 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */ |
1392 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */ |
1393 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */ |
1394 | tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */ |
1395 | + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */ |
1396 | tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */ |
1397 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */ |
1398 | tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */ |
1399 | - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */ |
1400 | tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */ |
1401 | tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */ |
1402 | + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */ |
1403 | tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */ |
1404 | - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */ |
1405 | |
1406 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
1407 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
1408 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
1409 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
1410 | |
1411 | dataptr++; /* advance pointer to next column */ |
1412 | wsptr++; /* advance pointer to next column */ |
1413 | } |
1414 | } |
1415 | |
1416 | |
1417 | /* |
1418 | * Perform the forward DCT on a 12x12 sample block. |
1419 | */ |
1420 | |
1421 | GLOBAL(void) |
1422 | jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1423 | { |
1424 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
1425 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1426 | DCTELEM workspace[8*4]; |
1427 | DCTELEM *dataptr; |
1428 | DCTELEM *wsptr; |
1429 | JSAMPROW elemptr; |
1430 | int ctr; |
1431 | SHIFT_TEMPS |
1432 | |
1433 | /* Pass 1: process rows. */ |
1434 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1435 | /* cK represents sqrt(2) * cos(K*pi/24). */ |
1436 | |
1437 | dataptr = data; |
1438 | ctr = 0; |
1439 | for (;;) { |
1440 | elemptr = sample_data[ctr] + start_col; |
1441 | |
1442 | /* Even part */ |
1443 | |
1444 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
1445 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
1446 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
1447 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
1448 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
1449 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
1450 | |
1451 | tmp10 = tmp0 + tmp5; |
1452 | tmp13 = tmp0 - tmp5; |
1453 | tmp11 = tmp1 + tmp4; |
1454 | tmp14 = tmp1 - tmp4; |
1455 | tmp12 = tmp2 + tmp3; |
1456 | tmp15 = tmp2 - tmp3; |
1457 | |
1458 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
1459 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
1460 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
1461 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
1462 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
1463 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
1464 | |
1465 | /* Apply unsigned->signed conversion */ |
1466 | dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE); |
1467 | dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15); |
1468 | dataptr[4] = (DCTELEM) |
1469 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
1470 | CONST_BITS); |
1471 | dataptr[2] = (DCTELEM) |
1472 | DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
1473 | CONST_BITS); |
1474 | |
1475 | /* Odd part */ |
1476 | |
1477 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
1478 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
1479 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
1480 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
1481 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
1482 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
1483 | + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
1484 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
1485 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
1486 | + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
1487 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
1488 | - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
1489 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
1490 | - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
1491 | |
1492 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS); |
1493 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS); |
1494 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS); |
1495 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS); |
1496 | |
1497 | ctr++; |
1498 | |
1499 | if (ctr != DCTSIZE) { |
1500 | if (ctr == 12) |
1501 | break; /* Done. */ |
1502 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1503 | } else |
1504 | dataptr = workspace; /* switch pointer to extended workspace */ |
1505 | } |
1506 | |
1507 | /* Pass 2: process columns. |
1508 | * We leave the results scaled up by an overall factor of 8. |
1509 | * We must also scale the output by (8/12)**2 = 4/9, which we partially |
1510 | * fold into the constant multipliers and final shifting: |
1511 | * cK now represents sqrt(2) * cos(K*pi/24) * 8/9. |
1512 | */ |
1513 | |
1514 | dataptr = data; |
1515 | wsptr = workspace; |
1516 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1517 | /* Even part */ |
1518 | |
1519 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
1520 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
1521 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
1522 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
1523 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
1524 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
1525 | |
1526 | tmp10 = tmp0 + tmp5; |
1527 | tmp13 = tmp0 - tmp5; |
1528 | tmp11 = tmp1 + tmp4; |
1529 | tmp14 = tmp1 - tmp4; |
1530 | tmp12 = tmp2 + tmp3; |
1531 | tmp15 = tmp2 - tmp3; |
1532 | |
1533 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
1534 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
1535 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
1536 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
1537 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
1538 | tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
1539 | |
1540 | dataptr[DCTSIZE*0] = (DCTELEM) |
1541 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
1542 | CONST_BITS+1); |
1543 | dataptr[DCTSIZE*6] = (DCTELEM) |
1544 | DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
1545 | CONST_BITS+1); |
1546 | dataptr[DCTSIZE*4] = (DCTELEM) |
1547 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
1548 | CONST_BITS+1); |
1549 | dataptr[DCTSIZE*2] = (DCTELEM) |
1550 | DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
1551 | MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
1552 | CONST_BITS+1); |
1553 | |
1554 | /* Odd part */ |
1555 | |
1556 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
1557 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
1558 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
1559 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
1560 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
1561 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
1562 | + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
1563 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
1564 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
1565 | + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
1566 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
1567 | - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
1568 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
1569 | - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
1570 | |
1571 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1); |
1572 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1); |
1573 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1); |
1574 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1); |
1575 | |
1576 | dataptr++; /* advance pointer to next column */ |
1577 | wsptr++; /* advance pointer to next column */ |
1578 | } |
1579 | } |
1580 | |
1581 | |
1582 | /* |
1583 | * Perform the forward DCT on a 13x13 sample block. |
1584 | */ |
1585 | |
1586 | GLOBAL(void) |
1587 | jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1588 | { |
1589 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
1590 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1591 | INT32 z1, z2; |
1592 | DCTELEM workspace[8*5]; |
1593 | DCTELEM *dataptr; |
1594 | DCTELEM *wsptr; |
1595 | JSAMPROW elemptr; |
1596 | int ctr; |
1597 | SHIFT_TEMPS |
1598 | |
1599 | /* Pass 1: process rows. */ |
1600 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1601 | /* cK represents sqrt(2) * cos(K*pi/26). */ |
1602 | |
1603 | dataptr = data; |
1604 | ctr = 0; |
1605 | for (;;) { |
1606 | elemptr = sample_data[ctr] + start_col; |
1607 | |
1608 | /* Even part */ |
1609 | |
1610 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]); |
1611 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]); |
1612 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]); |
1613 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]); |
1614 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]); |
1615 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]); |
1616 | tmp6 = GETJSAMPLE(elemptr[6]); |
1617 | |
1618 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]); |
1619 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]); |
1620 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]); |
1621 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]); |
1622 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]); |
1623 | tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]); |
1624 | |
1625 | /* Apply unsigned->signed conversion */ |
1626 | dataptr[0] = (DCTELEM) |
1627 | (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE); |
1628 | tmp6 += tmp6; |
1629 | tmp0 -= tmp6; |
1630 | tmp1 -= tmp6; |
1631 | tmp2 -= tmp6; |
1632 | tmp3 -= tmp6; |
1633 | tmp4 -= tmp6; |
1634 | tmp5 -= tmp6; |
1635 | dataptr[2] = (DCTELEM) |
1636 | DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */ |
1637 | MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */ |
1638 | MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */ |
1639 | MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */ |
1640 | MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */ |
1641 | MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */ |
1642 | CONST_BITS); |
1643 | z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */ |
1644 | MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */ |
1645 | MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */ |
1646 | z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */ |
1647 | MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */ |
1648 | MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */ |
1649 | |
1650 | dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS); |
1651 | dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS); |
1652 | |
1653 | /* Odd part */ |
1654 | |
1655 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */ |
1656 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */ |
1657 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */ |
1658 | MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */ |
1659 | tmp0 = tmp1 + tmp2 + tmp3 - |
1660 | MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */ |
1661 | MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */ |
1662 | tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */ |
1663 | MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */ |
1664 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */ |
1665 | tmp1 += tmp4 + tmp5 + |
1666 | MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */ |
1667 | MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */ |
1668 | tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */ |
1669 | tmp2 += tmp4 + tmp6 - |
1670 | MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */ |
1671 | MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */ |
1672 | tmp3 += tmp5 + tmp6 + |
1673 | MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */ |
1674 | MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */ |
1675 | |
1676 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
1677 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
1678 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
1679 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
1680 | |
1681 | ctr++; |
1682 | |
1683 | if (ctr != DCTSIZE) { |
1684 | if (ctr == 13) |
1685 | break; /* Done. */ |
1686 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1687 | } else |
1688 | dataptr = workspace; /* switch pointer to extended workspace */ |
1689 | } |
1690 | |
1691 | /* Pass 2: process columns. |
1692 | * We leave the results scaled up by an overall factor of 8. |
1693 | * We must also scale the output by (8/13)**2 = 64/169, which we partially |
1694 | * fold into the constant multipliers and final shifting: |
1695 | * cK now represents sqrt(2) * cos(K*pi/26) * 128/169. |
1696 | */ |
1697 | |
1698 | dataptr = data; |
1699 | wsptr = workspace; |
1700 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1701 | /* Even part */ |
1702 | |
1703 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4]; |
1704 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3]; |
1705 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2]; |
1706 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1]; |
1707 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0]; |
1708 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7]; |
1709 | tmp6 = dataptr[DCTSIZE*6]; |
1710 | |
1711 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4]; |
1712 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3]; |
1713 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2]; |
1714 | tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1]; |
1715 | tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0]; |
1716 | tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7]; |
1717 | |
1718 | dataptr[DCTSIZE*0] = (DCTELEM) |
1719 | DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6, |
1720 | FIX(0.757396450)), /* 128/169 */ |
1721 | CONST_BITS+1); |
1722 | tmp6 += tmp6; |
1723 | tmp0 -= tmp6; |
1724 | tmp1 -= tmp6; |
1725 | tmp2 -= tmp6; |
1726 | tmp3 -= tmp6; |
1727 | tmp4 -= tmp6; |
1728 | tmp5 -= tmp6; |
1729 | dataptr[DCTSIZE*2] = (DCTELEM) |
1730 | DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */ |
1731 | MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */ |
1732 | MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */ |
1733 | MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */ |
1734 | MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */ |
1735 | MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */ |
1736 | CONST_BITS+1); |
