1 | /* |
2 | * jidctint.c |
3 | * |
4 | * Copyright (C) 1991-1998, Thomas G. Lane. |
5 | * Modification developed 2002-2009 by Guido Vollbeding. |
6 | * This file is part of the Independent JPEG Group's software. |
7 | * For conditions of distribution and use, see the accompanying README file. |
8 | * |
9 | * This file contains a slow-but-accurate integer implementation of the |
10 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine |
11 | * must also perform dequantization of the input coefficients. |
12 | * |
13 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT |
14 | * on each row (or vice versa, but it's more convenient to emit a row at |
15 | * a time). Direct algorithms are also available, but they are much more |
16 | * complex and seem not to be any faster when reduced to code. |
17 | * |
18 | * This implementation is based on an algorithm described in |
19 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT |
20 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, |
21 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. |
22 | * The primary algorithm described there uses 11 multiplies and 29 adds. |
23 | * We use their alternate method with 12 multiplies and 32 adds. |
24 | * The advantage of this method is that no data path contains more than one |
25 | * multiplication; this allows a very simple and accurate implementation in |
26 | * scaled fixed-point arithmetic, with a minimal number of shifts. |
27 | * |
28 | * We also provide IDCT routines with various output sample block sizes for |
29 | * direct resolution reduction or enlargement and for direct resolving the |
30 | * common 2x1 and 1x2 subsampling cases without additional resampling: NxN |
31 | * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 input DCT block. |
32 | * |
33 | * For N<8 we simply take the corresponding low-frequency coefficients of |
34 | * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block |
35 | * to yield the downscaled outputs. |
36 | * This can be seen as direct low-pass downsampling from the DCT domain |
37 | * point of view rather than the usual spatial domain point of view, |
38 | * yielding significant computational savings and results at least |
39 | * as good as common bilinear (averaging) spatial downsampling. |
40 | * |
41 | * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as |
42 | * lower frequencies and higher frequencies assumed to be zero. |
43 | * It turns out that the computational effort is similar to the 8x8 IDCT |
44 | * regarding the output size. |
45 | * Furthermore, the scaling and descaling is the same for all IDCT sizes. |
46 | * |
47 | * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases |
48 | * since there would be too many additional constants to pre-calculate. |
49 | */ |
50 | |
51 | #define JPEG_INTERNALS |
52 | #include "jinclude.h" |
53 | #include "jpeglib.h" |
54 | #include "jdct.h" /* Private declarations for DCT subsystem */ |
55 | |
56 | #ifdef DCT_ISLOW_SUPPORTED |
57 | |
58 | |
59 | /* |
60 | * This module is specialized to the case DCTSIZE = 8. |
61 | */ |
62 | |
63 | #if DCTSIZE != 8 |
64 | Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ |
65 | #endif |
66 | |
67 | |
68 | /* |
69 | * The poop on this scaling stuff is as follows: |
70 | * |
71 | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) |
72 | * larger than the true IDCT outputs. The final outputs are therefore |
73 | * a factor of N larger than desired; since N=8 this can be cured by |
74 | * a simple right shift at the end of the algorithm. The advantage of |
75 | * this arrangement is that we save two multiplications per 1-D IDCT, |
76 | * because the y0 and y4 inputs need not be divided by sqrt(N). |
77 | * |
78 | * We have to do addition and subtraction of the integer inputs, which |
79 | * is no problem, and multiplication by fractional constants, which is |
80 | * a problem to do in integer arithmetic. We multiply all the constants |
81 | * by CONST_SCALE and convert them to integer constants (thus retaining |
82 | * CONST_BITS bits of precision in the constants). After doing a |
83 | * multiplication we have to divide the product by CONST_SCALE, with proper |
84 | * rounding, to produce the correct output. This division can be done |
85 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting |
86 | * as long as possible so that partial sums can be added together with |
87 | * full fractional precision. |
88 | * |
89 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that |
90 | * they are represented to better-than-integral precision. These outputs |
91 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word |
92 | * with the recommended scaling. (To scale up 12-bit sample data further, an |
93 | * intermediate INT32 array would be needed.) |
94 | * |
95 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must |
96 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis |
97 | * shows that the values given below are the most effective. |
98 | */ |
99 | |
100 | #if BITS_IN_JSAMPLE == 8 |
101 | #define CONST_BITS 13 |
102 | #define PASS1_BITS 2 |
103 | #else |
104 | #define CONST_BITS 13 |
105 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ |
106 | #endif |
107 | |
108 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus |
109 | * causing a lot of useless floating-point operations at run time. |
110 | * To get around this we use the following pre-calculated constants. |
111 | * If you change CONST_BITS you may want to add appropriate values. |
112 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) |
113 | */ |
114 | |
115 | #if CONST_BITS == 13 |
116 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ |
117 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ |
118 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ |
119 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ |
120 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ |
121 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ |
122 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ |
123 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ |
124 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ |
125 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ |
126 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ |
127 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ |
128 | #else |
129 | #define FIX_0_298631336 FIX(0.298631336) |
130 | #define FIX_0_390180644 FIX(0.390180644) |
131 | #define FIX_0_541196100 FIX(0.541196100) |
132 | #define FIX_0_765366865 FIX(0.765366865) |
133 | #define FIX_0_899976223 FIX(0.899976223) |
134 | #define FIX_1_175875602 FIX(1.175875602) |
135 | #define FIX_1_501321110 FIX(1.501321110) |
136 | #define FIX_1_847759065 FIX(1.847759065) |
137 | #define FIX_1_961570560 FIX(1.961570560) |
138 | #define FIX_2_053119869 FIX(2.053119869) |
139 | #define FIX_2_562915447 FIX(2.562915447) |
140 | #define FIX_3_072711026 FIX(3.072711026) |
141 | #endif |
142 | |
143 | |
144 | /* Clamp DC value to acceptable range for bug 697186 */ |
145 | #define CLAMP_DC(dcval) \ |
146 | { \ |
147 | if (dcval < -1024) \ |
148 | dcval = -1024; \ |
149 | else if (dcval > 1023) \ |
150 | dcval = 1023; \ |
151 | } |
152 | |
153 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. |
154 | * For 8-bit samples with the recommended scaling, all the variable |
155 | * and constant values involved are no more than 16 bits wide, so a |
156 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. |
157 | * For 12-bit samples, a full 32-bit multiplication will be needed. |
158 | */ |
159 | |
160 | #if BITS_IN_JSAMPLE == 8 |
161 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) |
162 | #else |
163 | #define MULTIPLY(var,const) ((var) * (const)) |
164 | #endif |
165 | |
166 | |
167 | /* Dequantize a coefficient by multiplying it by the multiplier-table |
168 | * entry; produce an int result. In this module, both inputs and result |
169 | * are 16 bits or less, so either int or short multiply will work. |
170 | */ |
171 | |
172 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) |
173 | |
174 | |
175 | /* |
176 | * Perform dequantization and inverse DCT on one block of coefficients. |
177 | */ |
178 | |
179 | GLOBAL(void) |
180 | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
181 | JCOEFPTR coef_block, |
182 | JSAMPARRAY output_buf, JDIMENSION output_col) |
183 | { |
184 | INT32 tmp0, tmp1, tmp2, tmp3; |
185 | INT32 tmp10, tmp11, tmp12, tmp13; |
186 | INT32 z1, z2, z3; |
187 | JCOEFPTR inptr; |
188 | ISLOW_MULT_TYPE * quantptr; |
189 | int * wsptr; |
190 | JSAMPROW outptr; |
191 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
192 | int ctr; |
193 | int workspace[DCTSIZE2]; /* buffers data between passes */ |
194 | SHIFT_TEMPS |
195 | |
196 | /* Pass 1: process columns from input, store into work array. */ |
197 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
198 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
199 | |
200 | inptr = coef_block; |
201 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
202 | wsptr = workspace; |
203 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
204 | /* Due to quantization, we will usually find that many of the input |
205 | * coefficients are zero, especially the AC terms. We can exploit this |
206 | * by short-circuiting the IDCT calculation for any column in which all |
207 | * the AC terms are zero. In that case each output is equal to the |
208 | * DC coefficient (with scale factor as needed). |
209 | * With typical images and quantization tables, half or more of the |
210 | * column DCT calculations can be simplified this way. |
211 | */ |
212 | |
213 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
214 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
215 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
216 | inptr[DCTSIZE*7] == 0) { |
217 | /* AC terms all zero */ |
218 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
219 | if (ctr == DCTSIZE) |
220 | CLAMP_DC(dcval); |
221 | dcval <<= PASS1_BITS; |
222 | wsptr[DCTSIZE*0] = dcval; |
223 | wsptr[DCTSIZE*1] = dcval; |
224 | wsptr[DCTSIZE*2] = dcval; |
225 | wsptr[DCTSIZE*3] = dcval; |
226 | wsptr[DCTSIZE*4] = dcval; |
227 | wsptr[DCTSIZE*5] = dcval; |
228 | wsptr[DCTSIZE*6] = dcval; |
229 | wsptr[DCTSIZE*7] = dcval; |
230 | |
231 | inptr++; /* advance pointers to next column */ |
232 | quantptr++; |
233 | wsptr++; |
234 | continue; |
235 | } |
236 | |
237 | /* Even part: reverse the even part of the forward DCT. */ |
238 | /* The rotator is sqrt(2)*c(-6). */ |
239 | |
240 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
241 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
242 | |
243 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
244 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
245 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
246 | |
247 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
248 | if (ctr == DCTSIZE) |
249 | CLAMP_DC(z2); |
250 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
251 | z2 <<= CONST_BITS; |
252 | z3 <<= CONST_BITS; |
253 | /* Add fudge factor here for final descale. */ |
254 | z2 += ONE << (CONST_BITS-PASS1_BITS-1); |
255 | |
256 | tmp0 = z2 + z3; |
257 | tmp1 = z2 - z3; |
258 | |
259 | tmp10 = tmp0 + tmp2; |
260 | tmp13 = tmp0 - tmp2; |
261 | tmp11 = tmp1 + tmp3; |
262 | tmp12 = tmp1 - tmp3; |
263 | |
264 | /* Odd part per figure 8; the matrix is unitary and hence its |
265 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
266 | */ |
267 | |
268 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
269 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
270 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
271 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
272 | |
273 | z2 = tmp0 + tmp2; |
274 | z3 = tmp1 + tmp3; |
275 | |
276 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
277 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
278 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
279 | z2 += z1; |
280 | z3 += z1; |
281 | |
282 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
283 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
284 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
285 | tmp0 += z1 + z2; |
286 | tmp3 += z1 + z3; |
287 | |
288 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
289 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
290 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
291 | tmp1 += z1 + z3; |
292 | tmp2 += z1 + z2; |
293 | |
294 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
295 | |
296 | wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
297 | wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
298 | wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
299 | wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
300 | wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
301 | wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
302 | wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
303 | wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
304 | |
305 | inptr++; /* advance pointers to next column */ |
306 | quantptr++; |
307 | wsptr++; |
308 | } |
309 | |
310 | /* Pass 2: process rows from work array, store into output array. */ |
311 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
312 | /* and also undo the PASS1_BITS scaling. */ |
313 | |
314 | wsptr = workspace; |
315 | for (ctr = 0; ctr < DCTSIZE; ctr++) { |
316 | outptr = output_buf[ctr] + output_col; |
317 | /* Rows of zeroes can be exploited in the same way as we did with columns. |
318 | * However, the column calculation has created many nonzero AC terms, so |
319 | * the simplification applies less often (typically 5% to 10% of the time). |
320 | * On machines with very fast multiplication, it's possible that the |
321 | * test takes more time than it's worth. In that case this section |
322 | * may be commented out. |
323 | */ |
324 | |
325 | #ifndef NO_ZERO_ROW_TEST |
326 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && |
327 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { |
328 | /* AC terms all zero */ |
329 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) |
330 | & RANGE_MASK]; |
331 | |
332 | outptr[0] = dcval; |
333 | outptr[1] = dcval; |
334 | outptr[2] = dcval; |
335 | outptr[3] = dcval; |
336 | outptr[4] = dcval; |
337 | outptr[5] = dcval; |
338 | outptr[6] = dcval; |
339 | outptr[7] = dcval; |
340 | |
341 | wsptr += DCTSIZE; /* advance pointer to next row */ |
342 | continue; |
343 | } |
344 | #endif |
345 | |
346 | /* Even part: reverse the even part of the forward DCT. */ |
347 | /* The rotator is sqrt(2)*c(-6). */ |
348 | |
349 | z2 = (INT32) wsptr[2]; |
350 | z3 = (INT32) wsptr[6]; |
351 | |
352 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
353 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
354 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
355 | |
356 | /* Add fudge factor here for final descale. */ |
357 | z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
358 | z3 = (INT32) wsptr[4]; |
359 | |
360 | tmp0 = (z2 + z3) << CONST_BITS; |
361 | tmp1 = (z2 - z3) << CONST_BITS; |
362 | |
363 | tmp10 = tmp0 + tmp2; |
364 | tmp13 = tmp0 - tmp2; |
365 | tmp11 = tmp1 + tmp3; |
366 | tmp12 = tmp1 - tmp3; |
367 | |
368 | /* Odd part per figure 8; the matrix is unitary and hence its |
369 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
370 | */ |
371 | |
372 | tmp0 = (INT32) wsptr[7]; |
373 | tmp1 = (INT32) wsptr[5]; |
374 | tmp2 = (INT32) wsptr[3]; |
375 | tmp3 = (INT32) wsptr[1]; |
376 | |
377 | z2 = tmp0 + tmp2; |
378 | z3 = tmp1 + tmp3; |
379 | |
380 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
381 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
382 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
383 | z2 += z1; |
384 | z3 += z1; |
385 | |
386 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
387 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
388 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
389 | tmp0 += z1 + z2; |
390 | tmp3 += z1 + z3; |
391 | |
392 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
393 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
394 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
395 | tmp1 += z1 + z3; |
396 | tmp2 += z1 + z2; |
397 | |
398 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
399 | |
400 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, |
401 | CONST_BITS+PASS1_BITS+3) |
402 | & RANGE_MASK]; |
403 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, |
404 | CONST_BITS+PASS1_BITS+3) |
405 | & RANGE_MASK]; |
406 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, |
407 | CONST_BITS+PASS1_BITS+3) |
408 | & RANGE_MASK]; |
409 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, |
410 | CONST_BITS+PASS1_BITS+3) |
411 | & RANGE_MASK]; |
412 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, |
413 | CONST_BITS+PASS1_BITS+3) |
414 | & RANGE_MASK]; |
415 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, |
416 | CONST_BITS+PASS1_BITS+3) |
417 | & RANGE_MASK]; |
418 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, |
419 | CONST_BITS+PASS1_BITS+3) |
420 | & RANGE_MASK]; |
421 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, |
422 | CONST_BITS+PASS1_BITS+3) |
423 | & RANGE_MASK]; |
424 | |
425 | wsptr += DCTSIZE; /* advance pointer to next row */ |
426 | } |
427 | } |
428 | |
429 | #ifdef IDCT_SCALING_SUPPORTED |
430 | |
431 | |
432 | /* |
433 | * Perform dequantization and inverse DCT on one block of coefficients, |
434 | * producing a 7x7 output block. |
435 | * |
436 | * Optimized algorithm with 12 multiplications in the 1-D kernel. |
437 | * cK represents sqrt(2) * cos(K*pi/14). |
438 | */ |
439 | |
440 | GLOBAL(void) |
441 | jpeg_idct_7x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
442 | JCOEFPTR coef_block, |
443 | JSAMPARRAY output_buf, JDIMENSION output_col) |
444 | { |
445 | INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; |
446 | INT32 z1, z2, z3; |
447 | JCOEFPTR inptr; |
448 | ISLOW_MULT_TYPE * quantptr; |
449 | int * wsptr; |
450 | JSAMPROW outptr; |
451 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
452 | int ctr; |
453 | int workspace[7*7]; /* buffers data between passes */ |
454 | SHIFT_TEMPS |
455 | |
456 | /* Pass 1: process columns from input, store into work array. */ |
457 | |
458 | inptr = coef_block; |
459 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
460 | wsptr = workspace; |
461 | for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { |
462 | /* Even part */ |
463 | |
464 | tmp13 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
465 | if (ctr == 0) |
466 | CLAMP_DC(tmp13); |
467 | tmp13 <<= CONST_BITS; |
468 | /* Add fudge factor here for final descale. */ |
469 | tmp13 += ONE << (CONST_BITS-PASS1_BITS-1); |
470 | |
471 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
472 | z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
473 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
474 | |
475 | tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
476 | tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
477 | tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
478 | tmp0 = z1 + z3; |
479 | z2 -= tmp0; |
480 | tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ |
481 | tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
482 | tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
483 | tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
484 | |
485 | /* Odd part */ |
486 | |
487 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
488 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
489 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
490 | |
491 | tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
492 | tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
493 | tmp0 = tmp1 - tmp2; |
494 | tmp1 += tmp2; |
495 | tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
496 | tmp1 += tmp2; |
497 | z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
498 | tmp0 += z2; |
499 | tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
500 | |
501 | /* Final output stage */ |
502 | |
503 | wsptr[7*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
504 | wsptr[7*6] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
505 | wsptr[7*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
506 | wsptr[7*5] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
507 | wsptr[7*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
508 | wsptr[7*4] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
509 | wsptr[7*3] = (int) RIGHT_SHIFT(tmp13, CONST_BITS-PASS1_BITS); |
510 | } |
511 | |
512 | /* Pass 2: process 7 rows from work array, store into output array. */ |
513 | |
514 | wsptr = workspace; |
515 | for (ctr = 0; ctr < 7; ctr++) { |
516 | outptr = output_buf[ctr] + output_col; |
517 | |
518 | /* Even part */ |
519 | |
520 | /* Add fudge factor here for final descale. */ |
521 | tmp13 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
522 | tmp13 <<= CONST_BITS; |
523 | |
524 | z1 = (INT32) wsptr[2]; |
525 | z2 = (INT32) wsptr[4]; |
526 | z3 = (INT32) wsptr[6]; |
527 | |
528 | tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
529 | tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
530 | tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
531 | tmp0 = z1 + z3; |
532 | z2 -= tmp0; |
533 | tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ |
534 | tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
535 | tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
536 | tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
537 | |
538 | /* Odd part */ |
539 | |
540 | z1 = (INT32) wsptr[1]; |
541 | z2 = (INT32) wsptr[3]; |
542 | z3 = (INT32) wsptr[5]; |
543 | |
544 | tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
545 | tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
546 | tmp0 = tmp1 - tmp2; |
547 | tmp1 += tmp2; |
548 | tmp2 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
549 | tmp1 += tmp2; |
550 | z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
551 | tmp0 += z2; |
552 | tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
553 | |
554 | /* Final output stage */ |
555 | |
556 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
557 | CONST_BITS+PASS1_BITS+3) |
558 | & RANGE_MASK]; |
559 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
560 | CONST_BITS+PASS1_BITS+3) |
561 | & RANGE_MASK]; |
562 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
563 | CONST_BITS+PASS1_BITS+3) |
564 | & RANGE_MASK]; |
565 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
566 | CONST_BITS+PASS1_BITS+3) |
567 | & RANGE_MASK]; |
568 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
569 | CONST_BITS+PASS1_BITS+3) |
570 | & RANGE_MASK]; |
571 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
572 | CONST_BITS+PASS1_BITS+3) |
573 | & RANGE_MASK]; |
574 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13, |
575 | CONST_BITS+PASS1_BITS+3) |
576 | & RANGE_MASK]; |
577 | |
578 | wsptr += 7; /* advance pointer to next row */ |
579 | } |
580 | } |
581 | |
582 | |
583 | /* |
584 | * Perform dequantization and inverse DCT on one block of coefficients, |
585 | * producing a reduced-size 6x6 output block. |
586 | * |
587 | * Optimized algorithm with 3 multiplications in the 1-D kernel. |
588 | * cK represents sqrt(2) * cos(K*pi/12). |
589 | */ |
590 | |
591 | GLOBAL(void) |
592 | jpeg_idct_6x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
593 | JCOEFPTR coef_block, |
594 | JSAMPARRAY output_buf, JDIMENSION output_col) |
595 | { |
596 | INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; |
597 | INT32 z1, z2, z3; |
598 | JCOEFPTR inptr; |
599 | ISLOW_MULT_TYPE * quantptr; |
600 | int * wsptr; |
601 | JSAMPROW outptr; |
602 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
603 | int ctr; |
604 | int workspace[6*6]; /* buffers data between passes */ |
605 | SHIFT_TEMPS |
606 | |
607 | /* Pass 1: process columns from input, store into work array. */ |
608 | |
609 | inptr = coef_block; |
610 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
611 | wsptr = workspace; |
612 | for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { |
613 | /* Even part */ |
614 | |
615 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
616 | if (ctr == 0) |
617 | CLAMP_DC(tmp0); |
618 | tmp0 <<= CONST_BITS; |
619 | /* Add fudge factor here for final descale. */ |
620 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
621 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
622 | tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
623 | tmp1 = tmp0 + tmp10; |
624 | tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); |
625 | tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
626 | tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
627 | tmp10 = tmp1 + tmp0; |
628 | tmp12 = tmp1 - tmp0; |
629 | |
630 | /* Odd part */ |
631 | |
632 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
633 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
634 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
635 | tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
