| 1 | /* | 
|---|
| 2 | * jquant2.c | 
|---|
| 3 | * | 
|---|
| 4 | * Copyright (C) 1991-1996, Thomas G. Lane. | 
|---|
| 5 | * Modified 2011 by Guido Vollbeding. | 
|---|
| 6 | * This file is part of the Independent JPEG Group's software. | 
|---|
| 7 | * For conditions of distribution and use, see the accompanying README file. | 
|---|
| 8 | * | 
|---|
| 9 | * This file contains 2-pass color quantization (color mapping) routines. | 
|---|
| 10 | * These routines provide selection of a custom color map for an image, | 
|---|
| 11 | * followed by mapping of the image to that color map, with optional | 
|---|
| 12 | * Floyd-Steinberg dithering. | 
|---|
| 13 | * It is also possible to use just the second pass to map to an arbitrary | 
|---|
| 14 | * externally-given color map. | 
|---|
| 15 | * | 
|---|
| 16 | * Note: ordered dithering is not supported, since there isn't any fast | 
|---|
| 17 | * way to compute intercolor distances; it's unclear that ordered dither's | 
|---|
| 18 | * fundamental assumptions even hold with an irregularly spaced color map. | 
|---|
| 19 | */ | 
|---|
| 20 |  | 
|---|
| 21 | #define JPEG_INTERNALS | 
|---|
| 22 | #include "jinclude.h" | 
|---|
| 23 | #include "jpeglib.h" | 
|---|
| 24 |  | 
|---|
| 25 | #ifdef QUANT_2PASS_SUPPORTED | 
|---|
| 26 |  | 
|---|
| 27 |  | 
|---|
| 28 | /* | 
|---|
| 29 | * This module implements the well-known Heckbert paradigm for color | 
|---|
| 30 | * quantization.  Most of the ideas used here can be traced back to | 
|---|
| 31 | * Heckbert's seminal paper | 
|---|
| 32 | *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display", | 
|---|
| 33 | *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | 
|---|
| 34 | * | 
|---|
| 35 | * In the first pass over the image, we accumulate a histogram showing the | 
|---|
| 36 | * usage count of each possible color.  To keep the histogram to a reasonable | 
|---|
| 37 | * size, we reduce the precision of the input; typical practice is to retain | 
|---|
| 38 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted | 
|---|
| 39 | * in the same histogram cell. | 
|---|
| 40 | * | 
|---|
| 41 | * Next, the color-selection step begins with a box representing the whole | 
|---|
| 42 | * color space, and repeatedly splits the "largest" remaining box until we | 
|---|
| 43 | * have as many boxes as desired colors.  Then the mean color in each | 
|---|
| 44 | * remaining box becomes one of the possible output colors. | 
|---|
| 45 | * | 
|---|
| 46 | * The second pass over the image maps each input pixel to the closest output | 
|---|
| 47 | * color (optionally after applying a Floyd-Steinberg dithering correction). | 
|---|
| 48 | * This mapping is logically trivial, but making it go fast enough requires | 
|---|
| 49 | * considerable care. | 
|---|
| 50 | * | 
|---|
| 51 | * Heckbert-style quantizers vary a good deal in their policies for choosing | 
|---|
| 52 | * the "largest" box and deciding where to cut it.  The particular policies | 
|---|
| 53 | * used here have proved out well in experimental comparisons, but better ones | 
|---|
| 54 | * may yet be found. | 
|---|
| 55 | * | 
|---|
| 56 | * In earlier versions of the IJG code, this module quantized in YCbCr color | 
|---|
| 57 | * space, processing the raw upsampled data without a color conversion step. | 
|---|
| 58 | * This allowed the color conversion math to be done only once per colormap | 
|---|
| 59 | * entry, not once per pixel.  However, that optimization precluded other | 
|---|
| 60 | * useful optimizations (such as merging color conversion with upsampling) | 
|---|
| 61 | * and it also interfered with desired capabilities such as quantizing to an | 
|---|
| 62 | * externally-supplied colormap.  We have therefore abandoned that approach. | 
|---|
| 63 | * The present code works in the post-conversion color space, typically RGB. | 
|---|
| 64 | * | 
|---|
| 65 | * To improve the visual quality of the results, we actually work in scaled | 
|---|
| 66 | * RGB space, giving G distances more weight than R, and R in turn more than | 
|---|
| 67 | * B.  To do everything in integer math, we must use integer scale factors. | 
|---|
| 68 | * The 2/3/1 scale factors used here correspond loosely to the relative | 
|---|
| 69 | * weights of the colors in the NTSC grayscale equation. | 
|---|
| 70 | * If you want to use this code to quantize a non-RGB color space, you'll | 
|---|
| 71 | * probably need to change these scale factors. | 
|---|
| 72 | */ | 
|---|
| 73 |  | 
|---|
| 74 | #define R_SCALE 2		/* scale R distances by this much */ | 
|---|
| 75 | #define G_SCALE 3		/* scale G distances by this much */ | 
|---|
| 76 | #define B_SCALE 1		/* and B by this much */ | 
|---|
| 77 |  | 
|---|
| 78 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | 
|---|
| 79 | * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B | 
|---|
| 80 | * and B,G,R orders.  If you define some other weird order in jmorecfg.h, | 
|---|
| 81 | * you'll get compile errors until you extend this logic.  In that case | 
|---|
| 82 | * you'll probably want to tweak the histogram sizes too. | 
|---|
| 83 | */ | 
|---|
| 84 |  | 
|---|
| 85 | #if RGB_RED == 0 | 
|---|
| 86 | #define C0_SCALE R_SCALE | 
|---|
| 87 | #endif | 
|---|
| 88 | #if RGB_BLUE == 0 | 
|---|
| 89 | #define C0_SCALE B_SCALE | 
|---|
| 90 | #endif | 
|---|
| 91 | #if RGB_GREEN == 1 | 
|---|
| 92 | #define C1_SCALE G_SCALE | 
|---|
| 93 | #endif | 
|---|
| 94 | #if RGB_RED == 2 | 
|---|
| 95 | #define C2_SCALE R_SCALE | 
|---|
| 96 | #endif | 
|---|
| 97 | #if RGB_BLUE == 2 | 
|---|
| 98 | #define C2_SCALE B_SCALE | 
|---|
| 99 | #endif | 
|---|
| 100 |  | 
|---|
| 101 |  | 
|---|
| 102 | /* | 
|---|
| 103 | * First we have the histogram data structure and routines for creating it. | 
|---|
| 104 | * | 
|---|
| 105 | * The number of bits of precision can be adjusted by changing these symbols. | 
|---|
| 106 | * We recommend keeping 6 bits for G and 5 each for R and B. | 
|---|
| 107 | * If you have plenty of memory and cycles, 6 bits all around gives marginally | 
|---|
| 108 | * better results; if you are short of memory, 5 bits all around will save | 
|---|
| 109 | * some space but degrade the results. | 
|---|
| 110 | * To maintain a fully accurate histogram, we'd need to allocate a "long" | 
|---|
| 111 | * (preferably unsigned long) for each cell.  In practice this is overkill; | 
|---|
| 112 | * we can get by with 16 bits per cell.  Few of the cell counts will overflow, | 
|---|
| 113 | * and clamping those that do overflow to the maximum value will give close- | 
|---|
| 114 | * enough results.  This reduces the recommended histogram size from 256Kb | 
|---|
| 115 | * to 128Kb, which is a useful savings on PC-class machines. | 
|---|
| 116 | * (In the second pass the histogram space is re-used for pixel mapping data; | 
|---|
| 117 | * in that capacity, each cell must be able to store zero to the number of | 
|---|
| 118 | * desired colors.  16 bits/cell is plenty for that too.) | 
|---|
| 119 | * Since the JPEG code is intended to run in small memory model on 80x86 | 
|---|
| 120 | * machines, we can't just allocate the histogram in one chunk.  Instead | 
|---|
| 121 | * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each | 
|---|
| 122 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | 
|---|
| 123 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that | 
|---|
| 124 | * on 80x86 machines, the pointer row is in near memory but the actual | 
|---|
| 125 | * arrays are in far memory (same arrangement as we use for image arrays). | 
|---|
| 126 | */ | 
|---|
| 127 |  | 
|---|
| 128 | #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */ | 
|---|
| 129 |  | 
|---|
| 130 | /* These will do the right thing for either R,G,B or B,G,R color order, | 
|---|
| 131 | * but you may not like the results for other color orders. | 
|---|
| 132 | */ | 
|---|
| 133 | #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */ | 
|---|
| 134 | #define HIST_C1_BITS  6		/* bits of precision in G histogram */ | 
|---|
| 135 | #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */ | 
|---|
| 136 |  | 
|---|
| 137 | /* Number of elements along histogram axes. */ | 
|---|
| 138 | #define HIST_C0_ELEMS  (1<<HIST_C0_BITS) | 
|---|
| 139 | #define HIST_C1_ELEMS  (1<<HIST_C1_BITS) | 