1737 | z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */ |
1738 | MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */ |
1739 | MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */ |
1740 | z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */ |
1741 | MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */ |
1742 | MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */ |
1743 | |
1744 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1); |
1745 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1); |
1746 | |
1747 | /* Odd part */ |
1748 | |
1749 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */ |
1750 | tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */ |
1751 | tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */ |
1752 | MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */ |
1753 | tmp0 = tmp1 + tmp2 + tmp3 - |
1754 | MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */ |
1755 | MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */ |
1756 | tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */ |
1757 | MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */ |
1758 | tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */ |
1759 | tmp1 += tmp4 + tmp5 + |
1760 | MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */ |
1761 | MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */ |
1762 | tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */ |
1763 | tmp2 += tmp4 + tmp6 - |
1764 | MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */ |
1765 | MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */ |
1766 | tmp3 += tmp5 + tmp6 + |
1767 | MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */ |
1768 | MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */ |
1769 | |
1770 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1); |
1771 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1); |
1772 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1); |
1773 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1); |
1774 | |
1775 | dataptr++; /* advance pointer to next column */ |
1776 | wsptr++; /* advance pointer to next column */ |
1777 | } |
1778 | } |
1779 | |
1780 | |
1781 | /* |
1782 | * Perform the forward DCT on a 14x14 sample block. |
1783 | */ |
1784 | |
1785 | GLOBAL(void) |
1786 | jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1787 | { |
1788 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
1789 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
1790 | DCTELEM workspace[8*6]; |
1791 | DCTELEM *dataptr; |
1792 | DCTELEM *wsptr; |
1793 | JSAMPROW elemptr; |
1794 | int ctr; |
1795 | SHIFT_TEMPS |
1796 | |
1797 | /* Pass 1: process rows. */ |
1798 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
1799 | /* cK represents sqrt(2) * cos(K*pi/28). */ |
1800 | |
1801 | dataptr = data; |
1802 | ctr = 0; |
1803 | for (;;) { |
1804 | elemptr = sample_data[ctr] + start_col; |
1805 | |
1806 | /* Even part */ |
1807 | |
1808 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
1809 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
1810 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
1811 | tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
1812 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
1813 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
1814 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
1815 | |
1816 | tmp10 = tmp0 + tmp6; |
1817 | tmp14 = tmp0 - tmp6; |
1818 | tmp11 = tmp1 + tmp5; |
1819 | tmp15 = tmp1 - tmp5; |
1820 | tmp12 = tmp2 + tmp4; |
1821 | tmp16 = tmp2 - tmp4; |
1822 | |
1823 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
1824 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
1825 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
1826 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
1827 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
1828 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
1829 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
1830 | |
1831 | /* Apply unsigned->signed conversion */ |
1832 | dataptr[0] = (DCTELEM) |
1833 | (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE); |
1834 | tmp13 += tmp13; |
1835 | dataptr[4] = (DCTELEM) |
1836 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
1837 | MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
1838 | MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
1839 | CONST_BITS); |
1840 | |
1841 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
1842 | |
1843 | dataptr[2] = (DCTELEM) |
1844 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
1845 | + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
1846 | CONST_BITS); |
1847 | dataptr[6] = (DCTELEM) |
1848 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
1849 | - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
1850 | CONST_BITS); |
1851 | |
1852 | /* Odd part */ |
1853 | |
1854 | tmp10 = tmp1 + tmp2; |
1855 | tmp11 = tmp5 - tmp4; |
1856 | dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6); |
1857 | tmp3 <<= CONST_BITS; |
1858 | tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
1859 | tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
1860 | tmp10 += tmp11 - tmp3; |
1861 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
1862 | MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
1863 | dataptr[5] = (DCTELEM) |
1864 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
1865 | + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
1866 | CONST_BITS); |
1867 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
1868 | MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
1869 | dataptr[3] = (DCTELEM) |
1870 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
1871 | - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
1872 | CONST_BITS); |
1873 | dataptr[1] = (DCTELEM) |
1874 | DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
1875 | MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
1876 | CONST_BITS); |
1877 | |
1878 | ctr++; |
1879 | |
1880 | if (ctr != DCTSIZE) { |
1881 | if (ctr == 14) |
1882 | break; /* Done. */ |
1883 | dataptr += DCTSIZE; /* advance pointer to next row */ |
1884 | } else |
1885 | dataptr = workspace; /* switch pointer to extended workspace */ |
1886 | } |
1887 | |
1888 | /* Pass 2: process columns. |
1889 | * We leave the results scaled up by an overall factor of 8. |
1890 | * We must also scale the output by (8/14)**2 = 16/49, which we partially |
1891 | * fold into the constant multipliers and final shifting: |
1892 | * cK now represents sqrt(2) * cos(K*pi/28) * 32/49. |
1893 | */ |
1894 | |
1895 | dataptr = data; |
1896 | wsptr = workspace; |
1897 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
1898 | /* Even part */ |
1899 | |
1900 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
1901 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
1902 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
1903 | tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
1904 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
1905 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
1906 | tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
1907 | |
1908 | tmp10 = tmp0 + tmp6; |
1909 | tmp14 = tmp0 - tmp6; |
1910 | tmp11 = tmp1 + tmp5; |
1911 | tmp15 = tmp1 - tmp5; |
1912 | tmp12 = tmp2 + tmp4; |
1913 | tmp16 = tmp2 - tmp4; |
1914 | |
1915 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
1916 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
1917 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
1918 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
1919 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
1920 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
1921 | tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
1922 | |
1923 | dataptr[DCTSIZE*0] = (DCTELEM) |
1924 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
1925 | FIX(0.653061224)), /* 32/49 */ |
1926 | CONST_BITS+1); |
1927 | tmp13 += tmp13; |
1928 | dataptr[DCTSIZE*4] = (DCTELEM) |
1929 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
1930 | MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
1931 | MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
1932 | CONST_BITS+1); |
1933 | |
1934 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
1935 | |
1936 | dataptr[DCTSIZE*2] = (DCTELEM) |
1937 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
1938 | + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
1939 | CONST_BITS+1); |
1940 | dataptr[DCTSIZE*6] = (DCTELEM) |
1941 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
1942 | - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
1943 | CONST_BITS+1); |
1944 | |
1945 | /* Odd part */ |
1946 | |
1947 | tmp10 = tmp1 + tmp2; |
1948 | tmp11 = tmp5 - tmp4; |
1949 | dataptr[DCTSIZE*7] = (DCTELEM) |
1950 | DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
1951 | FIX(0.653061224)), /* 32/49 */ |
1952 | CONST_BITS+1); |
1953 | tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
1954 | tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
1955 | tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
1956 | tmp10 += tmp11 - tmp3; |
1957 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
1958 | MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
1959 | dataptr[DCTSIZE*5] = (DCTELEM) |
1960 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
1961 | + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
1962 | CONST_BITS+1); |
1963 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
1964 | MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
1965 | dataptr[DCTSIZE*3] = (DCTELEM) |
1966 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
1967 | - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
1968 | CONST_BITS+1); |
1969 | dataptr[DCTSIZE*1] = (DCTELEM) |
1970 | DESCALE(tmp11 + tmp12 + tmp3 |
1971 | - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
1972 | - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
1973 | CONST_BITS+1); |
1974 | |
1975 | dataptr++; /* advance pointer to next column */ |
1976 | wsptr++; /* advance pointer to next column */ |
1977 | } |
1978 | } |
1979 | |
1980 | |
1981 | /* |
1982 | * Perform the forward DCT on a 15x15 sample block. |
1983 | */ |
1984 | |
1985 | GLOBAL(void) |
1986 | jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
1987 | { |
1988 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
1989 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
1990 | INT32 z1, z2, z3; |
1991 | DCTELEM workspace[8*7]; |
1992 | DCTELEM *dataptr; |
1993 | DCTELEM *wsptr; |
1994 | JSAMPROW elemptr; |
1995 | int ctr; |
1996 | SHIFT_TEMPS |
1997 | |
1998 | /* Pass 1: process rows. */ |
1999 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
2000 | /* cK represents sqrt(2) * cos(K*pi/30). */ |
2001 | |
2002 | dataptr = data; |
2003 | ctr = 0; |
2004 | for (;;) { |
2005 | elemptr = sample_data[ctr] + start_col; |
2006 | |
2007 | /* Even part */ |
2008 | |
2009 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]); |
2010 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]); |
2011 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]); |
2012 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]); |
2013 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]); |
2014 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]); |
2015 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]); |
2016 | tmp7 = GETJSAMPLE(elemptr[7]); |
2017 | |
2018 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]); |
2019 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]); |
2020 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]); |
2021 | tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]); |
2022 | tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]); |
2023 | tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]); |
2024 | tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]); |
2025 | |
2026 | z1 = tmp0 + tmp4 + tmp5; |
2027 | z2 = tmp1 + tmp3 + tmp6; |
2028 | z3 = tmp2 + tmp7; |
2029 | /* Apply unsigned->signed conversion */ |
2030 | dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE); |
2031 | z3 += z3; |
2032 | dataptr[6] = (DCTELEM) |
2033 | DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */ |
2034 | MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */ |
2035 | CONST_BITS); |
2036 | tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
2037 | z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */ |
2038 | MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */ |
2039 | z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */ |
2040 | MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */ |
2041 | z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */ |
2042 | MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */ |
2043 | MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */ |
2044 | |
2045 | dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS); |
2046 | dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS); |
2047 | |
2048 | /* Odd part */ |
2049 | |
2050 | tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
2051 | FIX(1.224744871)); /* c5 */ |
2052 | tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */ |
2053 | MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */ |
2054 | tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */ |
2055 | tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */ |
2056 | MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */ |
2057 | MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */ |
2058 | tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */ |
2059 | MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */ |
2060 | MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */ |
2061 | tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */ |
2062 | MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */ |
2063 | MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */ |
2064 | |
2065 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); |
2066 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); |
2067 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); |
2068 | dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); |
2069 | |
2070 | ctr++; |
2071 | |
2072 | if (ctr != DCTSIZE) { |
2073 | if (ctr == 15) |
2074 | break; /* Done. */ |
2075 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2076 | } else |
2077 | dataptr = workspace; /* switch pointer to extended workspace */ |
2078 | } |
2079 | |
2080 | /* Pass 2: process columns. |
2081 | * We leave the results scaled up by an overall factor of 8. |
2082 | * We must also scale the output by (8/15)**2 = 64/225, which we partially |
2083 | * fold into the constant multipliers and final shifting: |
2084 | * cK now represents sqrt(2) * cos(K*pi/30) * 256/225. |
2085 | */ |
2086 | |
2087 | dataptr = data; |
2088 | wsptr = workspace; |
