| 1 | /* |
| 2 | * The copyright in this software is being made available under the 2-clauses |
| 3 | * BSD License, included below. This software may be subject to other third |
| 4 | * party and contributor rights, including patent rights, and no such rights |
| 5 | * are granted under this license. |
| 6 | * |
| 7 | * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium |
| 8 | * Copyright (c) 2002-2014, Professor Benoit Macq |
| 9 | * Copyright (c) 2001-2003, David Janssens |
| 10 | * Copyright (c) 2002-2003, Yannick Verschueren |
| 11 | * Copyright (c) 2003-2007, Francois-Olivier Devaux |
| 12 | * Copyright (c) 2003-2014, Antonin Descampe |
| 13 | * Copyright (c) 2005, Herve Drolon, FreeImage Team |
| 14 | * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> |
| 15 | * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> |
| 16 | * Copyright (c) 2017, IntoPIX SA <support@intopix.com> |
| 17 | * All rights reserved. |
| 18 | * |
| 19 | * Redistribution and use in source and binary forms, with or without |
| 20 | * modification, are permitted provided that the following conditions |
| 21 | * are met: |
| 22 | * 1. Redistributions of source code must retain the above copyright |
| 23 | * notice, this list of conditions and the following disclaimer. |
| 24 | * 2. Redistributions in binary form must reproduce the above copyright |
| 25 | * notice, this list of conditions and the following disclaimer in the |
| 26 | * documentation and/or other materials provided with the distribution. |
| 27 | * |
| 28 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' |
| 29 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 30 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 31 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 32 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 33 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 34 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 35 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 36 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 37 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 38 | * POSSIBILITY OF SUCH DAMAGE. |
| 39 | */ |
| 40 | |
| 41 | #include <assert.h> |
| 42 | |
| 43 | #define OPJ_SKIP_POISON |
| 44 | #include "opj_includes.h" |
| 45 | |
| 46 | #ifdef __SSE__ |
| 47 | #include <xmmintrin.h> |
| 48 | #endif |
| 49 | #ifdef __SSE2__ |
| 50 | #include <emmintrin.h> |
| 51 | #endif |
| 52 | #ifdef __SSSE3__ |
| 53 | #include <tmmintrin.h> |
| 54 | #endif |
| 55 | #ifdef __AVX2__ |
| 56 | #include <immintrin.h> |
| 57 | #endif |
| 58 | |
| 59 | #if defined(__GNUC__) |
| 60 | #pragma GCC poison malloc calloc realloc free |
| 61 | #endif |
| 62 | |
| 63 | /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ |
| 64 | /*@{*/ |
| 65 | |
| 66 | #define OPJ_WS(i) v->mem[(i)*2] |
| 67 | #define OPJ_WD(i) v->mem[(1+(i)*2)] |
| 68 | |
| 69 | #ifdef __AVX2__ |
| 70 | /** Number of int32 values in a AVX2 register */ |
| 71 | #define VREG_INT_COUNT 8 |
| 72 | #else |
| 73 | /** Number of int32 values in a SSE2 register */ |
| 74 | #define VREG_INT_COUNT 4 |
| 75 | #endif |
| 76 | |
| 77 | /** Number of columns that we can process in parallel in the vertical pass */ |
| 78 | #define PARALLEL_COLS_53 (2*VREG_INT_COUNT) |
| 79 | |
| 80 | /** @name Local data structures */ |
| 81 | /*@{*/ |
| 82 | |
| 83 | typedef struct dwt_local { |
| 84 | OPJ_INT32* mem; |
| 85 | OPJ_INT32 dn; /* number of elements in high pass band */ |
| 86 | OPJ_INT32 sn; /* number of elements in low pass band */ |
| 87 | OPJ_INT32 cas; /* 0 = start on even coord, 1 = start on odd coord */ |
| 88 | } opj_dwt_t; |
| 89 | |
| 90 | typedef union { |
| 91 | OPJ_FLOAT32 f[4]; |
| 92 | } opj_v4_t; |
| 93 | |
| 94 | typedef struct v4dwt_local { |
| 95 | opj_v4_t* wavelet ; |
| 96 | OPJ_INT32 dn ; /* number of elements in high pass band */ |
| 97 | OPJ_INT32 sn ; /* number of elements in low pass band */ |
| 98 | OPJ_INT32 cas ; /* 0 = start on even coord, 1 = start on odd coord */ |
| 99 | OPJ_UINT32 win_l_x0; /* start coord in low pass band */ |
| 100 | OPJ_UINT32 win_l_x1; /* end coord in low pass band */ |
| 101 | OPJ_UINT32 win_h_x0; /* start coord in high pass band */ |
| 102 | OPJ_UINT32 win_h_x1; /* end coord in high pass band */ |
| 103 | } opj_v4dwt_t ; |
| 104 | |
| 105 | static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */ |
| 106 | static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */ |
| 107 | static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */ |
| 108 | static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */ |
| 109 | |
| 110 | static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */ |
| 111 | static const OPJ_FLOAT32 opj_c13318 = 1.625732422f; |
| 112 | |
| 113 | /*@}*/ |
| 114 | |
| 115 | /** |
| 116 | Virtual function type for wavelet transform in 1-D |
| 117 | */ |
| 118 | typedef void (*DWT1DFN)(const opj_dwt_t* v); |
| 119 | |
| 120 | /** @name Local static functions */ |
| 121 | /*@{*/ |
| 122 | |
| 123 | /** |
| 124 | Forward lazy transform (horizontal) |
| 125 | */ |
| 126 | static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, |
| 127 | OPJ_INT32 sn, OPJ_INT32 cas); |
| 128 | /** |
| 129 | Forward lazy transform (vertical) |
| 130 | */ |
| 131 | static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, |
| 132 | OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); |
| 133 | /** |
| 134 | Forward 5-3 wavelet transform in 1-D |
| 135 | */ |
| 136 | static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 137 | OPJ_INT32 cas); |
| 138 | /** |
| 139 | Forward 9-7 wavelet transform in 1-D |
| 140 | */ |
| 141 | static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 142 | OPJ_INT32 cas); |
| 143 | /** |
| 144 | Explicit calculation of the Quantization Stepsizes |
| 145 | */ |
| 146 | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
| 147 | opj_stepsize_t *bandno_stepsize); |
| 148 | /** |
| 149 | Inverse wavelet transform in 2-D. |
| 150 | */ |
| 151 | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
| 152 | opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i); |
| 153 | |
| 154 | static OPJ_BOOL opj_dwt_decode_partial_tile( |
| 155 | opj_tcd_tilecomp_t* tilec, |
| 156 | OPJ_UINT32 numres); |