|---|
| 140 | #define HIST_C2_ELEMS  (1<<HIST_C2_BITS) | 
|---|
| 141 |  | 
|---|
| 142 | /* These are the amounts to shift an input value to get a histogram index. */ | 
|---|
| 143 | #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS) | 
|---|
| 144 | #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS) | 
|---|
| 145 | #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS) | 
|---|
| 146 |  | 
|---|
| 147 |  | 
|---|
| 148 | typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */ | 
|---|
| 149 |  | 
|---|
| 150 | typedef histcell FAR * histptr;	/* for pointers to histogram cells */ | 
|---|
| 151 |  | 
|---|
| 152 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | 
|---|
| 153 | typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */ | 
|---|
| 154 | typedef hist2d * hist3d;	/* type for top-level pointer */ | 
|---|
| 155 |  | 
|---|
| 156 |  | 
|---|
| 157 | /* Declarations for Floyd-Steinberg dithering. | 
|---|
| 158 | * | 
|---|
| 159 | * Errors are accumulated into the array fserrors[], at a resolution of | 
|---|
| 160 | * 1/16th of a pixel count.  The error at a given pixel is propagated | 
|---|
| 161 | * to its not-yet-processed neighbors using the standard F-S fractions, | 
|---|
| 162 | *		...	(here)	7/16 | 
|---|
| 163 | *		3/16	5/16	1/16 | 
|---|
| 164 | * We work left-to-right on even rows, right-to-left on odd rows. | 
|---|
| 165 | * | 
|---|
| 166 | * We can get away with a single array (holding one row's worth of errors) | 
|---|
| 167 | * by using it to store the current row's errors at pixel columns not yet | 
|---|
| 168 | * processed, but the next row's errors at columns already processed.  We | 
|---|
| 169 | * need only a few extra variables to hold the errors immediately around the | 
|---|
| 170 | * current column.  (If we are lucky, those variables are in registers, but | 
|---|
| 171 | * even if not, they're probably cheaper to access than array elements are.) | 
|---|
| 172 | * | 
|---|
| 173 | * The fserrors[] array has (#columns + 2) entries; the extra entry at | 
|---|
| 174 | * each end saves us from special-casing the first and last pixels. | 
|---|
| 175 | * Each entry is three values long, one value for each color component. | 
|---|
| 176 | * | 
|---|
| 177 | * Note: on a wide image, we might not have enough room in a PC's near data | 
|---|
| 178 | * segment to hold the error array; so it is allocated with alloc_large. | 
|---|
| 179 | */ | 
|---|
| 180 |  | 
|---|
| 181 | #if BITS_IN_JSAMPLE == 8 | 
|---|
| 182 | typedef INT16 FSERROR;		/* 16 bits should be enough */ | 
|---|
| 183 | typedef int LOCFSERROR;		/* use 'int' for calculation temps */ | 
|---|
| 184 | #else | 
|---|
| 185 | typedef INT32 FSERROR;		/* may need more than 16 bits */ | 
|---|
| 186 | typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ | 
|---|
| 187 | #endif | 
|---|
| 188 |  | 
|---|
| 189 | typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ | 
|---|
| 190 |  | 
|---|
| 191 |  | 
|---|
| 192 | /* Private subobject */ | 
|---|
| 193 |  | 
|---|
| 194 | typedef struct { | 
|---|
| 195 | struct jpeg_color_quantizer pub; /* public fields */ | 
|---|
| 196 |  | 
|---|
| 197 | /* Space for the eventually created colormap is stashed here */ | 
|---|
| 198 | JSAMPARRAY sv_colormap;	/* colormap allocated at init time */ | 
|---|
| 199 | int desired;			/* desired # of colors = size of colormap */ | 
|---|
| 200 |  | 
|---|
| 201 | /* Variables for accumulating image statistics */ | 
|---|
| 202 | hist3d histogram;		/* pointer to the histogram */ | 
|---|
| 203 |  | 
|---|
| 204 | boolean needs_zeroed;		/* TRUE if next pass must zero histogram */ | 
|---|
| 205 |  | 
|---|
| 206 | /* Variables for Floyd-Steinberg dithering */ | 
|---|
| 207 | FSERRPTR fserrors;		/* accumulated errors */ | 
|---|
| 208 | boolean on_odd_row;		/* flag to remember which row we are on */ | 
|---|
| 209 | int * error_limiter;		/* table for clamping the applied error */ | 
|---|
| 210 | } my_cquantizer; | 
|---|
| 211 |  | 
|---|
| 212 | typedef my_cquantizer * my_cquantize_ptr; | 
|---|
| 213 |  | 
|---|
| 214 |  | 
|---|
| 215 | /* | 
|---|
| 216 | * Prescan some rows of pixels. | 
|---|
| 217 | * In this module the prescan simply updates the histogram, which has been | 
|---|
| 218 | * initialized to zeroes by start_pass. | 
|---|
| 219 | * An output_buf parameter is required by the method signature, but no data | 
|---|
| 220 | * is actually output (in fact the buffer controller is probably passing a | 
|---|
| 221 | * NULL pointer). | 
|---|
| 222 | */ | 
|---|
| 223 |  | 
|---|
| 224 | METHODDEF(void) | 
|---|
| 225 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|---|
| 226 | JSAMPARRAY output_buf, int num_rows) | 
|---|
| 227 | { | 
|---|
| 228 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 229 | register JSAMPROW ptr; | 
|---|
| 230 | register histptr histp; | 
|---|
| 231 | register hist3d histogram = cquantize->histogram; | 
|---|
| 232 | int row; | 
|---|
| 233 | JDIMENSION col; | 
|---|
| 234 | JDIMENSION width = cinfo->output_width; | 
|---|
| 235 |  | 
|---|
| 236 | for (row = 0; row < num_rows; row++) { | 
|---|
| 237 | ptr = input_buf[row]; | 
|---|
| 238 | for (col = width; col > 0; col--) { | 
|---|
| 239 | /* get pixel value and index into the histogram */ | 
|---|
| 240 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | 
|---|
| 241 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | 
|---|
| 242 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | 
|---|
| 243 | /* increment, check for overflow and undo increment if so. */ | 
|---|
| 244 | if (++(*histp) <= 0) | 
|---|
| 245 | (*histp)--; | 
|---|
| 246 | ptr += 3; | 
|---|
| 247 | } | 
|---|
| 248 | } | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 |  | 
|---|
| 252 | /* | 
|---|
| 253 | * Next we have the really interesting routines: selection of a colormap | 
|---|
| 254 | * given the completed histogram. | 
|---|
| 255 | * These routines work with a list of "boxes", each representing a rectangular | 
|---|
| 256 | * subset of the input color space (to histogram precision). | 
|---|
| 257 | */ | 
|---|
| 258 |  | 
|---|
| 259 | typedef struct { | 
|---|
| 260 | /* The bounds of the box (inclusive); expressed as histogram indexes */ | 
|---|
| 261 | int c0min, c0max; | 
|---|
| 262 | int c1min, c1max; | 
|---|
| 263 | int c2min, c2max; | 
|---|
| 264 | /* The volume (actually 2-norm) of the box */ | 
|---|
| 265 | INT32 volume; | 
|---|
| 266 | /* The number of nonzero histogram cells within this box */ | 
|---|
| 267 | long colorcount; | 
|---|
| 268 | } box; | 
|---|
| 269 |  | 
|---|
| 270 | typedef box * boxptr; | 
|---|
| 271 |  | 
|---|
| 272 |  | 
|---|
| 273 | LOCAL(boxptr) | 
|---|
| 274 | find_biggest_color_pop (boxptr boxlist, int numboxes) | 
|---|
| 275 | /* Find the splittable box with the largest color population */ | 
|---|
| 276 | /* Returns NULL if no splittable boxes remain */ | 
|---|
| 277 | { | 
|---|
| 278 | register boxptr boxp; | 
|---|
| 279 | register int i; | 
|---|
| 280 | register long maxc = 0; | 
|---|
| 281 | boxptr which = NULL; | 
|---|
| 282 |  | 
|---|
| 283 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
|---|
| 284 | if (boxp->colorcount > maxc && boxp->volume > 0) { | 
|---|
| 285 | which = boxp; | 
|---|
| 286 | maxc = boxp->colorcount; | 
|---|
| 287 | } | 
|---|
| 288 | } | 
|---|
| 289 | return which; | 
|---|
| 290 | } | 
|---|
| 291 |  | 
|---|
| 292 |  | 
|---|
| 293 | LOCAL(boxptr) | 
|---|
| 294 | find_biggest_volume (boxptr boxlist, int numboxes) | 
|---|
| 295 | /* Find the splittable box with the largest (scaled) volume */ | 
|---|
| 296 | /* Returns NULL if no splittable boxes remain */ | 
|---|
| 297 | { | 
|---|
| 298 | register boxptr boxp; | 
|---|
| 299 | register int i; | 
|---|
| 300 | register INT32 maxv = 0; | 
|---|
| 301 | boxptr which = NULL; | 
|---|
| 302 |  | 
|---|
| 303 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | 
|---|
| 304 | if (boxp->volume > maxv) { | 
|---|
| 305 | which = boxp; | 
|---|
| 306 | maxv = boxp->volume; | 
|---|
| 307 | } | 
|---|
| 308 | } | 
|---|
| 309 | return which; | 
|---|
| 310 | } | 
|---|
| 311 |  | 
|---|
| 312 |  | 
|---|
| 313 | LOCAL(void) | 
|---|
| 314 | update_box (j_decompress_ptr cinfo, boxptr boxp) | 
|---|
| 315 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | 