2089 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2090 | /* Even part */ |
2091 | |
2092 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6]; |
2093 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5]; |
2094 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4]; |
2095 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3]; |
2096 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2]; |
2097 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1]; |
2098 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0]; |
2099 | tmp7 = dataptr[DCTSIZE*7]; |
2100 | |
2101 | tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6]; |
2102 | tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5]; |
2103 | tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4]; |
2104 | tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3]; |
2105 | tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2]; |
2106 | tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1]; |
2107 | tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0]; |
2108 | |
2109 | z1 = tmp0 + tmp4 + tmp5; |
2110 | z2 = tmp1 + tmp3 + tmp6; |
2111 | z3 = tmp2 + tmp7; |
2112 | dataptr[DCTSIZE*0] = (DCTELEM) |
2113 | DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */ |
2114 | CONST_BITS+2); |
2115 | z3 += z3; |
2116 | dataptr[DCTSIZE*6] = (DCTELEM) |
2117 | DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */ |
2118 | MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */ |
2119 | CONST_BITS+2); |
2120 | tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; |
2121 | z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */ |
2122 | MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */ |
2123 | z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */ |
2124 | MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */ |
2125 | z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */ |
2126 | MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */ |
2127 | MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */ |
2128 | |
2129 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2); |
2130 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2); |
2131 | |
2132 | /* Odd part */ |
2133 | |
2134 | tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, |
2135 | FIX(1.393487498)); /* c5 */ |
2136 | tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */ |
2137 | MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */ |
2138 | tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */ |
2139 | tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */ |
2140 | MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */ |
2141 | MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */ |
2142 | tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */ |
2143 | MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */ |
2144 | MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */ |
2145 | tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */ |
2146 | MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */ |
2147 | MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */ |
2148 | |
2149 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); |
2150 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); |
2151 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); |
2152 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); |
2153 | |
2154 | dataptr++; /* advance pointer to next column */ |
2155 | wsptr++; /* advance pointer to next column */ |
2156 | } |
2157 | } |
2158 | |
2159 | |
2160 | /* |
2161 | * Perform the forward DCT on a 16x16 sample block. |
2162 | */ |
2163 | |
2164 | GLOBAL(void) |
2165 | jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2166 | { |
2167 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
2168 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
2169 | DCTELEM workspace[DCTSIZE2]; |
2170 | DCTELEM *dataptr; |
2171 | DCTELEM *wsptr; |
2172 | JSAMPROW elemptr; |
2173 | int ctr; |
2174 | SHIFT_TEMPS |
2175 | |
2176 | /* Pass 1: process rows. */ |
2177 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2178 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2179 | /* cK represents sqrt(2) * cos(K*pi/32). */ |
2180 | |
2181 | dataptr = data; |
2182 | ctr = 0; |
2183 | for (;;) { |
2184 | elemptr = sample_data[ctr] + start_col; |
2185 | |
2186 | /* Even part */ |
2187 | |
2188 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
2189 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
2190 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
2191 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
2192 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
2193 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
2194 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
2195 | tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
2196 | |
2197 | tmp10 = tmp0 + tmp7; |
2198 | tmp14 = tmp0 - tmp7; |
2199 | tmp11 = tmp1 + tmp6; |
2200 | tmp15 = tmp1 - tmp6; |
2201 | tmp12 = tmp2 + tmp5; |
2202 | tmp16 = tmp2 - tmp5; |
2203 | tmp13 = tmp3 + tmp4; |
2204 | tmp17 = tmp3 - tmp4; |
2205 | |
2206 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
2207 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
2208 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
2209 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
2210 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
2211 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
2212 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
2213 | tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
2214 | |
2215 | /* Apply unsigned->signed conversion */ |
2216 | dataptr[0] = (DCTELEM) |
2217 | ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
2218 | dataptr[4] = (DCTELEM) |
2219 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2220 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2221 | CONST_BITS-PASS1_BITS); |
2222 | |
2223 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2224 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2225 | |
2226 | dataptr[2] = (DCTELEM) |
2227 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2228 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
2229 | CONST_BITS-PASS1_BITS); |
2230 | dataptr[6] = (DCTELEM) |
2231 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2232 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2233 | CONST_BITS-PASS1_BITS); |
2234 | |
2235 | /* Odd part */ |
2236 | |
2237 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2238 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2239 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2240 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2241 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2242 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2243 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2244 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2245 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2246 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2247 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2248 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2249 | tmp10 = tmp11 + tmp12 + tmp13 - |
2250 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2251 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2252 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2253 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2254 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2255 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2256 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2257 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2258 | |
2259 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2260 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2261 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2262 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2263 | |
2264 | ctr++; |
2265 | |
2266 | if (ctr != DCTSIZE) { |
2267 | if (ctr == DCTSIZE * 2) |
2268 | break; /* Done. */ |
2269 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2270 | } else |
2271 | dataptr = workspace; /* switch pointer to extended workspace */ |
2272 | } |
2273 | |
2274 | /* Pass 2: process columns. |
2275 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
2276 | * by an overall factor of 8. |
2277 | * We must also scale the output by (8/16)**2 = 1/2**2. |
2278 | */ |
2279 | |
2280 | dataptr = data; |
2281 | wsptr = workspace; |
2282 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2283 | /* Even part */ |
2284 | |
2285 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
2286 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
2287 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
2288 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
2289 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
2290 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
2291 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
2292 | tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
2293 | |
2294 | tmp10 = tmp0 + tmp7; |
2295 | tmp14 = tmp0 - tmp7; |
2296 | tmp11 = tmp1 + tmp6; |
2297 | tmp15 = tmp1 - tmp6; |
2298 | tmp12 = tmp2 + tmp5; |
2299 | tmp16 = tmp2 - tmp5; |
2300 | tmp13 = tmp3 + tmp4; |
2301 | tmp17 = tmp3 - tmp4; |
2302 | |
2303 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
2304 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
2305 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
2306 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
2307 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
2308 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
2309 | tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
2310 | tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
2311 | |
2312 | dataptr[DCTSIZE*0] = (DCTELEM) |
2313 | DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2); |
2314 | dataptr[DCTSIZE*4] = (DCTELEM) |
2315 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2316 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2317 | CONST_BITS+PASS1_BITS+2); |
2318 | |
2319 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2320 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2321 | |
2322 | dataptr[DCTSIZE*2] = (DCTELEM) |
2323 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2324 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */ |
2325 | CONST_BITS+PASS1_BITS+2); |
2326 | dataptr[DCTSIZE*6] = (DCTELEM) |
2327 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2328 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2329 | CONST_BITS+PASS1_BITS+2); |
2330 | |
2331 | /* Odd part */ |
2332 | |
2333 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2334 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2335 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2336 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2337 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2338 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2339 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2340 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2341 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2342 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2343 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2344 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2345 | tmp10 = tmp11 + tmp12 + tmp13 - |
2346 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2347 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2348 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2349 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2350 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2351 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2352 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2353 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2354 | |
2355 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2); |
2356 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2); |
2357 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2); |
2358 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2); |
2359 | |
2360 | dataptr++; /* advance pointer to next column */ |
2361 | wsptr++; /* advance pointer to next column */ |
2362 | } |
2363 | } |
2364 | |
2365 | |
2366 | /* |
2367 | * Perform the forward DCT on a 16x8 sample block. |
2368 | * |
2369 | * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
2370 | */ |
2371 | |
2372 | GLOBAL(void) |
2373 | jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2374 | { |
2375 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
2376 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
2377 | INT32 z1; |
2378 | DCTELEM *dataptr; |
2379 | JSAMPROW elemptr; |
2380 | int ctr; |
2381 | SHIFT_TEMPS |
2382 | |
2383 | /* Pass 1: process rows. */ |
2384 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2385 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2386 | /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */ |
2387 | |
2388 | dataptr = data; |
2389 | ctr = 0; |
2390 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
2391 | elemptr = sample_data[ctr] + start_col; |
2392 | |
2393 | /* Even part */ |
2394 | |
2395 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); |
2396 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); |
2397 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); |
2398 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); |
2399 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); |
2400 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); |
2401 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); |
2402 | tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); |
2403 | |
2404 | tmp10 = tmp0 + tmp7; |
2405 | tmp14 = tmp0 - tmp7; |
2406 | tmp11 = tmp1 + tmp6; |
2407 | tmp15 = tmp1 - tmp6; |
2408 | tmp12 = tmp2 + tmp5; |
2409 | tmp16 = tmp2 - tmp5; |
2410 | tmp13 = tmp3 + tmp4; |
2411 | tmp17 = tmp3 - tmp4; |
2412 | |
2413 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); |
2414 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); |
2415 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); |
2416 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); |
2417 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); |
2418 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); |
2419 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); |
2420 | tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); |
2421 | |
2422 | /* Apply unsigned->signed conversion */ |
2423 | dataptr[0] = (DCTELEM) |
2424 | ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); |
2425 | dataptr[4] = (DCTELEM) |
2426 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
2427 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
2428 | CONST_BITS-PASS1_BITS); |
2429 | |
2430 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
2431 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2432 | |
2433 | dataptr[2] = (DCTELEM) |