636 | tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
637 | tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
638 | tmp1 = (z1 - z2 - z3) << PASS1_BITS; |
639 | |
640 | /* Final output stage */ |
641 | |
642 | wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
643 | wsptr[6*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
644 | wsptr[6*1] = (int) (tmp11 + tmp1); |
645 | wsptr[6*4] = (int) (tmp11 - tmp1); |
646 | wsptr[6*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
647 | wsptr[6*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
648 | } |
649 | |
650 | /* Pass 2: process 6 rows from work array, store into output array. */ |
651 | |
652 | wsptr = workspace; |
653 | for (ctr = 0; ctr < 6; ctr++) { |
654 | outptr = output_buf[ctr] + output_col; |
655 | |
656 | /* Even part */ |
657 | |
658 | /* Add fudge factor here for final descale. */ |
659 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
660 | tmp0 <<= CONST_BITS; |
661 | tmp2 = (INT32) wsptr[4]; |
662 | tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
663 | tmp1 = tmp0 + tmp10; |
664 | tmp11 = tmp0 - tmp10 - tmp10; |
665 | tmp10 = (INT32) wsptr[2]; |
666 | tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
667 | tmp10 = tmp1 + tmp0; |
668 | tmp12 = tmp1 - tmp0; |
669 | |
670 | /* Odd part */ |
671 | |
672 | z1 = (INT32) wsptr[1]; |
673 | z2 = (INT32) wsptr[3]; |
674 | z3 = (INT32) wsptr[5]; |
675 | tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
676 | tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
677 | tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
678 | tmp1 = (z1 - z2 - z3) << CONST_BITS; |
679 | |
680 | /* Final output stage */ |
681 | |
682 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
683 | CONST_BITS+PASS1_BITS+3) |
684 | & RANGE_MASK]; |
685 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
686 | CONST_BITS+PASS1_BITS+3) |
687 | & RANGE_MASK]; |
688 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
689 | CONST_BITS+PASS1_BITS+3) |
690 | & RANGE_MASK]; |
691 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
692 | CONST_BITS+PASS1_BITS+3) |
693 | & RANGE_MASK]; |
694 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
695 | CONST_BITS+PASS1_BITS+3) |
696 | & RANGE_MASK]; |
697 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
698 | CONST_BITS+PASS1_BITS+3) |
699 | & RANGE_MASK]; |
700 | |
701 | wsptr += 6; /* advance pointer to next row */ |
702 | } |
703 | } |
704 | |
705 | |
706 | /* |
707 | * Perform dequantization and inverse DCT on one block of coefficients, |
708 | * producing a reduced-size 5x5 output block. |
709 | * |
710 | * Optimized algorithm with 5 multiplications in the 1-D kernel. |
711 | * cK represents sqrt(2) * cos(K*pi/10). |
712 | */ |
713 | |
714 | GLOBAL(void) |
715 | jpeg_idct_5x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
716 | JCOEFPTR coef_block, |
717 | JSAMPARRAY output_buf, JDIMENSION output_col) |
718 | { |
719 | INT32 tmp0, tmp1, tmp10, tmp11, tmp12; |
720 | INT32 z1, z2, z3; |
721 | JCOEFPTR inptr; |
722 | ISLOW_MULT_TYPE * quantptr; |
723 | int * wsptr; |
724 | JSAMPROW outptr; |
725 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
726 | int ctr; |
727 | int workspace[5*5]; /* buffers data between passes */ |
728 | SHIFT_TEMPS |
729 | |
730 | /* Pass 1: process columns from input, store into work array. */ |
731 | |
732 | inptr = coef_block; |
733 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
734 | wsptr = workspace; |
735 | for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { |
736 | /* Even part */ |
737 | |
738 | tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
739 | if (ctr == 0) |
740 | CLAMP_DC(tmp12); |
741 | tmp12 <<= CONST_BITS; |
742 | /* Add fudge factor here for final descale. */ |
743 | tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); |
744 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
745 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
746 | z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ |
747 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ |
748 | z3 = tmp12 + z2; |
749 | tmp10 = z3 + z1; |
750 | tmp11 = z3 - z1; |
751 | tmp12 -= z2 << 2; |
752 | |
753 | /* Odd part */ |
754 | |
755 | z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
756 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
757 | |
758 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
759 | tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
760 | tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
761 | |
762 | /* Final output stage */ |
763 | |
764 | wsptr[5*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
765 | wsptr[5*4] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
766 | wsptr[5*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
767 | wsptr[5*3] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
768 | wsptr[5*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); |
769 | } |
770 | |
771 | /* Pass 2: process 5 rows from work array, store into output array. */ |
772 | |
773 | wsptr = workspace; |
774 | for (ctr = 0; ctr < 5; ctr++) { |
775 | outptr = output_buf[ctr] + output_col; |
776 | |
777 | /* Even part */ |
778 | |
779 | /* Add fudge factor here for final descale. */ |
780 | tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
781 | tmp12 <<= CONST_BITS; |
782 | tmp0 = (INT32) wsptr[2]; |
783 | tmp1 = (INT32) wsptr[4]; |
784 | z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ |
785 | z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ |
786 | z3 = tmp12 + z2; |
787 | tmp10 = z3 + z1; |
788 | tmp11 = z3 - z1; |
789 | tmp12 -= z2 << 2; |
790 | |
791 | /* Odd part */ |
792 | |
793 | z2 = (INT32) wsptr[1]; |
794 | z3 = (INT32) wsptr[3]; |
795 | |
796 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
797 | tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
798 | tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
799 | |
800 | /* Final output stage */ |
801 | |
802 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
803 | CONST_BITS+PASS1_BITS+3) |
804 | & RANGE_MASK]; |
805 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
806 | CONST_BITS+PASS1_BITS+3) |
807 | & RANGE_MASK]; |
808 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
809 | CONST_BITS+PASS1_BITS+3) |
810 | & RANGE_MASK]; |
811 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
812 | CONST_BITS+PASS1_BITS+3) |
813 | & RANGE_MASK]; |
814 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, |
815 | CONST_BITS+PASS1_BITS+3) |
816 | & RANGE_MASK]; |
817 | |
818 | wsptr += 5; /* advance pointer to next row */ |
819 | } |
820 | } |
821 | |
822 | |
823 | /* |
824 | * Perform dequantization and inverse DCT on one block of coefficients, |
825 | * producing a reduced-size 4x4 output block. |
826 | * |
827 | * Optimized algorithm with 3 multiplications in the 1-D kernel. |
828 | * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. |
829 | */ |
830 | |
831 | GLOBAL(void) |
832 | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
833 | JCOEFPTR coef_block, |
834 | JSAMPARRAY output_buf, JDIMENSION output_col) |
835 | { |
836 | INT32 tmp0, tmp2, tmp10, tmp12; |
837 | INT32 z1, z2, z3; |
838 | JCOEFPTR inptr; |
839 | ISLOW_MULT_TYPE * quantptr; |
840 | int * wsptr; |
841 | JSAMPROW outptr; |
842 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
843 | int ctr; |
844 | int workspace[4*4]; /* buffers data between passes */ |
845 | SHIFT_TEMPS |
846 | |
847 | /* Pass 1: process columns from input, store into work array. */ |
848 | |
849 | inptr = coef_block; |
850 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
851 | wsptr = workspace; |
852 | for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) { |
853 | /* Even part */ |
854 | |
855 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
856 | if (ctr == 0) |
857 | CLAMP_DC(tmp0); |
858 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
859 | |
860 | tmp10 = (tmp0 + tmp2) << PASS1_BITS; |
861 | tmp12 = (tmp0 - tmp2) << PASS1_BITS; |
862 | |
863 | /* Odd part */ |
864 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
865 | |
866 | z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
867 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
868 | |
869 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
870 | /* Add fudge factor here for final descale. */ |
871 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
872 | tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */ |
873 | CONST_BITS-PASS1_BITS); |
874 | tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */ |
875 | CONST_BITS-PASS1_BITS); |
876 | |
877 | /* Final output stage */ |
878 | |
879 | wsptr[4*0] = (int) (tmp10 + tmp0); |
880 | wsptr[4*3] = (int) (tmp10 - tmp0); |
881 | wsptr[4*1] = (int) (tmp12 + tmp2); |
882 | wsptr[4*2] = (int) (tmp12 - tmp2); |
883 | } |
884 | |
885 | /* Pass 2: process 4 rows from work array, store into output array. */ |
886 | |
887 | wsptr = workspace; |
888 | for (ctr = 0; ctr < 4; ctr++) { |
889 | outptr = output_buf[ctr] + output_col; |
890 | |
891 | /* Even part */ |
892 | |
893 | /* Add fudge factor here for final descale. */ |
894 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
895 | tmp2 = (INT32) wsptr[2]; |
896 | |
897 | tmp10 = (tmp0 + tmp2) << CONST_BITS; |
898 | tmp12 = (tmp0 - tmp2) << CONST_BITS; |
899 | |
900 | /* Odd part */ |
901 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
902 | |
903 | z2 = (INT32) wsptr[1]; |
904 | z3 = (INT32) wsptr[3]; |
905 | |
906 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
907 | tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ |
908 | tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ |
909 | |
910 | /* Final output stage */ |
911 | |
912 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
913 | CONST_BITS+PASS1_BITS+3) |
914 | & RANGE_MASK]; |
915 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
916 | CONST_BITS+PASS1_BITS+3) |
917 | & RANGE_MASK]; |
918 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
919 | CONST_BITS+PASS1_BITS+3) |
920 | & RANGE_MASK]; |
921 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
922 | CONST_BITS+PASS1_BITS+3) |
923 | & RANGE_MASK]; |
924 | |
925 | wsptr += 4; /* advance pointer to next row */ |
926 | } |
927 | } |
928 | |
929 | |
930 | /* |
931 | * Perform dequantization and inverse DCT on one block of coefficients, |
932 | * producing a reduced-size 3x3 output block. |
933 | * |
934 | * Optimized algorithm with 2 multiplications in the 1-D kernel. |
935 | * cK represents sqrt(2) * cos(K*pi/6). |
936 | */ |
937 | |
938 | GLOBAL(void) |
939 | jpeg_idct_3x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
940 | JCOEFPTR coef_block, |
941 | JSAMPARRAY output_buf, JDIMENSION output_col) |
942 | { |
943 | INT32 tmp0, tmp2, tmp10, tmp12; |
944 | JCOEFPTR inptr; |
945 | ISLOW_MULT_TYPE * quantptr; |
946 | int * wsptr; |
947 | JSAMPROW outptr; |
948 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
949 | int ctr; |
950 | int workspace[3*3]; /* buffers data between passes */ |
951 | SHIFT_TEMPS |
952 | |
953 | /* Pass 1: process columns from input, store into work array. */ |
954 | |
955 | inptr = coef_block; |
956 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
957 | wsptr = workspace; |
958 | for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { |
959 | /* Even part */ |
960 | |
961 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
962 | if (ctr == 0) |
963 | CLAMP_DC(tmp0); |
964 | tmp0 <<= CONST_BITS; |
965 | /* Add fudge factor here for final descale. */ |
966 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
967 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
968 | tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
969 | tmp10 = tmp0 + tmp12; |
970 | tmp2 = tmp0 - tmp12 - tmp12; |
971 | |
972 | /* Odd part */ |
973 | |
974 | tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
975 | tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
976 | |
977 | /* Final output stage */ |
978 | |
979 | wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
980 | wsptr[3*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
981 | wsptr[3*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); |
982 | } |
983 | |
984 | /* Pass 2: process 3 rows from work array, store into output array. */ |
985 | |
986 | wsptr = workspace; |
987 | for (ctr = 0; ctr < 3; ctr++) { |
988 | outptr = output_buf[ctr] + output_col; |
989 | |
990 | /* Even part */ |
991 | |
992 | /* Add fudge factor here for final descale. */ |
993 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
994 | tmp0 <<= CONST_BITS; |
995 | tmp2 = (INT32) wsptr[2]; |
996 | tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
997 | tmp10 = tmp0 + tmp12; |
998 | tmp2 = tmp0 - tmp12 - tmp12; |
999 | |
1000 | /* Odd part */ |
1001 | |
1002 | tmp12 = (INT32) wsptr[1]; |
1003 | tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
1004 | |
1005 | /* Final output stage */ |
1006 | |
1007 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
1008 | CONST_BITS+PASS1_BITS+3) |
1009 | & RANGE_MASK]; |
1010 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
1011 | CONST_BITS+PASS1_BITS+3) |
1012 | & RANGE_MASK]; |
1013 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, |
1014 | CONST_BITS+PASS1_BITS+3) |
1015 | & RANGE_MASK]; |
1016 | |
1017 | wsptr += 3; /* advance pointer to next row */ |
1018 | } |
1019 | } |
1020 | |
1021 | |
1022 | /* |
1023 | * Perform dequantization and inverse DCT on one block of coefficients, |
1024 | * producing a reduced-size 2x2 output block. |
1025 | * |
1026 | * Multiplication-less algorithm. |
1027 | */ |
1028 | |
1029 | GLOBAL(void) |
1030 | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1031 | JCOEFPTR coef_block, |
1032 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1033 | { |
1034 | INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; |
1035 | ISLOW_MULT_TYPE * quantptr; |
1036 | JSAMPROW outptr; |
1037 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1038 | SHIFT_TEMPS |
1039 | |
1040 | /* Pass 1: process columns from input. */ |
1041 | |
1042 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1043 | |
1044 | /* Column 0 */ |
1045 | tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1046 | CLAMP_DC(tmp4); |
1047 | tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1048 | /* Add fudge factor here for final descale. */ |
1049 | tmp4 += ONE << 2; |
1050 | |
1051 | tmp0 = tmp4 + tmp5; |
1052 | tmp2 = tmp4 - tmp5; |
1053 | |
1054 | /* Column 1 */ |
1055 | tmp4 = DEQUANTIZE(coef_block[DCTSIZE*0+1], quantptr[DCTSIZE*0+1]); |
1056 | tmp5 = DEQUANTIZE(coef_block[DCTSIZE*1+1], quantptr[DCTSIZE*1+1]); |
1057 | |
1058 | tmp1 = tmp4 + tmp5; |
1059 | tmp3 = tmp4 - tmp5; |
1060 | |
1061 | /* Pass 2: process 2 rows, store into output array. */ |
1062 | |
1063 | /* Row 0 */ |
1064 | outptr = output_buf[0] + output_col; |
1065 | |
1066 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp0 + tmp1, 3) & RANGE_MASK]; |
1067 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp0 - tmp1, 3) & RANGE_MASK]; |
1068 | |
1069 | /* Row 1 */ |
1070 | outptr = output_buf[1] + output_col; |
1071 | |
1072 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp2 + tmp3, 3) & RANGE_MASK]; |
1073 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2 - tmp3, 3) & RANGE_MASK]; |
1074 | } |
1075 | |
1076 | |
1077 | /* |
1078 | * Perform dequantization and inverse DCT on one block of coefficients, |
1079 | * producing a reduced-size 1x1 output block. |
1080 | * |
1081 | * We hardly need an inverse DCT routine for this: just take the |
1082 | * average pixel value, which is one-eighth of the DC coefficient. |
1083 | */ |
1084 | |
1085 | GLOBAL(void) |
1086 | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1087 | JCOEFPTR coef_block, |
1088 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1089 | { |
1090 | int dcval; |
1091 | ISLOW_MULT_TYPE * quantptr; |
1092 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1093 | SHIFT_TEMPS |
1094 | |
1095 | /* 1x1 is trivial: just take the DC coefficient divided by 8. */ |
1096 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1097 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); |
1098 | CLAMP_DC(dcval); |
1099 | dcval = (int) DESCALE((INT32) dcval, 3); |
1100 | |
1101 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; |
1102 | } |
1103 | |
1104 | |
1105 | /* |
1106 | * Perform dequantization and inverse DCT on one block of coefficients, |
1107 | * producing a 9x9 output block. |
1108 | * |
1109 | * Optimized algorithm with 10 multiplications in the 1-D kernel. |
1110 | * cK represents sqrt(2) * cos(K*pi/18). |
1111 | */ |
1112 | |
1113 | GLOBAL(void) |
1114 | jpeg_idct_9x9 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1115 | JCOEFPTR coef_block, |
1116 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1117 | { |
1118 | INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; |
1119 | INT32 z1, z2, z3, z4; |
1120 | JCOEFPTR inptr; |
1121 | ISLOW_MULT_TYPE * quantptr; |
1122 | int * wsptr; |
1123 | JSAMPROW outptr; |
1124 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1125 | int ctr; |
1126 | int workspace[8*9]; /* buffers data between passes */ |
1127 | SHIFT_TEMPS |
1128 | |
1129 | /* Pass 1: process columns from input, store into work array. */ |
1130 | |
1131 | inptr = coef_block; |
1132 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1133 | wsptr = workspace; |
1134 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
1135 | /* Even part */ |
1136 | |
1137 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1138 | if (ctr == 0) |
1139 | CLAMP_DC(tmp0); |
1140 | tmp0 <<= CONST_BITS; |
1141 | /* Add fudge factor here for final descale. */ |
1142 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
1143 | |
1144 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
1145 | z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
1146 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
1147 | |
1148 | tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ |
1149 | tmp1 = tmp0 + tmp3; |
1150 | tmp2 = tmp0 - tmp3 - tmp3; |
1151 | |
1152 | tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ |
1153 | tmp11 = tmp2 + tmp0; |
1154 | tmp14 = tmp2 - tmp0 - tmp0; |
1155 | |
1156 | tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ |
1157 | tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ |
1158 | tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ |
1159 | |
1160 | tmp10 = tmp1 + tmp0 - tmp3; |
1161 | tmp12 = tmp1 - tmp0 + tmp2; |
1162 | tmp13 = tmp1 - tmp2 + tmp3; |
1163 | |
1164 | /* Odd part */ |
1165 | |
1166 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1167 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
1168 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
1169 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
1170 | |
1171 | z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ |
1172 | |
1173 | tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ |
1174 | tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ |
1175 | tmp0 = tmp2 + tmp3 - z2; |
1176 | tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ |
1177 | tmp2 += z2 - tmp1; |
1178 | tmp3 += z2 + tmp1; |
1179 | tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ |
1180 | |
1181 | /* Final output stage */ |
1182 | |
1183 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
1184 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
1185 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS-PASS1_BITS); |
1186 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS-PASS1_BITS); |
1187 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
1188 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
1189 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS-PASS1_BITS); |
1190 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS-PASS1_BITS); |
1191 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp14, CONST_BITS-PASS1_BITS); |
1192 | } |
1193 | |
1194 | /* Pass 2: process 9 rows from work array, store into output array. */ |
1195 | |
1196 | wsptr = workspace; |
1197 | for (ctr = 0; ctr < 9; ctr++) { |
1198 | outptr = output_buf[ctr] + output_col; |
1199 | |
1200 | /* Even part */ |
1201 | |
1202 | /* Add fudge factor here for final descale. */ |
1203 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
1204 | tmp0 <<= CONST_BITS; |
1205 | |
1206 | z1 = (INT32) wsptr[2]; |
1207 | z2 = (INT32) wsptr[4]; |
1208 | z3 = (INT32) wsptr[6]; |
1209 | |
1210 | tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ |
1211 | tmp1 = tmp0 + tmp3; |
1212 | tmp2 = tmp0 - tmp3 - tmp3; |
1213 | |
1214 | tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ |
1215 | tmp11 = tmp2 + tmp0; |
1216 | tmp14 = tmp2 - tmp0 - tmp0; |
1217 | |
1218 | tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ |
1219 | tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ |
1220 | tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ |
1221 | |
1222 | tmp10 = tmp1 + tmp0 - tmp3; |
1223 | tmp12 = tmp1 - tmp0 + tmp2; |
1224 | tmp13 = tmp1 - tmp2 + tmp3; |
1225 | |
1226 | /* Odd part */ |
1227 | |
1228 | z1 = (INT32) wsptr[1]; |
1229 | z2 = (INT32) wsptr[3]; |
1230 | z3 = (INT32) wsptr[5]; |
1231 | z4 = (INT32) wsptr[7]; |
1232 | |
1233 | z2 = MULTIPLY(z2, - FIX(1.224744871)); /* -c3 */ |
1234 | |
1235 | tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ |
1236 | tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ |
1237 | tmp0 = tmp2 + tmp3 - z2; |
1238 | tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ |
1239 | tmp2 += z2 - tmp1; |
1240 | tmp3 += z2 + tmp1; |
1241 | tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ |
1242 | |
1243 | /* Final output stage */ |
1244 | |
1245 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
1246 | CONST_BITS+PASS1_BITS+3) |
1247 | & RANGE_MASK]; |
1248 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
1249 | CONST_BITS+PASS1_BITS+3) |
1250 | & RANGE_MASK]; |
1251 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
1252 | CONST_BITS+PASS1_BITS+3) |
1253 | & RANGE_MASK]; |
1254 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
1255 | CONST_BITS+PASS1_BITS+3) |
1256 | & RANGE_MASK]; |
1257 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
1258 | CONST_BITS+PASS1_BITS+3) |
1259 | & RANGE_MASK]; |
1260 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
1261 | CONST_BITS+PASS1_BITS+3) |
1262 | & RANGE_MASK]; |
1263 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp3, |
1264 | CONST_BITS+PASS1_BITS+3) |
1265 | & RANGE_MASK]; |
1266 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp3, |
1267 | CONST_BITS+PASS1_BITS+3) |
1268 | & RANGE_MASK]; |
1269 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp14, |
1270 | CONST_BITS+PASS1_BITS+3) |
1271 | & RANGE_MASK]; |
1272 | |
1273 | wsptr += 8; /* advance pointer to next row */ |
1274 | } |
1275 | } |
1276 | |
1277 | |
1278 | /* |
1279 | * Perform dequantization and inverse DCT on one block of coefficients, |
1280 | * producing a 10x10 output block. |
1281 | * |
1282 | * Optimized algorithm with 12 multiplications in the 1-D kernel. |
1283 | * cK represents sqrt(2) * cos(K*pi/20). |
1284 | */ |
1285 | |
1286 | GLOBAL(void) |
1287 | jpeg_idct_10x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1288 | JCOEFPTR coef_block, |
1289 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1290 | { |
1291 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1292 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24; |
1293 | INT32 z1, z2, z3, z4, z5; |
1294 | JCOEFPTR inptr; |
1295 | ISLOW_MULT_TYPE * quantptr; |
1296 | int * wsptr; |
1297 | JSAMPROW outptr; |
1298 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1299 | int ctr; |
1300 | int workspace[8*10]; /* buffers data between passes */ |
1301 | SHIFT_TEMPS |
1302 | |
1303 | /* Pass 1: process columns from input, store into work array. */ |
1304 | |
1305 | inptr = coef_block; |
1306 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1307 | wsptr = workspace; |
1308 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
1309 | /* Even part */ |
1310 | |
1311 | z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1312 | if (ctr == 0) |
1313 | CLAMP_DC(z3); |
1314 | z3 <<= CONST_BITS; |
1315 | /* Add fudge factor here for final descale. */ |
1316 | z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
1317 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
1318 | z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
1319 | z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
1320 | tmp10 = z3 + z1; |
1321 | tmp11 = z3 - z2; |
1322 | |
1323 | tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */ |
1324 | CONST_BITS-PASS1_BITS); |
1325 | |
1326 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
1327 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
1328 | |
1329 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
1330 | tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
1331 | tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
1332 | |
1333 | tmp20 = tmp10 + tmp12; |
1334 | tmp24 = tmp10 - tmp12; |
1335 | tmp21 = tmp11 + tmp13; |