|---|
| 316 | /* and recompute its volume and population */ | 
|---|
| 317 | { | 
|---|
| 318 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 319 | hist3d histogram = cquantize->histogram; | 
|---|
| 320 | histptr histp; | 
|---|
| 321 | int c0,c1,c2; | 
|---|
| 322 | int c0min,c0max,c1min,c1max,c2min,c2max; | 
|---|
| 323 | INT32 dist0,dist1,dist2; | 
|---|
| 324 | long ccount; | 
|---|
| 325 |  | 
|---|
| 326 | c0min = boxp->c0min;  c0max = boxp->c0max; | 
|---|
| 327 | c1min = boxp->c1min;  c1max = boxp->c1max; | 
|---|
| 328 | c2min = boxp->c2min;  c2max = boxp->c2max; | 
|---|
| 329 |  | 
|---|
| 330 | if (c0max > c0min) | 
|---|
| 331 | for (c0 = c0min; c0 <= c0max; c0++) | 
|---|
| 332 | for (c1 = c1min; c1 <= c1max; c1++) { | 
|---|
| 333 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 334 | for (c2 = c2min; c2 <= c2max; c2++) | 
|---|
| 335 | if (*histp++ != 0) { | 
|---|
| 336 | boxp->c0min = c0min = c0; | 
|---|
| 337 | goto have_c0min; | 
|---|
| 338 | } | 
|---|
| 339 | } | 
|---|
| 340 | have_c0min: | 
|---|
| 341 | if (c0max > c0min) | 
|---|
| 342 | for (c0 = c0max; c0 >= c0min; c0--) | 
|---|
| 343 | for (c1 = c1min; c1 <= c1max; c1++) { | 
|---|
| 344 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 345 | for (c2 = c2min; c2 <= c2max; c2++) | 
|---|
| 346 | if (*histp++ != 0) { | 
|---|
| 347 | boxp->c0max = c0max = c0; | 
|---|
| 348 | goto have_c0max; | 
|---|
| 349 | } | 
|---|
| 350 | } | 
|---|
| 351 | have_c0max: | 
|---|
| 352 | if (c1max > c1min) | 
|---|
| 353 | for (c1 = c1min; c1 <= c1max; c1++) | 
|---|
| 354 | for (c0 = c0min; c0 <= c0max; c0++) { | 
|---|
| 355 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 356 | for (c2 = c2min; c2 <= c2max; c2++) | 
|---|
| 357 | if (*histp++ != 0) { | 
|---|
| 358 | boxp->c1min = c1min = c1; | 
|---|
| 359 | goto have_c1min; | 
|---|
| 360 | } | 
|---|
| 361 | } | 
|---|
| 362 | have_c1min: | 
|---|
| 363 | if (c1max > c1min) | 
|---|
| 364 | for (c1 = c1max; c1 >= c1min; c1--) | 
|---|
| 365 | for (c0 = c0min; c0 <= c0max; c0++) { | 
|---|
| 366 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 367 | for (c2 = c2min; c2 <= c2max; c2++) | 
|---|
| 368 | if (*histp++ != 0) { | 
|---|
| 369 | boxp->c1max = c1max = c1; | 
|---|
| 370 | goto have_c1max; | 
|---|
| 371 | } | 
|---|
| 372 | } | 
|---|
| 373 | have_c1max: | 
|---|
| 374 | if (c2max > c2min) | 
|---|
| 375 | for (c2 = c2min; c2 <= c2max; c2++) | 
|---|
| 376 | for (c0 = c0min; c0 <= c0max; c0++) { | 
|---|
| 377 | histp = & histogram[c0][c1min][c2]; | 
|---|
| 378 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | 
|---|
| 379 | if (*histp != 0) { | 
|---|
| 380 | boxp->c2min = c2min = c2; | 
|---|
| 381 | goto have_c2min; | 
|---|
| 382 | } | 
|---|
| 383 | } | 
|---|
| 384 | have_c2min: | 
|---|
| 385 | if (c2max > c2min) | 
|---|
| 386 | for (c2 = c2max; c2 >= c2min; c2--) | 
|---|
| 387 | for (c0 = c0min; c0 <= c0max; c0++) { | 
|---|
| 388 | histp = & histogram[c0][c1min][c2]; | 
|---|
| 389 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | 
|---|
| 390 | if (*histp != 0) { | 
|---|
| 391 | boxp->c2max = c2max = c2; | 
|---|
| 392 | goto have_c2max; | 
|---|
| 393 | } | 
|---|
| 394 | } | 
|---|
| 395 | have_c2max: | 
|---|
| 396 |  | 
|---|
| 397 | /* Update box volume. | 
|---|
| 398 | * We use 2-norm rather than real volume here; this biases the method | 
|---|
| 399 | * against making long narrow boxes, and it has the side benefit that | 
|---|
| 400 | * a box is splittable iff norm > 0. | 
|---|
| 401 | * Since the differences are expressed in histogram-cell units, | 
|---|
| 402 | * we have to shift back to JSAMPLE units to get consistent distances; | 
|---|
| 403 | * after which, we scale according to the selected distance scale factors. | 
|---|
| 404 | */ | 
|---|
| 405 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | 
|---|
| 406 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | 
|---|
| 407 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | 
|---|
| 408 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | 
|---|
| 409 |  | 
|---|
| 410 | /* Now scan remaining volume of box and compute population */ | 
|---|
| 411 | ccount = 0; | 
|---|
| 412 | for (c0 = c0min; c0 <= c0max; c0++) | 
|---|
| 413 | for (c1 = c1min; c1 <= c1max; c1++) { | 
|---|
| 414 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 415 | for (c2 = c2min; c2 <= c2max; c2++, histp++) | 
|---|
| 416 | if (*histp != 0) { | 
|---|
| 417 | ccount++; | 
|---|
| 418 | } | 
|---|
| 419 | } | 
|---|
| 420 | boxp->colorcount = ccount; | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 |  | 
|---|
| 424 | LOCAL(int) | 
|---|
| 425 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | 
|---|
| 426 | int desired_colors) | 
|---|
| 427 | /* Repeatedly select and split the largest box until we have enough boxes */ | 
|---|
| 428 | { | 
|---|
| 429 | int n,lb; | 
|---|
| 430 | int c0,c1,c2,cmax; | 
|---|
| 431 | register boxptr b1,b2; | 
|---|
| 432 |  | 
|---|
| 433 | while (numboxes < desired_colors) { | 
|---|
| 434 | /* Select box to split. | 
|---|
| 435 | * Current algorithm: by population for first half, then by volume. | 
|---|
| 436 | */ | 
|---|
| 437 | if (numboxes*2 <= desired_colors) { | 
|---|
| 438 | b1 = find_biggest_color_pop(boxlist, numboxes); | 
|---|
| 439 | } else { | 
|---|
| 440 | b1 = find_biggest_volume(boxlist, numboxes); | 
|---|
| 441 | } | 
|---|
| 442 | if (b1 == NULL)		/* no splittable boxes left! */ | 
|---|
| 443 | break; | 
|---|
| 444 | b2 = &boxlist[numboxes];	/* where new box will go */ | 
|---|
| 445 | /* Copy the color bounds to the new box. */ | 
|---|
| 446 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | 
|---|
| 447 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | 
|---|
| 448 | /* Choose which axis to split the box on. | 
|---|
| 449 | * Current algorithm: longest scaled axis. | 
|---|
| 450 | * See notes in update_box about scaling distances. | 
|---|
| 451 | */ | 
|---|
| 452 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | 
|---|
| 453 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | 
|---|
| 454 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | 
|---|
| 455 | /* We want to break any ties in favor of green, then red, blue last. | 
|---|
| 456 | * This code does the right thing for R,G,B or B,G,R color orders only. | 
|---|
| 457 | */ | 
|---|
| 458 | #if RGB_RED == 0 | 
|---|
| 459 | cmax = c1; n = 1; | 
|---|
| 460 | if (c0 > cmax) { cmax = c0; n = 0; } | 
|---|
| 461 | if (c2 > cmax) { n = 2; } | 
|---|
| 462 | #else | 
|---|
| 463 | cmax = c1; n = 1; | 
|---|
| 464 | if (c2 > cmax) { cmax = c2; n = 2; } | 
|---|
| 465 | if (c0 > cmax) { n = 0; } | 
|---|
| 466 | #endif | 
|---|
| 467 | /* Choose split point along selected axis, and update box bounds. | 
|---|
| 468 | * Current algorithm: split at halfway point. | 
|---|
| 469 | * (Since the box has been shrunk to minimum volume, | 
|---|
| 470 | * any split will produce two nonempty subboxes.) | 
|---|
| 471 | * Note that lb value is max for lower box, so must be < old max. | 
|---|
| 472 | */ | 
|---|
| 473 | switch (n) { | 
|---|
| 474 | case 0: | 
|---|
| 475 | lb = (b1->c0max + b1->c0min) / 2; | 
|---|
| 476 | b1->c0max = lb; | 
|---|
| 477 | b2->c0min = lb+1; | 
|---|
| 478 | break; | 
|---|
| 479 | case 1: | 
|---|
| 480 | lb = (b1->c1max + b1->c1min) / 2; | 
|---|
| 481 | b1->c1max = lb; | 
|---|
| 482 | b2->c1min = lb+1; | 
|---|
| 483 | break; | 
|---|
| 484 | case 2: | 
|---|
| 485 | lb = (b1->c2max + b1->c2min) / 2; | 
|---|
| 486 | b1->c2max = lb; | 
|---|
| 487 | b2->c2min = lb+1; | 
|---|
| 488 | break; | 
|---|
| 489 | } | 
|---|
| 490 | /* Update stats for boxes */ | 
|---|
| 491 | update_box(cinfo, b1); | 
|---|
| 492 | update_box(cinfo, b2); | 
|---|
| 493 | numboxes++; | 
|---|
| 494 | } | 
|---|
| 495 | return numboxes; | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 |  | 
|---|
| 499 | LOCAL(void) | 
|---|
| 500 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | 
|---|
| 501 | /* Compute representative color for a box, put it in colormap[icolor] */ | 
|---|
| 502 | { | 
|---|
| 503 | /* Current algorithm: mean weighted by pixels (not colors) */ | 
|---|
| 504 | /* Note it is important to get the rounding correct! */ | 
|---|