| 157 | |
| 158 | static OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec, |
| 159 | void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32)); |
| 160 | |
| 161 | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
| 162 | OPJ_UINT32 i); |
| 163 | |
| 164 | /* <summary> */ |
| 165 | /* Inverse 9-7 wavelet transform in 1-D. */ |
| 166 | /* </summary> */ |
| 167 | static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt); |
| 168 | |
| 169 | static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt, |
| 170 | OPJ_FLOAT32* OPJ_RESTRICT a, |
| 171 | OPJ_UINT32 width, |
| 172 | OPJ_UINT32 remaining_height); |
| 173 | |
| 174 | static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt, |
| 175 | OPJ_FLOAT32* OPJ_RESTRICT a, |
| 176 | OPJ_UINT32 width, |
| 177 | OPJ_UINT32 nb_elts_read); |
| 178 | |
| 179 | #ifdef __SSE__ |
| 180 | static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, |
| 181 | OPJ_UINT32 start, |
| 182 | OPJ_UINT32 end, |
| 183 | const __m128 c); |
| 184 | |
| 185 | static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, |
| 186 | OPJ_UINT32 start, |
| 187 | OPJ_UINT32 end, |
| 188 | OPJ_UINT32 m, __m128 c); |
| 189 | |
| 190 | #else |
| 191 | static void opj_v4dwt_decode_step1(opj_v4_t* w, |
| 192 | OPJ_UINT32 start, |
| 193 | OPJ_UINT32 end, |
| 194 | const OPJ_FLOAT32 c); |
| 195 | |
| 196 | static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, |
| 197 | OPJ_UINT32 start, |
| 198 | OPJ_UINT32 end, |
| 199 | OPJ_UINT32 m, |
| 200 | OPJ_FLOAT32 c); |
| 201 | |
| 202 | #endif |
| 203 | |
| 204 | /*@}*/ |
| 205 | |
| 206 | /*@}*/ |
| 207 | |
| 208 | #define OPJ_S(i) a[(i)*2] |
| 209 | #define OPJ_D(i) a[(1+(i)*2)] |
| 210 | #define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i))) |
| 211 | #define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i))) |
| 212 | /* new */ |
| 213 | #define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i))) |
| 214 | #define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i))) |
| 215 | |
| 216 | /* <summary> */ |
| 217 | /* This table contains the norms of the 5-3 wavelets for different bands. */ |
| 218 | /* </summary> */ |
| 219 | /* FIXME! the array should really be extended up to 33 resolution levels */ |
| 220 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| 221 | static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { |
| 222 | {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, |
| 223 | {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| 224 | {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, |
| 225 | {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} |
| 226 | }; |
| 227 | |
| 228 | /* <summary> */ |
| 229 | /* This table contains the norms of the 9-7 wavelets for different bands. */ |
| 230 | /* </summary> */ |
| 231 | /* FIXME! the array should really be extended up to 33 resolution levels */ |
| 232 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| 233 | static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { |
| 234 | {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, |
| 235 | {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| 236 | {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, |
| 237 | {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} |
| 238 | }; |
| 239 | |
| 240 | /* |
| 241 | ========================================================== |
| 242 | local functions |
| 243 | ========================================================== |
| 244 | */ |
| 245 | |
| 246 | /* <summary> */ |
| 247 | /* Forward lazy transform (horizontal). */ |
| 248 | /* </summary> */ |
| 249 | static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, |
| 250 | OPJ_INT32 sn, OPJ_INT32 cas) |
| 251 | { |
| 252 | OPJ_INT32 i; |
| 253 | OPJ_INT32 * l_dest = b; |
| 254 | OPJ_INT32 * l_src = a + cas; |
| 255 | |
| 256 | for (i = 0; i < sn; ++i) { |
| 257 | *l_dest++ = *l_src; |
| 258 | l_src += 2; |
| 259 | } |
| 260 | |
| 261 | l_dest = b + sn; |
| 262 | l_src = a + 1 - cas; |
| 263 | |
| 264 | for (i = 0; i < dn; ++i) { |
| 265 | *l_dest++ = *l_src; |
| 266 | l_src += 2; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /* <summary> */ |
| 271 | /* Forward lazy transform (vertical). */ |
| 272 | /* </summary> */ |
| 273 | static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, |
| 274 | OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) |
| 275 | { |
| 276 | OPJ_INT32 i = sn; |
| 277 | OPJ_INT32 * l_dest = b; |
| 278 | OPJ_INT32 * l_src = a + cas; |
| 279 | |
| 280 | while (i--) { |
| 281 | *l_dest = *l_src; |
| 282 | l_dest += x; |
| 283 | l_src += 2; |
| 284 | } /* b[i*x]=a[2*i+cas]; */ |
| 285 | |
| 286 | l_dest = b + (OPJ_SIZE_T)sn * (OPJ_SIZE_T)x; |
| 287 | l_src = a + 1 - cas; |
| 288 | |
| 289 | i = dn; |
| 290 | while (i--) { |
| 291 | *l_dest = *l_src; |
| 292 | l_dest += x; |
| 293 | l_src += 2; |
| 294 | } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ |
| 295 | } |
| 296 | |
| 297 | #ifdef STANDARD_SLOW_VERSION |
| 298 | /* <summary> */ |
| 299 | /* Inverse lazy transform (horizontal). */ |
| 300 | /* </summary> */ |
| 301 | static void opj_dwt_interleave_h(const opj_dwt_t* h, OPJ_INT32 *a) |
| 302 | { |
| 303 | OPJ_INT32 *ai = a; |
| 304 | OPJ_INT32 *bi = h->mem + h->cas; |
| 305 | OPJ_INT32 i = h->sn; |
| 306 | while (i--) { |
| 307 | *bi = *(ai++); |
| 308 | bi += 2; |
| 309 | } |
| 310 | ai = a + h->sn; |
| 311 | bi = h->mem + 1 - h->cas; |
| 312 | i = h->dn ; |
| 313 | while (i--) { |
| 314 | *bi = *(ai++); |
| 315 | bi += 2; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | /* <summary> */ |
| 320 | /* Inverse lazy transform (vertical). */ |
| 321 | /* </summary> */ |
| 322 | static void opj_dwt_interleave_v(const opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) |
| 323 | { |
| 324 | OPJ_INT32 *ai = a; |
| 325 | OPJ_INT32 *bi = v->mem + v->cas; |
| 326 | OPJ_INT32 i = v->sn; |
| 327 | while (i--) { |
| 328 | *bi = *ai; |
| 329 | bi += 2; |
| 330 | ai += x; |
| 331 | } |
| 332 | ai = a + (v->sn * (OPJ_SIZE_T)x); |
| 333 | bi = v->mem + 1 - v->cas; |
| 334 | i = v->dn ; |
| 335 | while (i--) { |
| 336 | *bi = *ai; |
| 337 | bi += 2; |
| 338 | ai += x; |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #endif /* STANDARD_SLOW_VERSION */ |