2434 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
2435 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
2436 | CONST_BITS-PASS1_BITS); |
2437 | dataptr[6] = (DCTELEM) |
2438 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
2439 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
2440 | CONST_BITS-PASS1_BITS); |
2441 | |
2442 | /* Odd part */ |
2443 | |
2444 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
2445 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
2446 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
2447 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
2448 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
2449 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
2450 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
2451 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
2452 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
2453 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
2454 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
2455 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
2456 | tmp10 = tmp11 + tmp12 + tmp13 - |
2457 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
2458 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
2459 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
2460 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
2461 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
2462 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
2463 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
2464 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
2465 | |
2466 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2467 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2468 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2469 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2470 | |
2471 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2472 | } |
2473 | |
2474 | /* Pass 2: process columns. |
2475 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
2476 | * by an overall factor of 8. |
2477 | * We must also scale the output by 8/16 = 1/2. |
2478 | */ |
2479 | |
2480 | dataptr = data; |
2481 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2482 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
2483 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
2484 | */ |
2485 | |
2486 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
2487 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
2488 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
2489 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
2490 | |
2491 | tmp10 = tmp0 + tmp3; |
2492 | tmp12 = tmp0 - tmp3; |
2493 | tmp11 = tmp1 + tmp2; |
2494 | tmp13 = tmp1 - tmp2; |
2495 | |
2496 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
2497 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
2498 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
2499 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
2500 | |
2501 | dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); |
2502 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); |
2503 | |
2504 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
2505 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
2506 | CONST_BITS+PASS1_BITS+1); |
2507 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
2508 | CONST_BITS+PASS1_BITS+1); |
2509 | |
2510 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
2511 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
2512 | * i0..i3 in the paper are tmp0..tmp3 here. |
2513 | */ |
2514 | |
2515 | tmp10 = tmp0 + tmp3; |
2516 | tmp11 = tmp1 + tmp2; |
2517 | tmp12 = tmp0 + tmp2; |
2518 | tmp13 = tmp1 + tmp3; |
2519 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
2520 | |
2521 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
2522 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
2523 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
2524 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
2525 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
2526 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
2527 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
2528 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
2529 | |
2530 | tmp12 += z1; |
2531 | tmp13 += z1; |
2532 | |
2533 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, |
2534 | CONST_BITS+PASS1_BITS+1); |
2535 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, |
2536 | CONST_BITS+PASS1_BITS+1); |
2537 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, |
2538 | CONST_BITS+PASS1_BITS+1); |
2539 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, |
2540 | CONST_BITS+PASS1_BITS+1); |
2541 | |
2542 | dataptr++; /* advance pointer to next column */ |
2543 | } |
2544 | } |
2545 | |
2546 | |
2547 | /* |
2548 | * Perform the forward DCT on a 14x7 sample block. |
2549 | * |
2550 | * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns). |
2551 | */ |
2552 | |
2553 | GLOBAL(void) |
2554 | jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2555 | { |
2556 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
2557 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
2558 | INT32 z1, z2, z3; |
2559 | DCTELEM *dataptr; |
2560 | JSAMPROW elemptr; |
2561 | int ctr; |
2562 | SHIFT_TEMPS |
2563 | |
2564 | /* Zero bottom row of output coefficient block. */ |
2565 | MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); |
2566 | |
2567 | /* Pass 1: process rows. */ |
2568 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2569 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2570 | /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */ |
2571 | |
2572 | dataptr = data; |
2573 | for (ctr = 0; ctr < 7; ctr++) { |
2574 | elemptr = sample_data[ctr] + start_col; |
2575 | |
2576 | /* Even part */ |
2577 | |
2578 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); |
2579 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); |
2580 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); |
2581 | tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); |
2582 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); |
2583 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); |
2584 | tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); |
2585 | |
2586 | tmp10 = tmp0 + tmp6; |
2587 | tmp14 = tmp0 - tmp6; |
2588 | tmp11 = tmp1 + tmp5; |
2589 | tmp15 = tmp1 - tmp5; |
2590 | tmp12 = tmp2 + tmp4; |
2591 | tmp16 = tmp2 - tmp4; |
2592 | |
2593 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); |
2594 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); |
2595 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); |
2596 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); |
2597 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); |
2598 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); |
2599 | tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); |
2600 | |
2601 | /* Apply unsigned->signed conversion */ |
2602 | dataptr[0] = (DCTELEM) |
2603 | ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS); |
2604 | tmp13 += tmp13; |
2605 | dataptr[4] = (DCTELEM) |
2606 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ |
2607 | MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ |
2608 | MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ |
2609 | CONST_BITS-PASS1_BITS); |
2610 | |
2611 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ |
2612 | |
2613 | dataptr[2] = (DCTELEM) |
2614 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ |
2615 | + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ |
2616 | CONST_BITS-PASS1_BITS); |
2617 | dataptr[6] = (DCTELEM) |
2618 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ |
2619 | - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ |
2620 | CONST_BITS-PASS1_BITS); |
2621 | |
2622 | /* Odd part */ |
2623 | |
2624 | tmp10 = tmp1 + tmp2; |
2625 | tmp11 = tmp5 - tmp4; |
2626 | dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS); |
2627 | tmp3 <<= CONST_BITS; |
2628 | tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ |
2629 | tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ |
2630 | tmp10 += tmp11 - tmp3; |
2631 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ |
2632 | MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ |
2633 | dataptr[5] = (DCTELEM) |
2634 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ |
2635 | + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ |
2636 | CONST_BITS-PASS1_BITS); |
2637 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ |
2638 | MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ |
2639 | dataptr[3] = (DCTELEM) |
2640 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ |
2641 | - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ |
2642 | CONST_BITS-PASS1_BITS); |
2643 | dataptr[1] = (DCTELEM) |
2644 | DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - |
2645 | MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ |
2646 | CONST_BITS-PASS1_BITS); |
2647 | |
2648 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2649 | } |
2650 | |
2651 | /* Pass 2: process columns. |
2652 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
2653 | * by an overall factor of 8. |
2654 | * We must also scale the output by (8/14)*(8/7) = 32/49, which we |
2655 | * partially fold into the constant multipliers and final shifting: |
2656 | * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49. |
2657 | */ |
2658 | |
2659 | dataptr = data; |
2660 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2661 | /* Even part */ |
2662 | |
2663 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; |
2664 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; |
2665 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; |
2666 | tmp3 = dataptr[DCTSIZE*3]; |
2667 | |
2668 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; |
2669 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; |
2670 | tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; |
2671 | |
2672 | z1 = tmp0 + tmp2; |
2673 | dataptr[DCTSIZE*0] = (DCTELEM) |
2674 | DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ |
2675 | CONST_BITS+PASS1_BITS+1); |
2676 | tmp3 += tmp3; |
2677 | z1 -= tmp3; |
2678 | z1 -= tmp3; |
2679 | z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ |
2680 | z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ |
2681 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ |
2682 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1); |
2683 | z1 -= z2; |
2684 | z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ |
2685 | dataptr[DCTSIZE*4] = (DCTELEM) |
2686 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ |
2687 | CONST_BITS+PASS1_BITS+1); |
2688 | dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1); |
2689 | |
2690 | /* Odd part */ |
2691 | |
2692 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ |
2693 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ |
2694 | tmp0 = tmp1 - tmp2; |
2695 | tmp1 += tmp2; |
2696 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ |
2697 | tmp1 += tmp2; |
2698 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ |
2699 | tmp0 += tmp3; |
2700 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ |
2701 | |
2702 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); |
2703 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); |
2704 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); |
2705 | |
2706 | dataptr++; /* advance pointer to next column */ |
2707 | } |
2708 | } |
2709 | |
2710 | |
2711 | /* |
2712 | * Perform the forward DCT on a 12x6 sample block. |
2713 | * |
2714 | * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
2715 | */ |
2716 | |
2717 | GLOBAL(void) |
2718 | jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2719 | { |
2720 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
2721 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
2722 | DCTELEM *dataptr; |
2723 | JSAMPROW elemptr; |
2724 | int ctr; |
2725 | SHIFT_TEMPS |
2726 | |
2727 | /* Zero 2 bottom rows of output coefficient block. */ |
2728 | MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); |
2729 | |
2730 | /* Pass 1: process rows. */ |
2731 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2732 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2733 | /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */ |
2734 | |
2735 | dataptr = data; |
2736 | for (ctr = 0; ctr < 6; ctr++) { |
2737 | elemptr = sample_data[ctr] + start_col; |
2738 | |
2739 | /* Even part */ |
2740 | |
2741 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); |
2742 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); |
2743 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); |
2744 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); |
2745 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); |
2746 | tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); |
2747 | |
2748 | tmp10 = tmp0 + tmp5; |
2749 | tmp13 = tmp0 - tmp5; |
2750 | tmp11 = tmp1 + tmp4; |
2751 | tmp14 = tmp1 - tmp4; |
2752 | tmp12 = tmp2 + tmp3; |
2753 | tmp15 = tmp2 - tmp3; |
2754 | |
2755 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); |
2756 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); |
2757 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); |
2758 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); |
2759 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); |
2760 | tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); |
2761 | |
2762 | /* Apply unsigned->signed conversion */ |
2763 | dataptr[0] = (DCTELEM) |
2764 | ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS); |
2765 | dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS); |
2766 | dataptr[4] = (DCTELEM) |
2767 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ |
2768 | CONST_BITS-PASS1_BITS); |
2769 | dataptr[2] = (DCTELEM) |
2770 | DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ |
2771 | CONST_BITS-PASS1_BITS); |
2772 | |
2773 | /* Odd part */ |
2774 | |
2775 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ |
2776 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ |
2777 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ |
2778 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ |
2779 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ |
2780 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ |
2781 | + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ |
2782 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ |
2783 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ |
2784 | + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ |
2785 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ |
2786 | - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ |
2787 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ |
2788 | - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ |
2789 | |