| 505 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 506 | hist3d histogram = cquantize->histogram; | 
|---|
| 507 | histptr histp; | 
|---|
| 508 | int c0,c1,c2; | 
|---|
| 509 | int c0min,c0max,c1min,c1max,c2min,c2max; | 
|---|
| 510 | long count; | 
|---|
| 511 | long total = 0; | 
|---|
| 512 | long c0total = 0; | 
|---|
| 513 | long c1total = 0; | 
|---|
| 514 | long c2total = 0; | 
|---|
| 515 |  | 
|---|
| 516 | c0min = boxp->c0min;  c0max = boxp->c0max; | 
|---|
| 517 | c1min = boxp->c1min;  c1max = boxp->c1max; | 
|---|
| 518 | c2min = boxp->c2min;  c2max = boxp->c2max; | 
|---|
| 519 |  | 
|---|
| 520 | for (c0 = c0min; c0 <= c0max; c0++) | 
|---|
| 521 | for (c1 = c1min; c1 <= c1max; c1++) { | 
|---|
| 522 | histp = & histogram[c0][c1][c2min]; | 
|---|
| 523 | for (c2 = c2min; c2 <= c2max; c2++) { | 
|---|
| 524 | if ((count = *histp++) != 0) { | 
|---|
| 525 | total += count; | 
|---|
| 526 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | 
|---|
| 527 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | 
|---|
| 528 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | 
|---|
| 529 | } | 
|---|
| 530 | } | 
|---|
| 531 | } | 
|---|
| 532 |  | 
|---|
| 533 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | 
|---|
| 534 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | 
|---|
| 535 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 |  | 
|---|
| 539 | LOCAL(void) | 
|---|
| 540 | select_colors (j_decompress_ptr cinfo, int desired_colors) | 
|---|
| 541 | /* Master routine for color selection */ | 
|---|
| 542 | { | 
|---|
| 543 | boxptr boxlist; | 
|---|
| 544 | int numboxes; | 
|---|
| 545 | int i; | 
|---|
| 546 |  | 
|---|
| 547 | /* Allocate workspace for box list */ | 
|---|
| 548 | boxlist = (boxptr) (*cinfo->mem->alloc_small) | 
|---|
| 549 | ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); | 
|---|
| 550 | /* Initialize one box containing whole space */ | 
|---|
| 551 | numboxes = 1; | 
|---|
| 552 | boxlist[0].c0min = 0; | 
|---|
| 553 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | 
|---|
| 554 | boxlist[0].c1min = 0; | 
|---|
| 555 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | 
|---|
| 556 | boxlist[0].c2min = 0; | 
|---|
| 557 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | 
|---|
| 558 | /* Shrink it to actually-used volume and set its statistics */ | 
|---|
| 559 | update_box(cinfo, & boxlist[0]); | 
|---|
| 560 | /* Perform median-cut to produce final box list */ | 
|---|
| 561 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | 
|---|
| 562 | /* Compute the representative color for each box, fill colormap */ | 
|---|
| 563 | for (i = 0; i < numboxes; i++) | 
|---|
| 564 | compute_color(cinfo, & boxlist[i], i); | 
|---|
| 565 | cinfo->actual_number_of_colors = numboxes; | 
|---|
| 566 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); | 
|---|
| 567 | } | 
|---|
| 568 |  | 
|---|
| 569 |  | 
|---|
| 570 | /* | 
|---|
| 571 | * These routines are concerned with the time-critical task of mapping input | 
|---|
| 572 | * colors to the nearest color in the selected colormap. | 
|---|
| 573 | * | 
|---|
| 574 | * We re-use the histogram space as an "inverse color map", essentially a | 
|---|
| 575 | * cache for the results of nearest-color searches.  All colors within a | 
|---|
| 576 | * histogram cell will be mapped to the same colormap entry, namely the one | 
|---|
| 577 | * closest to the cell's center.  This may not be quite the closest entry to | 
|---|
| 578 | * the actual input color, but it's almost as good.  A zero in the cache | 
|---|
| 579 | * indicates we haven't found the nearest color for that cell yet; the array | 
|---|
| 580 | * is cleared to zeroes before starting the mapping pass.  When we find the | 
|---|
| 581 | * nearest color for a cell, its colormap index plus one is recorded in the | 
|---|
| 582 | * cache for future use.  The pass2 scanning routines call fill_inverse_cmap | 
|---|
| 583 | * when they need to use an unfilled entry in the cache. | 
|---|
| 584 | * | 
|---|
| 585 | * Our method of efficiently finding nearest colors is based on the "locally | 
|---|
| 586 | * sorted search" idea described by Heckbert and on the incremental distance | 
|---|
| 587 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | 
|---|
| 588 | * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that | 
|---|
| 589 | * the distances from a given colormap entry to each cell of the histogram can | 
|---|
| 590 | * be computed quickly using an incremental method: the differences between | 
|---|
| 591 | * distances to adjacent cells themselves differ by a constant.  This allows a | 
|---|
| 592 | * fairly fast implementation of the "brute force" approach of computing the | 
|---|
| 593 | * distance from every colormap entry to every histogram cell.  Unfortunately, | 
|---|
| 594 | * it needs a work array to hold the best-distance-so-far for each histogram | 
|---|
| 595 | * cell (because the inner loop has to be over cells, not colormap entries). | 
|---|
| 596 | * The work array elements have to be INT32s, so the work array would need | 
|---|
| 597 | * 256Kb at our recommended precision.  This is not feasible in DOS machines. | 
|---|
| 598 | * | 
|---|
| 599 | * To get around these problems, we apply Thomas' method to compute the | 
|---|
| 600 | * nearest colors for only the cells within a small subbox of the histogram. | 
|---|
| 601 | * The work array need be only as big as the subbox, so the memory usage | 
|---|
| 602 | * problem is solved.  Furthermore, we need not fill subboxes that are never | 
|---|
| 603 | * referenced in pass2; many images use only part of the color gamut, so a | 
|---|
| 604 | * fair amount of work is saved.  An additional advantage of this | 
|---|
| 605 | * approach is that we can apply Heckbert's locality criterion to quickly | 
|---|
| 606 | * eliminate colormap entries that are far away from the subbox; typically | 
|---|
| 607 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, | 
|---|
| 608 | * and we need not compute their distances to individual cells in the subbox. | 
|---|
| 609 | * The speed of this approach is heavily influenced by the subbox size: too | 
|---|
| 610 | * small means too much overhead, too big loses because Heckbert's criterion | 
|---|
| 611 | * can't eliminate as many colormap entries.  Empirically the best subbox | 
|---|
| 612 | * size seems to be about 1/512th of the histogram (1/8th in each direction). | 
|---|
| 613 | * | 
|---|
| 614 | * Thomas' article also describes a refined method which is asymptotically | 
|---|
| 615 | * faster than the brute-force method, but it is also far more complex and | 
|---|
| 616 | * cannot efficiently be applied to small subboxes.  It is therefore not | 
|---|
| 617 | * useful for programs intended to be portable to DOS machines.  On machines | 
|---|
| 618 | * with plenty of memory, filling the whole histogram in one shot with Thomas' | 
|---|
| 619 | * refined method might be faster than the present code --- but then again, | 
|---|
| 620 | * it might not be any faster, and it's certainly more complicated. | 
|---|
| 621 | */ | 
|---|
| 622 |  | 
|---|
| 623 |  | 
|---|
| 624 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ | 
|---|
| 625 | #define BOX_C0_LOG  (HIST_C0_BITS-3) | 
|---|
| 626 | #define BOX_C1_LOG  (HIST_C1_BITS-3) | 
|---|
| 627 | #define BOX_C2_LOG  (HIST_C2_BITS-3) | 
|---|
| 628 |  | 
|---|
| 629 | #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */ | 
|---|
| 630 | #define BOX_C1_ELEMS  (1<<BOX_C1_LOG) | 
|---|
| 631 | #define BOX_C2_ELEMS  (1<<BOX_C2_LOG) | 
|---|
| 632 |  | 
|---|
| 633 | #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG) | 
|---|
| 634 | #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG) | 
|---|
| 635 | #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG) | 
|---|
| 636 |  | 
|---|
| 637 |  | 
|---|
| 638 | /* | 
|---|
| 639 | * The next three routines implement inverse colormap filling.  They could | 
|---|
| 640 | * all be folded into one big routine, but splitting them up this way saves | 
|---|
| 641 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) | 
|---|
| 642 | * and may allow some compilers to produce better code by registerizing more | 
|---|
| 643 | * inner-loop variables. | 
|---|
| 644 | */ | 
|---|
| 645 |  | 
|---|