1336 | tmp23 = tmp11 - tmp13; |
1337 | |
1338 | /* Odd part */ |
1339 | |
1340 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1341 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
1342 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
1343 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
1344 | |
1345 | tmp11 = z2 + z4; |
1346 | tmp13 = z2 - z4; |
1347 | |
1348 | tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
1349 | z5 = z3 << CONST_BITS; |
1350 | |
1351 | z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
1352 | z4 = z5 + tmp12; |
1353 | |
1354 | tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
1355 | tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
1356 | |
1357 | z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
1358 | z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
1359 | |
1360 | tmp12 = (z1 - tmp13 - z3) << PASS1_BITS; |
1361 | |
1362 | tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
1363 | tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
1364 | |
1365 | /* Final output stage */ |
1366 | |
1367 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
1368 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
1369 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
1370 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
1371 | wsptr[8*2] = (int) (tmp22 + tmp12); |
1372 | wsptr[8*7] = (int) (tmp22 - tmp12); |
1373 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
1374 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
1375 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
1376 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
1377 | } |
1378 | |
1379 | /* Pass 2: process 10 rows from work array, store into output array. */ |
1380 | |
1381 | wsptr = workspace; |
1382 | for (ctr = 0; ctr < 10; ctr++) { |
1383 | outptr = output_buf[ctr] + output_col; |
1384 | |
1385 | /* Even part */ |
1386 | |
1387 | /* Add fudge factor here for final descale. */ |
1388 | z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
1389 | z3 <<= CONST_BITS; |
1390 | z4 = (INT32) wsptr[4]; |
1391 | z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
1392 | z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
1393 | tmp10 = z3 + z1; |
1394 | tmp11 = z3 - z2; |
1395 | |
1396 | tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */ |
1397 | |
1398 | z2 = (INT32) wsptr[2]; |
1399 | z3 = (INT32) wsptr[6]; |
1400 | |
1401 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
1402 | tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
1403 | tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
1404 | |
1405 | tmp20 = tmp10 + tmp12; |
1406 | tmp24 = tmp10 - tmp12; |
1407 | tmp21 = tmp11 + tmp13; |
1408 | tmp23 = tmp11 - tmp13; |
1409 | |
1410 | /* Odd part */ |
1411 | |
1412 | z1 = (INT32) wsptr[1]; |
1413 | z2 = (INT32) wsptr[3]; |
1414 | z3 = (INT32) wsptr[5]; |
1415 | z3 <<= CONST_BITS; |
1416 | z4 = (INT32) wsptr[7]; |
1417 | |
1418 | tmp11 = z2 + z4; |
1419 | tmp13 = z2 - z4; |
1420 | |
1421 | tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
1422 | |
1423 | z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
1424 | z4 = z3 + tmp12; |
1425 | |
1426 | tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
1427 | tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
1428 | |
1429 | z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
1430 | z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
1431 | |
1432 | tmp12 = ((z1 - tmp13) << CONST_BITS) - z3; |
1433 | |
1434 | tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
1435 | tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
1436 | |
1437 | /* Final output stage */ |
1438 | |
1439 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
1440 | CONST_BITS+PASS1_BITS+3) |
1441 | & RANGE_MASK]; |
1442 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
1443 | CONST_BITS+PASS1_BITS+3) |
1444 | & RANGE_MASK]; |
1445 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
1446 | CONST_BITS+PASS1_BITS+3) |
1447 | & RANGE_MASK]; |
1448 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
1449 | CONST_BITS+PASS1_BITS+3) |
1450 | & RANGE_MASK]; |
1451 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
1452 | CONST_BITS+PASS1_BITS+3) |
1453 | & RANGE_MASK]; |
1454 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
1455 | CONST_BITS+PASS1_BITS+3) |
1456 | & RANGE_MASK]; |
1457 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
1458 | CONST_BITS+PASS1_BITS+3) |
1459 | & RANGE_MASK]; |
1460 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
1461 | CONST_BITS+PASS1_BITS+3) |
1462 | & RANGE_MASK]; |
1463 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
1464 | CONST_BITS+PASS1_BITS+3) |
1465 | & RANGE_MASK]; |
1466 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
1467 | CONST_BITS+PASS1_BITS+3) |
1468 | & RANGE_MASK]; |
1469 | |
1470 | wsptr += 8; /* advance pointer to next row */ |
1471 | } |
1472 | } |
1473 | |
1474 | |
1475 | /* |
1476 | * Perform dequantization and inverse DCT on one block of coefficients, |
1477 | * producing a 11x11 output block. |
1478 | * |
1479 | * Optimized algorithm with 24 multiplications in the 1-D kernel. |
1480 | * cK represents sqrt(2) * cos(K*pi/22). |
1481 | */ |
1482 | |
1483 | GLOBAL(void) |
1484 | jpeg_idct_11x11 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1485 | JCOEFPTR coef_block, |
1486 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1487 | { |
1488 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
1489 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
1490 | INT32 z1, z2, z3, z4; |
1491 | JCOEFPTR inptr; |
1492 | ISLOW_MULT_TYPE * quantptr; |
1493 | int * wsptr; |
1494 | JSAMPROW outptr; |
1495 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1496 | int ctr; |
1497 | int workspace[8*11]; /* buffers data between passes */ |
1498 | SHIFT_TEMPS |
1499 | |
1500 | /* Pass 1: process columns from input, store into work array. */ |
1501 | |
1502 | inptr = coef_block; |
1503 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1504 | wsptr = workspace; |
1505 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
1506 | /* Even part */ |
1507 | |
1508 | tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1509 | if (ctr == 0) |
1510 | CLAMP_DC(tmp10); |
1511 | tmp10 <<= CONST_BITS; |
1512 | /* Add fudge factor here for final descale. */ |
1513 | tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); |
1514 | |
1515 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
1516 | z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
1517 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
1518 | |
1519 | tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ |
1520 | tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ |
1521 | z4 = z1 + z3; |
1522 | tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ |
1523 | z4 -= z2; |
1524 | tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ |
1525 | tmp21 = tmp20 + tmp23 + tmp25 - |
1526 | MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ |
1527 | tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ |
1528 | tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ |
1529 | tmp24 += tmp25; |
1530 | tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ |
1531 | tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ |
1532 | MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ |
1533 | tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ |
1534 | |
1535 | /* Odd part */ |
1536 | |
1537 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1538 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
1539 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
1540 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
1541 | |
1542 | tmp11 = z1 + z2; |
1543 | tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ |
1544 | tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ |
1545 | tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ |
1546 | tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ |
1547 | tmp10 = tmp11 + tmp12 + tmp13 - |
1548 | MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ |
1549 | z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ |
1550 | tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ |
1551 | tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ |
1552 | z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ |
1553 | tmp11 += z1; |
1554 | tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ |
1555 | tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ |
1556 | MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ |
1557 | MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ |
1558 | |
1559 | /* Final output stage */ |
1560 | |
1561 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
1562 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
1563 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
1564 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
1565 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
1566 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
1567 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
1568 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
1569 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
1570 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
1571 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25, CONST_BITS-PASS1_BITS); |
1572 | } |
1573 | |
1574 | /* Pass 2: process 11 rows from work array, store into output array. */ |
1575 | |
1576 | wsptr = workspace; |
1577 | for (ctr = 0; ctr < 11; ctr++) { |
1578 | outptr = output_buf[ctr] + output_col; |
1579 | |
1580 | /* Even part */ |
1581 | |
1582 | /* Add fudge factor here for final descale. */ |
1583 | tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
1584 | tmp10 <<= CONST_BITS; |
1585 | |
1586 | z1 = (INT32) wsptr[2]; |
1587 | z2 = (INT32) wsptr[4]; |
1588 | z3 = (INT32) wsptr[6]; |
1589 | |
1590 | tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ |
1591 | tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ |
1592 | z4 = z1 + z3; |
1593 | tmp24 = MULTIPLY(z4, - FIX(1.155664402)); /* -(c2-c10) */ |
1594 | z4 -= z2; |
1595 | tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ |
1596 | tmp21 = tmp20 + tmp23 + tmp25 - |
1597 | MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ |
1598 | tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ |
1599 | tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ |
1600 | tmp24 += tmp25; |
1601 | tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ |
1602 | tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ |
1603 | MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ |
1604 | tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ |
1605 | |
1606 | /* Odd part */ |
1607 | |
1608 | z1 = (INT32) wsptr[1]; |
1609 | z2 = (INT32) wsptr[3]; |
1610 | z3 = (INT32) wsptr[5]; |
1611 | z4 = (INT32) wsptr[7]; |
1612 | |
1613 | tmp11 = z1 + z2; |
1614 | tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ |
1615 | tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ |
1616 | tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ |
1617 | tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ |
1618 | tmp10 = tmp11 + tmp12 + tmp13 - |
1619 | MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ |
1620 | z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ |
1621 | tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ |
1622 | tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ |
1623 | z1 = MULTIPLY(z2 + z4, - FIX(1.798248910)); /* -(c1+c9) */ |
1624 | tmp11 += z1; |
1625 | tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ |
1626 | tmp14 += MULTIPLY(z2, - FIX(1.467221301)) + /* -(c5+c9) */ |
1627 | MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ |
1628 | MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ |
1629 | |
1630 | /* Final output stage */ |
1631 | |
1632 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
1633 | CONST_BITS+PASS1_BITS+3) |
1634 | & RANGE_MASK]; |
1635 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
1636 | CONST_BITS+PASS1_BITS+3) |
1637 | & RANGE_MASK]; |
1638 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
1639 | CONST_BITS+PASS1_BITS+3) |
1640 | & RANGE_MASK]; |
1641 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
1642 | CONST_BITS+PASS1_BITS+3) |
1643 | & RANGE_MASK]; |
1644 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
1645 | CONST_BITS+PASS1_BITS+3) |
1646 | & RANGE_MASK]; |
1647 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
1648 | CONST_BITS+PASS1_BITS+3) |
1649 | & RANGE_MASK]; |
1650 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
1651 | CONST_BITS+PASS1_BITS+3) |
1652 | & RANGE_MASK]; |
1653 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
1654 | CONST_BITS+PASS1_BITS+3) |
1655 | & RANGE_MASK]; |
1656 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
1657 | CONST_BITS+PASS1_BITS+3) |
1658 | & RANGE_MASK]; |
1659 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
1660 | CONST_BITS+PASS1_BITS+3) |
1661 | & RANGE_MASK]; |
1662 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25, |
1663 | CONST_BITS+PASS1_BITS+3) |
1664 | & RANGE_MASK]; |
1665 | |
1666 | wsptr += 8; /* advance pointer to next row */ |
1667 | } |
1668 | } |
1669 | |
1670 | |
1671 | /* |
1672 | * Perform dequantization and inverse DCT on one block of coefficients, |
1673 | * producing a 12x12 output block. |
1674 | * |
1675 | * Optimized algorithm with 15 multiplications in the 1-D kernel. |
1676 | * cK represents sqrt(2) * cos(K*pi/24). |
1677 | */ |
1678 | |
1679 | GLOBAL(void) |
1680 | jpeg_idct_12x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1681 | JCOEFPTR coef_block, |
1682 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1683 | { |
1684 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1685 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
1686 | INT32 z1, z2, z3, z4; |
1687 | JCOEFPTR inptr; |
1688 | ISLOW_MULT_TYPE * quantptr; |
1689 | int * wsptr; |
1690 | JSAMPROW outptr; |
1691 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1692 | int ctr; |
1693 | int workspace[8*12]; /* buffers data between passes */ |
1694 | SHIFT_TEMPS |
1695 | |
1696 | /* Pass 1: process columns from input, store into work array. */ |
1697 | |
1698 | inptr = coef_block; |
1699 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1700 | wsptr = workspace; |
1701 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
1702 | /* Even part */ |
1703 | |
1704 | z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1705 | if (ctr == 0) |
1706 | CLAMP_DC(z3); |
1707 | z3 <<= CONST_BITS; |
1708 | /* Add fudge factor here for final descale. */ |
1709 | z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
1710 | |
1711 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
1712 | z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
1713 | |
1714 | tmp10 = z3 + z4; |
1715 | tmp11 = z3 - z4; |
1716 | |
1717 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
1718 | z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
1719 | z1 <<= CONST_BITS; |
1720 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
1721 | z2 <<= CONST_BITS; |
1722 | |
1723 | tmp12 = z1 - z2; |
1724 | |
1725 | tmp21 = z3 + tmp12; |
1726 | tmp24 = z3 - tmp12; |
1727 | |
1728 | tmp12 = z4 + z2; |
1729 | |
1730 | tmp20 = tmp10 + tmp12; |
1731 | tmp25 = tmp10 - tmp12; |
1732 | |
1733 | tmp12 = z4 - z1 - z2; |
1734 | |
1735 | tmp22 = tmp11 + tmp12; |
1736 | tmp23 = tmp11 - tmp12; |
1737 | |
1738 | /* Odd part */ |
1739 | |
1740 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1741 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
1742 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
1743 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
1744 | |
1745 | tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
1746 | tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
1747 | |
1748 | tmp10 = z1 + z3; |
1749 | tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
1750 | tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
1751 | tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
1752 | tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
1753 | tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
1754 | tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
1755 | tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
1756 | MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
1757 | |
1758 | z1 -= z4; |
1759 | z2 -= z3; |
1760 | z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
1761 | tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
1762 | tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
1763 | |
1764 | /* Final output stage */ |
1765 | |
1766 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
1767 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
1768 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
1769 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
1770 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
1771 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
1772 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
1773 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
1774 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
1775 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
1776 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
1777 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
1778 | } |
1779 | |
1780 | /* Pass 2: process 12 rows from work array, store into output array. */ |
1781 | |
1782 | wsptr = workspace; |
1783 | for (ctr = 0; ctr < 12; ctr++) { |
1784 | outptr = output_buf[ctr] + output_col; |
1785 | |
1786 | /* Even part */ |
1787 | |
1788 | /* Add fudge factor here for final descale. */ |
1789 | z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
1790 | z3 <<= CONST_BITS; |
1791 | |
1792 | z4 = (INT32) wsptr[4]; |
1793 | z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
1794 | |
1795 | tmp10 = z3 + z4; |
1796 | tmp11 = z3 - z4; |
1797 | |
1798 | z1 = (INT32) wsptr[2]; |
1799 | z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
1800 | z1 <<= CONST_BITS; |
1801 | z2 = (INT32) wsptr[6]; |
1802 | z2 <<= CONST_BITS; |
1803 | |
1804 | tmp12 = z1 - z2; |
1805 | |
1806 | tmp21 = z3 + tmp12; |
1807 | tmp24 = z3 - tmp12; |
1808 | |
1809 | tmp12 = z4 + z2; |
1810 | |
1811 | tmp20 = tmp10 + tmp12; |
1812 | tmp25 = tmp10 - tmp12; |
1813 | |
1814 | tmp12 = z4 - z1 - z2; |
1815 | |
1816 | tmp22 = tmp11 + tmp12; |
1817 | tmp23 = tmp11 - tmp12; |
1818 | |
1819 | /* Odd part */ |
1820 | |
1821 | z1 = (INT32) wsptr[1]; |
1822 | z2 = (INT32) wsptr[3]; |
1823 | z3 = (INT32) wsptr[5]; |
1824 | z4 = (INT32) wsptr[7]; |
1825 | |
1826 | tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
1827 | tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
1828 | |
1829 | tmp10 = z1 + z3; |
1830 | tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
1831 | tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
1832 | tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
1833 | tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
1834 | tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
1835 | tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
1836 | tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
1837 | MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
1838 | |
1839 | z1 -= z4; |
1840 | z2 -= z3; |
1841 | z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
1842 | tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
1843 | tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
1844 | |
1845 | /* Final output stage */ |
1846 | |
1847 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
1848 | CONST_BITS+PASS1_BITS+3) |
1849 | & RANGE_MASK]; |
1850 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
1851 | CONST_BITS+PASS1_BITS+3) |
1852 | & RANGE_MASK]; |
1853 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
1854 | CONST_BITS+PASS1_BITS+3) |
1855 | & RANGE_MASK]; |
1856 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
1857 | CONST_BITS+PASS1_BITS+3) |
1858 | & RANGE_MASK]; |
1859 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
1860 | CONST_BITS+PASS1_BITS+3) |
1861 | & RANGE_MASK]; |
1862 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
1863 | CONST_BITS+PASS1_BITS+3) |
1864 | & RANGE_MASK]; |
1865 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
1866 | CONST_BITS+PASS1_BITS+3) |
1867 | & RANGE_MASK]; |
1868 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
1869 | CONST_BITS+PASS1_BITS+3) |
1870 | & RANGE_MASK]; |
1871 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
1872 | CONST_BITS+PASS1_BITS+3) |
1873 | & RANGE_MASK]; |
1874 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
1875 | CONST_BITS+PASS1_BITS+3) |
1876 | & RANGE_MASK]; |
1877 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
1878 | CONST_BITS+PASS1_BITS+3) |
1879 | & RANGE_MASK]; |
1880 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
1881 | CONST_BITS+PASS1_BITS+3) |
1882 | & RANGE_MASK]; |
1883 | |
1884 | wsptr += 8; /* advance pointer to next row */ |
1885 | } |
1886 | } |
1887 | |
1888 | |
1889 | /* |
1890 | * Perform dequantization and inverse DCT on one block of coefficients, |
1891 | * producing a 13x13 output block. |
1892 | * |
1893 | * Optimized algorithm with 29 multiplications in the 1-D kernel. |
1894 | * cK represents sqrt(2) * cos(K*pi/26). |
1895 | */ |
1896 | |
1897 | GLOBAL(void) |
1898 | jpeg_idct_13x13 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
1899 | JCOEFPTR coef_block, |
1900 | JSAMPARRAY output_buf, JDIMENSION output_col) |
1901 | { |
1902 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
1903 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
1904 | INT32 z1, z2, z3, z4; |
1905 | JCOEFPTR inptr; |
1906 | ISLOW_MULT_TYPE * quantptr; |
1907 | int * wsptr; |
1908 | JSAMPROW outptr; |
1909 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
1910 | int ctr; |
1911 | int workspace[8*13]; /* buffers data between passes */ |
1912 | SHIFT_TEMPS |
1913 | |
1914 | /* Pass 1: process columns from input, store into work array. */ |
1915 | |
1916 | inptr = coef_block; |
1917 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
1918 | wsptr = workspace; |
1919 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
1920 | /* Even part */ |
1921 | |
1922 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
1923 | if (ctr == 0) |
1924 | CLAMP_DC(z1); |
1925 | z1 <<= CONST_BITS; |
1926 | /* Add fudge factor here for final descale. */ |
1927 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
1928 | |
1929 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
1930 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
1931 | z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
1932 | |
1933 | tmp10 = z3 + z4; |
1934 | tmp11 = z3 - z4; |
1935 | |
1936 | tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ |
1937 | tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ |
1938 | |
1939 | tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ |
1940 | tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ |
1941 | |
1942 | tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ |
1943 | tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ |
1944 | |
1945 | tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ |
1946 | tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ |
1947 | |
1948 | tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ |
1949 | tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ |
1950 | |
1951 | tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ |
1952 | tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ |
1953 | |
1954 | tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ |
1955 | |
1956 | /* Odd part */ |
1957 | |
1958 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
1959 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
1960 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
1961 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
1962 | |
1963 | tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ |
1964 | tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ |
1965 | tmp15 = z1 + z4; |
1966 | tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ |
1967 | tmp10 = tmp11 + tmp12 + tmp13 - |
1968 | MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ |
1969 | tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ |
1970 | tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ |
1971 | tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ |
1972 | tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ |
1973 | tmp11 += tmp14; |
1974 | tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ |
1975 | tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ |
1976 | tmp12 += tmp14; |
1977 | tmp13 += tmp14; |
1978 | tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ |
1979 | tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ |
1980 | MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ |
1981 | z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ |
1982 | tmp14 += z1; |
1983 | tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ |
1984 | MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ |
1985 | |
1986 | /* Final output stage */ |
1987 | |
1988 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
1989 | wsptr[8*12] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
1990 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
1991 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
1992 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
1993 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
1994 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
1995 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
1996 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
1997 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
1998 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
1999 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
2000 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp26, CONST_BITS-PASS1_BITS); |
2001 | } |
2002 | |
2003 | /* Pass 2: process 13 rows from work array, store into output array. */ |
2004 | |
2005 | wsptr = workspace; |
2006 | for (ctr = 0; ctr < 13; ctr++) { |
2007 | outptr = output_buf[ctr] + output_col; |
2008 | |
2009 | /* Even part */ |
2010 | |
2011 | /* Add fudge factor here for final descale. */ |
2012 | z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
2013 | z1 <<= CONST_BITS; |
2014 | |
2015 | z2 = (INT32) wsptr[2]; |
2016 | z3 = (INT32) wsptr[4]; |
2017 | z4 = (INT32) wsptr[6]; |
2018 | |
2019 | tmp10 = z3 + z4; |
2020 | tmp11 = z3 - z4; |
2021 | |
2022 | tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ |
2023 | tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ |
2024 | |
2025 | tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ |
2026 | tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ |
2027 | |
2028 | tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ |
2029 | tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ |
2030 | |
2031 | tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ |
2032 | tmp25 = MULTIPLY(z2, - FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ |
2033 | |
2034 | tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ |
2035 | tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ |
2036 | |
2037 | tmp23 = MULTIPLY(z2, - FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ |
2038 | tmp24 = MULTIPLY(z2, - FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ |
2039 | |
2040 | tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ |
2041 | |
2042 | /* Odd part */ |
2043 | |
2044 | z1 = (INT32) wsptr[1]; |
2045 | z2 = (INT32) wsptr[3]; |
2046 | z3 = (INT32) wsptr[5]; |
2047 | z4 = (INT32) wsptr[7]; |
2048 | |
2049 | tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ |
2050 | tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ |
2051 | tmp15 = z1 + z4; |
2052 | tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ |
2053 | tmp10 = tmp11 + tmp12 + tmp13 - |
2054 | MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ |
2055 | tmp14 = MULTIPLY(z2 + z3, - FIX(0.338443458)); /* -c11 */ |
2056 | tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ |
2057 | tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ |
2058 | tmp14 = MULTIPLY(z2 + z4, - FIX(1.163874945)); /* -c5 */ |
2059 | tmp11 += tmp14; |
2060 | tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ |
2061 | tmp14 = MULTIPLY(z3 + z4, - FIX(0.657217813)); /* -c9 */ |
2062 | tmp12 += tmp14; |
2063 | tmp13 += tmp14; |
2064 | tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ |
2065 | tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ |
2066 | MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ |
2067 | z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ |
2068 | tmp14 += z1; |
2069 | tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ |
2070 | MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ |
2071 | |
2072 | /* Final output stage */ |
2073 | |
2074 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
2075 | CONST_BITS+PASS1_BITS+3) |
2076 | & RANGE_MASK]; |
2077 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
2078 | CONST_BITS+PASS1_BITS+3) |
2079 | & RANGE_MASK]; |
2080 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
2081 | CONST_BITS+PASS1_BITS+3) |
2082 | & RANGE_MASK]; |
2083 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
2084 | CONST_BITS+PASS1_BITS+3) |
2085 | & RANGE_MASK]; |
2086 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
2087 | CONST_BITS+PASS1_BITS+3) |
2088 | & RANGE_MASK]; |
2089 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
2090 | CONST_BITS+PASS1_BITS+3) |
2091 | & RANGE_MASK]; |
2092 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
2093 | CONST_BITS+PASS1_BITS+3) |
2094 | & RANGE_MASK]; |
2095 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
2096 | CONST_BITS+PASS1_BITS+3) |
2097 | & RANGE_MASK]; |
2098 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
2099 | CONST_BITS+PASS1_BITS+3) |
2100 | & RANGE_MASK]; |
2101 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
2102 | CONST_BITS+PASS1_BITS+3) |
2103 | & RANGE_MASK]; |
2104 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
2105 | CONST_BITS+PASS1_BITS+3) |
2106 | & RANGE_MASK]; |
2107 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
2108 | CONST_BITS+PASS1_BITS+3) |
2109 | & RANGE_MASK]; |
2110 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26, |
2111 | CONST_BITS+PASS1_BITS+3) |
2112 | & RANGE_MASK]; |
2113 | |
2114 | wsptr += 8; /* advance pointer to next row */ |
2115 | } |
2116 | } |
2117 | |
2118 | |
2119 | /* |
2120 | * Perform dequantization and inverse DCT on one block of coefficients, |
2121 | * producing a 14x14 output block. |
2122 | * |
2123 | * Optimized algorithm with 20 multiplications in the 1-D kernel. |
2124 | * cK represents sqrt(2) * cos(K*pi/28). |
2125 | */ |
2126 | |
2127 | GLOBAL(void) |
2128 | jpeg_idct_14x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
2129 | JCOEFPTR coef_block, |
2130 | JSAMPARRAY output_buf, JDIMENSION output_col) |
2131 | { |
2132 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
2133 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
2134 | INT32 z1, z2, z3, z4; |
2135 | JCOEFPTR inptr; |
2136 | ISLOW_MULT_TYPE * quantptr; |
2137 | int * wsptr; |
2138 | JSAMPROW outptr; |
2139 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
2140 | int ctr; |
2141 | int workspace[8*14]; /* buffers data between passes */ |
2142 | SHIFT_TEMPS |
2143 | |
2144 | /* Pass 1: process columns from input, store into work array. */ |
2145 | |
2146 | inptr = coef_block; |
2147 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
2148 | wsptr = workspace; |
2149 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
2150 | /* Even part */ |
2151 | |
2152 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
2153 | if (ctr == 0) |
2154 | CLAMP_DC(z1); |
2155 | z1 <<= CONST_BITS; |
2156 | /* Add fudge factor here for final descale. */ |
2157 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
2158 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
2159 | z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
2160 | z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
2161 | z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
2162 | |
2163 | tmp10 = z1 + z2; |
2164 | tmp11 = z1 + z3; |
2165 | tmp12 = z1 - z4; |
2166 | |
2167 | tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */ |
2168 | CONST_BITS-PASS1_BITS); |
2169 | |
2170 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
2171 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
2172 | |
2173 | z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
2174 | |
2175 | tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
2176 | tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
2177 | tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
2178 | MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
2179 | |
2180 | tmp20 = tmp10 + tmp13; |
2181 | tmp26 = tmp10 - tmp13; |
2182 | tmp21 = tmp11 + tmp14; |
2183 | tmp25 = tmp11 - tmp14; |
2184 | tmp22 = tmp12 + tmp15; |
2185 | tmp24 = tmp12 - tmp15; |
2186 | |
2187 | /* Odd part */ |
2188 | |
2189 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
2190 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
2191 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
2192 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
2193 | tmp13 = z4 << CONST_BITS; |
2194 | |
2195 | tmp14 = z1 + z3; |
2196 | tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
2197 | tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
2198 | tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
2199 | tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
2200 | tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
2201 | z1 -= z2; |
2202 | tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ |
2203 | tmp16 += tmp15; |
2204 | z1 += z4; |
2205 | z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ |
2206 | tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
2207 | tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
2208 | z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
2209 | tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
2210 | tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
2211 | |
2212 | tmp13 = (z1 - z3) << PASS1_BITS; |
2213 | |
2214 | /* Final output stage */ |
2215 | |
2216 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
2217 | wsptr[8*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
2218 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
2219 | wsptr[8*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
2220 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
2221 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
2222 | wsptr[8*3] = (int) (tmp23 + tmp13); |
2223 | wsptr[8*10] = (int) (tmp23 - tmp13); |
2224 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
2225 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
2226 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
2227 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
2228 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); |
2229 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); |
2230 | } |
2231 | |
2232 | /* Pass 2: process 14 rows from work array, store into output array. */ |
2233 | |
2234 | wsptr = workspace; |
2235 | for (ctr = 0; ctr < 14; ctr++) { |
2236 | outptr = output_buf[ctr] + output_col; |
2237 | |
2238 | /* Even part */ |
2239 | |
2240 | /* Add fudge factor here for final descale. */ |
2241 | z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
2242 | z1 <<= CONST_BITS; |
2243 | z4 = (INT32) wsptr[4]; |
2244 | z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
2245 | z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
2246 | z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
2247 | |
2248 | tmp10 = z1 + z2; |
2249 | tmp11 = z1 + z3; |
2250 | tmp12 = z1 - z4; |
2251 | |
2252 | tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */ |
2253 | |
2254 | z1 = (INT32) wsptr[2]; |
2255 | z2 = (INT32) wsptr[6]; |
2256 | |
2257 | z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
2258 | |
2259 | tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
2260 | tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
2261 | tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
2262 | MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
2263 | |
2264 | tmp20 = tmp10 + tmp13; |
2265 | tmp26 = tmp10 - tmp13; |
2266 | tmp21 = tmp11 + tmp14; |
2267 | tmp25 = tmp11 - tmp14; |
2268 | tmp22 = tmp12 + tmp15; |
2269 | tmp24 = tmp12 - tmp15; |
2270 | |
2271 | /* Odd part */ |
2272 | |
2273 | z1 = (INT32) wsptr[1]; |
2274 | z2 = (INT32) wsptr[3]; |
2275 | z3 = (INT32) wsptr[5]; |
2276 | z4 = (INT32) wsptr[7]; |
2277 | z4 <<= CONST_BITS; |
2278 | |
2279 | tmp14 = z1 + z3; |
2280 | tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
2281 | tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
2282 | tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
2283 | tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
2284 | tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
2285 | z1 -= z2; |
2286 | tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ |
2287 | tmp16 += tmp15; |
2288 | tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ |
2289 | tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
2290 | tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
2291 | tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
2292 | tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
2293 | tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
2294 | |
2295 | tmp13 = ((z1 - z3) << CONST_BITS) + z4; |
2296 | |
2297 | /* Final output stage */ |
2298 | |
2299 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
2300 | CONST_BITS+PASS1_BITS+3) |
2301 | & RANGE_MASK]; |
2302 | outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
2303 | CONST_BITS+PASS1_BITS+3) |
2304 | & RANGE_MASK]; |
2305 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
2306 | CONST_BITS+PASS1_BITS+3) |
2307 | & RANGE_MASK]; |
2308 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
2309 | CONST_BITS+PASS1_BITS+3) |
2310 | & RANGE_MASK]; |
2311 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
2312 | CONST_BITS+PASS1_BITS+3) |
2313 | & RANGE_MASK]; |
2314 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
2315 | CONST_BITS+PASS1_BITS+3) |
2316 | & RANGE_MASK]; |
2317 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
2318 | CONST_BITS+PASS1_BITS+3) |
2319 | & RANGE_MASK]; |
2320 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
2321 | CONST_BITS+PASS1_BITS+3) |
2322 | & RANGE_MASK]; |
2323 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
2324 | CONST_BITS+PASS1_BITS+3) |
2325 | & RANGE_MASK]; |
2326 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
2327 | CONST_BITS+PASS1_BITS+3) |
2328 | & RANGE_MASK]; |
2329 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
2330 | CONST_BITS+PASS1_BITS+3) |
2331 | & RANGE_MASK]; |
2332 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
2333 | CONST_BITS+PASS1_BITS+3) |
2334 | & RANGE_MASK]; |
2335 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, |
2336 | CONST_BITS+PASS1_BITS+3) |
2337 | & RANGE_MASK]; |
2338 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, |
2339 | CONST_BITS+PASS1_BITS+3) |
2340 | & RANGE_MASK]; |
2341 | |
2342 | wsptr += 8; /* advance pointer to next row */ |
2343 | } |
2344 | } |
2345 | |
2346 | |
2347 | /* |
2348 | * Perform dequantization and inverse DCT on one block of coefficients, |
2349 | * producing a 15x15 output block. |
2350 | * |
2351 | * Optimized algorithm with 22 multiplications in the 1-D kernel. |
2352 | * cK represents sqrt(2) * cos(K*pi/30). |
2353 | */ |
2354 | |
2355 | GLOBAL(void) |
2356 | jpeg_idct_15x15 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
2357 | JCOEFPTR coef_block, |
2358 | JSAMPARRAY output_buf, JDIMENSION output_col) |
2359 | { |
2360 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
2361 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
2362 | INT32 z1, z2, z3, z4; |
2363 | JCOEFPTR inptr; |
2364 | ISLOW_MULT_TYPE * quantptr; |
2365 | int * wsptr; |
2366 | JSAMPROW outptr; |
2367 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
2368 | int ctr; |
2369 | int workspace[8*15]; /* buffers data between passes */ |
2370 | SHIFT_TEMPS |
2371 | |
2372 | /* Pass 1: process columns from input, store into work array. */ |
2373 | |
2374 | inptr = coef_block; |
2375 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
2376 | wsptr = workspace; |
2377 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
2378 | /* Even part */ |
2379 | |
2380 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
2381 | if (ctr == 0) |
2382 | CLAMP_DC(z1); |
2383 | z1 <<= CONST_BITS; |
2384 | /* Add fudge factor here for final descale. */ |
2385 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
2386 | |
2387 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
2388 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
2389 | z4 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
2390 | |
2391 | tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ |
2392 | tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ |
2393 | |
2394 | tmp12 = z1 - tmp10; |
2395 | tmp13 = z1 + tmp11; |
2396 | z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ |
2397 | |
2398 | z4 = z2 - z3; |
2399 | z3 += z2; |
2400 | tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ |
2401 | tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ |
2402 | z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ |
2403 | |
2404 | tmp20 = tmp13 + tmp10 + tmp11; |
2405 | tmp23 = tmp12 - tmp10 + tmp11 + z2; |
2406 | |
2407 | tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ |
2408 | tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ |
2409 | |
2410 | tmp25 = tmp13 - tmp10 - tmp11; |
2411 | tmp26 = tmp12 + tmp10 - tmp11 - z2; |
2412 | |
2413 | tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ |
2414 | tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ |
2415 | |
2416 | tmp21 = tmp12 + tmp10 + tmp11; |
2417 | tmp24 = tmp13 - tmp10 + tmp11; |
2418 | tmp11 += tmp11; |
2419 | tmp22 = z1 + tmp11; /* c10 = c6-c12 */ |
2420 | tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ |
2421 | |
2422 | /* Odd part */ |
2423 | |
2424 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
2425 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
2426 | z4 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
2427 | z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ |
2428 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
2429 | |
2430 | tmp13 = z2 - z4; |
2431 | tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ |
2432 | tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ |
2433 | tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ |
2434 | |
2435 | tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ |
2436 | tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ |
2437 | z2 = z1 - z4; |
2438 | tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ |
2439 | |
2440 | tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ |
2441 | tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ |
2442 | tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ |
2443 | z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ |
2444 | tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ |
2445 | tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ |
2446 | |
2447 | /* Final output stage */ |
2448 | |
2449 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
2450 | wsptr[8*14] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
2451 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
2452 | wsptr[8*13] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
2453 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
2454 | wsptr[8*12] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
2455 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
2456 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
2457 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
2458 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
2459 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
2460 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
2461 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); |
2462 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); |
2463 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp27, CONST_BITS-PASS1_BITS); |
2464 | } |
2465 | |
2466 | /* Pass 2: process 15 rows from work array, store into output array. */ |
2467 | |
2468 | wsptr = workspace; |
2469 | for (ctr = 0; ctr < 15; ctr++) { |
2470 | outptr = output_buf[ctr] + output_col; |
2471 | |
2472 | /* Even part */ |
2473 | |
2474 | /* Add fudge factor here for final descale. */ |
2475 | z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
2476 | z1 <<= CONST_BITS; |
2477 | |
2478 | z2 = (INT32) wsptr[2]; |
2479 | z3 = (INT32) wsptr[4]; |
2480 | z4 = (INT32) wsptr[6]; |
2481 | |
2482 | tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ |
2483 | tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ |
2484 | |
2485 | tmp12 = z1 - tmp10; |
2486 | tmp13 = z1 + tmp11; |
2487 | z1 -= (tmp11 - tmp10) << 1; /* c0 = (c6-c12)*2 */ |
2488 | |
2489 | z4 = z2 - z3; |
2490 | z3 += z2; |
2491 | tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ |
2492 | tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ |
2493 | z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ |
2494 | |
2495 | tmp20 = tmp13 + tmp10 + tmp11; |
2496 | tmp23 = tmp12 - tmp10 + tmp11 + z2; |
2497 | |
2498 | tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ |
2499 | tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ |
2500 | |
2501 | tmp25 = tmp13 - tmp10 - tmp11; |
2502 | tmp26 = tmp12 + tmp10 - tmp11 - z2; |
2503 | |
2504 | tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ |
2505 | tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ |
2506 | |
2507 | tmp21 = tmp12 + tmp10 + tmp11; |
2508 | tmp24 = tmp13 - tmp10 + tmp11; |
2509 | tmp11 += tmp11; |
2510 | tmp22 = z1 + tmp11; /* c10 = c6-c12 */ |
2511 | tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ |
2512 | |
2513 | /* Odd part */ |
2514 | |
2515 | z1 = (INT32) wsptr[1]; |
2516 | z2 = (INT32) wsptr[3]; |
2517 | z4 = (INT32) wsptr[5]; |
2518 | z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ |
2519 | z4 = (INT32) wsptr[7]; |
2520 | |
2521 | tmp13 = z2 - z4; |
2522 | tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ |
2523 | tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ |
2524 | tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ |
2525 | |
2526 | tmp13 = MULTIPLY(z2, - FIX(0.831253876)); /* -c9 */ |
2527 | tmp15 = MULTIPLY(z2, - FIX(1.344997024)); /* -c3 */ |
2528 | z2 = z1 - z4; |
2529 | tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ |
2530 | |
2531 | tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ |
2532 | tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ |
2533 | tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ |
2534 | z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ |
2535 | tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ |
2536 | tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ |
2537 | |
2538 | /* Final output stage */ |
2539 | |
2540 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
2541 | CONST_BITS+PASS1_BITS+3) |
2542 | & RANGE_MASK]; |
2543 | outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
2544 | CONST_BITS+PASS1_BITS+3) |
2545 | & RANGE_MASK]; |
2546 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
2547 | CONST_BITS+PASS1_BITS+3) |
2548 | & RANGE_MASK]; |
2549 | outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
2550 | CONST_BITS+PASS1_BITS+3) |
2551 | & RANGE_MASK]; |
2552 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
2553 | CONST_BITS+PASS1_BITS+3) |
2554 | & RANGE_MASK]; |
2555 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
2556 | CONST_BITS+PASS1_BITS+3) |
2557 | & RANGE_MASK]; |
2558 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
2559 | CONST_BITS+PASS1_BITS+3) |
2560 | & RANGE_MASK]; |
2561 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
2562 | CONST_BITS+PASS1_BITS+3) |
2563 | & RANGE_MASK]; |
2564 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
2565 | CONST_BITS+PASS1_BITS+3) |
2566 | & RANGE_MASK]; |
2567 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
2568 | CONST_BITS+PASS1_BITS+3) |
2569 | & RANGE_MASK]; |
2570 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
2571 | CONST_BITS+PASS1_BITS+3) |
2572 | & RANGE_MASK]; |
2573 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
2574 | CONST_BITS+PASS1_BITS+3) |
2575 | & RANGE_MASK]; |
2576 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, |
2577 | CONST_BITS+PASS1_BITS+3) |
2578 | & RANGE_MASK]; |
2579 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, |
2580 | CONST_BITS+PASS1_BITS+3) |
2581 | & RANGE_MASK]; |
2582 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27, |
2583 | CONST_BITS+PASS1_BITS+3) |
2584 | & RANGE_MASK]; |
2585 | |
2586 | wsptr += 8; /* advance pointer to next row */ |
2587 | } |
2588 | } |
2589 | |
2590 | |
2591 | /* |
2592 | * Perform dequantization and inverse DCT on one block of coefficients, |
2593 | * producing a 16x16 output block. |
2594 | * |
2595 | * Optimized algorithm with 28 multiplications in the 1-D kernel. |
2596 | * cK represents sqrt(2) * cos(K*pi/32). |
2597 | */ |
2598 | |
2599 | GLOBAL(void) |
2600 | jpeg_idct_16x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
2601 | JCOEFPTR coef_block, |
2602 | JSAMPARRAY output_buf, JDIMENSION output_col) |
2603 | { |
2604 | INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; |
2605 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
2606 | INT32 z1, z2, z3, z4; |
2607 | JCOEFPTR inptr; |
2608 | ISLOW_MULT_TYPE * quantptr; |
2609 | int * wsptr; |
2610 | JSAMPROW outptr; |
2611 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
2612 | int ctr; |
2613 | int workspace[8*16]; /* buffers data between passes */ |
2614 | SHIFT_TEMPS |