| 343 | |
| 344 | /* <summary> */ |
| 345 | /* Forward 5-3 wavelet transform in 1-D. */ |
| 346 | /* </summary> */ |
| 347 | static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 348 | OPJ_INT32 cas) |
| 349 | { |
| 350 | OPJ_INT32 i; |
| 351 | |
| 352 | if (!cas) { |
| 353 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 354 | for (i = 0; i < dn; i++) { |
| 355 | OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| 356 | } |
| 357 | for (i = 0; i < sn; i++) { |
| 358 | OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 359 | } |
| 360 | } |
| 361 | } else { |
| 362 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| 363 | OPJ_S(0) *= 2; |
| 364 | } else { |
| 365 | for (i = 0; i < dn; i++) { |
| 366 | OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| 367 | } |
| 368 | for (i = 0; i < sn; i++) { |
| 369 | OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| 370 | } |
| 371 | } |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | #ifdef STANDARD_SLOW_VERSION |
| 376 | /* <summary> */ |
| 377 | /* Inverse 5-3 wavelet transform in 1-D. */ |
| 378 | /* </summary> */ |
| 379 | static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 380 | OPJ_INT32 cas) |
| 381 | { |
| 382 | OPJ_INT32 i; |
| 383 | |
| 384 | if (!cas) { |
| 385 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 386 | for (i = 0; i < sn; i++) { |
| 387 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 388 | } |
| 389 | for (i = 0; i < dn; i++) { |
| 390 | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| 391 | } |
| 392 | } |
| 393 | } else { |
| 394 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| 395 | OPJ_S(0) /= 2; |
| 396 | } else { |
| 397 | for (i = 0; i < sn; i++) { |
| 398 | OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| 399 | } |
| 400 | for (i = 0; i < dn; i++) { |
| 401 | OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | static void opj_dwt_decode_1(const opj_dwt_t *v) |
| 408 | { |
| 409 | opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas); |
| 410 | } |
| 411 | |
| 412 | #endif /* STANDARD_SLOW_VERSION */ |
| 413 | |
| 414 | #if !defined(STANDARD_SLOW_VERSION) |
| 415 | static void opj_idwt53_h_cas0(OPJ_INT32* tmp, |
| 416 | const OPJ_INT32 sn, |
| 417 | const OPJ_INT32 len, |
| 418 | OPJ_INT32* tiledp) |
| 419 | { |
| 420 | OPJ_INT32 i, j; |
| 421 | const OPJ_INT32* in_even = &tiledp[0]; |
| 422 | const OPJ_INT32* in_odd = &tiledp[sn]; |
| 423 | |
| 424 | #ifdef TWO_PASS_VERSION |
| 425 | /* For documentation purpose: performs lifting in two iterations, */ |
| 426 | /* but without explicit interleaving */ |
| 427 | |
| 428 | assert(len > 1); |
| 429 | |
| 430 | /* Even */ |
| 431 | tmp[0] = in_even[0] - ((in_odd[0] + 1) >> 1); |
| 432 | for (i = 2, j = 0; i <= len - 2; i += 2, j++) { |
| 433 | tmp[i] = in_even[j + 1] - ((in_odd[j] + in_odd[j + 1] + 2) >> 2); |
| 434 | } |
| 435 | if (len & 1) { /* if len is odd */ |
| 436 | tmp[len - 1] = in_even[(len - 1) / 2] - ((in_odd[(len - 2) / 2] + 1) >> 1); |
| 437 | } |
| 438 | |
| 439 | /* Odd */ |
| 440 | for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
| 441 | tmp[i] = in_odd[j] + ((tmp[i - 1] + tmp[i + 1]) >> 1); |
| 442 | } |
| 443 | if (!(len & 1)) { /* if len is even */ |
| 444 | tmp[len - 1] = in_odd[(len - 1) / 2] + tmp[len - 2]; |
| 445 | } |
| 446 | #else |
| 447 | OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
| 448 | |
| 449 | assert(len > 1); |
| 450 | |
| 451 | /* Improved version of the TWO_PASS_VERSION: */ |
| 452 | /* Performs lifting in one single iteration. Saves memory */ |
| 453 | /* accesses and explicit interleaving. */ |
| 454 | s1n = in_even[0]; |
| 455 | d1n = in_odd[0]; |
| 456 | s0n = s1n - ((d1n + 1) >> 1); |
| 457 | |
| 458 | for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
| 459 | d1c = d1n; |
| 460 | s0c = s0n; |
| 461 | |
| 462 | s1n = in_even[j]; |
| 463 | d1n = in_odd[j]; |
| 464 | |
| 465 | s0n = s1n - ((d1c + d1n + 2) >> 2); |
| 466 | |
| 467 | tmp[i ] = s0c; |
| 468 | tmp[i + 1] = d1c + ((s0c + s0n) >> 1); |
| 469 | } |
| 470 | |
| 471 | tmp[i] = s0n; |
| 472 | |
| 473 | if (len & 1) { |
| 474 | tmp[len - 1] = in_even[(len - 1) / 2] - ((d1n + 1) >> 1); |
| 475 | tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
| 476 | } else { |
| 477 | tmp[len - 1] = d1n + s0n; |
| 478 | } |
| 479 | #endif |
| 480 | memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| 481 | } |
| 482 | |
| 483 | static void opj_idwt53_h_cas1(OPJ_INT32* tmp, |
| 484 | const OPJ_INT32 sn, |
| 485 | const OPJ_INT32 len, |
| 486 | OPJ_INT32* tiledp) |
| 487 | { |
| 488 | OPJ_INT32 i, j; |
| 489 | const OPJ_INT32* in_even = &tiledp[sn]; |
| 490 | const OPJ_INT32* in_odd = &tiledp[0]; |
| 491 | |
| 492 | #ifdef TWO_PASS_VERSION |
| 493 | /* For documentation purpose: performs lifting in two iterations, */ |
| 494 | /* but without explicit interleaving */ |
| 495 | |
| 496 | assert(len > 2); |
| 497 | |
| 498 | /* Odd */ |
| 499 | for (i = 1, j = 0; i < len - 1; i += 2, j++) { |
| 500 | tmp[i] = in_odd[j] - ((in_even[j] + in_even[j + 1] + 2) >> 2); |
| 501 | } |
| 502 | if (!(len & 1)) { |
| 503 | tmp[len - 1] = in_odd[len / 2 - 1] - ((in_even[len / 2 - 1] + 1) >> 1); |
| 504 | } |
| 505 | |
| 506 | /* Even */ |
| 507 | tmp[0] = in_even[0] + tmp[1]; |
| 508 | for (i = 2, j = 1; i < len - 1; i += 2, j++) { |
| 509 | tmp[i] = in_even[j] + ((tmp[i + 1] + tmp[i - 1]) >> 1); |
| 510 | } |
| 511 | if (len & 1) { |
| 512 | tmp[len - 1] = in_even[len / 2] + tmp[len - 2]; |
| 513 | } |
| 514 | #else |
| 515 | OPJ_INT32 s1, s2, dc, dn; |
| 516 | |
| 517 | assert(len > 2); |
| 518 | |
| 519 | /* Improved version of the TWO_PASS_VERSION: */ |
| 520 | /* Performs lifting in one single iteration. Saves memory */ |
| 521 | /* accesses and explicit interleaving. */ |
| 522 | |
| 523 | s1 = in_even[1]; |
| 524 | dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
| 525 | tmp[0] = in_even[0] + dc; |
| 526 | |
| 527 | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| 528 | |
| 529 | s2 = in_even[j + 1]; |
| 530 | |
| 531 | dn = in_odd[j] - ((s1 + s2 + 2) >> 2); |
| 532 | tmp[i ] = dc; |
| 533 | tmp[i + 1] = s1 + ((dn + dc) >> 1); |
| 534 | |
| 535 | dc = dn; |
| 536 | s1 = s2; |