| 646 | LOCAL(int) | 
|---|
| 647 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | 
|---|
| 648 | JSAMPLE colorlist[]) | 
|---|
| 649 | /* Locate the colormap entries close enough to an update box to be candidates | 
|---|
| 650 | * for the nearest entry to some cell(s) in the update box.  The update box | 
|---|
| 651 | * is specified by the center coordinates of its first cell.  The number of | 
|---|
| 652 | * candidate colormap entries is returned, and their colormap indexes are | 
|---|
| 653 | * placed in colorlist[]. | 
|---|
| 654 | * This routine uses Heckbert's "locally sorted search" criterion to select | 
|---|
| 655 | * the colors that need further consideration. | 
|---|
| 656 | */ | 
|---|
| 657 | { | 
|---|
| 658 | int numcolors = cinfo->actual_number_of_colors; | 
|---|
| 659 | int maxc0, maxc1, maxc2; | 
|---|
| 660 | int centerc0, centerc1, centerc2; | 
|---|
| 661 | int i, x, ncolors; | 
|---|
| 662 | INT32 minmaxdist, min_dist, max_dist, tdist; | 
|---|
| 663 | INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */ | 
|---|
| 664 |  | 
|---|
| 665 | /* Compute true coordinates of update box's upper corner and center. | 
|---|
| 666 | * Actually we compute the coordinates of the center of the upper-corner | 
|---|
| 667 | * histogram cell, which are the upper bounds of the volume we care about. | 
|---|
| 668 | * Note that since ">>" rounds down, the "center" values may be closer to | 
|---|
| 669 | * min than to max; hence comparisons to them must be "<=", not "<". | 
|---|
| 670 | */ | 
|---|
| 671 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | 
|---|
| 672 | centerc0 = (minc0 + maxc0) >> 1; | 
|---|
| 673 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | 
|---|
| 674 | centerc1 = (minc1 + maxc1) >> 1; | 
|---|
| 675 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | 
|---|
| 676 | centerc2 = (minc2 + maxc2) >> 1; | 
|---|
| 677 |  | 
|---|
| 678 | /* For each color in colormap, find: | 
|---|
| 679 | *  1. its minimum squared-distance to any point in the update box | 
|---|
| 680 | *     (zero if color is within update box); | 
|---|
| 681 | *  2. its maximum squared-distance to any point in the update box. | 
|---|
| 682 | * Both of these can be found by considering only the corners of the box. | 
|---|
| 683 | * We save the minimum distance for each color in mindist[]; | 
|---|
| 684 | * only the smallest maximum distance is of interest. | 
|---|
| 685 | */ | 
|---|
| 686 | minmaxdist = 0x7FFFFFFFL; | 
|---|
| 687 |  | 
|---|
| 688 | for (i = 0; i < numcolors; i++) { | 
|---|
| 689 | /* We compute the squared-c0-distance term, then add in the other two. */ | 
|---|
| 690 | x = GETJSAMPLE(cinfo->colormap[0][i]); | 
|---|
| 691 | if (x < minc0) { | 
|---|
| 692 | tdist = (x - minc0) * C0_SCALE; | 
|---|
| 693 | min_dist = tdist*tdist; | 
|---|
| 694 | tdist = (x - maxc0) * C0_SCALE; | 
|---|
| 695 | max_dist = tdist*tdist; | 
|---|
| 696 | } else if (x > maxc0) { | 
|---|
| 697 | tdist = (x - maxc0) * C0_SCALE; | 
|---|
| 698 | min_dist = tdist*tdist; | 
|---|
| 699 | tdist = (x - minc0) * C0_SCALE; | 
|---|
| 700 | max_dist = tdist*tdist; | 
|---|
| 701 | } else { | 
|---|
| 702 | /* within cell range so no contribution to min_dist */ | 
|---|
| 703 | min_dist = 0; | 
|---|
| 704 | if (x <= centerc0) { | 
|---|
| 705 | tdist = (x - maxc0) * C0_SCALE; | 
|---|
| 706 | max_dist = tdist*tdist; | 
|---|
| 707 | } else { | 
|---|
| 708 | tdist = (x - minc0) * C0_SCALE; | 
|---|
| 709 | max_dist = tdist*tdist; | 
|---|
| 710 | } | 
|---|
| 711 | } | 
|---|
| 712 |  | 
|---|
| 713 | x = GETJSAMPLE(cinfo->colormap[1][i]); | 
|---|
| 714 | if (x < minc1) { | 
|---|
| 715 | tdist = (x - minc1) * C1_SCALE; | 
|---|
| 716 | min_dist += tdist*tdist; | 
|---|
| 717 | tdist = (x - maxc1) * C1_SCALE; | 
|---|
| 718 | max_dist += tdist*tdist; | 
|---|
| 719 | } else if (x > maxc1) { | 
|---|
| 720 | tdist = (x - maxc1) * C1_SCALE; | 
|---|
| 721 | min_dist += tdist*tdist; | 
|---|
| 722 | tdist = (x - minc1) * C1_SCALE; | 
|---|
| 723 | max_dist += tdist*tdist; | 
|---|
| 724 | } else { | 
|---|
| 725 | /* within cell range so no contribution to min_dist */ | 
|---|
| 726 | if (x <= centerc1) { | 
|---|
| 727 | tdist = (x - maxc1) * C1_SCALE; | 
|---|
| 728 | max_dist += tdist*tdist; | 
|---|
| 729 | } else { | 
|---|
| 730 | tdist = (x - minc1) * C1_SCALE; | 
|---|
| 731 | max_dist += tdist*tdist; | 
|---|
| 732 | } | 
|---|
| 733 | } | 
|---|
| 734 |  | 
|---|
| 735 | x = GETJSAMPLE(cinfo->colormap[2][i]); | 
|---|
| 736 | if (x < minc2) { | 
|---|
| 737 | tdist = (x - minc2) * C2_SCALE; | 
|---|
| 738 | min_dist += tdist*tdist; | 
|---|
| 739 | tdist = (x - maxc2) * C2_SCALE; | 
|---|
| 740 | max_dist += tdist*tdist; | 
|---|
| 741 | } else if (x > maxc2) { | 
|---|
| 742 | tdist = (x - maxc2) * C2_SCALE; | 
|---|
| 743 | min_dist += tdist*tdist; | 
|---|
| 744 | tdist = (x - minc2) * C2_SCALE; | 
|---|
| 745 | max_dist += tdist*tdist; | 
|---|
| 746 | } else { | 
|---|
| 747 | /* within cell range so no contribution to min_dist */ | 
|---|
| 748 | if (x <= centerc2) { | 
|---|
| 749 | tdist = (x - maxc2) * C2_SCALE; | 
|---|
| 750 | max_dist += tdist*tdist; | 
|---|
| 751 | } else { | 
|---|
| 752 | tdist = (x - minc2) * C2_SCALE; | 
|---|
| 753 | max_dist += tdist*tdist; | 
|---|
| 754 | } | 
|---|
| 755 | } | 
|---|
| 756 |  | 
|---|
| 757 | mindist[i] = min_dist;	/* save away the results */ | 
|---|
| 758 | if (max_dist < minmaxdist) | 
|---|
| 759 | minmaxdist = max_dist; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | /* Now we know that no cell in the update box is more than minmaxdist | 
|---|
| 763 | * away from some colormap entry.  Therefore, only colors that are | 
|---|
| 764 | * within minmaxdist of some part of the box need be considered. | 
|---|
| 765 | */ | 
|---|
| 766 | ncolors = 0; | 
|---|
| 767 | for (i = 0; i < numcolors; i++) { | 
|---|
| 768 | if (mindist[i] <= minmaxdist) | 
|---|
| 769 | colorlist[ncolors++] = (JSAMPLE) i; | 
|---|
| 770 | } | 
|---|
| 771 | return ncolors; | 
|---|
| 772 | } | 
|---|
| 773 |  | 
|---|
| 774 |  | 
|---|
| 775 | LOCAL(void) | 
|---|
| 776 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | 
|---|
| 777 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | 
|---|
| 778 | /* Find the closest colormap entry for each cell in the update box, | 
|---|
| 779 | * given the list of candidate colors prepared by find_nearby_colors. | 
|---|
| 780 | * Return the indexes of the closest entries in the bestcolor[] array. | 
|---|
| 781 | * This routine uses Thomas' incremental distance calculation method to | 
|---|
| 782 | * find the distance from a colormap entry to successive cells in the box. | 
|---|
| 783 | */ | 
|---|
| 784 | { | 
|---|
| 785 | int ic0, ic1, ic2; | 
|---|
| 786 | int i, icolor; | 
|---|
| 787 | register INT32 * bptr;	/* pointer into bestdist[] array */ | 
|---|
| 788 | JSAMPLE * cptr;		/* pointer into bestcolor[] array */ | 
|---|
| 789 | INT32 dist0, dist1;		/* initial distance values */ | 
|---|
| 790 | register INT32 dist2;		/* current distance in inner loop */ | 
|---|
| 791 | INT32 xx0, xx1;		/* distance increments */ | 
|---|
| 792 | register INT32 xx2; | 
|---|
| 793 | INT32 inc0, inc1, inc2;	/* initial values for increments */ | 
|---|
| 794 | /* This array holds the distance to the nearest-so-far color for each cell */ | 
|---|
| 795 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | 
|---|
| 796 |  | 
|---|
| 797 | /* Initialize best-distance for each cell of the update box */ | 
|---|
| 798 | bptr = bestdist; | 
|---|
| 799 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | 
|---|
| 800 | *bptr++ = 0x7FFFFFFFL; | 
|---|
| 801 |  | 
|---|
| 802 | /* For each color selected by find_nearby_colors, | 
|---|
| 803 | * compute its distance to the center of each cell in the box. | 
|---|
| 804 | * If that's less than best-so-far, update best distance and color number. | 
|---|
| 805 | */ | 
|---|
| 806 |  | 
|---|
| 807 | /* Nominal steps between cell centers ("x" in Thomas article) */ | 
|---|
| 808 | #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE) | 
|---|
| 809 | #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE) | 
|---|
| 810 | #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE) | 
|---|
| 811 |  | 
|---|
| 812 | for (i = 0; i < numcolors; i++) { | 