2615 | |
2616 | /* Pass 1: process columns from input, store into work array. */ |
2617 | |
2618 | inptr = coef_block; |
2619 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
2620 | wsptr = workspace; |
2621 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
2622 | /* Even part */ |
2623 | |
2624 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
2625 | if (ctr == 0) |
2626 | CLAMP_DC(tmp0); |
2627 | tmp0 <<= CONST_BITS; |
2628 | /* Add fudge factor here for final descale. */ |
2629 | tmp0 += 1 << (CONST_BITS-PASS1_BITS-1); |
2630 | |
2631 | z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
2632 | tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ |
2633 | tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ |
2634 | |
2635 | tmp10 = tmp0 + tmp1; |
2636 | tmp11 = tmp0 - tmp1; |
2637 | tmp12 = tmp0 + tmp2; |
2638 | tmp13 = tmp0 - tmp2; |
2639 | |
2640 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
2641 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
2642 | z3 = z1 - z2; |
2643 | z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ |
2644 | z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2645 | |
2646 | tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ |
2647 | tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ |
2648 | tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ |
2649 | tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ |
2650 | |
2651 | tmp20 = tmp10 + tmp0; |
2652 | tmp27 = tmp10 - tmp0; |
2653 | tmp21 = tmp12 + tmp1; |
2654 | tmp26 = tmp12 - tmp1; |
2655 | tmp22 = tmp13 + tmp2; |
2656 | tmp25 = tmp13 - tmp2; |
2657 | tmp23 = tmp11 + tmp3; |
2658 | tmp24 = tmp11 - tmp3; |
2659 | |
2660 | /* Odd part */ |
2661 | |
2662 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
2663 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
2664 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
2665 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
2666 | |
2667 | tmp11 = z1 + z3; |
2668 | |
2669 | tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ |
2670 | tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ |
2671 | tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ |
2672 | tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ |
2673 | tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ |
2674 | tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ |
2675 | tmp0 = tmp1 + tmp2 + tmp3 - |
2676 | MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ |
2677 | tmp13 = tmp10 + tmp11 + tmp12 - |
2678 | MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ |
2679 | z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ |
2680 | tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ |
2681 | tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ |
2682 | z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ |
2683 | tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ |
2684 | tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ |
2685 | z2 += z4; |
2686 | z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ |
2687 | tmp1 += z1; |
2688 | tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ |
2689 | z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ |
2690 | tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ |
2691 | tmp12 += z2; |
2692 | z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ |
2693 | tmp2 += z2; |
2694 | tmp3 += z2; |
2695 | z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ |
2696 | tmp10 += z2; |
2697 | tmp11 += z2; |
2698 | |
2699 | /* Final output stage */ |
2700 | |
2701 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); |
2702 | wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); |
2703 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); |
2704 | wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); |
2705 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); |
2706 | wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); |
2707 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); |
2708 | wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); |
2709 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); |
2710 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); |
2711 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); |
2712 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); |
2713 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); |
2714 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); |
2715 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); |
2716 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); |
2717 | } |
2718 | |
2719 | /* Pass 2: process 16 rows from work array, store into output array. */ |
2720 | |
2721 | wsptr = workspace; |
2722 | for (ctr = 0; ctr < 16; ctr++) { |
2723 | outptr = output_buf[ctr] + output_col; |
2724 | |
2725 | /* Even part */ |
2726 | |
2727 | /* Add fudge factor here for final descale. */ |
2728 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
2729 | tmp0 <<= CONST_BITS; |
2730 | |
2731 | z1 = (INT32) wsptr[4]; |
2732 | tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ |
2733 | tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ |
2734 | |
2735 | tmp10 = tmp0 + tmp1; |
2736 | tmp11 = tmp0 - tmp1; |
2737 | tmp12 = tmp0 + tmp2; |
2738 | tmp13 = tmp0 - tmp2; |
2739 | |
2740 | z1 = (INT32) wsptr[2]; |
2741 | z2 = (INT32) wsptr[6]; |
2742 | z3 = z1 - z2; |
2743 | z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ |
2744 | z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ |
2745 | |
2746 | tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ |
2747 | tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ |
2748 | tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ |
2749 | tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ |
2750 | |
2751 | tmp20 = tmp10 + tmp0; |
2752 | tmp27 = tmp10 - tmp0; |
2753 | tmp21 = tmp12 + tmp1; |
2754 | tmp26 = tmp12 - tmp1; |
2755 | tmp22 = tmp13 + tmp2; |
2756 | tmp25 = tmp13 - tmp2; |
2757 | tmp23 = tmp11 + tmp3; |
2758 | tmp24 = tmp11 - tmp3; |
2759 | |
2760 | /* Odd part */ |
2761 | |
2762 | z1 = (INT32) wsptr[1]; |
2763 | z2 = (INT32) wsptr[3]; |
2764 | z3 = (INT32) wsptr[5]; |
2765 | z4 = (INT32) wsptr[7]; |
2766 | |
2767 | tmp11 = z1 + z3; |
2768 | |
2769 | tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ |
2770 | tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ |
2771 | tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ |
2772 | tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ |
2773 | tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ |
2774 | tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ |
2775 | tmp0 = tmp1 + tmp2 + tmp3 - |
2776 | MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ |
2777 | tmp13 = tmp10 + tmp11 + tmp12 - |
2778 | MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ |
2779 | z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ |
2780 | tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ |
2781 | tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ |
2782 | z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ |
2783 | tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ |
2784 | tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ |
2785 | z2 += z4; |
2786 | z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ |
2787 | tmp1 += z1; |
2788 | tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ |
2789 | z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ |
2790 | tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ |
2791 | tmp12 += z2; |
2792 | z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ |
2793 | tmp2 += z2; |
2794 | tmp3 += z2; |
2795 | z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ |
2796 | tmp10 += z2; |
2797 | tmp11 += z2; |
2798 | |
2799 | /* Final output stage */ |
2800 | |
2801 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0, |
2802 | CONST_BITS+PASS1_BITS+3) |
2803 | & RANGE_MASK]; |
2804 | outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0, |
2805 | CONST_BITS+PASS1_BITS+3) |
2806 | & RANGE_MASK]; |
2807 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1, |
2808 | CONST_BITS+PASS1_BITS+3) |
2809 | & RANGE_MASK]; |
2810 | outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1, |
2811 | CONST_BITS+PASS1_BITS+3) |
2812 | & RANGE_MASK]; |
2813 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2, |
2814 | CONST_BITS+PASS1_BITS+3) |
2815 | & RANGE_MASK]; |
2816 | outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2, |
2817 | CONST_BITS+PASS1_BITS+3) |
2818 | & RANGE_MASK]; |
2819 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3, |
2820 | CONST_BITS+PASS1_BITS+3) |
2821 | & RANGE_MASK]; |
2822 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3, |
2823 | CONST_BITS+PASS1_BITS+3) |
2824 | & RANGE_MASK]; |
2825 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10, |
2826 | CONST_BITS+PASS1_BITS+3) |
2827 | & RANGE_MASK]; |
2828 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10, |
2829 | CONST_BITS+PASS1_BITS+3) |
2830 | & RANGE_MASK]; |
2831 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11, |
2832 | CONST_BITS+PASS1_BITS+3) |
2833 | & RANGE_MASK]; |
2834 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11, |
2835 | CONST_BITS+PASS1_BITS+3) |
2836 | & RANGE_MASK]; |
2837 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12, |
2838 | CONST_BITS+PASS1_BITS+3) |
2839 | & RANGE_MASK]; |
2840 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12, |
2841 | CONST_BITS+PASS1_BITS+3) |
2842 | & RANGE_MASK]; |
2843 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13, |
2844 | CONST_BITS+PASS1_BITS+3) |
2845 | & RANGE_MASK]; |
2846 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13, |
2847 | CONST_BITS+PASS1_BITS+3) |
2848 | & RANGE_MASK]; |
2849 | |
2850 | wsptr += 8; /* advance pointer to next row */ |
2851 | } |
2852 | } |
2853 | |
2854 | |
2855 | /* |
2856 | * Perform dequantization and inverse DCT on one block of coefficients, |
2857 | * producing a 16x8 output block. |
2858 | * |
2859 | * 8-point IDCT in pass 1 (columns), 16-point in pass 2 (rows). |
2860 | */ |
2861 | |
2862 | GLOBAL(void) |
2863 | jpeg_idct_16x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
2864 | JCOEFPTR coef_block, |
2865 | JSAMPARRAY output_buf, JDIMENSION output_col) |
2866 | { |
2867 | INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; |
2868 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
2869 | INT32 z1, z2, z3, z4; |
2870 | JCOEFPTR inptr; |
2871 | ISLOW_MULT_TYPE * quantptr; |
2872 | int * wsptr; |
2873 | JSAMPROW outptr; |
2874 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
2875 | int ctr; |
2876 | int workspace[8*8]; /* buffers data between passes */ |
2877 | SHIFT_TEMPS |
2878 | |
2879 | /* Pass 1: process columns from input, store into work array. */ |
2880 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
2881 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
2882 | |
2883 | inptr = coef_block; |
2884 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
2885 | wsptr = workspace; |
2886 | for (ctr = DCTSIZE; ctr > 0; ctr--) { |
2887 | /* Due to quantization, we will usually find that many of the input |
2888 | * coefficients are zero, especially the AC terms. We can exploit this |
2889 | * by short-circuiting the IDCT calculation for any column in which all |
2890 | * the AC terms are zero. In that case each output is equal to the |
2891 | * DC coefficient (with scale factor as needed). |
2892 | * With typical images and quantization tables, half or more of the |
2893 | * column DCT calculations can be simplified this way. |
2894 | */ |
2895 | |
2896 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
2897 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
2898 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
2899 | inptr[DCTSIZE*7] == 0) { |
2900 | /* AC terms all zero */ |
2901 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
2902 | if (ctr == DCTSIZE) |
2903 | CLAMP_DC(dcval); |
2904 | dcval <<= PASS1_BITS; |
2905 | wsptr[DCTSIZE*0] = dcval; |
2906 | wsptr[DCTSIZE*1] = dcval; |
2907 | wsptr[DCTSIZE*2] = dcval; |
2908 | wsptr[DCTSIZE*3] = dcval; |
2909 | wsptr[DCTSIZE*4] = dcval; |
2910 | wsptr[DCTSIZE*5] = dcval; |
2911 | wsptr[DCTSIZE*6] = dcval; |
2912 | wsptr[DCTSIZE*7] = dcval; |
2913 | |
2914 | inptr++; /* advance pointers to next column */ |
2915 | quantptr++; |
2916 | wsptr++; |
2917 | continue; |
2918 | } |
2919 | |
2920 | /* Even part: reverse the even part of the forward DCT. */ |
2921 | /* The rotator is sqrt(2)*c(-6). */ |
2922 | |
2923 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
2924 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
2925 | |
2926 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
2927 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
2928 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
2929 | |
2930 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
2931 | if (ctr == DCTSIZE) |
2932 | CLAMP_DC(z2); |
2933 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
2934 | z2 <<= CONST_BITS; |
2935 | z3 <<= CONST_BITS; |
2936 | /* Add fudge factor here for final descale. */ |
2937 | z2 += ONE << (CONST_BITS-PASS1_BITS-1); |
2938 | |
2939 | tmp0 = z2 + z3; |
2940 | tmp1 = z2 - z3; |
2941 | |
2942 | tmp10 = tmp0 + tmp2; |
2943 | tmp13 = tmp0 - tmp2; |
2944 | tmp11 = tmp1 + tmp3; |
2945 | tmp12 = tmp1 - tmp3; |
2946 | |
2947 | /* Odd part per figure 8; the matrix is unitary and hence its |
2948 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
2949 | */ |
2950 | |
2951 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
2952 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
2953 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
2954 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
2955 | |
2956 | z2 = tmp0 + tmp2; |
2957 | z3 = tmp1 + tmp3; |
2958 | |
2959 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
2960 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
2961 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
2962 | z2 += z1; |
2963 | z3 += z1; |
2964 | |
2965 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
2966 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
2967 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
2968 | tmp0 += z1 + z2; |
2969 | tmp3 += z1 + z3; |
2970 | |
2971 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
2972 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
2973 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
2974 | tmp1 += z1 + z3; |
2975 | tmp2 += z1 + z2; |
2976 | |
2977 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
2978 | |
2979 | wsptr[DCTSIZE*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
2980 | wsptr[DCTSIZE*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
2981 | wsptr[DCTSIZE*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
2982 | wsptr[DCTSIZE*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
2983 | wsptr[DCTSIZE*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
2984 | wsptr[DCTSIZE*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
2985 | wsptr[DCTSIZE*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
2986 | wsptr[DCTSIZE*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
2987 | |
2988 | inptr++; /* advance pointers to next column */ |
2989 | quantptr++; |
2990 | wsptr++; |
2991 | } |
2992 | |
2993 | /* Pass 2: process 8 rows from work array, store into output array. |
2994 | * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). |
2995 | */ |
2996 | wsptr = workspace; |
2997 | for (ctr = 0; ctr < 8; ctr++) { |
2998 | outptr = output_buf[ctr] + output_col; |
2999 | |
3000 | /* Even part */ |
3001 | |
3002 | /* Add fudge factor here for final descale. */ |
3003 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3004 | tmp0 <<= CONST_BITS; |
3005 | |
3006 | z1 = (INT32) wsptr[4]; |
3007 | tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ |
3008 | tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ |
3009 | |
3010 | tmp10 = tmp0 + tmp1; |
3011 | tmp11 = tmp0 - tmp1; |
3012 | tmp12 = tmp0 + tmp2; |
3013 | tmp13 = tmp0 - tmp2; |
3014 | |
3015 | z1 = (INT32) wsptr[2]; |
3016 | z2 = (INT32) wsptr[6]; |
3017 | z3 = z1 - z2; |
3018 | z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ |
3019 | z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ |
3020 | |
3021 | tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ |
3022 | tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ |
3023 | tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ |
3024 | tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ |
3025 | |
3026 | tmp20 = tmp10 + tmp0; |
3027 | tmp27 = tmp10 - tmp0; |
3028 | tmp21 = tmp12 + tmp1; |
3029 | tmp26 = tmp12 - tmp1; |
3030 | tmp22 = tmp13 + tmp2; |
3031 | tmp25 = tmp13 - tmp2; |
3032 | tmp23 = tmp11 + tmp3; |
3033 | tmp24 = tmp11 - tmp3; |
3034 | |
3035 | /* Odd part */ |
3036 | |
3037 | z1 = (INT32) wsptr[1]; |
3038 | z2 = (INT32) wsptr[3]; |
3039 | z3 = (INT32) wsptr[5]; |
3040 | z4 = (INT32) wsptr[7]; |
3041 | |
3042 | tmp11 = z1 + z3; |
3043 | |
3044 | tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ |
3045 | tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ |
3046 | tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ |
3047 | tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ |
3048 | tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ |
3049 | tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ |
3050 | tmp0 = tmp1 + tmp2 + tmp3 - |
3051 | MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ |
3052 | tmp13 = tmp10 + tmp11 + tmp12 - |
3053 | MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ |
3054 | z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ |
3055 | tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ |
3056 | tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ |
3057 | z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ |
3058 | tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ |
3059 | tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ |
3060 | z2 += z4; |
3061 | z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ |
3062 | tmp1 += z1; |
3063 | tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ |
3064 | z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ |
3065 | tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ |
3066 | tmp12 += z2; |
3067 | z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ |
3068 | tmp2 += z2; |
3069 | tmp3 += z2; |
3070 | z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ |
3071 | tmp10 += z2; |
3072 | tmp11 += z2; |
3073 | |
3074 | /* Final output stage */ |
3075 | |
3076 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp0, |
3077 | CONST_BITS+PASS1_BITS+3) |
3078 | & RANGE_MASK]; |
3079 | outptr[15] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp0, |
3080 | CONST_BITS+PASS1_BITS+3) |
3081 | & RANGE_MASK]; |
3082 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp1, |
3083 | CONST_BITS+PASS1_BITS+3) |
3084 | & RANGE_MASK]; |
3085 | outptr[14] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp1, |
3086 | CONST_BITS+PASS1_BITS+3) |
3087 | & RANGE_MASK]; |
3088 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp2, |
3089 | CONST_BITS+PASS1_BITS+3) |
3090 | & RANGE_MASK]; |
3091 | outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp2, |
3092 | CONST_BITS+PASS1_BITS+3) |
3093 | & RANGE_MASK]; |
3094 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp3, |
3095 | CONST_BITS+PASS1_BITS+3) |
3096 | & RANGE_MASK]; |
3097 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp3, |
3098 | CONST_BITS+PASS1_BITS+3) |
3099 | & RANGE_MASK]; |
3100 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp10, |
3101 | CONST_BITS+PASS1_BITS+3) |
3102 | & RANGE_MASK]; |
3103 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp10, |
3104 | CONST_BITS+PASS1_BITS+3) |
3105 | & RANGE_MASK]; |
3106 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp11, |
3107 | CONST_BITS+PASS1_BITS+3) |
3108 | & RANGE_MASK]; |
3109 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp11, |
3110 | CONST_BITS+PASS1_BITS+3) |
3111 | & RANGE_MASK]; |
3112 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp12, |
3113 | CONST_BITS+PASS1_BITS+3) |
3114 | & RANGE_MASK]; |
3115 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp12, |
3116 | CONST_BITS+PASS1_BITS+3) |
3117 | & RANGE_MASK]; |
3118 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp27 + tmp13, |
3119 | CONST_BITS+PASS1_BITS+3) |
3120 | & RANGE_MASK]; |
3121 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp27 - tmp13, |
3122 | CONST_BITS+PASS1_BITS+3) |
3123 | & RANGE_MASK]; |
3124 | |
3125 | wsptr += 8; /* advance pointer to next row */ |
3126 | } |
3127 | } |
3128 | |
3129 | |
3130 | /* |
3131 | * Perform dequantization and inverse DCT on one block of coefficients, |
3132 | * producing a 14x7 output block. |
3133 | * |
3134 | * 7-point IDCT in pass 1 (columns), 14-point in pass 2 (rows). |
3135 | */ |
3136 | |
3137 | GLOBAL(void) |
3138 | jpeg_idct_14x7 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3139 | JCOEFPTR coef_block, |
3140 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3141 | { |
3142 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
3143 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
3144 | INT32 z1, z2, z3, z4; |
3145 | JCOEFPTR inptr; |
3146 | ISLOW_MULT_TYPE * quantptr; |
3147 | int * wsptr; |
3148 | JSAMPROW outptr; |
3149 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3150 | int ctr; |
3151 | int workspace[8*7]; /* buffers data between passes */ |
3152 | SHIFT_TEMPS |
3153 | |
3154 | /* Pass 1: process columns from input, store into work array. |
3155 | * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). |
3156 | */ |
3157 | inptr = coef_block; |
3158 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3159 | wsptr = workspace; |
3160 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
3161 | /* Even part */ |
3162 | |
3163 | tmp23 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3164 | if (ctr == 0) |
3165 | CLAMP_DC(tmp23); |
3166 | tmp23 <<= CONST_BITS; |
3167 | /* Add fudge factor here for final descale. */ |
3168 | tmp23 += ONE << (CONST_BITS-PASS1_BITS-1); |
3169 | |
3170 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
3171 | z2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
3172 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
3173 | |
3174 | tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
3175 | tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
3176 | tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
3177 | tmp10 = z1 + z3; |
3178 | z2 -= tmp10; |
3179 | tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */ |
3180 | tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
3181 | tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
3182 | tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
3183 | |
3184 | /* Odd part */ |
3185 | |
3186 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3187 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
3188 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
3189 | |
3190 | tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
3191 | tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
3192 | tmp10 = tmp11 - tmp12; |
3193 | tmp11 += tmp12; |
3194 | tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
3195 | tmp11 += tmp12; |
3196 | z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
3197 | tmp10 += z2; |
3198 | tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
3199 | |
3200 | /* Final output stage */ |
3201 | |
3202 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
3203 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
3204 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
3205 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
3206 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
3207 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
3208 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23, CONST_BITS-PASS1_BITS); |
3209 | } |
3210 | |
3211 | /* Pass 2: process 7 rows from work array, store into output array. |
3212 | * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). |
3213 | */ |
3214 | wsptr = workspace; |
3215 | for (ctr = 0; ctr < 7; ctr++) { |
3216 | outptr = output_buf[ctr] + output_col; |
3217 | |
3218 | /* Even part */ |
3219 | |
3220 | /* Add fudge factor here for final descale. */ |
3221 | z1 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3222 | z1 <<= CONST_BITS; |
3223 | z4 = (INT32) wsptr[4]; |
3224 | z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
3225 | z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
3226 | z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
3227 | |
3228 | tmp10 = z1 + z2; |
3229 | tmp11 = z1 + z3; |
3230 | tmp12 = z1 - z4; |
3231 | |
3232 | tmp23 = z1 - ((z2 + z3 - z4) << 1); /* c0 = (c4+c12-c8)*2 */ |
3233 | |
3234 | z1 = (INT32) wsptr[2]; |
3235 | z2 = (INT32) wsptr[6]; |
3236 | |
3237 | z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
3238 | |
3239 | tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
3240 | tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