| 537 | } |
| 538 | |
| 539 | tmp[i] = dc; |
| 540 | |
| 541 | if (!(len & 1)) { |
| 542 | dn = in_odd[len / 2 - 1] - ((s1 + 1) >> 1); |
| 543 | tmp[len - 2] = s1 + ((dn + dc) >> 1); |
| 544 | tmp[len - 1] = dn; |
| 545 | } else { |
| 546 | tmp[len - 1] = s1 + dc; |
| 547 | } |
| 548 | #endif |
| 549 | memcpy(tiledp, tmp, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| 550 | } |
| 551 | |
| 552 | |
| 553 | #endif /* !defined(STANDARD_SLOW_VERSION) */ |
| 554 | |
| 555 | /* <summary> */ |
| 556 | /* Inverse 5-3 wavelet transform in 1-D for one row. */ |
| 557 | /* </summary> */ |
| 558 | /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
| 559 | static void opj_idwt53_h(const opj_dwt_t *dwt, |
| 560 | OPJ_INT32* tiledp) |
| 561 | { |
| 562 | #ifdef STANDARD_SLOW_VERSION |
| 563 | /* For documentation purpose */ |
| 564 | opj_dwt_interleave_h(dwt, tiledp); |
| 565 | opj_dwt_decode_1(dwt); |
| 566 | memcpy(tiledp, dwt->mem, (OPJ_UINT32)(dwt->sn + dwt->dn) * sizeof(OPJ_INT32)); |
| 567 | #else |
| 568 | const OPJ_INT32 sn = dwt->sn; |
| 569 | const OPJ_INT32 len = sn + dwt->dn; |
| 570 | if (dwt->cas == 0) { /* Left-most sample is on even coordinate */ |
| 571 | if (len > 1) { |
| 572 | opj_idwt53_h_cas0(dwt->mem, sn, len, tiledp); |
| 573 | } else { |
| 574 | /* Unmodified value */ |
| 575 | } |
| 576 | } else { /* Left-most sample is on odd coordinate */ |
| 577 | if (len == 1) { |
| 578 | tiledp[0] /= 2; |
| 579 | } else if (len == 2) { |
| 580 | OPJ_INT32* out = dwt->mem; |
| 581 | const OPJ_INT32* in_even = &tiledp[sn]; |
| 582 | const OPJ_INT32* in_odd = &tiledp[0]; |
| 583 | out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
| 584 | out[0] = in_even[0] + out[1]; |
| 585 | memcpy(tiledp, dwt->mem, (OPJ_UINT32)len * sizeof(OPJ_INT32)); |
| 586 | } else if (len > 2) { |
| 587 | opj_idwt53_h_cas1(dwt->mem, sn, len, tiledp); |
| 588 | } |
| 589 | } |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | #if (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) |
| 594 | |
| 595 | /* Conveniency macros to improve the readabilty of the formulas */ |
| 596 | #if __AVX2__ |
| 597 | #define VREG __m256i |
| 598 | #define LOAD_CST(x) _mm256_set1_epi32(x) |
| 599 | #define LOAD(x) _mm256_load_si256((const VREG*)(x)) |
| 600 | #define LOADU(x) _mm256_loadu_si256((const VREG*)(x)) |
| 601 | #define STORE(x,y) _mm256_store_si256((VREG*)(x),(y)) |
| 602 | #define STOREU(x,y) _mm256_storeu_si256((VREG*)(x),(y)) |
| 603 | #define ADD(x,y) _mm256_add_epi32((x),(y)) |
| 604 | #define SUB(x,y) _mm256_sub_epi32((x),(y)) |
| 605 | #define SAR(x,y) _mm256_srai_epi32((x),(y)) |
| 606 | #else |
| 607 | #define VREG __m128i |
| 608 | #define LOAD_CST(x) _mm_set1_epi32(x) |
| 609 | #define LOAD(x) _mm_load_si128((const VREG*)(x)) |
| 610 | #define LOADU(x) _mm_loadu_si128((const VREG*)(x)) |
| 611 | #define STORE(x,y) _mm_store_si128((VREG*)(x),(y)) |
| 612 | #define STOREU(x,y) _mm_storeu_si128((VREG*)(x),(y)) |
| 613 | #define ADD(x,y) _mm_add_epi32((x),(y)) |
| 614 | #define SUB(x,y) _mm_sub_epi32((x),(y)) |
| 615 | #define SAR(x,y) _mm_srai_epi32((x),(y)) |
| 616 | #endif |
| 617 | #define ADD3(x,y,z) ADD(ADD(x,y),z) |
| 618 | |
| 619 | static |
| 620 | void opj_idwt53_v_final_memcpy(OPJ_INT32* tiledp_col, |
| 621 | const OPJ_INT32* tmp, |
| 622 | OPJ_INT32 len, |
| 623 | OPJ_SIZE_T stride) |
| 624 | { |
| 625 | OPJ_INT32 i; |
| 626 | for (i = 0; i < len; ++i) { |
| 627 | /* A memcpy(&tiledp_col[i * stride + 0], |
| 628 | &tmp[PARALLEL_COLS_53 * i + 0], |
| 629 | PARALLEL_COLS_53 * sizeof(OPJ_INT32)) |
| 630 | would do but would be a tiny bit slower. |
| 631 | We can take here advantage of our knowledge of alignment */ |
| 632 | STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + 0], |
| 633 | LOAD(&tmp[PARALLEL_COLS_53 * i + 0])); |
| 634 | STOREU(&tiledp_col[(OPJ_SIZE_T)i * stride + VREG_INT_COUNT], |
| 635 | LOAD(&tmp[PARALLEL_COLS_53 * i + VREG_INT_COUNT])); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
| 640 | * 16 in AVX2, when top-most pixel is on even coordinate */ |
| 641 | static void opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2( |
| 642 | OPJ_INT32* tmp, |
| 643 | const OPJ_INT32 sn, |
| 644 | const OPJ_INT32 len, |
| 645 | OPJ_INT32* tiledp_col, |
| 646 | const OPJ_SIZE_T stride) |
| 647 | { |
| 648 | const OPJ_INT32* in_even = &tiledp_col[0]; |
| 649 | const OPJ_INT32* in_odd = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| 650 | |
| 651 | OPJ_INT32 i; |
| 652 | OPJ_SIZE_T j; |
| 653 | VREG d1c_0, d1n_0, s1n_0, s0c_0, s0n_0; |
| 654 | VREG d1c_1, d1n_1, s1n_1, s0c_1, s0n_1; |
| 655 | const VREG two = LOAD_CST(2); |
| 656 | |
| 657 | assert(len > 1); |
| 658 | #if __AVX2__ |
| 659 | assert(PARALLEL_COLS_53 == 16); |
| 660 | assert(VREG_INT_COUNT == 8); |
| 661 | #else |
| 662 | assert(PARALLEL_COLS_53 == 8); |
| 663 | assert(VREG_INT_COUNT == 4); |
| 664 | #endif |
| 665 | |
| 666 | /* Note: loads of input even/odd values must be done in a unaligned */ |
| 667 | /* fashion. But stores in tmp can be done with aligned store, since */ |
| 668 | /* the temporary buffer is properly aligned */ |
| 669 | assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
| 670 | |
| 671 | s1n_0 = LOADU(in_even + 0); |
| 672 | s1n_1 = LOADU(in_even + VREG_INT_COUNT); |
| 673 | d1n_0 = LOADU(in_odd); |
| 674 | d1n_1 = LOADU(in_odd + VREG_INT_COUNT); |
| 675 | |
| 676 | /* s0n = s1n - ((d1n + 1) >> 1); <==> */ |
| 677 | /* s0n = s1n - ((d1n + d1n + 2) >> 2); */ |
| 678 | s0n_0 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
| 679 | s0n_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
| 680 | |
| 681 | for (i = 0, j = 1; i < (len - 3); i += 2, j++) { |
| 682 | d1c_0 = d1n_0; |
| 683 | s0c_0 = s0n_0; |
| 684 | d1c_1 = d1n_1; |
| 685 | s0c_1 = s0n_1; |
| 686 | |
| 687 | s1n_0 = LOADU(in_even + j * stride); |
| 688 | s1n_1 = LOADU(in_even + j * stride + VREG_INT_COUNT); |
| 689 | d1n_0 = LOADU(in_odd + j * stride); |
| 690 | d1n_1 = LOADU(in_odd + j * stride + VREG_INT_COUNT); |
| 691 | |
| 692 | /*s0n = s1n - ((d1c + d1n + 2) >> 2);*/ |
| 693 | s0n_0 = SUB(s1n_0, SAR(ADD3(d1c_0, d1n_0, two), 2)); |
| 694 | s0n_1 = SUB(s1n_1, SAR(ADD3(d1c_1, d1n_1, two), 2)); |
| 695 | |