|---|
| 813 | icolor = GETJSAMPLE(colorlist[i]); | 
|---|
| 814 | /* Compute (square of) distance from minc0/c1/c2 to this color */ | 
|---|
| 815 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | 
|---|
| 816 | dist0 = inc0*inc0; | 
|---|
| 817 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | 
|---|
| 818 | dist0 += inc1*inc1; | 
|---|
| 819 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | 
|---|
| 820 | dist0 += inc2*inc2; | 
|---|
| 821 | /* Form the initial difference increments */ | 
|---|
| 822 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | 
|---|
| 823 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | 
|---|
| 824 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | 
|---|
| 825 | /* Now loop over all cells in box, updating distance per Thomas method */ | 
|---|
| 826 | bptr = bestdist; | 
|---|
| 827 | cptr = bestcolor; | 
|---|
| 828 | xx0 = inc0; | 
|---|
| 829 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | 
|---|
| 830 | dist1 = dist0; | 
|---|
| 831 | xx1 = inc1; | 
|---|
| 832 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | 
|---|
| 833 | dist2 = dist1; | 
|---|
| 834 | xx2 = inc2; | 
|---|
| 835 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | 
|---|
| 836 | if (dist2 < *bptr) { | 
|---|
| 837 | *bptr = dist2; | 
|---|
| 838 | *cptr = (JSAMPLE) icolor; | 
|---|
| 839 | } | 
|---|
| 840 | dist2 += xx2; | 
|---|
| 841 | xx2 += 2 * STEP_C2 * STEP_C2; | 
|---|
| 842 | bptr++; | 
|---|
| 843 | cptr++; | 
|---|
| 844 | } | 
|---|
| 845 | dist1 += xx1; | 
|---|
| 846 | xx1 += 2 * STEP_C1 * STEP_C1; | 
|---|
| 847 | } | 
|---|
| 848 | dist0 += xx0; | 
|---|
| 849 | xx0 += 2 * STEP_C0 * STEP_C0; | 
|---|
| 850 | } | 
|---|
| 851 | } | 
|---|
| 852 | } | 
|---|
| 853 |  | 
|---|
| 854 |  | 
|---|
| 855 | LOCAL(void) | 
|---|
| 856 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | 
|---|
| 857 | /* Fill the inverse-colormap entries in the update box that contains */ | 
|---|
| 858 | /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */ | 
|---|
| 859 | /* we can fill as many others as we wish.) */ | 
|---|
| 860 | { | 
|---|
| 861 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 862 | hist3d histogram = cquantize->histogram; | 
|---|
| 863 | int minc0, minc1, minc2;	/* lower left corner of update box */ | 
|---|
| 864 | int ic0, ic1, ic2; | 
|---|
| 865 | register JSAMPLE * cptr;	/* pointer into bestcolor[] array */ | 
|---|
| 866 | register histptr cachep;	/* pointer into main cache array */ | 
|---|
| 867 | /* This array lists the candidate colormap indexes. */ | 
|---|
| 868 | JSAMPLE colorlist[MAXNUMCOLORS]; | 
|---|
| 869 | int numcolors;		/* number of candidate colors */ | 
|---|
| 870 | /* This array holds the actually closest colormap index for each cell. */ | 
|---|
| 871 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | 
|---|
| 872 |  | 
|---|
| 873 | /* Convert cell coordinates to update box ID */ | 
|---|
| 874 | c0 >>= BOX_C0_LOG; | 
|---|
| 875 | c1 >>= BOX_C1_LOG; | 
|---|
| 876 | c2 >>= BOX_C2_LOG; | 
|---|
| 877 |  | 
|---|
| 878 | /* Compute true coordinates of update box's origin corner. | 
|---|
| 879 | * Actually we compute the coordinates of the center of the corner | 
|---|
| 880 | * histogram cell, which are the lower bounds of the volume we care about. | 
|---|
| 881 | */ | 
|---|
| 882 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | 
|---|
| 883 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | 
|---|
| 884 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | 
|---|
| 885 |  | 
|---|
| 886 | /* Determine which colormap entries are close enough to be candidates | 
|---|
| 887 | * for the nearest entry to some cell in the update box. | 
|---|
| 888 | */ | 
|---|
| 889 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | 
|---|
| 890 |  | 
|---|
| 891 | /* Determine the actually nearest colors. */ | 
|---|
| 892 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | 
|---|
| 893 | bestcolor); | 
|---|
| 894 |  | 
|---|
| 895 | /* Save the best color numbers (plus 1) in the main cache array */ | 
|---|
| 896 | c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */ | 
|---|
| 897 | c1 <<= BOX_C1_LOG; | 
|---|
| 898 | c2 <<= BOX_C2_LOG; | 
|---|
| 899 | cptr = bestcolor; | 
|---|
| 900 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | 
|---|
| 901 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | 
|---|
| 902 | cachep = & histogram[c0+ic0][c1+ic1][c2]; | 
|---|
| 903 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | 
|---|
| 904 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | 
|---|
| 905 | } | 
|---|
| 906 | } | 
|---|
| 907 | } | 
|---|
| 908 | } | 
|---|
| 909 |  | 
|---|
| 910 |  | 
|---|
| 911 | /* | 
|---|
| 912 | * Map some rows of pixels to the output colormapped representation. | 
|---|
| 913 | */ | 
|---|
| 914 |  | 
|---|
| 915 | METHODDEF(void) | 
|---|
| 916 | pass2_no_dither (j_decompress_ptr cinfo, | 
|---|
| 917 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | 
|---|
| 918 | /* This version performs no dithering */ | 
|---|
| 919 | { | 
|---|
| 920 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 921 | hist3d histogram = cquantize->histogram; | 
|---|
| 922 | register JSAMPROW inptr, outptr; | 
|---|
| 923 | register histptr cachep; | 
|---|
| 924 | register int c0, c1, c2; | 
|---|
| 925 | int row; | 
|---|
| 926 | JDIMENSION col; | 
|---|
| 927 | JDIMENSION width = cinfo->output_width; | 
|---|
| 928 |  | 
|---|
| 929 | for (row = 0; row < num_rows; row++) { | 
|---|
| 930 | inptr = input_buf[row]; | 
|---|
| 931 | outptr = output_buf[row]; | 
|---|
| 932 | for (col = width; col > 0; col--) { | 
|---|
| 933 | /* get pixel value and index into the cache */ | 
|---|
| 934 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | 
|---|
| 935 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | 
|---|
| 936 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | 
|---|
| 937 | cachep = & histogram[c0][c1][c2]; | 
|---|
| 938 | /* If we have not seen this color before, find nearest colormap entry */ | 
|---|
| 939 | /* and update the cache */ | 
|---|
| 940 | if (*cachep == 0) | 
|---|
| 941 | fill_inverse_cmap(cinfo, c0,c1,c2); | 
|---|
| 942 | /* Now emit the colormap index for this cell */ | 
|---|
| 943 | *outptr++ = (JSAMPLE) (*cachep - 1); | 
|---|
| 944 | } | 
|---|
| 945 | } | 
|---|
| 946 | } | 
|---|
| 947 |  | 
|---|
| 948 |  | 
|---|
| 949 | METHODDEF(void) | 
|---|
| 950 | pass2_fs_dither (j_decompress_ptr cinfo, | 
|---|
| 951 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | 
|---|
| 952 | /* This version performs Floyd-Steinberg dithering */ | 
|---|
| 953 | { | 
|---|
| 954 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 955 | hist3d histogram = cquantize->histogram; | 
|---|
| 956 | register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */ | 
|---|
| 957 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | 
|---|
| 958 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | 
|---|
| 959 | register FSERRPTR errorptr;	/* => fserrors[] at column before current */ | 
|---|
| 960 | JSAMPROW inptr;		/* => current input pixel */ | 
|---|
| 961 | JSAMPROW outptr;		/* => current output pixel */ | 
|---|
| 962 | histptr cachep; | 
|---|
| 963 | int dir;			/* +1 or -1 depending on direction */ | 
|---|
| 964 | int dir3;			/* 3*dir, for advancing inptr & errorptr */ | 
|---|
| 965 | int row; | 
|---|
| 966 | JDIMENSION col; | 
|---|
| 967 | JDIMENSION width = cinfo->output_width; | 
|---|
| 968 | JSAMPLE *range_limit = cinfo->sample_range_limit; | 
|---|
| 969 | int *error_limit = cquantize->error_limiter; | 
|---|
| 970 | JSAMPROW colormap0 = cinfo->colormap[0]; | 
|---|
| 971 | JSAMPROW colormap1 = cinfo->colormap[1]; | 
|---|
| 972 | JSAMPROW colormap2 = cinfo->colormap[2]; | 
|---|
| 973 | SHIFT_TEMPS | 
|---|
| 974 |  | 
|---|
| 975 | for (row = 0; row < num_rows; row++) { | 
|---|
| 976 | inptr = input_buf[row]; | 
|---|
| 977 | outptr = output_buf[row]; | 
|---|
| 978 | if (cquantize->on_odd_row) { | 
|---|
| 979 | /* work right to left in this row */ | 
|---|
| 980 | inptr += (width-1) * 3;	/* so point to rightmost pixel */ | 
|---|
| 981 | outptr += width-1; | 
|---|
| 982 | dir = -1; | 
|---|
| 983 | dir3 = -3; | 
|---|
| 984 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | 