2790 | dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); |
2791 | dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); |
2792 | dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); |
2793 | dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); |
2794 | |
2795 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2796 | } |
2797 | |
2798 | /* Pass 2: process columns. |
2799 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
2800 | * by an overall factor of 8. |
2801 | * We must also scale the output by (8/12)*(8/6) = 8/9, which we |
2802 | * partially fold into the constant multipliers and final shifting: |
2803 | * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
2804 | */ |
2805 | |
2806 | dataptr = data; |
2807 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2808 | /* Even part */ |
2809 | |
2810 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
2811 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
2812 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
2813 | |
2814 | tmp10 = tmp0 + tmp2; |
2815 | tmp12 = tmp0 - tmp2; |
2816 | |
2817 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
2818 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
2819 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
2820 | |
2821 | dataptr[DCTSIZE*0] = (DCTELEM) |
2822 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
2823 | CONST_BITS+PASS1_BITS+1); |
2824 | dataptr[DCTSIZE*2] = (DCTELEM) |
2825 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
2826 | CONST_BITS+PASS1_BITS+1); |
2827 | dataptr[DCTSIZE*4] = (DCTELEM) |
2828 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
2829 | CONST_BITS+PASS1_BITS+1); |
2830 | |
2831 | /* Odd part */ |
2832 | |
2833 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
2834 | |
2835 | dataptr[DCTSIZE*1] = (DCTELEM) |
2836 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
2837 | CONST_BITS+PASS1_BITS+1); |
2838 | dataptr[DCTSIZE*3] = (DCTELEM) |
2839 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
2840 | CONST_BITS+PASS1_BITS+1); |
2841 | dataptr[DCTSIZE*5] = (DCTELEM) |
2842 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
2843 | CONST_BITS+PASS1_BITS+1); |
2844 | |
2845 | dataptr++; /* advance pointer to next column */ |
2846 | } |
2847 | } |
2848 | |
2849 | |
2850 | /* |
2851 | * Perform the forward DCT on a 10x5 sample block. |
2852 | * |
2853 | * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns). |
2854 | */ |
2855 | |
2856 | GLOBAL(void) |
2857 | jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2858 | { |
2859 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
2860 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
2861 | DCTELEM *dataptr; |
2862 | JSAMPROW elemptr; |
2863 | int ctr; |
2864 | SHIFT_TEMPS |
2865 | |
2866 | /* Zero 3 bottom rows of output coefficient block. */ |
2867 | MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); |
2868 | |
2869 | /* Pass 1: process rows. */ |
2870 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
2871 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2872 | /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */ |
2873 | |
2874 | dataptr = data; |
2875 | for (ctr = 0; ctr < 5; ctr++) { |
2876 | elemptr = sample_data[ctr] + start_col; |
2877 | |
2878 | /* Even part */ |
2879 | |
2880 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); |
2881 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); |
2882 | tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); |
2883 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); |
2884 | tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); |
2885 | |
2886 | tmp10 = tmp0 + tmp4; |
2887 | tmp13 = tmp0 - tmp4; |
2888 | tmp11 = tmp1 + tmp3; |
2889 | tmp14 = tmp1 - tmp3; |
2890 | |
2891 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); |
2892 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); |
2893 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); |
2894 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); |
2895 | tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); |
2896 | |
2897 | /* Apply unsigned->signed conversion */ |
2898 | dataptr[0] = (DCTELEM) |
2899 | ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS); |
2900 | tmp12 += tmp12; |
2901 | dataptr[4] = (DCTELEM) |
2902 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ |
2903 | MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ |
2904 | CONST_BITS-PASS1_BITS); |
2905 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ |
2906 | dataptr[2] = (DCTELEM) |
2907 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ |
2908 | CONST_BITS-PASS1_BITS); |
2909 | dataptr[6] = (DCTELEM) |
2910 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ |
2911 | CONST_BITS-PASS1_BITS); |
2912 | |
2913 | /* Odd part */ |
2914 | |
2915 | tmp10 = tmp0 + tmp4; |
2916 | tmp11 = tmp1 - tmp3; |
2917 | dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS); |
2918 | tmp2 <<= CONST_BITS; |
2919 | dataptr[1] = (DCTELEM) |
2920 | DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ |
2921 | MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ |
2922 | MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ |
2923 | MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ |
2924 | CONST_BITS-PASS1_BITS); |
2925 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ |
2926 | MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ |
2927 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ |
2928 | (tmp11 << (CONST_BITS - 1)) - tmp2; |
2929 | dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS); |
2930 | dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS); |
2931 | |
2932 | dataptr += DCTSIZE; /* advance pointer to next row */ |
2933 | } |
2934 | |
2935 | /* Pass 2: process columns. |
2936 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
2937 | * by an overall factor of 8. |
2938 | * We must also scale the output by (8/10)*(8/5) = 32/25, which we |
2939 | * fold into the constant multipliers: |
2940 | * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25. |
2941 | */ |
2942 | |
2943 | dataptr = data; |
2944 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
2945 | /* Even part */ |
2946 | |
2947 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; |
2948 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; |
2949 | tmp2 = dataptr[DCTSIZE*2]; |
2950 | |
2951 | tmp10 = tmp0 + tmp1; |
2952 | tmp11 = tmp0 - tmp1; |
2953 | |
2954 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; |
2955 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; |
2956 | |
2957 | dataptr[DCTSIZE*0] = (DCTELEM) |
2958 | DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ |
2959 | CONST_BITS+PASS1_BITS); |
2960 | tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ |
2961 | tmp10 -= tmp2 << 2; |
2962 | tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ |
2963 | dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); |
2964 | dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); |
2965 | |
2966 | /* Odd part */ |
2967 | |
2968 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ |
2969 | |
2970 | dataptr[DCTSIZE*1] = (DCTELEM) |
2971 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ |
2972 | CONST_BITS+PASS1_BITS); |
2973 | dataptr[DCTSIZE*3] = (DCTELEM) |
2974 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ |
2975 | CONST_BITS+PASS1_BITS); |
2976 | |
2977 | dataptr++; /* advance pointer to next column */ |
2978 | } |
2979 | } |
2980 | |
2981 | |
2982 | /* |
2983 | * Perform the forward DCT on an 8x4 sample block. |
2984 | * |
2985 | * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
2986 | */ |
2987 | |
2988 | GLOBAL(void) |
2989 | jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
2990 | { |
2991 | INT32 tmp0, tmp1, tmp2, tmp3; |
2992 | INT32 tmp10, tmp11, tmp12, tmp13; |
2993 | INT32 z1; |
2994 | DCTELEM *dataptr; |
2995 | JSAMPROW elemptr; |
2996 | int ctr; |
2997 | SHIFT_TEMPS |
2998 | |
2999 | /* Zero 4 bottom rows of output coefficient block. */ |
3000 | MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); |
3001 | |
3002 | /* Pass 1: process rows. */ |
3003 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3004 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3005 | /* We must also scale the output by 8/4 = 2, which we add here. */ |
3006 | |
3007 | dataptr = data; |
3008 | for (ctr = 0; ctr < 4; ctr++) { |
3009 | elemptr = sample_data[ctr] + start_col; |
3010 | |
3011 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
3012 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
3013 | */ |
3014 | |
3015 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
3016 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
3017 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
3018 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
3019 | |
3020 | tmp10 = tmp0 + tmp3; |
3021 | tmp12 = tmp0 - tmp3; |
3022 | tmp11 = tmp1 + tmp2; |
3023 | tmp13 = tmp1 - tmp2; |
3024 | |
3025 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
3026 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
3027 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
3028 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
3029 | |
3030 | /* Apply unsigned->signed conversion */ |
3031 | dataptr[0] = (DCTELEM) |
3032 | ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
3033 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); |
3034 | |
3035 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
3036 | /* Add fudge factor here for final descale. */ |
3037 | z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
3038 | dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
3039 | CONST_BITS-PASS1_BITS-1); |
3040 | dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
3041 | CONST_BITS-PASS1_BITS-1); |
3042 | |
3043 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
3044 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3045 | * i0..i3 in the paper are tmp0..tmp3 here. |
3046 | */ |
3047 | |
3048 | tmp10 = tmp0 + tmp3; |
3049 | tmp11 = tmp1 + tmp2; |
3050 | tmp12 = tmp0 + tmp2; |
3051 | tmp13 = tmp1 + tmp3; |
3052 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
3053 | /* Add fudge factor here for final descale. */ |
3054 | z1 += ONE << (CONST_BITS-PASS1_BITS-2); |
3055 | |
3056 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
3057 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
3058 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
3059 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
3060 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
3061 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
3062 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
3063 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
3064 | |
3065 | tmp12 += z1; |
3066 | tmp13 += z1; |
3067 | |
3068 | dataptr[1] = (DCTELEM) |
3069 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1); |
3070 | dataptr[3] = (DCTELEM) |
3071 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1); |
3072 | dataptr[5] = (DCTELEM) |
3073 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1); |
3074 | dataptr[7] = (DCTELEM) |
3075 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1); |
3076 | |
3077 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3078 | } |
3079 | |
3080 | /* Pass 2: process columns. |
3081 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3082 | * by an overall factor of 8. |
3083 | * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3084 | */ |
3085 | |
3086 | dataptr = data; |
3087 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
3088 | /* Even part */ |
3089 | |
3090 | /* Add fudge factor here for final descale. */ |
3091 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); |
3092 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
3093 | |
3094 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
3095 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
3096 | |
3097 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
3098 | dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
3099 | |
3100 | /* Odd part */ |
3101 | |
3102 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
3103 | /* Add fudge factor here for final descale. */ |
3104 | tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); |
3105 | |
3106 | dataptr[DCTSIZE*1] = (DCTELEM) |
3107 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
3108 | CONST_BITS+PASS1_BITS); |
3109 | dataptr[DCTSIZE*3] = (DCTELEM) |
3110 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
3111 | CONST_BITS+PASS1_BITS); |
3112 | |
3113 | dataptr++; /* advance pointer to next column */ |
3114 | } |
3115 | } |
3116 | |
3117 | |
3118 | /* |
3119 | * Perform the forward DCT on a 6x3 sample block. |
3120 | * |
3121 | * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns). |
3122 | */ |
3123 | |
3124 | GLOBAL(void) |
3125 | jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3126 | { |
3127 | INT32 tmp0, tmp1, tmp2; |
3128 | INT32 tmp10, tmp11, tmp12; |
3129 | DCTELEM *dataptr; |
3130 | JSAMPROW elemptr; |
3131 | int ctr; |
3132 | SHIFT_TEMPS |
3133 | |
3134 | /* Pre-zero output coefficient block. */ |
3135 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3136 | |
3137 | /* Pass 1: process rows. */ |
3138 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3139 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3140 | /* We scale the results further by 2 as part of output adaption */ |
3141 | /* scaling for different DCT size. */ |
3142 | /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
3143 | |
3144 | dataptr = data; |
3145 | for (ctr = 0; ctr < 3; ctr++) { |
3146 | elemptr = sample_data[ctr] + start_col; |
3147 | |
3148 | /* Even part */ |
3149 | |
3150 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
3151 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
3152 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
3153 | |
3154 | tmp10 = tmp0 + tmp2; |
3155 | tmp12 = tmp0 - tmp2; |
3156 | |
3157 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
3158 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
3159 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
3160 | |
3161 | /* Apply unsigned->signed conversion */ |
3162 | dataptr[0] = (DCTELEM) |
3163 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
3164 | dataptr[2] = (DCTELEM) |
3165 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
3166 | CONST_BITS-PASS1_BITS-1); |
3167 | dataptr[4] = (DCTELEM) |
3168 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
3169 | CONST_BITS-PASS1_BITS-1); |
3170 | |
3171 | /* Odd part */ |
3172 | |
3173 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
3174 | CONST_BITS-PASS1_BITS-1); |
3175 | |
3176 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1))); |
3177 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1)); |
3178 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1))); |
3179 | |