3241 | tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
3242 | MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
3243 | |
3244 | tmp20 = tmp10 + tmp13; |
3245 | tmp26 = tmp10 - tmp13; |
3246 | tmp21 = tmp11 + tmp14; |
3247 | tmp25 = tmp11 - tmp14; |
3248 | tmp22 = tmp12 + tmp15; |
3249 | tmp24 = tmp12 - tmp15; |
3250 | |
3251 | /* Odd part */ |
3252 | |
3253 | z1 = (INT32) wsptr[1]; |
3254 | z2 = (INT32) wsptr[3]; |
3255 | z3 = (INT32) wsptr[5]; |
3256 | z4 = (INT32) wsptr[7]; |
3257 | z4 <<= CONST_BITS; |
3258 | |
3259 | tmp14 = z1 + z3; |
3260 | tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
3261 | tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
3262 | tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
3263 | tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
3264 | tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
3265 | z1 -= z2; |
3266 | tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ |
3267 | tmp16 += tmp15; |
3268 | tmp13 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - z4; /* -c13 */ |
3269 | tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
3270 | tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
3271 | tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
3272 | tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
3273 | tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
3274 | |
3275 | tmp13 = ((z1 - z3) << CONST_BITS) + z4; |
3276 | |
3277 | /* Final output stage */ |
3278 | |
3279 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
3280 | CONST_BITS+PASS1_BITS+3) |
3281 | & RANGE_MASK]; |
3282 | outptr[13] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
3283 | CONST_BITS+PASS1_BITS+3) |
3284 | & RANGE_MASK]; |
3285 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
3286 | CONST_BITS+PASS1_BITS+3) |
3287 | & RANGE_MASK]; |
3288 | outptr[12] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
3289 | CONST_BITS+PASS1_BITS+3) |
3290 | & RANGE_MASK]; |
3291 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
3292 | CONST_BITS+PASS1_BITS+3) |
3293 | & RANGE_MASK]; |
3294 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
3295 | CONST_BITS+PASS1_BITS+3) |
3296 | & RANGE_MASK]; |
3297 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
3298 | CONST_BITS+PASS1_BITS+3) |
3299 | & RANGE_MASK]; |
3300 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
3301 | CONST_BITS+PASS1_BITS+3) |
3302 | & RANGE_MASK]; |
3303 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
3304 | CONST_BITS+PASS1_BITS+3) |
3305 | & RANGE_MASK]; |
3306 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
3307 | CONST_BITS+PASS1_BITS+3) |
3308 | & RANGE_MASK]; |
3309 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
3310 | CONST_BITS+PASS1_BITS+3) |
3311 | & RANGE_MASK]; |
3312 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
3313 | CONST_BITS+PASS1_BITS+3) |
3314 | & RANGE_MASK]; |
3315 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp26 + tmp16, |
3316 | CONST_BITS+PASS1_BITS+3) |
3317 | & RANGE_MASK]; |
3318 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp26 - tmp16, |
3319 | CONST_BITS+PASS1_BITS+3) |
3320 | & RANGE_MASK]; |
3321 | |
3322 | wsptr += 8; /* advance pointer to next row */ |
3323 | } |
3324 | } |
3325 | |
3326 | |
3327 | /* |
3328 | * Perform dequantization and inverse DCT on one block of coefficients, |
3329 | * producing a 12x6 output block. |
3330 | * |
3331 | * 6-point IDCT in pass 1 (columns), 12-point in pass 2 (rows). |
3332 | */ |
3333 | |
3334 | GLOBAL(void) |
3335 | jpeg_idct_12x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3336 | JCOEFPTR coef_block, |
3337 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3338 | { |
3339 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
3340 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
3341 | INT32 z1, z2, z3, z4; |
3342 | JCOEFPTR inptr; |
3343 | ISLOW_MULT_TYPE * quantptr; |
3344 | int * wsptr; |
3345 | JSAMPROW outptr; |
3346 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3347 | int ctr; |
3348 | int workspace[8*6]; /* buffers data between passes */ |
3349 | SHIFT_TEMPS |
3350 | |
3351 | /* Pass 1: process columns from input, store into work array. |
3352 | * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). |
3353 | */ |
3354 | inptr = coef_block; |
3355 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3356 | wsptr = workspace; |
3357 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
3358 | /* Even part */ |
3359 | |
3360 | tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3361 | if (ctr == 0) |
3362 | CLAMP_DC(tmp10); |
3363 | tmp10 <<= CONST_BITS; |
3364 | /* Add fudge factor here for final descale. */ |
3365 | tmp10 += ONE << (CONST_BITS-PASS1_BITS-1); |
3366 | tmp12 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
3367 | tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */ |
3368 | tmp11 = tmp10 + tmp20; |
3369 | tmp21 = RIGHT_SHIFT(tmp10 - tmp20 - tmp20, CONST_BITS-PASS1_BITS); |
3370 | tmp20 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
3371 | tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */ |
3372 | tmp20 = tmp11 + tmp10; |
3373 | tmp22 = tmp11 - tmp10; |
3374 | |
3375 | /* Odd part */ |
3376 | |
3377 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3378 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
3379 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
3380 | tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
3381 | tmp10 = tmp11 + ((z1 + z2) << CONST_BITS); |
3382 | tmp12 = tmp11 + ((z3 - z2) << CONST_BITS); |
3383 | tmp11 = (z1 - z2 - z3) << PASS1_BITS; |
3384 | |
3385 | /* Final output stage */ |
3386 | |
3387 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
3388 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
3389 | wsptr[8*1] = (int) (tmp21 + tmp11); |
3390 | wsptr[8*4] = (int) (tmp21 - tmp11); |
3391 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
3392 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
3393 | } |
3394 | |
3395 | /* Pass 2: process 6 rows from work array, store into output array. |
3396 | * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). |
3397 | */ |
3398 | wsptr = workspace; |
3399 | for (ctr = 0; ctr < 6; ctr++) { |
3400 | outptr = output_buf[ctr] + output_col; |
3401 | |
3402 | /* Even part */ |
3403 | |
3404 | /* Add fudge factor here for final descale. */ |
3405 | z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3406 | z3 <<= CONST_BITS; |
3407 | |
3408 | z4 = (INT32) wsptr[4]; |
3409 | z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
3410 | |
3411 | tmp10 = z3 + z4; |
3412 | tmp11 = z3 - z4; |
3413 | |
3414 | z1 = (INT32) wsptr[2]; |
3415 | z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
3416 | z1 <<= CONST_BITS; |
3417 | z2 = (INT32) wsptr[6]; |
3418 | z2 <<= CONST_BITS; |
3419 | |
3420 | tmp12 = z1 - z2; |
3421 | |
3422 | tmp21 = z3 + tmp12; |
3423 | tmp24 = z3 - tmp12; |
3424 | |
3425 | tmp12 = z4 + z2; |
3426 | |
3427 | tmp20 = tmp10 + tmp12; |
3428 | tmp25 = tmp10 - tmp12; |
3429 | |
3430 | tmp12 = z4 - z1 - z2; |
3431 | |
3432 | tmp22 = tmp11 + tmp12; |
3433 | tmp23 = tmp11 - tmp12; |
3434 | |
3435 | /* Odd part */ |
3436 | |
3437 | z1 = (INT32) wsptr[1]; |
3438 | z2 = (INT32) wsptr[3]; |
3439 | z3 = (INT32) wsptr[5]; |
3440 | z4 = (INT32) wsptr[7]; |
3441 | |
3442 | tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
3443 | tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
3444 | |
3445 | tmp10 = z1 + z3; |
3446 | tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
3447 | tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
3448 | tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
3449 | tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
3450 | tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
3451 | tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
3452 | tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
3453 | MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
3454 | |
3455 | z1 -= z4; |
3456 | z2 -= z3; |
3457 | z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
3458 | tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
3459 | tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
3460 | |
3461 | /* Final output stage */ |
3462 | |
3463 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
3464 | CONST_BITS+PASS1_BITS+3) |
3465 | & RANGE_MASK]; |
3466 | outptr[11] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
3467 | CONST_BITS+PASS1_BITS+3) |
3468 | & RANGE_MASK]; |
3469 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
3470 | CONST_BITS+PASS1_BITS+3) |
3471 | & RANGE_MASK]; |
3472 | outptr[10] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
3473 | CONST_BITS+PASS1_BITS+3) |
3474 | & RANGE_MASK]; |
3475 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
3476 | CONST_BITS+PASS1_BITS+3) |
3477 | & RANGE_MASK]; |
3478 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
3479 | CONST_BITS+PASS1_BITS+3) |
3480 | & RANGE_MASK]; |
3481 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
3482 | CONST_BITS+PASS1_BITS+3) |
3483 | & RANGE_MASK]; |
3484 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
3485 | CONST_BITS+PASS1_BITS+3) |
3486 | & RANGE_MASK]; |
3487 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
3488 | CONST_BITS+PASS1_BITS+3) |
3489 | & RANGE_MASK]; |
3490 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
3491 | CONST_BITS+PASS1_BITS+3) |
3492 | & RANGE_MASK]; |
3493 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp25 + tmp15, |
3494 | CONST_BITS+PASS1_BITS+3) |
3495 | & RANGE_MASK]; |
3496 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp25 - tmp15, |
3497 | CONST_BITS+PASS1_BITS+3) |
3498 | & RANGE_MASK]; |
3499 | |
3500 | wsptr += 8; /* advance pointer to next row */ |
3501 | } |
3502 | } |
3503 | |
3504 | |
3505 | /* |
3506 | * Perform dequantization and inverse DCT on one block of coefficients, |
3507 | * producing a 10x5 output block. |
3508 | * |
3509 | * 5-point IDCT in pass 1 (columns), 10-point in pass 2 (rows). |
3510 | */ |
3511 | |
3512 | GLOBAL(void) |
3513 | jpeg_idct_10x5 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3514 | JCOEFPTR coef_block, |
3515 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3516 | { |
3517 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
3518 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24; |
3519 | INT32 z1, z2, z3, z4; |
3520 | JCOEFPTR inptr; |
3521 | ISLOW_MULT_TYPE * quantptr; |
3522 | int * wsptr; |
3523 | JSAMPROW outptr; |
3524 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3525 | int ctr; |
3526 | int workspace[8*5]; /* buffers data between passes */ |
3527 | SHIFT_TEMPS |
3528 | |
3529 | /* Pass 1: process columns from input, store into work array. |
3530 | * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). |
3531 | */ |
3532 | inptr = coef_block; |
3533 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3534 | wsptr = workspace; |
3535 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
3536 | /* Even part */ |
3537 | |
3538 | tmp12 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3539 | if (ctr == 0) |
3540 | CLAMP_DC(tmp12); |
3541 | tmp12 <<= CONST_BITS; |
3542 | /* Add fudge factor here for final descale. */ |
3543 | tmp12 += ONE << (CONST_BITS-PASS1_BITS-1); |
3544 | tmp13 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
3545 | tmp14 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
3546 | z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */ |
3547 | z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */ |
3548 | z3 = tmp12 + z2; |
3549 | tmp10 = z3 + z1; |
3550 | tmp11 = z3 - z1; |
3551 | tmp12 -= z2 << 2; |
3552 | |
3553 | /* Odd part */ |
3554 | |
3555 | z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3556 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
3557 | |
3558 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
3559 | tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
3560 | tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
3561 | |
3562 | /* Final output stage */ |
3563 | |
3564 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp10 + tmp13, CONST_BITS-PASS1_BITS); |
3565 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp10 - tmp13, CONST_BITS-PASS1_BITS); |
3566 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp11 + tmp14, CONST_BITS-PASS1_BITS); |
3567 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp11 - tmp14, CONST_BITS-PASS1_BITS); |
3568 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp12, CONST_BITS-PASS1_BITS); |
3569 | } |
3570 | |
3571 | /* Pass 2: process 5 rows from work array, store into output array. |
3572 | * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). |
3573 | */ |
3574 | wsptr = workspace; |
3575 | for (ctr = 0; ctr < 5; ctr++) { |
3576 | outptr = output_buf[ctr] + output_col; |
3577 | |
3578 | /* Even part */ |
3579 | |
3580 | /* Add fudge factor here for final descale. */ |
3581 | z3 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3582 | z3 <<= CONST_BITS; |
3583 | z4 = (INT32) wsptr[4]; |
3584 | z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
3585 | z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
3586 | tmp10 = z3 + z1; |
3587 | tmp11 = z3 - z2; |
3588 | |
3589 | tmp22 = z3 - ((z1 - z2) << 1); /* c0 = (c4-c8)*2 */ |
3590 | |
3591 | z2 = (INT32) wsptr[2]; |
3592 | z3 = (INT32) wsptr[6]; |
3593 | |
3594 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
3595 | tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
3596 | tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
3597 | |
3598 | tmp20 = tmp10 + tmp12; |
3599 | tmp24 = tmp10 - tmp12; |
3600 | tmp21 = tmp11 + tmp13; |
3601 | tmp23 = tmp11 - tmp13; |
3602 | |
3603 | /* Odd part */ |
3604 | |
3605 | z1 = (INT32) wsptr[1]; |
3606 | z2 = (INT32) wsptr[3]; |
3607 | z3 = (INT32) wsptr[5]; |
3608 | z3 <<= CONST_BITS; |
3609 | z4 = (INT32) wsptr[7]; |
3610 | |
3611 | tmp11 = z2 + z4; |
3612 | tmp13 = z2 - z4; |
3613 | |
3614 | tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
3615 | |
3616 | z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
3617 | z4 = z3 + tmp12; |
3618 | |
3619 | tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
3620 | tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
3621 | |
3622 | z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
3623 | z4 = z3 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
3624 | |
3625 | tmp12 = ((z1 - tmp13) << CONST_BITS) - z3; |
3626 | |
3627 | tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
3628 | tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
3629 | |
3630 | /* Final output stage */ |
3631 | |
3632 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
3633 | CONST_BITS+PASS1_BITS+3) |
3634 | & RANGE_MASK]; |
3635 | outptr[9] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
3636 | CONST_BITS+PASS1_BITS+3) |
3637 | & RANGE_MASK]; |
3638 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
3639 | CONST_BITS+PASS1_BITS+3) |
3640 | & RANGE_MASK]; |
3641 | outptr[8] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
3642 | CONST_BITS+PASS1_BITS+3) |
3643 | & RANGE_MASK]; |
3644 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
3645 | CONST_BITS+PASS1_BITS+3) |
3646 | & RANGE_MASK]; |
3647 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
3648 | CONST_BITS+PASS1_BITS+3) |
3649 | & RANGE_MASK]; |
3650 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23 + tmp13, |
3651 | CONST_BITS+PASS1_BITS+3) |
3652 | & RANGE_MASK]; |
3653 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp23 - tmp13, |
3654 | CONST_BITS+PASS1_BITS+3) |
3655 | & RANGE_MASK]; |
3656 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp24 + tmp14, |
3657 | CONST_BITS+PASS1_BITS+3) |
3658 | & RANGE_MASK]; |
3659 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp24 - tmp14, |
3660 | CONST_BITS+PASS1_BITS+3) |
3661 | & RANGE_MASK]; |
3662 | |
3663 | wsptr += 8; /* advance pointer to next row */ |
3664 | } |
3665 | } |
3666 | |
3667 | |
3668 | /* |
3669 | * Perform dequantization and inverse DCT on one block of coefficients, |
3670 | * producing a 8x4 output block. |
3671 | * |
3672 | * 4-point IDCT in pass 1 (columns), 8-point in pass 2 (rows). |
3673 | */ |
3674 | |
3675 | GLOBAL(void) |
3676 | jpeg_idct_8x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3677 | JCOEFPTR coef_block, |
3678 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3679 | { |
3680 | INT32 tmp0, tmp1, tmp2, tmp3; |
3681 | INT32 tmp10, tmp11, tmp12, tmp13; |
3682 | INT32 z1, z2, z3; |
3683 | JCOEFPTR inptr; |
3684 | ISLOW_MULT_TYPE * quantptr; |
3685 | int * wsptr; |
3686 | JSAMPROW outptr; |
3687 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3688 | int ctr; |
3689 | int workspace[8*4]; /* buffers data between passes */ |
3690 | SHIFT_TEMPS |
3691 | |
3692 | /* Pass 1: process columns from input, store into work array. |
3693 | * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
3694 | */ |
3695 | inptr = coef_block; |
3696 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3697 | wsptr = workspace; |
3698 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
3699 | /* Even part */ |
3700 | |
3701 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3702 | if (ctr == 0) |
3703 | CLAMP_DC(tmp0); |
3704 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
3705 | |
3706 | tmp10 = (tmp0 + tmp2) << PASS1_BITS; |
3707 | tmp12 = (tmp0 - tmp2) << PASS1_BITS; |
3708 | |
3709 | /* Odd part */ |
3710 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
3711 | |
3712 | z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3713 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
3714 | |
3715 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
3716 | /* Add fudge factor here for final descale. */ |
3717 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
3718 | tmp0 = RIGHT_SHIFT(z1 + MULTIPLY(z2, FIX_0_765366865), /* c2-c6 */ |
3719 | CONST_BITS-PASS1_BITS); |
3720 | tmp2 = RIGHT_SHIFT(z1 - MULTIPLY(z3, FIX_1_847759065), /* c2+c6 */ |
3721 | CONST_BITS-PASS1_BITS); |
3722 | |
3723 | /* Final output stage */ |
3724 | |
3725 | wsptr[8*0] = (int) (tmp10 + tmp0); |
3726 | wsptr[8*3] = (int) (tmp10 - tmp0); |
3727 | wsptr[8*1] = (int) (tmp12 + tmp2); |
3728 | wsptr[8*2] = (int) (tmp12 - tmp2); |
3729 | } |
3730 | |
3731 | /* Pass 2: process rows from work array, store into output array. */ |
3732 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
3733 | /* and also undo the PASS1_BITS scaling. */ |
3734 | |
3735 | wsptr = workspace; |
3736 | for (ctr = 0; ctr < 4; ctr++) { |
3737 | outptr = output_buf[ctr] + output_col; |
3738 | |
3739 | /* Even part: reverse the even part of the forward DCT. */ |
3740 | /* The rotator is sqrt(2)*c(-6). */ |
3741 | |
3742 | z2 = (INT32) wsptr[2]; |
3743 | z3 = (INT32) wsptr[6]; |
3744 | |
3745 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
3746 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
3747 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
3748 | |
3749 | /* Add fudge factor here for final descale. */ |
3750 | z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3751 | z3 = (INT32) wsptr[4]; |
3752 | |
3753 | tmp0 = (z2 + z3) << CONST_BITS; |
3754 | tmp1 = (z2 - z3) << CONST_BITS; |
3755 | |
3756 | tmp10 = tmp0 + tmp2; |
3757 | tmp13 = tmp0 - tmp2; |
3758 | tmp11 = tmp1 + tmp3; |
3759 | tmp12 = tmp1 - tmp3; |
3760 | |
3761 | /* Odd part per figure 8; the matrix is unitary and hence its |
3762 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
3763 | */ |
3764 | |
3765 | tmp0 = (INT32) wsptr[7]; |
3766 | tmp1 = (INT32) wsptr[5]; |
3767 | tmp2 = (INT32) wsptr[3]; |
3768 | tmp3 = (INT32) wsptr[1]; |
3769 | |
3770 | z2 = tmp0 + tmp2; |
3771 | z3 = tmp1 + tmp3; |
3772 | |
3773 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
3774 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
3775 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
3776 | z2 += z1; |
3777 | z3 += z1; |
3778 | |
3779 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
3780 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
3781 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
3782 | tmp0 += z1 + z2; |
3783 | tmp3 += z1 + z3; |
3784 | |
3785 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
3786 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
3787 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
3788 | tmp1 += z1 + z3; |
3789 | tmp2 += z1 + z2; |
3790 | |
3791 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
3792 | |
3793 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, |
3794 | CONST_BITS+PASS1_BITS+3) |
3795 | & RANGE_MASK]; |
3796 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, |
3797 | CONST_BITS+PASS1_BITS+3) |
3798 | & RANGE_MASK]; |
3799 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, |
3800 | CONST_BITS+PASS1_BITS+3) |
3801 | & RANGE_MASK]; |
3802 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, |
3803 | CONST_BITS+PASS1_BITS+3) |
3804 | & RANGE_MASK]; |
3805 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, |
3806 | CONST_BITS+PASS1_BITS+3) |
3807 | & RANGE_MASK]; |
3808 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, |
3809 | CONST_BITS+PASS1_BITS+3) |
3810 | & RANGE_MASK]; |
3811 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, |
3812 | CONST_BITS+PASS1_BITS+3) |
3813 | & RANGE_MASK]; |
3814 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, |
3815 | CONST_BITS+PASS1_BITS+3) |
3816 | & RANGE_MASK]; |
3817 | |
3818 | wsptr += DCTSIZE; /* advance pointer to next row */ |
3819 | } |
3820 | } |
3821 | |
3822 | |
3823 | /* |
3824 | * Perform dequantization and inverse DCT on one block of coefficients, |
3825 | * producing a reduced-size 6x3 output block. |
3826 | * |
3827 | * 3-point IDCT in pass 1 (columns), 6-point in pass 2 (rows). |
3828 | */ |
3829 | |
3830 | GLOBAL(void) |
3831 | jpeg_idct_6x3 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3832 | JCOEFPTR coef_block, |
3833 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3834 | { |
3835 | INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; |
3836 | INT32 z1, z2, z3; |
3837 | JCOEFPTR inptr; |
3838 | ISLOW_MULT_TYPE * quantptr; |
3839 | int * wsptr; |
3840 | JSAMPROW outptr; |
3841 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3842 | int ctr; |
3843 | int workspace[6*3]; /* buffers data between passes */ |
3844 | SHIFT_TEMPS |
3845 | |
3846 | /* Pass 1: process columns from input, store into work array. |
3847 | * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). |
3848 | */ |
3849 | inptr = coef_block; |
3850 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3851 | wsptr = workspace; |
3852 | for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { |
3853 | /* Even part */ |
3854 | |
3855 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3856 | if (ctr == 0) |
3857 | CLAMP_DC(tmp0); |
3858 | tmp0 <<= CONST_BITS; |
3859 | /* Add fudge factor here for final descale. */ |
3860 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
3861 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
3862 | tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
3863 | tmp10 = tmp0 + tmp12; |
3864 | tmp2 = tmp0 - tmp12 - tmp12; |
3865 | |
3866 | /* Odd part */ |
3867 | |
3868 | tmp12 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3869 | tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
3870 | |
3871 | /* Final output stage */ |
3872 | |
3873 | wsptr[6*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
3874 | wsptr[6*2] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
3875 | wsptr[6*1] = (int) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); |
3876 | } |
3877 | |
3878 | /* Pass 2: process 3 rows from work array, store into output array. |
3879 | * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). |
3880 | */ |
3881 | wsptr = workspace; |
3882 | for (ctr = 0; ctr < 3; ctr++) { |
3883 | outptr = output_buf[ctr] + output_col; |
3884 | |
3885 | /* Even part */ |
3886 | |
3887 | /* Add fudge factor here for final descale. */ |
3888 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
3889 | tmp0 <<= CONST_BITS; |
3890 | tmp2 = (INT32) wsptr[4]; |
3891 | tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
3892 | tmp1 = tmp0 + tmp10; |
3893 | tmp11 = tmp0 - tmp10 - tmp10; |
3894 | tmp10 = (INT32) wsptr[2]; |
3895 | tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
3896 | tmp10 = tmp1 + tmp0; |
3897 | tmp12 = tmp1 - tmp0; |
3898 | |
3899 | /* Odd part */ |
3900 | |
3901 | z1 = (INT32) wsptr[1]; |
3902 | z2 = (INT32) wsptr[3]; |
3903 | z3 = (INT32) wsptr[5]; |
3904 | tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
3905 | tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
3906 | tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
3907 | tmp1 = (z1 - z2 - z3) << CONST_BITS; |
3908 | |
3909 | /* Final output stage */ |
3910 | |
3911 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
3912 | CONST_BITS+PASS1_BITS+3) |
3913 | & RANGE_MASK]; |
3914 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
3915 | CONST_BITS+PASS1_BITS+3) |
3916 | & RANGE_MASK]; |