|---|
| 985 | cquantize->on_odd_row = FALSE; /* flip for next time */ | 
|---|
| 986 | } else { | 
|---|
| 987 | /* work left to right in this row */ | 
|---|
| 988 | dir = 1; | 
|---|
| 989 | dir3 = 3; | 
|---|
| 990 | errorptr = cquantize->fserrors; /* => entry before first real column */ | 
|---|
| 991 | cquantize->on_odd_row = TRUE; /* flip for next time */ | 
|---|
| 992 | } | 
|---|
| 993 | /* Preset error values: no error propagated to first pixel from left */ | 
|---|
| 994 | cur0 = cur1 = cur2 = 0; | 
|---|
| 995 | /* and no error propagated to row below yet */ | 
|---|
| 996 | belowerr0 = belowerr1 = belowerr2 = 0; | 
|---|
| 997 | bpreverr0 = bpreverr1 = bpreverr2 = 0; | 
|---|
| 998 |  | 
|---|
| 999 | for (col = width; col > 0; col--) { | 
|---|
| 1000 | /* curN holds the error propagated from the previous pixel on the | 
|---|
| 1001 | * current line.  Add the error propagated from the previous line | 
|---|
| 1002 | * to form the complete error correction term for this pixel, and | 
|---|
| 1003 | * round the error term (which is expressed * 16) to an integer. | 
|---|
| 1004 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | 
|---|
| 1005 | * for either sign of the error value. | 
|---|
| 1006 | * Note: errorptr points to *previous* column's array entry. | 
|---|
| 1007 | */ | 
|---|
| 1008 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | 
|---|
| 1009 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | 
|---|
| 1010 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | 
|---|
| 1011 | /* Limit the error using transfer function set by init_error_limit. | 
|---|
| 1012 | * See comments with init_error_limit for rationale. | 
|---|
| 1013 | */ | 
|---|
| 1014 | cur0 = error_limit[cur0]; | 
|---|
| 1015 | cur1 = error_limit[cur1]; | 
|---|
| 1016 | cur2 = error_limit[cur2]; | 
|---|
| 1017 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | 
|---|
| 1018 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); | 
|---|
| 1019 | * this sets the required size of the range_limit array. | 
|---|
| 1020 | */ | 
|---|
| 1021 | cur0 += GETJSAMPLE(inptr[0]); | 
|---|
| 1022 | cur1 += GETJSAMPLE(inptr[1]); | 
|---|
| 1023 | cur2 += GETJSAMPLE(inptr[2]); | 
|---|
| 1024 | cur0 = GETJSAMPLE(range_limit[cur0]); | 
|---|
| 1025 | cur1 = GETJSAMPLE(range_limit[cur1]); | 
|---|
| 1026 | cur2 = GETJSAMPLE(range_limit[cur2]); | 
|---|
| 1027 | /* Index into the cache with adjusted pixel value */ | 
|---|
| 1028 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | 
|---|
| 1029 | /* If we have not seen this color before, find nearest colormap */ | 
|---|
| 1030 | /* entry and update the cache */ | 
|---|
| 1031 | if (*cachep == 0) | 
|---|
| 1032 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | 
|---|
| 1033 | /* Now emit the colormap index for this cell */ | 
|---|
| 1034 | { register int pixcode = *cachep - 1; | 
|---|
| 1035 | *outptr = (JSAMPLE) pixcode; | 
|---|
| 1036 | /* Compute representation error for this pixel */ | 
|---|
| 1037 | cur0 -= GETJSAMPLE(colormap0[pixcode]); | 
|---|
| 1038 | cur1 -= GETJSAMPLE(colormap1[pixcode]); | 
|---|
| 1039 | cur2 -= GETJSAMPLE(colormap2[pixcode]); | 
|---|
| 1040 | } | 
|---|
| 1041 | /* Compute error fractions to be propagated to adjacent pixels. | 
|---|
| 1042 | * Add these into the running sums, and simultaneously shift the | 
|---|
| 1043 | * next-line error sums left by 1 column. | 
|---|
| 1044 | */ | 
|---|
| 1045 | { register LOCFSERROR bnexterr, delta; | 
|---|
| 1046 |  | 
|---|
| 1047 | bnexterr = cur0;	/* Process component 0 */ | 
|---|
| 1048 | delta = cur0 * 2; | 
|---|
| 1049 | cur0 += delta;		/* form error * 3 */ | 
|---|
| 1050 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); | 
|---|
| 1051 | cur0 += delta;		/* form error * 5 */ | 
|---|
| 1052 | bpreverr0 = belowerr0 + cur0; | 
|---|
| 1053 | belowerr0 = bnexterr; | 
|---|
| 1054 | cur0 += delta;		/* form error * 7 */ | 
|---|
| 1055 | bnexterr = cur1;	/* Process component 1 */ | 
|---|
| 1056 | delta = cur1 * 2; | 
|---|
| 1057 | cur1 += delta;		/* form error * 3 */ | 
|---|
| 1058 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); | 
|---|
| 1059 | cur1 += delta;		/* form error * 5 */ | 
|---|
| 1060 | bpreverr1 = belowerr1 + cur1; | 
|---|
| 1061 | belowerr1 = bnexterr; | 
|---|
| 1062 | cur1 += delta;		/* form error * 7 */ | 
|---|
| 1063 | bnexterr = cur2;	/* Process component 2 */ | 
|---|
| 1064 | delta = cur2 * 2; | 
|---|
| 1065 | cur2 += delta;		/* form error * 3 */ | 
|---|
| 1066 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); | 
|---|
| 1067 | cur2 += delta;		/* form error * 5 */ | 
|---|
| 1068 | bpreverr2 = belowerr2 + cur2; | 
|---|
| 1069 | belowerr2 = bnexterr; | 
|---|
| 1070 | cur2 += delta;		/* form error * 7 */ | 
|---|
| 1071 | } | 
|---|
| 1072 | /* At this point curN contains the 7/16 error value to be propagated | 
|---|
| 1073 | * to the next pixel on the current line, and all the errors for the | 
|---|
| 1074 | * next line have been shifted over.  We are therefore ready to move on. | 
|---|
| 1075 | */ | 
|---|
| 1076 | inptr += dir3;		/* Advance pixel pointers to next column */ | 
|---|
| 1077 | outptr += dir; | 
|---|
| 1078 | errorptr += dir3;		/* advance errorptr to current column */ | 
|---|
| 1079 | } | 
|---|
| 1080 | /* Post-loop cleanup: we must unload the final error values into the | 
|---|
| 1081 | * final fserrors[] entry.  Note we need not unload belowerrN because | 
|---|
| 1082 | * it is for the dummy column before or after the actual array. | 
|---|
| 1083 | */ | 
|---|
| 1084 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | 
|---|
| 1085 | errorptr[1] = (FSERROR) bpreverr1; | 
|---|
| 1086 | errorptr[2] = (FSERROR) bpreverr2; | 
|---|
| 1087 | } | 
|---|
| 1088 | } | 
|---|
| 1089 |  | 
|---|
| 1090 |  | 
|---|
| 1091 | /* | 
|---|
| 1092 | * Initialize the error-limiting transfer function (lookup table). | 
|---|
| 1093 | * The raw F-S error computation can potentially compute error values of up to | 
|---|
| 1094 | * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be | 
|---|
| 1095 | * much less, otherwise obviously wrong pixels will be created.  (Typical | 
|---|
| 1096 | * effects include weird fringes at color-area boundaries, isolated bright | 
|---|
| 1097 | * pixels in a dark area, etc.)  The standard advice for avoiding this problem | 
|---|
| 1098 | * is to ensure that the "corners" of the color cube are allocated as output | 
|---|
| 1099 | * colors; then repeated errors in the same direction cannot cause cascading | 
|---|
| 1100 | * error buildup.  However, that only prevents the error from getting | 
|---|
| 1101 | * completely out of hand; Aaron Giles reports that error limiting improves | 
|---|
| 1102 | * the results even with corner colors allocated. | 
|---|
| 1103 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | 
|---|
| 1104 | * well, but the smoother transfer function used below is even better.  Thanks | 
|---|
| 1105 | * to Aaron Giles for this idea. | 
|---|
| 1106 | */ | 
|---|
| 1107 |  | 
|---|
| 1108 | LOCAL(void) | 
|---|
| 1109 | init_error_limit (j_decompress_ptr cinfo) | 
|---|
| 1110 | /* Allocate and fill in the error_limiter table */ | 
|---|
| 1111 | { | 
|---|
| 1112 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 1113 | int * table; | 
|---|
| 1114 | int in, out; | 
|---|
| 1115 |  | 
|---|
| 1116 | table = (int *) (*cinfo->mem->alloc_small) | 
|---|
| 1117 | ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); | 
|---|
| 1118 | table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | 
|---|
| 1119 | cquantize->error_limiter = table; | 
|---|
| 1120 |  | 
|---|
| 1121 | #define STEPSIZE ((MAXJSAMPLE+1)/16) | 
|---|
| 1122 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | 
|---|
| 1123 | out = 0; | 
|---|
| 1124 | for (in = 0; in < STEPSIZE; in++, out++) { | 
|---|
| 1125 | table[in] = out; table[-in] = -out; | 
|---|
| 1126 | } | 
|---|
| 1127 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | 
|---|
| 1128 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | 
|---|
| 1129 | table[in] = out; table[-in] = -out; | 
|---|
| 1130 | } | 
|---|
| 1131 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | 
|---|
| 1132 | for (; in <= MAXJSAMPLE; in++) { | 
|---|
| 1133 | table[in] = out; table[-in] = -out; | 