3180 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3181 | } |
3182 | |
3183 | /* Pass 2: process columns. |
3184 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3185 | * by an overall factor of 8. |
3186 | * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
3187 | * fold into the constant multipliers (other part was done in pass 1): |
3188 | * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9. |
3189 | */ |
3190 | |
3191 | dataptr = data; |
3192 | for (ctr = 0; ctr < 6; ctr++) { |
3193 | /* Even part */ |
3194 | |
3195 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; |
3196 | tmp1 = dataptr[DCTSIZE*1]; |
3197 | |
3198 | tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; |
3199 | |
3200 | dataptr[DCTSIZE*0] = (DCTELEM) |
3201 | DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
3202 | CONST_BITS+PASS1_BITS); |
3203 | dataptr[DCTSIZE*2] = (DCTELEM) |
3204 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ |
3205 | CONST_BITS+PASS1_BITS); |
3206 | |
3207 | /* Odd part */ |
3208 | |
3209 | dataptr[DCTSIZE*1] = (DCTELEM) |
3210 | DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ |
3211 | CONST_BITS+PASS1_BITS); |
3212 | |
3213 | dataptr++; /* advance pointer to next column */ |
3214 | } |
3215 | } |
3216 | |
3217 | |
3218 | /* |
3219 | * Perform the forward DCT on a 4x2 sample block. |
3220 | * |
3221 | * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
3222 | */ |
3223 | |
3224 | GLOBAL(void) |
3225 | jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3226 | { |
3227 | INT32 tmp0, tmp1; |
3228 | INT32 tmp10, tmp11; |
3229 | DCTELEM *dataptr; |
3230 | JSAMPROW elemptr; |
3231 | int ctr; |
3232 | SHIFT_TEMPS |
3233 | |
3234 | /* Pre-zero output coefficient block. */ |
3235 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3236 | |
3237 | /* Pass 1: process rows. */ |
3238 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3239 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3240 | /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */ |
3241 | /* 4-point FDCT kernel, */ |
3242 | /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */ |
3243 | |
3244 | dataptr = data; |
3245 | for (ctr = 0; ctr < 2; ctr++) { |
3246 | elemptr = sample_data[ctr] + start_col; |
3247 | |
3248 | /* Even part */ |
3249 | |
3250 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
3251 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
3252 | |
3253 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
3254 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
3255 | |
3256 | /* Apply unsigned->signed conversion */ |
3257 | dataptr[0] = (DCTELEM) |
3258 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3)); |
3259 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3)); |
3260 | |
3261 | /* Odd part */ |
3262 | |
3263 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
3264 | /* Add fudge factor here for final descale. */ |
3265 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-4); |
3266 | |
3267 | dataptr[1] = (DCTELEM) |
3268 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
3269 | CONST_BITS-PASS1_BITS-3); |
3270 | dataptr[3] = (DCTELEM) |
3271 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
3272 | CONST_BITS-PASS1_BITS-3); |
3273 | |
3274 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3275 | } |
3276 | |
3277 | /* Pass 2: process columns. |
3278 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3279 | * by an overall factor of 8. |
3280 | */ |
3281 | |
3282 | dataptr = data; |
3283 | for (ctr = 0; ctr < 4; ctr++) { |
3284 | /* Even part */ |
3285 | |
3286 | /* Add fudge factor here for final descale. */ |
3287 | tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1)); |
3288 | tmp1 = dataptr[DCTSIZE*1]; |
3289 | |
3290 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); |
3291 | |
3292 | /* Odd part */ |
3293 | |
3294 | dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); |
3295 | |
3296 | dataptr++; /* advance pointer to next column */ |
3297 | } |
3298 | } |
3299 | |
3300 | |
3301 | /* |
3302 | * Perform the forward DCT on a 2x1 sample block. |
3303 | * |
3304 | * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns). |
3305 | */ |
3306 | |
3307 | GLOBAL(void) |
3308 | jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3309 | { |
3310 | INT32 tmp0, tmp1; |
3311 | JSAMPROW elemptr; |
3312 | |
3313 | /* Pre-zero output coefficient block. */ |
3314 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3315 | |
3316 | elemptr = sample_data[0] + start_col; |
3317 | |
3318 | tmp0 = GETJSAMPLE(elemptr[0]); |
3319 | tmp1 = GETJSAMPLE(elemptr[1]); |
3320 | |
3321 | /* We leave the results scaled up by an overall factor of 8. |
3322 | * We must also scale the output by (8/2)*(8/1) = 2**5. |
3323 | */ |
3324 | |
3325 | /* Even part */ |
3326 | /* Apply unsigned->signed conversion */ |
3327 | data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
3328 | |
3329 | /* Odd part */ |
3330 | data[1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
3331 | } |
3332 | |
3333 | |
3334 | /* |
3335 | * Perform the forward DCT on an 8x16 sample block. |
3336 | * |
3337 | * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns). |
3338 | */ |
3339 | |
3340 | GLOBAL(void) |
3341 | jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3342 | { |
3343 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; |
3344 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; |
3345 | INT32 z1; |
3346 | DCTELEM workspace[DCTSIZE2]; |
3347 | DCTELEM *dataptr; |
3348 | DCTELEM *wsptr; |
3349 | JSAMPROW elemptr; |
3350 | int ctr; |
3351 | SHIFT_TEMPS |
3352 | |
3353 | /* Pass 1: process rows. */ |
3354 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3355 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3356 | |
3357 | dataptr = data; |
3358 | ctr = 0; |
3359 | for (;;) { |
3360 | elemptr = sample_data[ctr] + start_col; |
3361 | |
3362 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
3363 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
3364 | */ |
3365 | |
3366 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); |
3367 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); |
3368 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); |
3369 | tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); |
3370 | |
3371 | tmp10 = tmp0 + tmp3; |
3372 | tmp12 = tmp0 - tmp3; |
3373 | tmp11 = tmp1 + tmp2; |
3374 | tmp13 = tmp1 - tmp2; |
3375 | |
3376 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); |
3377 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); |
3378 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); |
3379 | tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); |
3380 | |
3381 | /* Apply unsigned->signed conversion */ |
3382 | dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); |
3383 | dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); |
3384 | |
3385 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
3386 | dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), |
3387 | CONST_BITS-PASS1_BITS); |
3388 | dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), |
3389 | CONST_BITS-PASS1_BITS); |
3390 | |
3391 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
3392 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3393 | * i0..i3 in the paper are tmp0..tmp3 here. |
3394 | */ |
3395 | |
3396 | tmp10 = tmp0 + tmp3; |
3397 | tmp11 = tmp1 + tmp2; |
3398 | tmp12 = tmp0 + tmp2; |
3399 | tmp13 = tmp1 + tmp3; |
3400 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
3401 | |
3402 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
3403 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
3404 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
3405 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
3406 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
3407 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
3408 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
3409 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
3410 | |
3411 | tmp12 += z1; |
3412 | tmp13 += z1; |
3413 | |
3414 | dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS); |
3415 | dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS); |
3416 | dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS); |
3417 | dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
3418 | |
3419 | ctr++; |
3420 | |
3421 | if (ctr != DCTSIZE) { |
3422 | if (ctr == DCTSIZE * 2) |
3423 | break; /* Done. */ |
3424 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3425 | } else |
3426 | dataptr = workspace; /* switch pointer to extended workspace */ |
3427 | } |
3428 | |
3429 | /* Pass 2: process columns. |
3430 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3431 | * by an overall factor of 8. |
3432 | * We must also scale the output by 8/16 = 1/2. |
3433 | * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). |
3434 | */ |
3435 | |
3436 | dataptr = data; |
3437 | wsptr = workspace; |
3438 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
3439 | /* Even part */ |
3440 | |
3441 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; |
3442 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; |
3443 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; |
3444 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; |
3445 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; |
3446 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; |
3447 | tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; |
3448 | tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; |
3449 | |
3450 | tmp10 = tmp0 + tmp7; |
3451 | tmp14 = tmp0 - tmp7; |
3452 | tmp11 = tmp1 + tmp6; |
3453 | tmp15 = tmp1 - tmp6; |
3454 | tmp12 = tmp2 + tmp5; |
3455 | tmp16 = tmp2 - tmp5; |
3456 | tmp13 = tmp3 + tmp4; |
3457 | tmp17 = tmp3 - tmp4; |
3458 | |
3459 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; |
3460 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; |
3461 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; |
3462 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; |
3463 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; |
3464 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; |
3465 | tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; |
3466 | tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; |
3467 | |
3468 | dataptr[DCTSIZE*0] = (DCTELEM) |
3469 | DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1); |
3470 | dataptr[DCTSIZE*4] = (DCTELEM) |
3471 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ |
3472 | MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ |
3473 | CONST_BITS+PASS1_BITS+1); |
3474 | |
3475 | tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ |
3476 | MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ |
3477 | |
3478 | dataptr[DCTSIZE*2] = (DCTELEM) |
3479 | DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ |
3480 | + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ |
3481 | CONST_BITS+PASS1_BITS+1); |
3482 | dataptr[DCTSIZE*6] = (DCTELEM) |
3483 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ |
3484 | - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ |
3485 | CONST_BITS+PASS1_BITS+1); |
3486 | |
3487 | /* Odd part */ |
3488 | |
3489 | tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ |
3490 | MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ |
3491 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ |
3492 | MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ |
3493 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ |
3494 | MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ |
3495 | tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ |
3496 | MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ |
3497 | tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ |
3498 | MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ |
3499 | tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ |
3500 | MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ |
3501 | tmp10 = tmp11 + tmp12 + tmp13 - |
3502 | MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ |
3503 | MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ |
3504 | tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ |
3505 | - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ |
3506 | tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ |
3507 | + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ |
3508 | tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ |
3509 | + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ |
3510 | |
3511 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1); |
3512 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1); |
3513 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1); |
3514 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1); |
3515 | |
3516 | dataptr++; /* advance pointer to next column */ |
3517 | wsptr++; /* advance pointer to next column */ |
3518 | } |
3519 | } |
3520 | |
3521 | |
3522 | /* |
3523 | * Perform the forward DCT on a 7x14 sample block. |
3524 | * |
3525 | * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns). |
3526 | */ |
3527 | |
3528 | GLOBAL(void) |
3529 | jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3530 | { |
3531 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; |
3532 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
3533 | INT32 z1, z2, z3; |
3534 | DCTELEM workspace[8*6]; |
3535 | DCTELEM *dataptr; |
3536 | DCTELEM *wsptr; |
3537 | JSAMPROW elemptr; |
3538 | int ctr; |
3539 | SHIFT_TEMPS |
3540 | |
3541 | /* Pre-zero output coefficient block. */ |
3542 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3543 | |
3544 | /* Pass 1: process rows. */ |
3545 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3546 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3547 | /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */ |
3548 | |
3549 | dataptr = data; |
3550 | ctr = 0; |
3551 | for (;;) { |
3552 | elemptr = sample_data[ctr] + start_col; |
3553 | |
3554 | /* Even part */ |
3555 | |
3556 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); |
3557 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); |
3558 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); |
3559 | tmp3 = GETJSAMPLE(elemptr[3]); |
3560 | |
3561 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); |
3562 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); |
3563 | tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); |
3564 | |
3565 | z1 = tmp0 + tmp2; |
3566 | /* Apply unsigned->signed conversion */ |
3567 | dataptr[0] = (DCTELEM) |
3568 | ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); |
3569 | tmp3 += tmp3; |
3570 | z1 -= tmp3; |
3571 | z1 -= tmp3; |
3572 | z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ |
3573 | z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ |
3574 | z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ |
3575 | dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); |
3576 | z1 -= z2; |
3577 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ |
3578 | dataptr[4] = (DCTELEM) |
3579 | DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ |
3580 | CONST_BITS-PASS1_BITS); |
3581 | dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); |
3582 | |
3583 | /* Odd part */ |
3584 | |
3585 | tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
3586 | tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
3587 | tmp0 = tmp1 - tmp2; |
3588 | tmp1 += tmp2; |
3589 | tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ |
3590 | tmp1 += tmp2; |
3591 | tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ |
3592 | tmp0 += tmp3; |
3593 | tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ |
3594 | |
3595 | dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); |
3596 | dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); |
3597 | dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); |
3598 | |
3599 | ctr++; |
3600 | |
3601 | if (ctr != DCTSIZE) { |
3602 | if (ctr == 14) |
3603 | break; /* Done. */ |
3604 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3605 | } else |
3606 | dataptr = workspace; /* switch pointer to extended workspace */ |
3607 | } |
3608 | |
3609 | /* Pass 2: process columns. |
3610 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3611 | * by an overall factor of 8. |
3612 | * We must also scale the output by (8/7)*(8/14) = 32/49, which we |
3613 | * fold into the constant multipliers: |
3614 | * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49. |
3615 | */ |
3616 | |
3617 | dataptr = data; |
3618 | wsptr = workspace; |
3619 | for (ctr = 0; ctr < 7; ctr++) { |
3620 | /* Even part */ |
3621 | |
3622 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; |
3623 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; |
3624 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; |
3625 | tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; |
3626 | tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; |
3627 | tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; |
3628 | tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
3629 | |
3630 | tmp10 = tmp0 + tmp6; |
3631 | tmp14 = tmp0 - tmp6; |
3632 | tmp11 = tmp1 + tmp5; |
3633 | tmp15 = tmp1 - tmp5; |
3634 | tmp12 = tmp2 + tmp4; |
3635 | tmp16 = tmp2 - tmp4; |
3636 | |
3637 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; |
3638 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; |
3639 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; |
3640 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; |
3641 | tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; |
3642 | tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; |
3643 | tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
3644 | |
3645 | dataptr[DCTSIZE*0] = (DCTELEM) |
3646 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, |
3647 | FIX(0.653061224)), /* 32/49 */ |
3648 | CONST_BITS+PASS1_BITS); |
3649 | tmp13 += tmp13; |
3650 | dataptr[DCTSIZE*4] = (DCTELEM) |
3651 | DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ |
3652 | MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ |
3653 | MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ |
3654 | CONST_BITS+PASS1_BITS); |
3655 | |
3656 | tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ |
3657 | |
3658 | dataptr[DCTSIZE*2] = (DCTELEM) |
3659 | DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ |
3660 | + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ |
3661 | CONST_BITS+PASS1_BITS); |
3662 | dataptr[DCTSIZE*6] = (DCTELEM) |
3663 | DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ |
3664 | - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ |
3665 | CONST_BITS+PASS1_BITS); |
3666 | |
3667 | /* Odd part */ |
3668 | |
3669 | tmp10 = tmp1 + tmp2; |
3670 | tmp11 = tmp5 - tmp4; |
3671 | dataptr[DCTSIZE*7] = (DCTELEM) |
3672 | DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, |
3673 | FIX(0.653061224)), /* 32/49 */ |
3674 | CONST_BITS+PASS1_BITS); |
3675 | tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ |
3676 | tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ |
3677 | tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ |
3678 | tmp10 += tmp11 - tmp3; |
3679 | tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ |
3680 | MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ |
3681 | dataptr[DCTSIZE*5] = (DCTELEM) |
3682 | DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ |
3683 | + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ |
3684 | CONST_BITS+PASS1_BITS); |
3685 | tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ |
3686 | MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ |
3687 | dataptr[DCTSIZE*3] = (DCTELEM) |
3688 | DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ |
3689 | - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ |
3690 | CONST_BITS+PASS1_BITS); |
3691 | dataptr[DCTSIZE*1] = (DCTELEM) |
3692 | DESCALE(tmp11 + tmp12 + tmp3 |
3693 | - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ |
3694 | - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ |
3695 | CONST_BITS+PASS1_BITS); |
3696 | |
3697 | dataptr++; /* advance pointer to next column */ |
3698 | wsptr++; /* advance pointer to next column */ |
3699 | } |
3700 | } |
3701 | |
3702 | |
3703 | /* |
3704 | * Perform the forward DCT on a 6x12 sample block. |
3705 | * |
3706 | * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns). |
3707 | */ |
3708 | |
3709 | GLOBAL(void) |
3710 | jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3711 | { |
3712 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
3713 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
3714 | DCTELEM workspace[8*4]; |
3715 | DCTELEM *dataptr; |
3716 | DCTELEM *wsptr; |
3717 | JSAMPROW elemptr; |
3718 | int ctr; |
3719 | SHIFT_TEMPS |
3720 | |
3721 | /* Pre-zero output coefficient block. */ |
3722 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3723 | |
3724 | /* Pass 1: process rows. */ |
3725 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3726 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3727 | /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */ |
3728 | |
3729 | dataptr = data; |
3730 | ctr = 0; |
3731 | for (;;) { |
3732 | elemptr = sample_data[ctr] + start_col; |
3733 | |
3734 | /* Even part */ |
3735 | |
3736 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); |
3737 | tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); |
3738 | tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); |
3739 | |
3740 | tmp10 = tmp0 + tmp2; |
3741 | tmp12 = tmp0 - tmp2; |
3742 | |
3743 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); |
3744 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); |
3745 | tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); |
3746 | |
3747 | /* Apply unsigned->signed conversion */ |
3748 | dataptr[0] = (DCTELEM) |
3749 | ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); |
3750 | dataptr[2] = (DCTELEM) |
3751 | DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ |
3752 | CONST_BITS-PASS1_BITS); |
3753 | dataptr[4] = (DCTELEM) |
3754 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ |
3755 | CONST_BITS-PASS1_BITS); |
3756 | |
3757 | /* Odd part */ |
3758 | |
3759 | tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ |
3760 | CONST_BITS-PASS1_BITS); |
3761 | |
3762 | dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); |
3763 | dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); |
3764 | dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); |
3765 | |
3766 | ctr++; |
3767 | |
3768 | if (ctr != DCTSIZE) { |
3769 | if (ctr == 12) |
3770 | break; /* Done. */ |
3771 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3772 | } else |
3773 | dataptr = workspace; /* switch pointer to extended workspace */ |
3774 | } |
3775 | |
3776 | /* Pass 2: process columns. |
3777 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3778 | * by an overall factor of 8. |
3779 | * We must also scale the output by (8/6)*(8/12) = 8/9, which we |
3780 | * fold into the constant multipliers: |
3781 | * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9. |
3782 | */ |
3783 | |
3784 | dataptr = data; |
3785 | wsptr = workspace; |
3786 | for (ctr = 0; ctr < 6; ctr++) { |
3787 | /* Even part */ |
3788 | |
3789 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; |
3790 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; |
3791 | tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; |
3792 | tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; |
3793 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; |
3794 | tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; |
3795 | |
3796 | tmp10 = tmp0 + tmp5; |
3797 | tmp13 = tmp0 - tmp5; |
3798 | tmp11 = tmp1 + tmp4; |
3799 | tmp14 = tmp1 - tmp4; |
3800 | tmp12 = tmp2 + tmp3; |
3801 | tmp15 = tmp2 - tmp3; |
3802 | |
3803 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; |
3804 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; |
3805 | tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; |
3806 | tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; |
3807 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; |
3808 | tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; |
3809 | |
3810 | dataptr[DCTSIZE*0] = (DCTELEM) |
3811 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ |
3812 | CONST_BITS+PASS1_BITS); |
3813 | dataptr[DCTSIZE*6] = (DCTELEM) |
3814 | DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ |
3815 | CONST_BITS+PASS1_BITS); |
3816 | dataptr[DCTSIZE*4] = (DCTELEM) |
3817 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ |
3818 | CONST_BITS+PASS1_BITS); |
3819 | dataptr[DCTSIZE*2] = (DCTELEM) |
3820 | DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ |
3821 | MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ |
3822 | CONST_BITS+PASS1_BITS); |
3823 | |
3824 | /* Odd part */ |
3825 | |
3826 | tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ |
3827 | tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ |
3828 | tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ |
3829 | tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ |
3830 | tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ |
3831 | tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ |
3832 | + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ |
3833 | tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ |
3834 | tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ |
3835 | + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ |
3836 | tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ |
3837 | - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ |
3838 | tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ |
3839 | - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ |
3840 | |
3841 | dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS); |
3842 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS); |
3843 | dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS); |
3844 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS); |
3845 | |
3846 | dataptr++; /* advance pointer to next column */ |
3847 | wsptr++; /* advance pointer to next column */ |
3848 | } |
3849 | } |
3850 | |
3851 | |
3852 | /* |
3853 | * Perform the forward DCT on a 5x10 sample block. |
3854 | * |
3855 | * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns). |
3856 | */ |
3857 | |
3858 | GLOBAL(void) |
3859 | jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
3860 | { |
3861 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4; |
3862 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
3863 | DCTELEM workspace[8*2]; |
3864 | DCTELEM *dataptr; |
3865 | DCTELEM *wsptr; |
3866 | JSAMPROW elemptr; |
3867 | int ctr; |
3868 | SHIFT_TEMPS |
3869 | |
3870 | /* Pre-zero output coefficient block. */ |
3871 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
3872 | |
3873 | /* Pass 1: process rows. */ |
3874 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
3875 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
3876 | /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */ |
3877 | |
3878 | dataptr = data; |
3879 | ctr = 0; |
3880 | for (;;) { |
3881 | elemptr = sample_data[ctr] + start_col; |
3882 | |
3883 | /* Even part */ |
3884 | |
3885 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); |
3886 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); |
3887 | tmp2 = GETJSAMPLE(elemptr[2]); |
3888 | |
3889 | tmp10 = tmp0 + tmp1; |
3890 | tmp11 = tmp0 - tmp1; |
3891 | |
3892 | tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); |
3893 | tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); |
3894 | |
3895 | /* Apply unsigned->signed conversion */ |
3896 | dataptr[0] = (DCTELEM) |
3897 | ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS); |
3898 | tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ |
3899 | tmp10 -= tmp2 << 2; |
3900 | tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ |
3901 | dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS); |
3902 | dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS); |
3903 | |
3904 | /* Odd part */ |
3905 | |
3906 | tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ |
3907 | |
3908 | dataptr[1] = (DCTELEM) |
3909 | DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ |
3910 | CONST_BITS-PASS1_BITS); |
3911 | dataptr[3] = (DCTELEM) |
3912 | DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ |
3913 | CONST_BITS-PASS1_BITS); |
3914 | |
3915 | ctr++; |
3916 | |
3917 | if (ctr != DCTSIZE) { |
3918 | if (ctr == 10) |
3919 | break; /* Done. */ |
3920 | dataptr += DCTSIZE; /* advance pointer to next row */ |
3921 | } else |
3922 | dataptr = workspace; /* switch pointer to extended workspace */ |
3923 | } |
3924 | |
3925 | /* Pass 2: process columns. |
3926 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
3927 | * by an overall factor of 8. |
3928 | * We must also scale the output by (8/5)*(8/10) = 32/25, which we |
3929 | * fold into the constant multipliers: |
3930 | * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25. |
3931 | */ |
3932 | |
3933 | dataptr = data; |
3934 | wsptr = workspace; |
3935 | for (ctr = 0; ctr < 5; ctr++) { |
3936 | /* Even part */ |
3937 | |
3938 | tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; |
3939 | tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; |
3940 | tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; |
3941 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; |
3942 | tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
3943 | |
3944 | tmp10 = tmp0 + tmp4; |
3945 | tmp13 = tmp0 - tmp4; |
3946 | tmp11 = tmp1 + tmp3; |
3947 | tmp14 = tmp1 - tmp3; |
3948 | |
3949 | tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; |
3950 | tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; |