| 696 | STORE(tmp + PARALLEL_COLS_53 * (i + 0), s0c_0); |
| 697 | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0c_1); |
| 698 | |
| 699 | /* d1c + ((s0c + s0n) >> 1) */ |
| 700 | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
| 701 | ADD(d1c_0, SAR(ADD(s0c_0, s0n_0), 1))); |
| 702 | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
| 703 | ADD(d1c_1, SAR(ADD(s0c_1, s0n_1), 1))); |
| 704 | } |
| 705 | |
| 706 | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + 0, s0n_0); |
| 707 | STORE(tmp + PARALLEL_COLS_53 * (i + 0) + VREG_INT_COUNT, s0n_1); |
| 708 | |
| 709 | if (len & 1) { |
| 710 | VREG tmp_len_minus_1; |
| 711 | s1n_0 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride); |
| 712 | /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
| 713 | tmp_len_minus_1 = SUB(s1n_0, SAR(ADD3(d1n_0, d1n_0, two), 2)); |
| 714 | STORE(tmp + PARALLEL_COLS_53 * (len - 1), tmp_len_minus_1); |
| 715 | /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
| 716 | STORE(tmp + PARALLEL_COLS_53 * (len - 2), |
| 717 | ADD(d1n_0, SAR(ADD(s0n_0, tmp_len_minus_1), 1))); |
| 718 | |
| 719 | s1n_1 = LOADU(in_even + (OPJ_SIZE_T)((len - 1) / 2) * stride + VREG_INT_COUNT); |
| 720 | /* tmp_len_minus_1 = s1n - ((d1n + 1) >> 1); */ |
| 721 | tmp_len_minus_1 = SUB(s1n_1, SAR(ADD3(d1n_1, d1n_1, two), 2)); |
| 722 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| 723 | tmp_len_minus_1); |
| 724 | /* d1n + ((s0n + tmp_len_minus_1) >> 1) */ |
| 725 | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
| 726 | ADD(d1n_1, SAR(ADD(s0n_1, tmp_len_minus_1), 1))); |
| 727 | |
| 728 | |
| 729 | } else { |
| 730 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, |
| 731 | ADD(d1n_0, s0n_0)); |
| 732 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| 733 | ADD(d1n_1, s0n_1)); |
| 734 | } |
| 735 | |
| 736 | opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
| 737 | } |
| 738 | |
| 739 | |
| 740 | /** Vertical inverse 5x3 wavelet transform for 8 columns in SSE2, or |
| 741 | * 16 in AVX2, when top-most pixel is on odd coordinate */ |
| 742 | static void opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2( |
| 743 | OPJ_INT32* tmp, |
| 744 | const OPJ_INT32 sn, |
| 745 | const OPJ_INT32 len, |
| 746 | OPJ_INT32* tiledp_col, |
| 747 | const OPJ_SIZE_T stride) |
| 748 | { |
| 749 | OPJ_INT32 i; |
| 750 | OPJ_SIZE_T j; |
| 751 | |
| 752 | VREG s1_0, s2_0, dc_0, dn_0; |
| 753 | VREG s1_1, s2_1, dc_1, dn_1; |
| 754 | const VREG two = LOAD_CST(2); |
| 755 | |
| 756 | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| 757 | const OPJ_INT32* in_odd = &tiledp_col[0]; |
| 758 | |
| 759 | assert(len > 2); |
| 760 | #if __AVX2__ |
| 761 | assert(PARALLEL_COLS_53 == 16); |
| 762 | assert(VREG_INT_COUNT == 8); |
| 763 | #else |
| 764 | assert(PARALLEL_COLS_53 == 8); |
| 765 | assert(VREG_INT_COUNT == 4); |
| 766 | #endif |
| 767 | |
| 768 | /* Note: loads of input even/odd values must be done in a unaligned */ |
| 769 | /* fashion. But stores in tmp can be done with aligned store, since */ |
| 770 | /* the temporary buffer is properly aligned */ |
| 771 | assert((OPJ_SIZE_T)tmp % (sizeof(OPJ_INT32) * VREG_INT_COUNT) == 0); |
| 772 | |
| 773 | s1_0 = LOADU(in_even + stride); |
| 774 | /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
| 775 | dc_0 = SUB(LOADU(in_odd + 0), |
| 776 | SAR(ADD3(LOADU(in_even + 0), s1_0, two), 2)); |
| 777 | STORE(tmp + PARALLEL_COLS_53 * 0, ADD(LOADU(in_even + 0), dc_0)); |
| 778 | |
| 779 | s1_1 = LOADU(in_even + stride + VREG_INT_COUNT); |
| 780 | /* in_odd[0] - ((in_even[0] + s1 + 2) >> 2); */ |
| 781 | dc_1 = SUB(LOADU(in_odd + VREG_INT_COUNT), |
| 782 | SAR(ADD3(LOADU(in_even + VREG_INT_COUNT), s1_1, two), 2)); |
| 783 | STORE(tmp + PARALLEL_COLS_53 * 0 + VREG_INT_COUNT, |
| 784 | ADD(LOADU(in_even + VREG_INT_COUNT), dc_1)); |
| 785 | |
| 786 | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| 787 | |
| 788 | s2_0 = LOADU(in_even + (j + 1) * stride); |
| 789 | s2_1 = LOADU(in_even + (j + 1) * stride + VREG_INT_COUNT); |
| 790 | |
| 791 | /* dn = in_odd[j * stride] - ((s1 + s2 + 2) >> 2); */ |
| 792 | dn_0 = SUB(LOADU(in_odd + j * stride), |
| 793 | SAR(ADD3(s1_0, s2_0, two), 2)); |
| 794 | dn_1 = SUB(LOADU(in_odd + j * stride + VREG_INT_COUNT), |
| 795 | SAR(ADD3(s1_1, s2_1, two), 2)); |
| 796 | |
| 797 | STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
| 798 | STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
| 799 | |
| 800 | /* tmp[i + 1] = s1 + ((dn + dc) >> 1); */ |
| 801 | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + 0, |
| 802 | ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
| 803 | STORE(tmp + PARALLEL_COLS_53 * (i + 1) + VREG_INT_COUNT, |
| 804 | ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
| 805 | |
| 806 | dc_0 = dn_0; |
| 807 | s1_0 = s2_0; |
| 808 | dc_1 = dn_1; |
| 809 | s1_1 = s2_1; |
| 810 | } |
| 811 | STORE(tmp + PARALLEL_COLS_53 * i, dc_0); |
| 812 | STORE(tmp + PARALLEL_COLS_53 * i + VREG_INT_COUNT, dc_1); |
| 813 | |
| 814 | if (!(len & 1)) { |
| 815 | /*dn = in_odd[(len / 2 - 1) * stride] - ((s1 + 1) >> 1); */ |
| 816 | dn_0 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride), |
| 817 | SAR(ADD3(s1_0, s1_0, two), 2)); |
| 818 | dn_1 = SUB(LOADU(in_odd + (OPJ_SIZE_T)(len / 2 - 1) * stride + VREG_INT_COUNT), |
| 819 | SAR(ADD3(s1_1, s1_1, two), 2)); |
| 820 | |
| 821 | /* tmp[len - 2] = s1 + ((dn + dc) >> 1); */ |
| 822 | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + 0, |
| 823 | ADD(s1_0, SAR(ADD(dn_0, dc_0), 1))); |
| 824 | STORE(tmp + PARALLEL_COLS_53 * (len - 2) + VREG_INT_COUNT, |
| 825 | ADD(s1_1, SAR(ADD(dn_1, dc_1), 1))); |
| 826 | |
| 827 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, dn_0); |
| 828 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, dn_1); |
| 829 | } else { |
| 830 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + 0, ADD(s1_0, dc_0)); |
| 831 | STORE(tmp + PARALLEL_COLS_53 * (len - 1) + VREG_INT_COUNT, |
| 832 | ADD(s1_1, dc_1)); |
| 833 | } |
| 834 | |
| 835 | opj_idwt53_v_final_memcpy(tiledp_col, tmp, len, stride); |
| 836 | } |
| 837 | |
| 838 | #undef VREG |
| 839 | #undef LOAD_CST |
| 840 | #undef LOADU |
| 841 | #undef LOAD |
| 842 | #undef STORE |
| 843 | #undef STOREU |