|---|
| 1134 | } | 
|---|
| 1135 | #undef STEPSIZE | 
|---|
| 1136 | } | 
|---|
| 1137 |  | 
|---|
| 1138 |  | 
|---|
| 1139 | /* | 
|---|
| 1140 | * Finish up at the end of each pass. | 
|---|
| 1141 | */ | 
|---|
| 1142 |  | 
|---|
| 1143 | METHODDEF(void) | 
|---|
| 1144 | finish_pass1 (j_decompress_ptr cinfo) | 
|---|
| 1145 | { | 
|---|
| 1146 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 1147 |  | 
|---|
| 1148 | /* Select the representative colors and fill in cinfo->colormap */ | 
|---|
| 1149 | cinfo->colormap = cquantize->sv_colormap; | 
|---|
| 1150 | select_colors(cinfo, cquantize->desired); | 
|---|
| 1151 | /* Force next pass to zero the color index table */ | 
|---|
| 1152 | cquantize->needs_zeroed = TRUE; | 
|---|
| 1153 | } | 
|---|
| 1154 |  | 
|---|
| 1155 |  | 
|---|
| 1156 | METHODDEF(void) | 
|---|
| 1157 | finish_pass2 (j_decompress_ptr cinfo) | 
|---|
| 1158 | { | 
|---|
| 1159 | /* no work */ | 
|---|
| 1160 | } | 
|---|
| 1161 |  | 
|---|
| 1162 |  | 
|---|
| 1163 | /* | 
|---|
| 1164 | * Initialize for each processing pass. | 
|---|
| 1165 | */ | 
|---|
| 1166 |  | 
|---|
| 1167 | METHODDEF(void) | 
|---|
| 1168 | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | 
|---|
| 1169 | { | 
|---|
| 1170 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 1171 | hist3d histogram = cquantize->histogram; | 
|---|
| 1172 | int i; | 
|---|
| 1173 |  | 
|---|
| 1174 | /* Only F-S dithering or no dithering is supported. */ | 
|---|
| 1175 | /* If user asks for ordered dither, give him F-S. */ | 
|---|
| 1176 | if (cinfo->dither_mode != JDITHER_NONE) | 
|---|
| 1177 | cinfo->dither_mode = JDITHER_FS; | 
|---|
| 1178 |  | 
|---|
| 1179 | if (is_pre_scan) { | 
|---|
| 1180 | /* Set up method pointers */ | 
|---|
| 1181 | cquantize->pub.color_quantize = prescan_quantize; | 
|---|
| 1182 | cquantize->pub.finish_pass = finish_pass1; | 
|---|
| 1183 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ | 
|---|
| 1184 | } else { | 
|---|
| 1185 | /* Set up method pointers */ | 
|---|
| 1186 | if (cinfo->dither_mode == JDITHER_FS) | 
|---|
| 1187 | cquantize->pub.color_quantize = pass2_fs_dither; | 
|---|
| 1188 | else | 
|---|
| 1189 | cquantize->pub.color_quantize = pass2_no_dither; | 
|---|
| 1190 | cquantize->pub.finish_pass = finish_pass2; | 
|---|
| 1191 |  | 
|---|
| 1192 | /* Make sure color count is acceptable */ | 
|---|
| 1193 | i = cinfo->actual_number_of_colors; | 
|---|
| 1194 | if (i < 1) | 
|---|
| 1195 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); | 
|---|
| 1196 | if (i > MAXNUMCOLORS) | 
|---|
| 1197 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | 
|---|
| 1198 |  | 
|---|
| 1199 | if (cinfo->dither_mode == JDITHER_FS) { | 
|---|
| 1200 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * | 
|---|
| 1201 | (3 * SIZEOF(FSERROR))); | 
|---|
| 1202 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ | 
|---|
| 1203 | if (cquantize->fserrors == NULL) | 
|---|
| 1204 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | 
|---|
| 1205 | ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | 
|---|
| 1206 | /* Initialize the propagated errors to zero. */ | 
|---|
| 1207 | FMEMZERO((void FAR *) cquantize->fserrors, arraysize); | 
|---|
| 1208 | /* Make the error-limit table if we didn't already. */ | 
|---|
| 1209 | if (cquantize->error_limiter == NULL) | 
|---|
| 1210 | init_error_limit(cinfo); | 
|---|
| 1211 | cquantize->on_odd_row = FALSE; | 
|---|
| 1212 | } | 
|---|
| 1213 |  | 
|---|
| 1214 | } | 
|---|
| 1215 | /* Zero the histogram or inverse color map, if necessary */ | 
|---|
| 1216 | if (cquantize->needs_zeroed) { | 
|---|
| 1217 | for (i = 0; i < HIST_C0_ELEMS; i++) { | 
|---|
| 1218 | FMEMZERO((void FAR *) histogram[i], | 
|---|
| 1219 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | 
|---|
| 1220 | } | 
|---|
| 1221 | cquantize->needs_zeroed = FALSE; | 
|---|
| 1222 | } | 
|---|
| 1223 | } | 
|---|
| 1224 |  | 
|---|
| 1225 |  | 
|---|
| 1226 | /* | 
|---|
| 1227 | * Switch to a new external colormap between output passes. | 
|---|
| 1228 | */ | 
|---|
| 1229 |  | 
|---|
| 1230 | METHODDEF(void) | 
|---|
| 1231 | new_color_map_2_quant (j_decompress_ptr cinfo) | 
|---|
| 1232 | { | 
|---|
| 1233 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|---|
| 1234 |  | 
|---|
| 1235 | /* Reset the inverse color map */ | 
|---|
| 1236 | cquantize->needs_zeroed = TRUE; | 
|---|
| 1237 | } | 
|---|
| 1238 |  | 
|---|
| 1239 |  | 
|---|
| 1240 | /* | 
|---|
| 1241 | * Module initialization routine for 2-pass color quantization. | 
|---|
| 1242 | */ | 
|---|
| 1243 |  | 
|---|
| 1244 | GLOBAL(void) | 
|---|
| 1245 | jinit_2pass_quantizer (j_decompress_ptr cinfo) | 
|---|
| 1246 | { | 
|---|
| 1247 | my_cquantize_ptr cquantize; | 
|---|
| 1248 | int i; | 
|---|
| 1249 |  | 
|---|
| 1250 | cquantize = (my_cquantize_ptr) | 
|---|
| 1251 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 1252 | SIZEOF(my_cquantizer)); | 
|---|
| 1253 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | 
|---|
| 1254 | cquantize->pub.start_pass = start_pass_2_quant; | 
|---|
| 1255 | cquantize->pub.new_color_map = new_color_map_2_quant; | 
|---|
| 1256 | cquantize->fserrors = NULL;	/* flag optional arrays not allocated */ | 
|---|
| 1257 | cquantize->error_limiter = NULL; | 
|---|
| 1258 |  | 
|---|
| 1259 | /* Make sure jdmaster didn't give me a case I can't handle */ | 
|---|
| 1260 | if (cinfo->out_color_components != 3) | 
|---|
| 1261 | ERREXIT(cinfo, JERR_NOTIMPL); | 
|---|
| 1262 |  | 
|---|
| 1263 | /* Allocate the histogram/inverse colormap storage */ | 
|---|
| 1264 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) | 
|---|
| 1265 | ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); | 
|---|
| 1266 | for (i = 0; i < HIST_C0_ELEMS; i++) { | 
|---|
| 1267 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) | 
|---|
| 1268 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 1269 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | 
|---|
| 1270 | } | 
|---|
| 1271 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ | 
|---|
| 1272 |  | 
|---|
| 1273 | /* Allocate storage for the completed colormap, if required. | 
|---|
| 1274 | * We do this now since it is FAR storage and may affect | 
|---|
| 1275 | * the memory manager's space calculations. | 
|---|
| 1276 | */ | 
|---|
| 1277 | if (cinfo->enable_2pass_quant) { | 
|---|
| 1278 | /* Make sure color count is acceptable */ | 
|---|
| 1279 | int desired = cinfo->desired_number_of_colors; | 
|---|
| 1280 | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ | 
|---|
| 1281 | if (desired < 8) | 
|---|
| 1282 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); | 
|---|
| 1283 | /* Make sure colormap indexes can be represented by JSAMPLEs */ | 
|---|
| 1284 | if (desired > MAXNUMCOLORS) | 
|---|
| 1285 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | 
|---|
| 1286 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) | 
|---|
| 1287 | ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); | 
|---|
| 1288 | cquantize->desired = desired; | 
|---|
| 1289 | } else | 
|---|
| 1290 | cquantize->sv_colormap = NULL; | 
|---|
| 1291 |  | 
|---|
| 1292 | /* Only F-S dithering or no dithering is supported. */ | 
|---|
| 1293 | /* If user asks for ordered dither, give him F-S. */ | 
|---|
| 1294 | if (cinfo->dither_mode != JDITHER_NONE) | 
|---|
| 1295 | cinfo->dither_mode = JDITHER_FS; | 
|---|
| 1296 |  | 
|---|
| 1297 | /* Allocate Floyd-Steinberg workspace if necessary. | 
|---|
| 1298 | * This isn't really needed until pass 2, but again it is FAR storage. | 
|---|
| 1299 | * Although we will cope with a later change in dither_mode, | 
|---|
| 1300 | * we do not promise to honor max_memory_to_use if dither_mode changes. | 
|---|
| 1301 | */ | 
|---|
| 1302 | if (cinfo->dither_mode == JDITHER_FS) { | 
|---|
| 1303 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | 
|---|
| 1304 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|---|
| 1305 | (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); | 
|---|
| 1306 | /* Might as well create the error-limiting table too. */ | 
|---|
| 1307 | init_error_limit(cinfo); | 
|---|
| 1308 | } | 
|---|
| 1309 | } | 
|---|
| 1310 |  | 
|---|
| 1311 | #endif /* QUANT_2PASS_SUPPORTED */ | 
|---|
| 1312 |  | 
|---|