3951 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; |
3952 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; |
3953 | tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
3954 | |
3955 | dataptr[DCTSIZE*0] = (DCTELEM) |
3956 | DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ |
3957 | CONST_BITS+PASS1_BITS); |
3958 | tmp12 += tmp12; |
3959 | dataptr[DCTSIZE*4] = (DCTELEM) |
3960 | DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ |
3961 | MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ |
3962 | CONST_BITS+PASS1_BITS); |
3963 | tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ |
3964 | dataptr[DCTSIZE*2] = (DCTELEM) |
3965 | DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ |
3966 | CONST_BITS+PASS1_BITS); |
3967 | dataptr[DCTSIZE*6] = (DCTELEM) |
3968 | DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ |
3969 | CONST_BITS+PASS1_BITS); |
3970 | |
3971 | /* Odd part */ |
3972 | |
3973 | tmp10 = tmp0 + tmp4; |
3974 | tmp11 = tmp1 - tmp3; |
3975 | dataptr[DCTSIZE*5] = (DCTELEM) |
3976 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ |
3977 | CONST_BITS+PASS1_BITS); |
3978 | tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ |
3979 | dataptr[DCTSIZE*1] = (DCTELEM) |
3980 | DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ |
3981 | MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ |
3982 | MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ |
3983 | MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ |
3984 | CONST_BITS+PASS1_BITS); |
3985 | tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ |
3986 | MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ |
3987 | tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ |
3988 | MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ |
3989 | dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS); |
3990 | dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS); |
3991 | |
3992 | dataptr++; /* advance pointer to next column */ |
3993 | wsptr++; /* advance pointer to next column */ |
3994 | } |
3995 | } |
3996 | |
3997 | |
3998 | /* |
3999 | * Perform the forward DCT on a 4x8 sample block. |
4000 | * |
4001 | * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). |
4002 | */ |
4003 | |
4004 | GLOBAL(void) |
4005 | jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4006 | { |
4007 | INT32 tmp0, tmp1, tmp2, tmp3; |
4008 | INT32 tmp10, tmp11, tmp12, tmp13; |
4009 | INT32 z1; |
4010 | DCTELEM *dataptr; |
4011 | JSAMPROW elemptr; |
4012 | int ctr; |
4013 | SHIFT_TEMPS |
4014 | |
4015 | /* Pre-zero output coefficient block. */ |
4016 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4017 | |
4018 | /* Pass 1: process rows. */ |
4019 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
4020 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
4021 | /* We must also scale the output by 8/4 = 2, which we add here. */ |
4022 | /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */ |
4023 | |
4024 | dataptr = data; |
4025 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
4026 | elemptr = sample_data[ctr] + start_col; |
4027 | |
4028 | /* Even part */ |
4029 | |
4030 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); |
4031 | tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); |
4032 | |
4033 | tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); |
4034 | tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); |
4035 | |
4036 | /* Apply unsigned->signed conversion */ |
4037 | dataptr[0] = (DCTELEM) |
4038 | ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
4039 | dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1)); |
4040 | |
4041 | /* Odd part */ |
4042 | |
4043 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
4044 | /* Add fudge factor here for final descale. */ |
4045 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-2); |
4046 | |
4047 | dataptr[1] = (DCTELEM) |
4048 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
4049 | CONST_BITS-PASS1_BITS-1); |
4050 | dataptr[3] = (DCTELEM) |
4051 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
4052 | CONST_BITS-PASS1_BITS-1); |
4053 | |
4054 | dataptr += DCTSIZE; /* advance pointer to next row */ |
4055 | } |
4056 | |
4057 | /* Pass 2: process columns. |
4058 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
4059 | * by an overall factor of 8. |
4060 | */ |
4061 | |
4062 | dataptr = data; |
4063 | for (ctr = 0; ctr < 4; ctr++) { |
4064 | /* Even part per LL&M figure 1 --- note that published figure is faulty; |
4065 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". |
4066 | */ |
4067 | |
4068 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
4069 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
4070 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
4071 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
4072 | |
4073 | /* Add fudge factor here for final descale. */ |
4074 | tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); |
4075 | tmp12 = tmp0 - tmp3; |
4076 | tmp11 = tmp1 + tmp2; |
4077 | tmp13 = tmp1 - tmp2; |
4078 | |
4079 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
4080 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
4081 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
4082 | tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
4083 | |
4084 | dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); |
4085 | dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); |
4086 | |
4087 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); |
4088 | /* Add fudge factor here for final descale. */ |
4089 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
4090 | dataptr[DCTSIZE*2] = (DCTELEM) |
4091 | RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS); |
4092 | dataptr[DCTSIZE*6] = (DCTELEM) |
4093 | RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS); |
4094 | |
4095 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). |
4096 | * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
4097 | * i0..i3 in the paper are tmp0..tmp3 here. |
4098 | */ |
4099 | |
4100 | tmp10 = tmp0 + tmp3; |
4101 | tmp11 = tmp1 + tmp2; |
4102 | tmp12 = tmp0 + tmp2; |
4103 | tmp13 = tmp1 + tmp3; |
4104 | z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ |
4105 | /* Add fudge factor here for final descale. */ |
4106 | z1 += ONE << (CONST_BITS+PASS1_BITS-1); |
4107 | |
4108 | tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ |
4109 | tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ |
4110 | tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ |
4111 | tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ |
4112 | tmp10 = MULTIPLY(tmp10, - FIX_0_899976223); /* c7-c3 */ |
4113 | tmp11 = MULTIPLY(tmp11, - FIX_2_562915447); /* -c1-c3 */ |
4114 | tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* c5-c3 */ |
4115 | tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ |
4116 | |
4117 | tmp12 += z1; |
4118 | tmp13 += z1; |
4119 | |
4120 | dataptr[DCTSIZE*1] = (DCTELEM) |
4121 | RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS); |
4122 | dataptr[DCTSIZE*3] = (DCTELEM) |
4123 | RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS); |
4124 | dataptr[DCTSIZE*5] = (DCTELEM) |
4125 | RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS); |
4126 | dataptr[DCTSIZE*7] = (DCTELEM) |
4127 | RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS); |
4128 | |
4129 | dataptr++; /* advance pointer to next column */ |
4130 | } |
4131 | } |
4132 | |
4133 | |
4134 | /* |
4135 | * Perform the forward DCT on a 3x6 sample block. |
4136 | * |
4137 | * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). |
4138 | */ |
4139 | |
4140 | GLOBAL(void) |
4141 | jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4142 | { |
4143 | INT32 tmp0, tmp1, tmp2; |
4144 | INT32 tmp10, tmp11, tmp12; |
4145 | DCTELEM *dataptr; |
4146 | JSAMPROW elemptr; |
4147 | int ctr; |
4148 | SHIFT_TEMPS |
4149 | |
4150 | /* Pre-zero output coefficient block. */ |
4151 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4152 | |
4153 | /* Pass 1: process rows. */ |
4154 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ |
4155 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
4156 | /* We scale the results further by 2 as part of output adaption */ |
4157 | /* scaling for different DCT size. */ |
4158 | /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */ |
4159 | |
4160 | dataptr = data; |
4161 | for (ctr = 0; ctr < 6; ctr++) { |
4162 | elemptr = sample_data[ctr] + start_col; |
4163 | |
4164 | /* Even part */ |
4165 | |
4166 | tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); |
4167 | tmp1 = GETJSAMPLE(elemptr[1]); |
4168 | |
4169 | tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); |
4170 | |
4171 | /* Apply unsigned->signed conversion */ |
4172 | dataptr[0] = (DCTELEM) |
4173 | ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1)); |
4174 | dataptr[2] = (DCTELEM) |
4175 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ |
4176 | CONST_BITS-PASS1_BITS-1); |
4177 | |
4178 | /* Odd part */ |
4179 | |
4180 | dataptr[1] = (DCTELEM) |
4181 | DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ |
4182 | CONST_BITS-PASS1_BITS-1); |
4183 | |
4184 | dataptr += DCTSIZE; /* advance pointer to next row */ |
4185 | } |
4186 | |
4187 | /* Pass 2: process columns. |
4188 | * We remove the PASS1_BITS scaling, but leave the results scaled up |
4189 | * by an overall factor of 8. |
4190 | * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially |
4191 | * fold into the constant multipliers (other part was done in pass 1): |
4192 | * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. |
4193 | */ |
4194 | |
4195 | dataptr = data; |
4196 | for (ctr = 0; ctr < 3; ctr++) { |
4197 | /* Even part */ |
4198 | |
4199 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; |
4200 | tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; |
4201 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
4202 | |
4203 | tmp10 = tmp0 + tmp2; |
4204 | tmp12 = tmp0 - tmp2; |
4205 | |
4206 | tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; |
4207 | tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; |
4208 | tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
4209 | |
4210 | dataptr[DCTSIZE*0] = (DCTELEM) |
4211 | DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ |
4212 | CONST_BITS+PASS1_BITS); |
4213 | dataptr[DCTSIZE*2] = (DCTELEM) |
4214 | DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ |
4215 | CONST_BITS+PASS1_BITS); |
4216 | dataptr[DCTSIZE*4] = (DCTELEM) |
4217 | DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ |
4218 | CONST_BITS+PASS1_BITS); |
4219 | |
4220 | /* Odd part */ |
4221 | |
4222 | tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ |
4223 | |
4224 | dataptr[DCTSIZE*1] = (DCTELEM) |
4225 | DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ |
4226 | CONST_BITS+PASS1_BITS); |
4227 | dataptr[DCTSIZE*3] = (DCTELEM) |
4228 | DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ |
4229 | CONST_BITS+PASS1_BITS); |
4230 | dataptr[DCTSIZE*5] = (DCTELEM) |
4231 | DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ |
4232 | CONST_BITS+PASS1_BITS); |
4233 | |
4234 | dataptr++; /* advance pointer to next column */ |
4235 | } |
4236 | } |
4237 | |
4238 | |
4239 | /* |
4240 | * Perform the forward DCT on a 2x4 sample block. |
4241 | * |
4242 | * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). |
4243 | */ |
4244 | |
4245 | GLOBAL(void) |
4246 | jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4247 | { |
4248 | INT32 tmp0, tmp1; |
4249 | INT32 tmp10, tmp11; |
4250 | DCTELEM *dataptr; |
4251 | JSAMPROW elemptr; |
4252 | int ctr; |
4253 | SHIFT_TEMPS |
4254 | |
4255 | /* Pre-zero output coefficient block. */ |
4256 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4257 | |
4258 | /* Pass 1: process rows. */ |
4259 | /* Note results are scaled up by sqrt(8) compared to a true DCT. */ |
4260 | /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */ |
4261 | |
4262 | dataptr = data; |
4263 | for (ctr = 0; ctr < 4; ctr++) { |
4264 | elemptr = sample_data[ctr] + start_col; |
4265 | |
4266 | /* Even part */ |
4267 | |
4268 | tmp0 = GETJSAMPLE(elemptr[0]); |
4269 | tmp1 = GETJSAMPLE(elemptr[1]); |
4270 | |
4271 | /* Apply unsigned->signed conversion */ |
4272 | dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3); |
4273 | |
4274 | /* Odd part */ |
4275 | |
4276 | dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3); |
4277 | |
4278 | dataptr += DCTSIZE; /* advance pointer to next row */ |
4279 | } |
4280 | |
4281 | /* Pass 2: process columns. |
4282 | * We leave the results scaled up by an overall factor of 8. |
4283 | * 4-point FDCT kernel, |
4284 | * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. |
4285 | */ |
4286 | |
4287 | dataptr = data; |
4288 | for (ctr = 0; ctr < 2; ctr++) { |
4289 | /* Even part */ |
4290 | |
4291 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3]; |
4292 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; |
4293 | |
4294 | tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; |
4295 | tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; |
4296 | |
4297 | dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1); |
4298 | dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1); |
4299 | |
4300 | /* Odd part */ |
4301 | |
4302 | tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ |
4303 | /* Add fudge factor here for final descale. */ |
4304 | tmp0 += ONE << (CONST_BITS-1); |
4305 | |
4306 | dataptr[DCTSIZE*1] = (DCTELEM) |
4307 | RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ |
4308 | CONST_BITS); |
4309 | dataptr[DCTSIZE*3] = (DCTELEM) |
4310 | RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ |
4311 | CONST_BITS); |
4312 | |
4313 | dataptr++; /* advance pointer to next column */ |
4314 | } |
4315 | } |
4316 | |
4317 | |
4318 | /* |
4319 | * Perform the forward DCT on a 1x2 sample block. |
4320 | * |
4321 | * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). |
4322 | */ |
4323 | |
4324 | GLOBAL(void) |
4325 | jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) |
4326 | { |
4327 | INT32 tmp0, tmp1; |
4328 | |
4329 | /* Pre-zero output coefficient block. */ |
4330 | MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); |
4331 | |
4332 | tmp0 = GETJSAMPLE(sample_data[0][start_col]); |
4333 | tmp1 = GETJSAMPLE(sample_data[1][start_col]); |
4334 | |
4335 | /* We leave the results scaled up by an overall factor of 8. |
4336 | * We must also scale the output by (8/1)*(8/2) = 2**5. |
4337 | */ |
4338 | |
4339 | /* Even part */ |
4340 | /* Apply unsigned->signed conversion */ |
4341 | data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5); |
4342 | |
4343 | /* Odd part */ |
4344 | data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5); |
4345 | } |
4346 | |
4347 | #endif /* DCT_SCALING_SUPPORTED */ |
4348 | #endif /* DCT_ISLOW_SUPPORTED */ |
4349 | |