| 844 | #undef ADD |
| 845 | #undef ADD3 |
| 846 | #undef SUB |
| 847 | #undef SAR |
| 848 | |
| 849 | #endif /* (defined(__SSE2__) || defined(__AVX2__)) && !defined(STANDARD_SLOW_VERSION) */ |
| 850 | |
| 851 | #if !defined(STANDARD_SLOW_VERSION) |
| 852 | /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
| 853 | * pixel is on even coordinate */ |
| 854 | static void opj_idwt3_v_cas0(OPJ_INT32* tmp, |
| 855 | const OPJ_INT32 sn, |
| 856 | const OPJ_INT32 len, |
| 857 | OPJ_INT32* tiledp_col, |
| 858 | const OPJ_SIZE_T stride) |
| 859 | { |
| 860 | OPJ_INT32 i, j; |
| 861 | OPJ_INT32 d1c, d1n, s1n, s0c, s0n; |
| 862 | |
| 863 | assert(len > 1); |
| 864 | |
| 865 | /* Performs lifting in one single iteration. Saves memory */ |
| 866 | /* accesses and explicit interleaving. */ |
| 867 | |
| 868 | s1n = tiledp_col[0]; |
| 869 | d1n = tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| 870 | s0n = s1n - ((d1n + 1) >> 1); |
| 871 | |
| 872 | for (i = 0, j = 0; i < (len - 3); i += 2, j++) { |
| 873 | d1c = d1n; |
| 874 | s0c = s0n; |
| 875 | |
| 876 | s1n = tiledp_col[(OPJ_SIZE_T)(j + 1) * stride]; |
| 877 | d1n = tiledp_col[(OPJ_SIZE_T)(sn + j + 1) * stride]; |
| 878 | |
| 879 | s0n = s1n - ((d1c + d1n + 2) >> 2); |
| 880 | |
| 881 | tmp[i ] = s0c; |
| 882 | tmp[i + 1] = d1c + ((s0c + s0n) >> 1); |
| 883 | } |
| 884 | |
| 885 | tmp[i] = s0n; |
| 886 | |
| 887 | if (len & 1) { |
| 888 | tmp[len - 1] = |
| 889 | tiledp_col[(OPJ_SIZE_T)((len - 1) / 2) * stride] - |
| 890 | ((d1n + 1) >> 1); |
| 891 | tmp[len - 2] = d1n + ((s0n + tmp[len - 1]) >> 1); |
| 892 | } else { |
| 893 | tmp[len - 1] = d1n + s0n; |
| 894 | } |
| 895 | |
| 896 | for (i = 0; i < len; ++i) { |
| 897 | tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | |
| 902 | /** Vertical inverse 5x3 wavelet transform for one column, when top-most |
| 903 | * pixel is on odd coordinate */ |
| 904 | static void opj_idwt3_v_cas1(OPJ_INT32* tmp, |
| 905 | const OPJ_INT32 sn, |
| 906 | const OPJ_INT32 len, |
| 907 | OPJ_INT32* tiledp_col, |
| 908 | const OPJ_SIZE_T stride) |
| 909 | { |
| 910 | OPJ_INT32 i, j; |
| 911 | OPJ_INT32 s1, s2, dc, dn; |
| 912 | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| 913 | const OPJ_INT32* in_odd = &tiledp_col[0]; |
| 914 | |
| 915 | assert(len > 2); |
| 916 | |
| 917 | /* Performs lifting in one single iteration. Saves memory */ |
| 918 | /* accesses and explicit interleaving. */ |
| 919 | |
| 920 | s1 = in_even[stride]; |
| 921 | dc = in_odd[0] - ((in_even[0] + s1 + 2) >> 2); |
| 922 | tmp[0] = in_even[0] + dc; |
| 923 | for (i = 1, j = 1; i < (len - 2 - !(len & 1)); i += 2, j++) { |
| 924 | |
| 925 | s2 = in_even[(OPJ_SIZE_T)(j + 1) * stride]; |
| 926 | |
| 927 | dn = in_odd[(OPJ_SIZE_T)j * stride] - ((s1 + s2 + 2) >> 2); |
| 928 | tmp[i ] = dc; |
| 929 | tmp[i + 1] = s1 + ((dn + dc) >> 1); |
| 930 | |
| 931 | dc = dn; |
| 932 | s1 = s2; |
| 933 | } |
| 934 | tmp[i] = dc; |
| 935 | if (!(len & 1)) { |
| 936 | dn = in_odd[(OPJ_SIZE_T)(len / 2 - 1) * stride] - ((s1 + 1) >> 1); |
| 937 | tmp[len - 2] = s1 + ((dn + dc) >> 1); |
| 938 | tmp[len - 1] = dn; |
| 939 | } else { |
| 940 | tmp[len - 1] = s1 + dc; |
| 941 | } |
| 942 | |
| 943 | for (i = 0; i < len; ++i) { |
| 944 | tiledp_col[(OPJ_SIZE_T)i * stride] = tmp[i]; |
| 945 | } |
| 946 | } |
| 947 | #endif /* !defined(STANDARD_SLOW_VERSION) */ |
| 948 | |
| 949 | /* <summary> */ |
| 950 | /* Inverse vertical 5-3 wavelet transform in 1-D for several columns. */ |
| 951 | /* </summary> */ |
| 952 | /* Performs interleave, inverse wavelet transform and copy back to buffer */ |
| 953 | static void opj_idwt53_v(const opj_dwt_t *dwt, |
| 954 | OPJ_INT32* tiledp_col, |
| 955 | OPJ_SIZE_T stride, |
| 956 | OPJ_INT32 nb_cols) |
| 957 | { |
| 958 | #ifdef STANDARD_SLOW_VERSION |
| 959 | /* For documentation purpose */ |
| 960 | OPJ_INT32 k, c; |
| 961 | for (c = 0; c < nb_cols; c ++) { |
| 962 | opj_dwt_interleave_v(dwt, tiledp_col + c, stride); |
| 963 | opj_dwt_decode_1(dwt); |
| 964 | for (k = 0; k < dwt->sn + dwt->dn; ++k) { |
| 965 | tiledp_col[c + k * stride] = dwt->mem[k]; |
| 966 | } |
| 967 | } |
| 968 | #else |
| 969 | const OPJ_INT32 sn = dwt->sn; |
| 970 | const OPJ_INT32 len = sn + dwt->dn; |
| 971 | if (dwt->cas == 0) { |
| 972 | /* If len == 1, unmodified value */ |
| 973 | |
| 974 | #if (defined(__SSE2__) || defined(__AVX2__)) |
| 975 | if (len > 1 && nb_cols == PARALLEL_COLS_53) { |
| 976 | /* Same as below general case, except that thanks to SSE2/AVX2 */ |
| 977 | /* we can efficently process 8/16 columns in parallel */ |
| 978 | opj_idwt53_v_cas0_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
| 979 | return; |
| 980 | } |
| 981 | #endif |
| 982 | if (len > 1) { |
| 983 | OPJ_INT32 c; |
| 984 | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| 985 | opj_idwt3_v_cas0(dwt->mem, sn, len, tiledp_col, stride); |
| 986 | } |
| 987 | return; |
| 988 | } |
| 989 | } else { |
| 990 | if (len == 1) { |
| 991 | OPJ_INT32 c; |
| 992 | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| 993 | tiledp_col[0] /= 2; |
| 994 | } |
| 995 | return; |
| 996 | } |
| 997 | |
| 998 | if (len == 2) { |
| 999 | OPJ_INT32 c; |
| 1000 | OPJ_INT32* out = dwt->mem; |
| 1001 | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| 1002 | OPJ_INT32 i; |
| 1003 | const OPJ_INT32* in_even = &tiledp_col[(OPJ_SIZE_T)sn * stride]; |
| 1004 | const OPJ_INT32* in_odd = &tiledp_col[0]; |
| 1005 | |
| 1006 | out[1] = in_odd[0] - ((in_even[0] + 1) >> 1); |
| 1007 | out[0] = in_even[0] + out[1]; |
| 1008 | |
| 1009 | for (i = 0; i < len; ++i) { |
| 1010 | tiledp_col[(OPJ_SIZE_T)i * stride] = out[i]; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | return; |
| 1015 | } |
| 1016 | |
| 1017 | #if (defined(__SSE2__) || defined(__AVX2__)) |
| 1018 | if (len > 2 && nb_cols == PARALLEL_COLS_53) { |
| 1019 | /* Same as below general case, except that thanks to SSE2/AVX2 */ |
| 1020 | /* we can efficently process 8/16 columns in parallel */ |
| 1021 | opj_idwt53_v_cas1_mcols_SSE2_OR_AVX2(dwt->mem, sn, len, tiledp_col, stride); |
| 1022 | return; |
| 1023 | } |
| 1024 | #endif |
| 1025 | if (len > 2) { |
| 1026 | OPJ_INT32 c; |
| 1027 | for (c = 0; c < nb_cols; c++, tiledp_col++) { |