3917 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp1, |
3918 | CONST_BITS+PASS1_BITS+3) |
3919 | & RANGE_MASK]; |
3920 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp1, |
3921 | CONST_BITS+PASS1_BITS+3) |
3922 | & RANGE_MASK]; |
3923 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
3924 | CONST_BITS+PASS1_BITS+3) |
3925 | & RANGE_MASK]; |
3926 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
3927 | CONST_BITS+PASS1_BITS+3) |
3928 | & RANGE_MASK]; |
3929 | |
3930 | wsptr += 6; /* advance pointer to next row */ |
3931 | } |
3932 | } |
3933 | |
3934 | |
3935 | /* |
3936 | * Perform dequantization and inverse DCT on one block of coefficients, |
3937 | * producing a 4x2 output block. |
3938 | * |
3939 | * 2-point IDCT in pass 1 (columns), 4-point in pass 2 (rows). |
3940 | */ |
3941 | |
3942 | GLOBAL(void) |
3943 | jpeg_idct_4x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
3944 | JCOEFPTR coef_block, |
3945 | JSAMPARRAY output_buf, JDIMENSION output_col) |
3946 | { |
3947 | INT32 tmp0, tmp2, tmp10, tmp12; |
3948 | INT32 z1, z2, z3; |
3949 | JCOEFPTR inptr; |
3950 | ISLOW_MULT_TYPE * quantptr; |
3951 | INT32 * wsptr; |
3952 | JSAMPROW outptr; |
3953 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
3954 | int ctr; |
3955 | INT32 workspace[4*2]; /* buffers data between passes */ |
3956 | SHIFT_TEMPS |
3957 | |
3958 | /* Pass 1: process columns from input, store into work array. */ |
3959 | |
3960 | inptr = coef_block; |
3961 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
3962 | wsptr = workspace; |
3963 | for (ctr = 0; ctr < 4; ctr++, inptr++, quantptr++, wsptr++) { |
3964 | /* Even part */ |
3965 | |
3966 | tmp10 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
3967 | if (ctr == 0) |
3968 | CLAMP_DC(tmp10); |
3969 | |
3970 | /* Odd part */ |
3971 | |
3972 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
3973 | |
3974 | /* Final output stage */ |
3975 | |
3976 | wsptr[4*0] = tmp10 + tmp0; |
3977 | wsptr[4*1] = tmp10 - tmp0; |
3978 | } |
3979 | |
3980 | /* Pass 2: process 2 rows from work array, store into output array. |
3981 | * 4-point IDCT kernel, |
3982 | * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. |
3983 | */ |
3984 | wsptr = workspace; |
3985 | for (ctr = 0; ctr < 2; ctr++) { |
3986 | outptr = output_buf[ctr] + output_col; |
3987 | |
3988 | /* Even part */ |
3989 | |
3990 | /* Add fudge factor here for final descale. */ |
3991 | tmp0 = wsptr[0] + (ONE << 2); |
3992 | tmp2 = wsptr[2]; |
3993 | |
3994 | tmp10 = (tmp0 + tmp2) << CONST_BITS; |
3995 | tmp12 = (tmp0 - tmp2) << CONST_BITS; |
3996 | |
3997 | /* Odd part */ |
3998 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
3999 | |
4000 | z2 = wsptr[1]; |
4001 | z3 = wsptr[3]; |
4002 | |
4003 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
4004 | tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ |
4005 | tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ |
4006 | |
4007 | /* Final output stage */ |
4008 | |
4009 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
4010 | CONST_BITS+3) |
4011 | & RANGE_MASK]; |
4012 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
4013 | CONST_BITS+3) |
4014 | & RANGE_MASK]; |
4015 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
4016 | CONST_BITS+3) |
4017 | & RANGE_MASK]; |
4018 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
4019 | CONST_BITS+3) |
4020 | & RANGE_MASK]; |
4021 | |
4022 | wsptr += 4; /* advance pointer to next row */ |
4023 | } |
4024 | } |
4025 | |
4026 | |
4027 | /* |
4028 | * Perform dequantization and inverse DCT on one block of coefficients, |
4029 | * producing a 2x1 output block. |
4030 | * |
4031 | * 1-point IDCT in pass 1 (columns), 2-point in pass 2 (rows). |
4032 | */ |
4033 | |
4034 | GLOBAL(void) |
4035 | jpeg_idct_2x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4036 | JCOEFPTR coef_block, |
4037 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4038 | { |
4039 | INT32 tmp0, tmp10; |
4040 | ISLOW_MULT_TYPE * quantptr; |
4041 | JSAMPROW outptr; |
4042 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4043 | SHIFT_TEMPS |
4044 | |
4045 | /* Pass 1: empty. */ |
4046 | |
4047 | /* Pass 2: process 1 row from input, store into output array. */ |
4048 | |
4049 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4050 | outptr = output_buf[0] + output_col; |
4051 | |
4052 | /* Even part */ |
4053 | |
4054 | tmp10 = DEQUANTIZE(coef_block[0], quantptr[0]); |
4055 | CLAMP_DC(tmp10); |
4056 | /* Add fudge factor here for final descale. */ |
4057 | tmp10 += ONE << 2; |
4058 | |
4059 | /* Odd part */ |
4060 | |
4061 | tmp0 = DEQUANTIZE(coef_block[1], quantptr[1]); |
4062 | |
4063 | /* Final output stage */ |
4064 | |
4065 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) & RANGE_MASK]; |
4066 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) & RANGE_MASK]; |
4067 | } |
4068 | |
4069 | |
4070 | /* |
4071 | * Perform dequantization and inverse DCT on one block of coefficients, |
4072 | * producing a 8x16 output block. |
4073 | * |
4074 | * 16-point IDCT in pass 1 (columns), 8-point in pass 2 (rows). |
4075 | */ |
4076 | |
4077 | GLOBAL(void) |
4078 | jpeg_idct_8x16 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4079 | JCOEFPTR coef_block, |
4080 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4081 | { |
4082 | INT32 tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; |
4083 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; |
4084 | INT32 z1, z2, z3, z4; |
4085 | JCOEFPTR inptr; |
4086 | ISLOW_MULT_TYPE * quantptr; |
4087 | int * wsptr; |
4088 | JSAMPROW outptr; |
4089 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4090 | int ctr; |
4091 | int workspace[8*16]; /* buffers data between passes */ |
4092 | SHIFT_TEMPS |
4093 | |
4094 | /* Pass 1: process columns from input, store into work array. |
4095 | * 16-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/32). |
4096 | */ |
4097 | inptr = coef_block; |
4098 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4099 | wsptr = workspace; |
4100 | for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { |
4101 | /* Even part */ |
4102 | |
4103 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4104 | if (ctr == 0) |
4105 | CLAMP_DC(tmp0); |
4106 | tmp0 <<= CONST_BITS; |
4107 | /* Add fudge factor here for final descale. */ |
4108 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
4109 | |
4110 | z1 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
4111 | tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ |
4112 | tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ |
4113 | |
4114 | tmp10 = tmp0 + tmp1; |
4115 | tmp11 = tmp0 - tmp1; |
4116 | tmp12 = tmp0 + tmp2; |
4117 | tmp13 = tmp0 - tmp2; |
4118 | |
4119 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
4120 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
4121 | z3 = z1 - z2; |
4122 | z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ |
4123 | z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ |
4124 | |
4125 | tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ |
4126 | tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ |
4127 | tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ |
4128 | tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ |
4129 | |
4130 | tmp20 = tmp10 + tmp0; |
4131 | tmp27 = tmp10 - tmp0; |
4132 | tmp21 = tmp12 + tmp1; |
4133 | tmp26 = tmp12 - tmp1; |
4134 | tmp22 = tmp13 + tmp2; |
4135 | tmp25 = tmp13 - tmp2; |
4136 | tmp23 = tmp11 + tmp3; |
4137 | tmp24 = tmp11 - tmp3; |
4138 | |
4139 | /* Odd part */ |
4140 | |
4141 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
4142 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
4143 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
4144 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
4145 | |
4146 | tmp11 = z1 + z3; |
4147 | |
4148 | tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ |
4149 | tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ |
4150 | tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ |
4151 | tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ |
4152 | tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ |
4153 | tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ |
4154 | tmp0 = tmp1 + tmp2 + tmp3 - |
4155 | MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ |
4156 | tmp13 = tmp10 + tmp11 + tmp12 - |
4157 | MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ |
4158 | z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ |
4159 | tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ |
4160 | tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ |
4161 | z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ |
4162 | tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ |
4163 | tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ |
4164 | z2 += z4; |
4165 | z1 = MULTIPLY(z2, - FIX(0.666655658)); /* -c11 */ |
4166 | tmp1 += z1; |
4167 | tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ |
4168 | z2 = MULTIPLY(z2, - FIX(1.247225013)); /* -c5 */ |
4169 | tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ |
4170 | tmp12 += z2; |
4171 | z2 = MULTIPLY(z3 + z4, - FIX(1.353318001)); /* -c3 */ |
4172 | tmp2 += z2; |
4173 | tmp3 += z2; |
4174 | z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ |
4175 | tmp10 += z2; |
4176 | tmp11 += z2; |
4177 | |
4178 | /* Final output stage */ |
4179 | |
4180 | wsptr[8*0] = (int) RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS-PASS1_BITS); |
4181 | wsptr[8*15] = (int) RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS-PASS1_BITS); |
4182 | wsptr[8*1] = (int) RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS-PASS1_BITS); |
4183 | wsptr[8*14] = (int) RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS-PASS1_BITS); |
4184 | wsptr[8*2] = (int) RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS-PASS1_BITS); |
4185 | wsptr[8*13] = (int) RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS-PASS1_BITS); |
4186 | wsptr[8*3] = (int) RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS-PASS1_BITS); |
4187 | wsptr[8*12] = (int) RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS-PASS1_BITS); |
4188 | wsptr[8*4] = (int) RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS-PASS1_BITS); |
4189 | wsptr[8*11] = (int) RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS-PASS1_BITS); |
4190 | wsptr[8*5] = (int) RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS-PASS1_BITS); |
4191 | wsptr[8*10] = (int) RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS-PASS1_BITS); |
4192 | wsptr[8*6] = (int) RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS-PASS1_BITS); |
4193 | wsptr[8*9] = (int) RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS-PASS1_BITS); |
4194 | wsptr[8*7] = (int) RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS-PASS1_BITS); |
4195 | wsptr[8*8] = (int) RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS-PASS1_BITS); |
4196 | } |
4197 | |
4198 | /* Pass 2: process rows from work array, store into output array. */ |
4199 | /* Note that we must descale the results by a factor of 8 == 2**3, */ |
4200 | /* and also undo the PASS1_BITS scaling. */ |
4201 | |
4202 | wsptr = workspace; |
4203 | for (ctr = 0; ctr < 16; ctr++) { |
4204 | outptr = output_buf[ctr] + output_col; |
4205 | |
4206 | /* Even part: reverse the even part of the forward DCT. */ |
4207 | /* The rotator is sqrt(2)*c(-6). */ |
4208 | |
4209 | z2 = (INT32) wsptr[2]; |
4210 | z3 = (INT32) wsptr[6]; |
4211 | |
4212 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
4213 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
4214 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
4215 | |
4216 | /* Add fudge factor here for final descale. */ |
4217 | z2 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
4218 | z3 = (INT32) wsptr[4]; |
4219 | |
4220 | tmp0 = (z2 + z3) << CONST_BITS; |
4221 | tmp1 = (z2 - z3) << CONST_BITS; |
4222 | |
4223 | tmp10 = tmp0 + tmp2; |
4224 | tmp13 = tmp0 - tmp2; |
4225 | tmp11 = tmp1 + tmp3; |
4226 | tmp12 = tmp1 - tmp3; |
4227 | |
4228 | /* Odd part per figure 8; the matrix is unitary and hence its |
4229 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
4230 | */ |
4231 | |
4232 | tmp0 = (INT32) wsptr[7]; |
4233 | tmp1 = (INT32) wsptr[5]; |
4234 | tmp2 = (INT32) wsptr[3]; |
4235 | tmp3 = (INT32) wsptr[1]; |
4236 | |
4237 | z2 = tmp0 + tmp2; |
4238 | z3 = tmp1 + tmp3; |
4239 | |
4240 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
4241 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
4242 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
4243 | z2 += z1; |
4244 | z3 += z1; |
4245 | |
4246 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
4247 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
4248 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
4249 | tmp0 += z1 + z2; |
4250 | tmp3 += z1 + z3; |
4251 | |
4252 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
4253 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
4254 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
4255 | tmp1 += z1 + z3; |
4256 | tmp2 += z1 + z2; |
4257 | |
4258 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
4259 | |
4260 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp3, |
4261 | CONST_BITS+PASS1_BITS+3) |
4262 | & RANGE_MASK]; |
4263 | outptr[7] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp3, |
4264 | CONST_BITS+PASS1_BITS+3) |
4265 | & RANGE_MASK]; |
4266 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp2, |
4267 | CONST_BITS+PASS1_BITS+3) |
4268 | & RANGE_MASK]; |
4269 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp2, |
4270 | CONST_BITS+PASS1_BITS+3) |
4271 | & RANGE_MASK]; |
4272 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp1, |
4273 | CONST_BITS+PASS1_BITS+3) |
4274 | & RANGE_MASK]; |
4275 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp1, |
4276 | CONST_BITS+PASS1_BITS+3) |
4277 | & RANGE_MASK]; |
4278 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp13 + tmp0, |
4279 | CONST_BITS+PASS1_BITS+3) |
4280 | & RANGE_MASK]; |
4281 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp13 - tmp0, |
4282 | CONST_BITS+PASS1_BITS+3) |
4283 | & RANGE_MASK]; |
4284 | |
4285 | wsptr += DCTSIZE; /* advance pointer to next row */ |
4286 | } |
4287 | } |
4288 | |
4289 | |
4290 | /* |
4291 | * Perform dequantization and inverse DCT on one block of coefficients, |
4292 | * producing a 7x14 output block. |
4293 | * |
4294 | * 14-point IDCT in pass 1 (columns), 7-point in pass 2 (rows). |
4295 | */ |
4296 | |
4297 | GLOBAL(void) |
4298 | jpeg_idct_7x14 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4299 | JCOEFPTR coef_block, |
4300 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4301 | { |
4302 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; |
4303 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; |
4304 | INT32 z1, z2, z3, z4; |
4305 | JCOEFPTR inptr; |
4306 | ISLOW_MULT_TYPE * quantptr; |
4307 | int * wsptr; |
4308 | JSAMPROW outptr; |
4309 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4310 | int ctr; |
4311 | int workspace[7*14]; /* buffers data between passes */ |
4312 | SHIFT_TEMPS |
4313 | |
4314 | /* Pass 1: process columns from input, store into work array. |
4315 | * 14-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/28). |
4316 | */ |
4317 | inptr = coef_block; |
4318 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4319 | wsptr = workspace; |
4320 | for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { |
4321 | /* Even part */ |
4322 | |
4323 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4324 | if (ctr == 0) |
4325 | CLAMP_DC(z1); |
4326 | z1 <<= CONST_BITS; |
4327 | /* Add fudge factor here for final descale. */ |
4328 | z1 += ONE << (CONST_BITS-PASS1_BITS-1); |
4329 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
4330 | z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ |
4331 | z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ |
4332 | z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ |
4333 | |
4334 | tmp10 = z1 + z2; |
4335 | tmp11 = z1 + z3; |
4336 | tmp12 = z1 - z4; |
4337 | |
4338 | tmp23 = RIGHT_SHIFT(z1 - ((z2 + z3 - z4) << 1), /* c0 = (c4+c12-c8)*2 */ |
4339 | CONST_BITS-PASS1_BITS); |
4340 | |
4341 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
4342 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
4343 | |
4344 | z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ |
4345 | |
4346 | tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ |
4347 | tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ |
4348 | tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ |
4349 | MULTIPLY(z2, FIX(1.378756276)); /* c2 */ |
4350 | |
4351 | tmp20 = tmp10 + tmp13; |
4352 | tmp26 = tmp10 - tmp13; |
4353 | tmp21 = tmp11 + tmp14; |
4354 | tmp25 = tmp11 - tmp14; |
4355 | tmp22 = tmp12 + tmp15; |
4356 | tmp24 = tmp12 - tmp15; |
4357 | |
4358 | /* Odd part */ |
4359 | |
4360 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
4361 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
4362 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
4363 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
4364 | tmp13 = z4 << CONST_BITS; |
4365 | |
4366 | tmp14 = z1 + z3; |
4367 | tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ |
4368 | tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ |
4369 | tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ |
4370 | tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ |
4371 | tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ |
4372 | z1 -= z2; |
4373 | tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ |
4374 | tmp16 += tmp15; |
4375 | z1 += z4; |
4376 | z4 = MULTIPLY(z2 + z3, - FIX(0.158341681)) - tmp13; /* -c13 */ |
4377 | tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ |
4378 | tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ |
4379 | z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ |
4380 | tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ |
4381 | tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ |
4382 | |
4383 | tmp13 = (z1 - z3) << PASS1_BITS; |
4384 | |
4385 | /* Final output stage */ |
4386 | |
4387 | wsptr[7*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
4388 | wsptr[7*13] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
4389 | wsptr[7*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
4390 | wsptr[7*12] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
4391 | wsptr[7*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
4392 | wsptr[7*11] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
4393 | wsptr[7*3] = (int) (tmp23 + tmp13); |
4394 | wsptr[7*10] = (int) (tmp23 - tmp13); |
4395 | wsptr[7*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
4396 | wsptr[7*9] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
4397 | wsptr[7*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
4398 | wsptr[7*8] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
4399 | wsptr[7*6] = (int) RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS-PASS1_BITS); |
4400 | wsptr[7*7] = (int) RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS-PASS1_BITS); |
4401 | } |
4402 | |
4403 | /* Pass 2: process 14 rows from work array, store into output array. |
4404 | * 7-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/14). |
4405 | */ |
4406 | wsptr = workspace; |
4407 | for (ctr = 0; ctr < 14; ctr++) { |
4408 | outptr = output_buf[ctr] + output_col; |
4409 | |
4410 | /* Even part */ |
4411 | |
4412 | /* Add fudge factor here for final descale. */ |
4413 | tmp23 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
4414 | tmp23 <<= CONST_BITS; |
4415 | |
4416 | z1 = (INT32) wsptr[2]; |
4417 | z2 = (INT32) wsptr[4]; |
4418 | z3 = (INT32) wsptr[6]; |
4419 | |
4420 | tmp20 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ |
4421 | tmp22 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ |
4422 | tmp21 = tmp20 + tmp22 + tmp23 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ |
4423 | tmp10 = z1 + z3; |
4424 | z2 -= tmp10; |
4425 | tmp10 = MULTIPLY(tmp10, FIX(1.274162392)) + tmp23; /* c2 */ |
4426 | tmp20 += tmp10 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ |
4427 | tmp22 += tmp10 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ |
4428 | tmp23 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ |
4429 | |
4430 | /* Odd part */ |
4431 | |
4432 | z1 = (INT32) wsptr[1]; |
4433 | z2 = (INT32) wsptr[3]; |
4434 | z3 = (INT32) wsptr[5]; |
4435 | |
4436 | tmp11 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ |
4437 | tmp12 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ |
4438 | tmp10 = tmp11 - tmp12; |
4439 | tmp11 += tmp12; |
4440 | tmp12 = MULTIPLY(z2 + z3, - FIX(1.378756276)); /* -c1 */ |
4441 | tmp11 += tmp12; |
4442 | z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ |
4443 | tmp10 += z2; |
4444 | tmp12 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ |
4445 | |
4446 | /* Final output stage */ |
4447 | |
4448 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
4449 | CONST_BITS+PASS1_BITS+3) |
4450 | & RANGE_MASK]; |
4451 | outptr[6] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
4452 | CONST_BITS+PASS1_BITS+3) |
4453 | & RANGE_MASK]; |
4454 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
4455 | CONST_BITS+PASS1_BITS+3) |
4456 | & RANGE_MASK]; |
4457 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
4458 | CONST_BITS+PASS1_BITS+3) |
4459 | & RANGE_MASK]; |
4460 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
4461 | CONST_BITS+PASS1_BITS+3) |
4462 | & RANGE_MASK]; |
4463 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
4464 | CONST_BITS+PASS1_BITS+3) |
4465 | & RANGE_MASK]; |
4466 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp23, |
4467 | CONST_BITS+PASS1_BITS+3) |
4468 | & RANGE_MASK]; |
4469 | |
4470 | wsptr += 7; /* advance pointer to next row */ |
4471 | } |
4472 | } |
4473 | |
4474 | |
4475 | /* |
4476 | * Perform dequantization and inverse DCT on one block of coefficients, |
4477 | * producing a 6x12 output block. |
4478 | * |
4479 | * 12-point IDCT in pass 1 (columns), 6-point in pass 2 (rows). |
4480 | */ |
4481 | |
4482 | GLOBAL(void) |
4483 | jpeg_idct_6x12 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4484 | JCOEFPTR coef_block, |
4485 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4486 | { |
4487 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; |
4488 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; |
4489 | INT32 z1, z2, z3, z4; |
4490 | JCOEFPTR inptr; |
4491 | ISLOW_MULT_TYPE * quantptr; |
4492 | int * wsptr; |
4493 | JSAMPROW outptr; |
4494 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4495 | int ctr; |
4496 | int workspace[6*12]; /* buffers data between passes */ |
4497 | SHIFT_TEMPS |
4498 | |
4499 | /* Pass 1: process columns from input, store into work array. |
4500 | * 12-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/24). |
4501 | */ |
4502 | inptr = coef_block; |
4503 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4504 | wsptr = workspace; |
4505 | for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { |
4506 | /* Even part */ |
4507 | |
4508 | z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4509 | if (ctr == 0) |
4510 | CLAMP_DC(z3); |
4511 | z3 <<= CONST_BITS; |
4512 | /* Add fudge factor here for final descale. */ |
4513 | z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
4514 | |
4515 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
4516 | z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ |
4517 | |
4518 | tmp10 = z3 + z4; |
4519 | tmp11 = z3 - z4; |
4520 | |
4521 | z1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
4522 | z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ |
4523 | z1 <<= CONST_BITS; |
4524 | z2 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
4525 | z2 <<= CONST_BITS; |
4526 | |
4527 | tmp12 = z1 - z2; |
4528 | |
4529 | tmp21 = z3 + tmp12; |
4530 | tmp24 = z3 - tmp12; |
4531 | |
4532 | tmp12 = z4 + z2; |
4533 | |
4534 | tmp20 = tmp10 + tmp12; |
4535 | tmp25 = tmp10 - tmp12; |
4536 | |
4537 | tmp12 = z4 - z1 - z2; |
4538 | |
4539 | tmp22 = tmp11 + tmp12; |
4540 | tmp23 = tmp11 - tmp12; |
4541 | |
4542 | /* Odd part */ |
4543 | |
4544 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
4545 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
4546 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
4547 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
4548 | |
4549 | tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ |
4550 | tmp14 = MULTIPLY(z2, - FIX_0_541196100); /* -c9 */ |
4551 | |
4552 | tmp10 = z1 + z3; |
4553 | tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ |
4554 | tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ |
4555 | tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ |
4556 | tmp13 = MULTIPLY(z3 + z4, - FIX(1.045510580)); /* -(c7+c11) */ |
4557 | tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ |
4558 | tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ |
4559 | tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ |
4560 | MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ |
4561 | |
4562 | z1 -= z4; |
4563 | z2 -= z3; |
4564 | z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ |
4565 | tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ |
4566 | tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ |
4567 | |
4568 | /* Final output stage */ |
4569 | |
4570 | wsptr[6*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
4571 | wsptr[6*11] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
4572 | wsptr[6*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
4573 | wsptr[6*10] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
4574 | wsptr[6*2] = (int) RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS-PASS1_BITS); |
4575 | wsptr[6*9] = (int) RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS-PASS1_BITS); |
4576 | wsptr[6*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
4577 | wsptr[6*8] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
4578 | wsptr[6*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
4579 | wsptr[6*7] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
4580 | wsptr[6*5] = (int) RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS-PASS1_BITS); |
4581 | wsptr[6*6] = (int) RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS-PASS1_BITS); |
4582 | } |
4583 | |
4584 | /* Pass 2: process 12 rows from work array, store into output array. |
4585 | * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). |
4586 | */ |
4587 | wsptr = workspace; |
4588 | for (ctr = 0; ctr < 12; ctr++) { |
4589 | outptr = output_buf[ctr] + output_col; |
4590 | |
4591 | /* Even part */ |
4592 | |
4593 | /* Add fudge factor here for final descale. */ |
4594 | tmp10 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
4595 | tmp10 <<= CONST_BITS; |
4596 | tmp12 = (INT32) wsptr[4]; |
4597 | tmp20 = MULTIPLY(tmp12, FIX(0.707106781)); /* c4 */ |
4598 | tmp11 = tmp10 + tmp20; |
4599 | tmp21 = tmp10 - tmp20 - tmp20; |
4600 | tmp20 = (INT32) wsptr[2]; |
4601 | tmp10 = MULTIPLY(tmp20, FIX(1.224744871)); /* c2 */ |
4602 | tmp20 = tmp11 + tmp10; |
4603 | tmp22 = tmp11 - tmp10; |
4604 | |
4605 | /* Odd part */ |
4606 | |
4607 | z1 = (INT32) wsptr[1]; |
4608 | z2 = (INT32) wsptr[3]; |
4609 | z3 = (INT32) wsptr[5]; |
4610 | tmp11 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
4611 | tmp10 = tmp11 + ((z1 + z2) << CONST_BITS); |
4612 | tmp12 = tmp11 + ((z3 - z2) << CONST_BITS); |
4613 | tmp11 = (z1 - z2 - z3) << CONST_BITS; |
4614 | |
4615 | /* Final output stage */ |
4616 | |
4617 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp20 + tmp10, |
4618 | CONST_BITS+PASS1_BITS+3) |
4619 | & RANGE_MASK]; |
4620 | outptr[5] = range_limit[(int) RIGHT_SHIFT(tmp20 - tmp10, |
4621 | CONST_BITS+PASS1_BITS+3) |
4622 | & RANGE_MASK]; |
4623 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp21 + tmp11, |
4624 | CONST_BITS+PASS1_BITS+3) |
4625 | & RANGE_MASK]; |
4626 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp21 - tmp11, |
4627 | CONST_BITS+PASS1_BITS+3) |
4628 | & RANGE_MASK]; |
4629 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp22 + tmp12, |
4630 | CONST_BITS+PASS1_BITS+3) |
4631 | & RANGE_MASK]; |
4632 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp22 - tmp12, |
4633 | CONST_BITS+PASS1_BITS+3) |
4634 | & RANGE_MASK]; |
4635 | |
4636 | wsptr += 6; /* advance pointer to next row */ |
4637 | } |
4638 | } |
4639 | |
4640 | |
4641 | /* |
4642 | * Perform dequantization and inverse DCT on one block of coefficients, |
4643 | * producing a 5x10 output block. |
4644 | * |
4645 | * 10-point IDCT in pass 1 (columns), 5-point in pass 2 (rows). |
4646 | */ |
4647 | |
4648 | GLOBAL(void) |
4649 | jpeg_idct_5x10 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4650 | JCOEFPTR coef_block, |
4651 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4652 | { |
4653 | INT32 tmp10, tmp11, tmp12, tmp13, tmp14; |
4654 | INT32 tmp20, tmp21, tmp22, tmp23, tmp24; |
4655 | INT32 z1, z2, z3, z4, z5; |
4656 | JCOEFPTR inptr; |
4657 | ISLOW_MULT_TYPE * quantptr; |
4658 | int * wsptr; |
4659 | JSAMPROW outptr; |
4660 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4661 | int ctr; |
4662 | int workspace[5*10]; /* buffers data between passes */ |
4663 | SHIFT_TEMPS |
4664 | |
4665 | /* Pass 1: process columns from input, store into work array. |
4666 | * 10-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/20). |
4667 | */ |
4668 | inptr = coef_block; |
4669 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4670 | wsptr = workspace; |
4671 | for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { |
4672 | /* Even part */ |
4673 | |
4674 | z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4675 | if (ctr == 0) |
4676 | CLAMP_DC(z3); |
4677 | z3 <<= CONST_BITS; |
4678 | /* Add fudge factor here for final descale. */ |
4679 | z3 += ONE << (CONST_BITS-PASS1_BITS-1); |
4680 | z4 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
4681 | z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ |
4682 | z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ |
4683 | tmp10 = z3 + z1; |
4684 | tmp11 = z3 - z2; |
4685 | |
4686 | tmp22 = RIGHT_SHIFT(z3 - ((z1 - z2) << 1), /* c0 = (c4-c8)*2 */ |
4687 | CONST_BITS-PASS1_BITS); |
4688 | |
4689 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
4690 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
4691 | |
4692 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ |
4693 | tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ |
4694 | tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ |
4695 | |
4696 | tmp20 = tmp10 + tmp12; |
4697 | tmp24 = tmp10 - tmp12; |
4698 | tmp21 = tmp11 + tmp13; |
4699 | tmp23 = tmp11 - tmp13; |
4700 | |
4701 | /* Odd part */ |
4702 | |
4703 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
4704 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
4705 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
4706 | z4 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
4707 | |
4708 | tmp11 = z2 + z4; |
4709 | tmp13 = z2 - z4; |
4710 | |
4711 | tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ |
4712 | z5 = z3 << CONST_BITS; |
4713 | |
4714 | z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ |
4715 | z4 = z5 + tmp12; |
4716 | |
4717 | tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ |
4718 | tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ |
4719 | |
4720 | z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ |
4721 | z4 = z5 - tmp12 - (tmp13 << (CONST_BITS - 1)); |
4722 | |
4723 | tmp12 = (z1 - tmp13 - z3) << PASS1_BITS; |
4724 | |
4725 | tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ |
4726 | tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ |
4727 | |
4728 | /* Final output stage */ |
4729 | |
4730 | wsptr[5*0] = (int) RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS-PASS1_BITS); |
4731 | wsptr[5*9] = (int) RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS-PASS1_BITS); |
4732 | wsptr[5*1] = (int) RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS-PASS1_BITS); |
4733 | wsptr[5*8] = (int) RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS-PASS1_BITS); |
4734 | wsptr[5*2] = (int) (tmp22 + tmp12); |
4735 | wsptr[5*7] = (int) (tmp22 - tmp12); |
4736 | wsptr[5*3] = (int) RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS-PASS1_BITS); |
4737 | wsptr[5*6] = (int) RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS-PASS1_BITS); |
4738 | wsptr[5*4] = (int) RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS-PASS1_BITS); |
4739 | wsptr[5*5] = (int) RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS-PASS1_BITS); |
4740 | } |
4741 | |
4742 | /* Pass 2: process 10 rows from work array, store into output array. |
4743 | * 5-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/10). |
4744 | */ |
4745 | wsptr = workspace; |
4746 | for (ctr = 0; ctr < 10; ctr++) { |
4747 | outptr = output_buf[ctr] + output_col; |
4748 | |
4749 | /* Even part */ |
4750 | |
4751 | /* Add fudge factor here for final descale. */ |
4752 | tmp12 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
4753 | tmp12 <<= CONST_BITS; |
4754 | tmp13 = (INT32) wsptr[2]; |
4755 | tmp14 = (INT32) wsptr[4]; |
4756 | z1 = MULTIPLY(tmp13 + tmp14, FIX(0.790569415)); /* (c2+c4)/2 */ |
4757 | z2 = MULTIPLY(tmp13 - tmp14, FIX(0.353553391)); /* (c2-c4)/2 */ |
4758 | z3 = tmp12 + z2; |
4759 | tmp10 = z3 + z1; |
4760 | tmp11 = z3 - z1; |
4761 | tmp12 -= z2 << 2; |
4762 | |
4763 | /* Odd part */ |
4764 | |
4765 | z2 = (INT32) wsptr[1]; |
4766 | z3 = (INT32) wsptr[3]; |
4767 | |
4768 | z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ |
4769 | tmp13 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ |
4770 | tmp14 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ |
4771 | |
4772 | /* Final output stage */ |
4773 | |
4774 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp13, |
4775 | CONST_BITS+PASS1_BITS+3) |
4776 | & RANGE_MASK]; |
4777 | outptr[4] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp13, |
4778 | CONST_BITS+PASS1_BITS+3) |
4779 | & RANGE_MASK]; |
4780 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp11 + tmp14, |
4781 | CONST_BITS+PASS1_BITS+3) |
4782 | & RANGE_MASK]; |
4783 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp11 - tmp14, |
4784 | CONST_BITS+PASS1_BITS+3) |
4785 | & RANGE_MASK]; |
4786 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12, |
4787 | CONST_BITS+PASS1_BITS+3) |
4788 | & RANGE_MASK]; |
4789 | |
4790 | wsptr += 5; /* advance pointer to next row */ |
4791 | } |
4792 | } |
4793 | |
4794 | |
4795 | /* |
4796 | * Perform dequantization and inverse DCT on one block of coefficients, |
4797 | * producing a 4x8 output block. |
4798 | * |
4799 | * 8-point IDCT in pass 1 (columns), 4-point in pass 2 (rows). |
4800 | */ |
4801 | |
4802 | GLOBAL(void) |
4803 | jpeg_idct_4x8 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4804 | JCOEFPTR coef_block, |
4805 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4806 | { |
4807 | INT32 tmp0, tmp1, tmp2, tmp3; |
4808 | INT32 tmp10, tmp11, tmp12, tmp13; |
4809 | INT32 z1, z2, z3; |
4810 | JCOEFPTR inptr; |
4811 | ISLOW_MULT_TYPE * quantptr; |
4812 | int * wsptr; |
4813 | JSAMPROW outptr; |
4814 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4815 | int ctr; |
4816 | int workspace[4*8]; /* buffers data between passes */ |
4817 | SHIFT_TEMPS |
4818 | |
4819 | /* Pass 1: process columns from input, store into work array. */ |
4820 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ |
4821 | /* furthermore, we scale the results by 2**PASS1_BITS. */ |
4822 | |
4823 | inptr = coef_block; |
4824 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
4825 | wsptr = workspace; |
4826 | for (ctr = 4; ctr > 0; ctr--) { |
4827 | /* Due to quantization, we will usually find that many of the input |
4828 | * coefficients are zero, especially the AC terms. We can exploit this |
4829 | * by short-circuiting the IDCT calculation for any column in which all |
4830 | * the AC terms are zero. In that case each output is equal to the |
4831 | * DC coefficient (with scale factor as needed). |
4832 | * With typical images and quantization tables, half or more of the |
4833 | * column DCT calculations can be simplified this way. |
4834 | */ |
4835 | |
4836 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && |
4837 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && |
4838 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && |
4839 | inptr[DCTSIZE*7] == 0) { |
4840 | /* AC terms all zero */ |
4841 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4842 | if (ctr == 4) |
4843 | CLAMP_DC(dcval); |
4844 | dcval <<= PASS1_BITS; |
4845 | wsptr[4*0] = dcval; |
4846 | wsptr[4*1] = dcval; |
4847 | wsptr[4*2] = dcval; |
4848 | wsptr[4*3] = dcval; |
4849 | wsptr[4*4] = dcval; |
4850 | wsptr[4*5] = dcval; |
4851 | wsptr[4*6] = dcval; |
4852 | wsptr[4*7] = dcval; |
4853 | |
4854 | inptr++; /* advance pointers to next column */ |
4855 | quantptr++; |
4856 | wsptr++; |
4857 | continue; |
4858 | } |
4859 | |
4860 | /* Even part: reverse the even part of the forward DCT. */ |
4861 | /* The rotator is sqrt(2)*c(-6). */ |
4862 | |
4863 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
4864 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); |
4865 | |
4866 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); |
4867 | tmp2 = z1 + MULTIPLY(z2, FIX_0_765366865); |
4868 | tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); |
4869 | |
4870 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
4871 | if (ctr == 4) |
4872 | CLAMP_DC(z2); |
4873 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
4874 | z2 <<= CONST_BITS; |
4875 | z3 <<= CONST_BITS; |
4876 | /* Add fudge factor here for final descale. */ |
4877 | z2 += ONE << (CONST_BITS-PASS1_BITS-1); |
4878 | |
4879 | tmp0 = z2 + z3; |
4880 | tmp1 = z2 - z3; |
4881 | |
4882 | tmp10 = tmp0 + tmp2; |
4883 | tmp13 = tmp0 - tmp2; |
4884 | tmp11 = tmp1 + tmp3; |
4885 | tmp12 = tmp1 - tmp3; |
4886 | |
4887 | /* Odd part per figure 8; the matrix is unitary and hence its |
4888 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. |
4889 | */ |
4890 | |
4891 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); |
4892 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
4893 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
4894 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
4895 | |
4896 | z2 = tmp0 + tmp2; |
4897 | z3 = tmp1 + tmp3; |
4898 | |
4899 | z1 = MULTIPLY(z2 + z3, FIX_1_175875602); /* sqrt(2) * c3 */ |
4900 | z2 = MULTIPLY(z2, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ |
4901 | z3 = MULTIPLY(z3, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ |
4902 | z2 += z1; |
4903 | z3 += z1; |
4904 | |
4905 | z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ |
4906 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ |
4907 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ |
4908 | tmp0 += z1 + z2; |
4909 | tmp3 += z1 + z3; |
4910 | |
4911 | z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ |
4912 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ |
4913 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ |
4914 | tmp1 += z1 + z3; |
4915 | tmp2 += z1 + z2; |
4916 | |
4917 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ |
4918 | |
4919 | wsptr[4*0] = (int) RIGHT_SHIFT(tmp10 + tmp3, CONST_BITS-PASS1_BITS); |
4920 | wsptr[4*7] = (int) RIGHT_SHIFT(tmp10 - tmp3, CONST_BITS-PASS1_BITS); |
4921 | wsptr[4*1] = (int) RIGHT_SHIFT(tmp11 + tmp2, CONST_BITS-PASS1_BITS); |
4922 | wsptr[4*6] = (int) RIGHT_SHIFT(tmp11 - tmp2, CONST_BITS-PASS1_BITS); |
4923 | wsptr[4*2] = (int) RIGHT_SHIFT(tmp12 + tmp1, CONST_BITS-PASS1_BITS); |
4924 | wsptr[4*5] = (int) RIGHT_SHIFT(tmp12 - tmp1, CONST_BITS-PASS1_BITS); |
4925 | wsptr[4*3] = (int) RIGHT_SHIFT(tmp13 + tmp0, CONST_BITS-PASS1_BITS); |
4926 | wsptr[4*4] = (int) RIGHT_SHIFT(tmp13 - tmp0, CONST_BITS-PASS1_BITS); |
4927 | |
4928 | inptr++; /* advance pointers to next column */ |
4929 | quantptr++; |
4930 | wsptr++; |
4931 | } |
4932 | |
4933 | /* Pass 2: process 8 rows from work array, store into output array. |
4934 | * 4-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/16). |
4935 | */ |
4936 | wsptr = workspace; |
4937 | for (ctr = 0; ctr < 8; ctr++) { |
4938 | outptr = output_buf[ctr] + output_col; |
4939 | |
4940 | /* Even part */ |
4941 | |
4942 | /* Add fudge factor here for final descale. */ |
4943 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
4944 | tmp2 = (INT32) wsptr[2]; |
4945 | |
4946 | tmp10 = (tmp0 + tmp2) << CONST_BITS; |
4947 | tmp12 = (tmp0 - tmp2) << CONST_BITS; |
4948 | |
4949 | /* Odd part */ |
4950 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
4951 | |
4952 | z2 = (INT32) wsptr[1]; |
4953 | z3 = (INT32) wsptr[3]; |
4954 | |
4955 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
4956 | tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ |
4957 | tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ |
4958 | |
4959 | /* Final output stage */ |
4960 | |
4961 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
4962 | CONST_BITS+PASS1_BITS+3) |
4963 | & RANGE_MASK]; |
4964 | outptr[3] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
4965 | CONST_BITS+PASS1_BITS+3) |
4966 | & RANGE_MASK]; |
4967 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp12 + tmp2, |
4968 | CONST_BITS+PASS1_BITS+3) |
4969 | & RANGE_MASK]; |
4970 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp12 - tmp2, |
4971 | CONST_BITS+PASS1_BITS+3) |
4972 | & RANGE_MASK]; |
4973 | |
4974 | wsptr += 4; /* advance pointer to next row */ |
4975 | } |
4976 | } |
4977 | |
4978 | |
4979 | /* |
4980 | * Perform dequantization and inverse DCT on one block of coefficients, |
4981 | * producing a reduced-size 3x6 output block. |
4982 | * |
4983 | * 6-point IDCT in pass 1 (columns), 3-point in pass 2 (rows). |
4984 | */ |
4985 | |
4986 | GLOBAL(void) |
4987 | jpeg_idct_3x6 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
4988 | JCOEFPTR coef_block, |
4989 | JSAMPARRAY output_buf, JDIMENSION output_col) |
4990 | { |
4991 | INT32 tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; |
4992 | INT32 z1, z2, z3; |
4993 | JCOEFPTR inptr; |
4994 | ISLOW_MULT_TYPE * quantptr; |
4995 | int * wsptr; |
4996 | JSAMPROW outptr; |
4997 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
4998 | int ctr; |
4999 | int workspace[3*6]; /* buffers data between passes */ |
5000 | SHIFT_TEMPS |
5001 | |
5002 | /* Pass 1: process columns from input, store into work array. |
5003 | * 6-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/12). |
5004 | */ |
5005 | inptr = coef_block; |
5006 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
5007 | wsptr = workspace; |
5008 | for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { |
5009 | /* Even part */ |
5010 | |
5011 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
5012 | if (ctr == 0) |
5013 | CLAMP_DC(tmp0); |
5014 | tmp0 <<= CONST_BITS; |
5015 | /* Add fudge factor here for final descale. */ |
5016 | tmp0 += ONE << (CONST_BITS-PASS1_BITS-1); |
5017 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); |
5018 | tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ |
5019 | tmp1 = tmp0 + tmp10; |
5020 | tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS-PASS1_BITS); |
5021 | tmp10 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
5022 | tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ |
5023 | tmp10 = tmp1 + tmp0; |
5024 | tmp12 = tmp1 - tmp0; |
5025 | |
5026 | /* Odd part */ |
5027 | |
5028 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
5029 | z2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
5030 | z3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); |
5031 | tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ |
5032 | tmp0 = tmp1 + ((z1 + z2) << CONST_BITS); |
5033 | tmp2 = tmp1 + ((z3 - z2) << CONST_BITS); |
5034 | tmp1 = (z1 - z2 - z3) << PASS1_BITS; |
5035 | |
5036 | /* Final output stage */ |
5037 | |
5038 | wsptr[3*0] = (int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS-PASS1_BITS); |
5039 | wsptr[3*5] = (int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS-PASS1_BITS); |
5040 | wsptr[3*1] = (int) (tmp11 + tmp1); |
5041 | wsptr[3*4] = (int) (tmp11 - tmp1); |
5042 | wsptr[3*2] = (int) RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS-PASS1_BITS); |
5043 | wsptr[3*3] = (int) RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS-PASS1_BITS); |
5044 | } |
5045 | |
5046 | /* Pass 2: process 6 rows from work array, store into output array. |
5047 | * 3-point IDCT kernel, cK represents sqrt(2) * cos(K*pi/6). |
5048 | */ |
5049 | wsptr = workspace; |
5050 | for (ctr = 0; ctr < 6; ctr++) { |
5051 | outptr = output_buf[ctr] + output_col; |
5052 | |
5053 | /* Even part */ |
5054 | |
5055 | /* Add fudge factor here for final descale. */ |
5056 | tmp0 = (INT32) wsptr[0] + (ONE << (PASS1_BITS+2)); |
5057 | tmp0 <<= CONST_BITS; |
5058 | tmp2 = (INT32) wsptr[2]; |
5059 | tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ |
5060 | tmp10 = tmp0 + tmp12; |
5061 | tmp2 = tmp0 - tmp12 - tmp12; |
5062 | |
5063 | /* Odd part */ |
5064 | |
5065 | tmp12 = (INT32) wsptr[1]; |
5066 | tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ |
5067 | |
5068 | /* Final output stage */ |
5069 | |
5070 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, |
5071 | CONST_BITS+PASS1_BITS+3) |
5072 | & RANGE_MASK]; |
5073 | outptr[2] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, |
5074 | CONST_BITS+PASS1_BITS+3) |
5075 | & RANGE_MASK]; |
5076 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp2, |
5077 | CONST_BITS+PASS1_BITS+3) |
5078 | & RANGE_MASK]; |
5079 | |
5080 | wsptr += 3; /* advance pointer to next row */ |
5081 | } |
5082 | } |
5083 | |
5084 | |
5085 | /* |
5086 | * Perform dequantization and inverse DCT on one block of coefficients, |
5087 | * producing a 2x4 output block. |
5088 | * |
5089 | * 4-point IDCT in pass 1 (columns), 2-point in pass 2 (rows). |
5090 | */ |
5091 | |
5092 | GLOBAL(void) |
5093 | jpeg_idct_2x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
5094 | JCOEFPTR coef_block, |
5095 | JSAMPARRAY output_buf, JDIMENSION output_col) |
5096 | { |
5097 | INT32 tmp0, tmp2, tmp10, tmp12; |
5098 | INT32 z1, z2, z3; |
5099 | JCOEFPTR inptr; |
5100 | ISLOW_MULT_TYPE * quantptr; |
5101 | INT32 * wsptr; |
5102 | JSAMPROW outptr; |
5103 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
5104 | int ctr; |
5105 | INT32 workspace[2*4]; /* buffers data between passes */ |
5106 | SHIFT_TEMPS |
5107 | |
5108 | /* Pass 1: process columns from input, store into work array. |
5109 | * 4-point IDCT kernel, |
5110 | * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point IDCT]. |
5111 | */ |
5112 | inptr = coef_block; |
5113 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
5114 | wsptr = workspace; |
5115 | for (ctr = 0; ctr < 2; ctr++, inptr++, quantptr++, wsptr++) { |
5116 | /* Even part */ |
5117 | |
5118 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); |
5119 | if (ctr == 0) |
5120 | CLAMP_DC(tmp0); |
5121 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); |
5122 | |
5123 | tmp10 = (tmp0 + tmp2) << CONST_BITS; |
5124 | tmp12 = (tmp0 - tmp2) << CONST_BITS; |
5125 | |
5126 | /* Odd part */ |
5127 | /* Same rotation as in the even part of the 8x8 LL&M IDCT */ |
5128 | |
5129 | z2 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); |
5130 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); |
5131 | |
5132 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ |
5133 | tmp0 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ |
5134 | tmp2 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ |
5135 | |
5136 | /* Final output stage */ |
5137 | |
5138 | wsptr[2*0] = tmp10 + tmp0; |
5139 | wsptr[2*3] = tmp10 - tmp0; |
5140 | wsptr[2*1] = tmp12 + tmp2; |
5141 | wsptr[2*2] = tmp12 - tmp2; |
5142 | } |
5143 | |
5144 | /* Pass 2: process 4 rows from work array, store into output array. */ |
5145 | |
5146 | wsptr = workspace; |
5147 | for (ctr = 0; ctr < 4; ctr++) { |
5148 | outptr = output_buf[ctr] + output_col; |
5149 | |
5150 | /* Even part */ |
5151 | |
5152 | /* Add fudge factor here for final descale. */ |
5153 | tmp10 = wsptr[0] + (ONE << (CONST_BITS+2)); |
5154 | |
5155 | /* Odd part */ |
5156 | |
5157 | tmp0 = wsptr[1]; |
5158 | |
5159 | /* Final output stage */ |
5160 | |
5161 | outptr[0] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS+3) |
5162 | & RANGE_MASK]; |
5163 | outptr[1] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS+3) |
5164 | & RANGE_MASK]; |
5165 | |
5166 | wsptr += 2; /* advance pointer to next row */ |
5167 | } |
5168 | } |
5169 | |
5170 | |
5171 | /* |
5172 | * Perform dequantization and inverse DCT on one block of coefficients, |
5173 | * producing a 1x2 output block. |
5174 | * |
5175 | * 2-point IDCT in pass 1 (columns), 1-point in pass 2 (rows). |
5176 | */ |
5177 | |
5178 | GLOBAL(void) |
5179 | jpeg_idct_1x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, |
5180 | JCOEFPTR coef_block, |
5181 | JSAMPARRAY output_buf, JDIMENSION output_col) |
5182 | { |
5183 | INT32 tmp0, tmp10; |
5184 | ISLOW_MULT_TYPE * quantptr; |
5185 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); |
5186 | SHIFT_TEMPS |
5187 | |
5188 | /* Process 1 column from input, store into output array. */ |
5189 | |
5190 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; |
5191 | |
5192 | /* Even part */ |
5193 | |
5194 | tmp10 = DEQUANTIZE(coef_block[DCTSIZE*0], quantptr[DCTSIZE*0]); |
5195 | CLAMP_DC(tmp10); |
5196 | /* Add fudge factor here for final descale. */ |
5197 | tmp10 += ONE << 2; |
5198 | |
5199 | /* Odd part */ |
5200 | |
5201 | tmp0 = DEQUANTIZE(coef_block[DCTSIZE*1], quantptr[DCTSIZE*1]); |
5202 | |
5203 | /* Final output stage */ |
5204 | |
5205 | output_buf[0][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 + tmp0, 3) |
5206 | & RANGE_MASK]; |
5207 | output_buf[1][output_col] = range_limit[(int) RIGHT_SHIFT(tmp10 - tmp0, 3) |
5208 | & RANGE_MASK]; |
5209 | } |
5210 | |
5211 | #endif /* IDCT_SCALING_SUPPORTED */ |
5212 | #endif /* DCT_ISLOW_SUPPORTED */ |
5213 | |