| 1028 | opj_idwt3_v_cas1(dwt->mem, sn, len, tiledp_col, stride); |
| 1029 | } |
| 1030 | return; |
| 1031 | } |
| 1032 | } |
| 1033 | #endif |
| 1034 | } |
| 1035 | |
| 1036 | |
| 1037 | /* <summary> */ |
| 1038 | /* Forward 9-7 wavelet transform in 1-D. */ |
| 1039 | /* </summary> */ |
| 1040 | static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 1041 | OPJ_INT32 cas) |
| 1042 | { |
| 1043 | OPJ_INT32 i; |
| 1044 | if (!cas) { |
| 1045 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 1046 | for (i = 0; i < dn; i++) { |
| 1047 | OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993); |
| 1048 | } |
| 1049 | for (i = 0; i < sn; i++) { |
| 1050 | OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434); |
| 1051 | } |
| 1052 | for (i = 0; i < dn; i++) { |
| 1053 | OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233); |
| 1054 | } |
| 1055 | for (i = 0; i < sn; i++) { |
| 1056 | OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633); |
| 1057 | } |
| 1058 | for (i = 0; i < dn; i++) { |
| 1059 | OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */ |
| 1060 | } |
| 1061 | for (i = 0; i < sn; i++) { |
| 1062 | OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */ |
| 1063 | } |
| 1064 | } |
| 1065 | } else { |
| 1066 | if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 1067 | for (i = 0; i < dn; i++) { |
| 1068 | OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993); |
| 1069 | } |
| 1070 | for (i = 0; i < sn; i++) { |
| 1071 | OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434); |
| 1072 | } |
| 1073 | for (i = 0; i < dn; i++) { |
| 1074 | OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233); |
| 1075 | } |
| 1076 | for (i = 0; i < sn; i++) { |
| 1077 | OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633); |
| 1078 | } |
| 1079 | for (i = 0; i < dn; i++) { |
| 1080 | OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */ |
| 1081 | } |
| 1082 | for (i = 0; i < sn; i++) { |
| 1083 | OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */ |
| 1084 | } |
| 1085 | } |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, |
| 1090 | opj_stepsize_t *bandno_stepsize) |
| 1091 | { |
| 1092 | OPJ_INT32 p, n; |
| 1093 | p = opj_int_floorlog2(stepsize) - 13; |
| 1094 | n = 11 - opj_int_floorlog2(stepsize); |
| 1095 | bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; |
| 1096 | bandno_stepsize->expn = numbps - p; |
| 1097 | } |
| 1098 | |
| 1099 | /* |
| 1100 | ========================================================== |
| 1101 | DWT interface |
| 1102 | ========================================================== |
| 1103 | */ |
| 1104 | |
| 1105 | |
| 1106 | /* <summary> */ |
| 1107 | /* Forward 5-3 wavelet transform in 2-D. */ |
| 1108 | /* </summary> */ |
| 1109 | static INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec, |
| 1110 | void (*p_function)(OPJ_INT32 *, OPJ_INT32, OPJ_INT32, OPJ_INT32)) |
| 1111 | { |
| 1112 | OPJ_INT32 i, j, k; |
| 1113 | OPJ_INT32 *a = 00; |
| 1114 | OPJ_INT32 *aj = 00; |
| 1115 | OPJ_INT32 *bj = 00; |
| 1116 | OPJ_INT32 w, l; |
| 1117 | |
| 1118 | OPJ_INT32 rw; /* width of the resolution level computed */ |
| 1119 | OPJ_INT32 rh; /* height of the resolution level computed */ |
| 1120 | OPJ_SIZE_T l_data_size; |
| 1121 | |
| 1122 | opj_tcd_resolution_t * l_cur_res = 0; |
| 1123 | opj_tcd_resolution_t * l_last_res = 0; |
| 1124 | |
| 1125 | w = tilec->x1 - tilec->x0; |
| 1126 | l = (OPJ_INT32)tilec->numresolutions - 1; |
| 1127 | a = tilec->data; |
| 1128 | |
| 1129 | l_cur_res = tilec->resolutions + l; |
| 1130 | l_last_res = l_cur_res - 1; |
| 1131 | |
| 1132 | l_data_size = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions); |
| 1133 | /* overflow check */ |
| 1134 | if (l_data_size > (SIZE_MAX / sizeof(OPJ_INT32))) { |
| 1135 | /* FIXME event manager error callback */ |
| 1136 | return OPJ_FALSE; |
| 1137 | } |
| 1138 | l_data_size *= sizeof(OPJ_INT32); |
| 1139 | bj = (OPJ_INT32*)opj_malloc(l_data_size); |
| 1140 | /* l_data_size is equal to 0 when numresolutions == 1 but bj is not used */ |
| 1141 | /* in that case, so do not error out */ |
| 1142 | if (l_data_size != 0 && ! bj) { |
| 1143 | return OPJ_FALSE; |
| 1144 | } |
| 1145 | i = l; |
| 1146 | |
| 1147 | while (i--) { |
| 1148 | OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */ |
| 1149 | OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */ |
| 1150 | OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ |
| 1151 | OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ |
| 1152 | OPJ_INT32 dn, sn; |
| 1153 | |
| 1154 | rw = l_cur_res->x1 - l_cur_res->x0; |
| 1155 | rh = l_cur_res->y1 - l_cur_res->y0; |
| 1156 | rw1 = l_last_res->x1 - l_last_res->x0; |
| 1157 | rh1 = l_last_res->y1 - l_last_res->y0; |
| 1158 | |
| 1159 | cas_row = l_cur_res->x0 & 1; |
| 1160 | cas_col = l_cur_res->y0 & 1; |
| 1161 | |
| 1162 | sn = rh1; |
| 1163 | dn = rh - rh1; |
| 1164 | for (j = 0; j < rw; ++j) { |
| 1165 | aj = a + j; |
| 1166 | for (k = 0; k < rh; ++k) { |
| 1167 | bj[k] = aj[k * w]; |
| 1168 | } |
| 1169 | |
| 1170 | (*p_function)(bj, dn, sn, cas_col); |
| 1171 | |
| 1172 | opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); |
| 1173 | } |
| 1174 | |
| 1175 | sn = rw1; |
| 1176 | dn = rw - rw1; |
| 1177 | |
| 1178 | for (j = 0; j < rh; j++) { |
| 1179 | aj = a + j * w; |
| 1180 | for (k = 0; k < rw; k++) { |
| 1181 | bj[k] = aj[k]; |
| 1182 | } |
| 1183 | (*p_function)(bj, dn, sn, cas_row); |
| 1184 | opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row); |
| 1185 | } |
| 1186 | |
| 1187 | l_cur_res = l_last_res; |
| 1188 | |
| 1189 | --l_last_res; |
| 1190 | } |
| 1191 | |
| 1192 | opj_free(bj); |
| 1193 | return OPJ_TRUE; |
| 1194 | } |
| 1195 | |
| 1196 | /* Forward 5-3 wavelet transform in 2-D. */ |
| 1197 | /* </summary> */ |
| 1198 | OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec) |
| 1199 | { |
| 1200 | return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1); |
| 1201 | } |
| 1202 | |
| 1203 | /* <summary> */ |
| 1204 | /* Inverse 5-3 wavelet transform in 2-D. */ |
| 1205 | /* </summary> */ |
| 1206 | OPJ_BOOL opj_dwt_decode(opj_tcd_t *p_tcd, opj_tcd_tilecomp_t* tilec, |
| 1207 | OPJ_UINT32 numres) |
| 1208 | { |
| 1209 | if (p_tcd->whole_tile_decoding) { |
| 1210 | return opj_dwt_decode_tile(p_tcd->thread_pool, tilec, numres); |
| 1211 | } else { |
| 1212 | return opj_dwt_decode_partial_tile(tilec, numres); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | |
| 1217 | /* <summary> */ |
| 1218 | /* Get gain of 5-3 wavelet transform. */ |
| 1219 | /* </summary> */ |
| 1220 | OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) |
| 1221 | { |
| 1222 | if (orient == 0) { |
| 1223 | return 0; |
| 1224 | } |
| 1225 | if (orient == 1 || orient == 2) { |
| 1226 | return 1; |
| 1227 | } |
| 1228 | return 2; |
| 1229 | } |
| 1230 | |
| 1231 | /* <summary> */ |
| 1232 | /* Get norm of 5-3 wavelet. */ |
| 1233 | /* </summary> */ |
| 1234 | OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) |
| 1235 | { |
| 1236 | /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
| 1237 | /* but the array should really be extended up to 33 resolution levels */ |
| 1238 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| 1239 | if (orient == 0 && level >= 10) { |
| 1240 | level = 9; |
| 1241 | } else if (orient > 0 && level >= 9) { |
| 1242 | level = 8; |
| 1243 | } |
| 1244 | return opj_dwt_norms[orient][level]; |
| 1245 | } |
| 1246 | |
| 1247 | /* <summary> */ |
| 1248 | /* Forward 9-7 wavelet transform in 2-D. */ |
| 1249 | /* </summary> */ |
| 1250 | OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec) |
| 1251 | { |
| 1252 | return opj_dwt_encode_procedure(tilec, opj_dwt_encode_1_real); |
| 1253 | } |
| 1254 | |
| 1255 | /* <summary> */ |
| 1256 | /* Get gain of 9-7 wavelet transform. */ |
| 1257 | /* </summary> */ |
| 1258 | OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) |
| 1259 | { |
| 1260 | (void)orient; |
| 1261 | return 0; |
| 1262 | } |
| 1263 | |
| 1264 | /* <summary> */ |
| 1265 | /* Get norm of 9-7 wavelet. */ |
| 1266 | /* </summary> */ |
| 1267 | OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) |
| 1268 | { |
| 1269 | /* FIXME ! This is just a band-aid to avoid a buffer overflow */ |
| 1270 | /* but the array should really be extended up to 33 resolution levels */ |
| 1271 | /* See https://github.com/uclouvain/openjpeg/issues/493 */ |
| 1272 | if (orient == 0 && level >= 10) { |
| 1273 | level = 9; |
| 1274 | } else if (orient > 0 && level >= 9) { |
| 1275 | level = 8; |
| 1276 | } |
| 1277 | return opj_dwt_norms_real[orient][level]; |
| 1278 | } |
| 1279 | |
| 1280 | void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) |
| 1281 | { |
| 1282 | OPJ_UINT32 numbands, bandno; |
| 1283 | numbands = 3 * tccp->numresolutions - 2; |
| 1284 | for (bandno = 0; bandno < numbands; bandno++) { |
| 1285 | OPJ_FLOAT64 stepsize; |
| 1286 | OPJ_UINT32 resno, level, orient, gain; |
| 1287 | |
| 1288 | resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); |
| 1289 | orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); |
| 1290 | level = tccp->numresolutions - 1 - resno; |
| 1291 | gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || |
| 1292 | (orient == 2)) ? 1 : 2)); |
| 1293 | if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { |
| 1294 | stepsize = 1.0; |
| 1295 | } else { |
| 1296 | OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level]; |
| 1297 | stepsize = (1 << (gain)) / norm; |
| 1298 | } |
| 1299 | opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), |
| 1300 | (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); |
| 1301 | } |
| 1302 | } |
| 1303 | |
| 1304 | /* <summary> */ |
| 1305 | /* Determine maximum computed resolution level for inverse wavelet transform */ |
| 1306 | /* </summary> */ |
| 1307 | static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* OPJ_RESTRICT r, |
| 1308 | OPJ_UINT32 i) |
| 1309 | { |
| 1310 | OPJ_UINT32 mr = 0; |
| 1311 | OPJ_UINT32 w; |
| 1312 | while (--i) { |
| 1313 | ++r; |
| 1314 | if (mr < (w = (OPJ_UINT32)(r->x1 - r->x0))) { |
| 1315 | mr = w ; |
| 1316 | } |
| 1317 | if (mr < (w = (OPJ_UINT32)(r->y1 - r->y0))) { |
| 1318 | mr = w ; |
| 1319 | } |
| 1320 | } |
| 1321 | return mr ; |
| 1322 | } |
| 1323 | |
| 1324 | typedef struct { |
| 1325 | opj_dwt_t h; |
| 1326 | OPJ_UINT32 rw; |
| 1327 | OPJ_UINT32 w; |
| 1328 | OPJ_INT32 * OPJ_RESTRICT tiledp; |
| 1329 | OPJ_UINT32 min_j; |
| 1330 | OPJ_UINT32 max_j; |
| 1331 | } opj_dwd_decode_h_job_t; |
| 1332 | |
| 1333 | static void opj_dwt_decode_h_func(void* user_data, opj_tls_t* tls) |
| 1334 | { |
| 1335 | OPJ_UINT32 j; |
| 1336 | opj_dwd_decode_h_job_t* job; |
| 1337 | (void)tls; |
| 1338 | |
| 1339 | job = (opj_dwd_decode_h_job_t*)user_data; |
| 1340 | for (j = job->min_j; j < job->max_j; j++) { |
| 1341 | opj_idwt53_h(&job->h, &job->tiledp[j * job->w]); |
| 1342 | } |
| 1343 | |
| 1344 | opj_aligned_free(job->h.mem); |
| 1345 | opj_free(job); |
| 1346 | } |
| 1347 | |
| 1348 | typedef struct { |
| 1349 | opj_dwt_t v; |
| 1350 | OPJ_UINT32 rh; |
| 1351 | OPJ_UINT32 w; |
| 1352 | OPJ_INT32 * OPJ_RESTRICT tiledp; |
| 1353 | OPJ_UINT32 min_j; |
| 1354 | OPJ_UINT32 max_j; |
| 1355 | } opj_dwd_decode_v_job_t; |
| 1356 | |
| 1357 | static void opj_dwt_decode_v_func(void* user_data, opj_tls_t* tls) |
| 1358 | { |
| 1359 | OPJ_UINT32 j; |
| 1360 | opj_dwd_decode_v_job_t* job; |
| 1361 | (void)tls; |
| 1362 | |
| 1363 | job = (opj_dwd_decode_v_job_t*)user_data; |
| 1364 | for (j = job->min_j; j + PARALLEL_COLS_53 <= job->max_j; |
| 1365 | j += PARALLEL_COLS_53) { |
| 1366 | opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
| 1367 | PARALLEL_COLS_53); |
| 1368 | } |
| 1369 | if (j < job->max_j) |
| 1370 | opj_idwt53_v(&job->v, &job->tiledp[j], (OPJ_SIZE_T)job->w, |
| 1371 | (OPJ_INT32)(job->max_j - j)); |
| 1372 | |
| 1373 | opj_aligned_free(job->v.mem); |
| 1374 | opj_free(job); |
| 1375 | } |
| 1376 | |
| 1377 | |
| 1378 | /* <summary> */ |
| 1379 | /* Inverse wavelet transform in 2-D. */ |
| 1380 | /* </summary> */ |
| 1381 | static OPJ_BOOL opj_dwt_decode_tile(opj_thread_pool_t* tp, |
| 1382 | opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) |
| 1383 | { |
| 1384 | opj_dwt_t h; |
| 1385 | opj_dwt_t v; |
| 1386 | |
| 1387 | opj_tcd_resolution_t* tr = tilec->resolutions; |
| 1388 | |
| 1389 | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
| 1390 | tr->x0); /* width of the resolution level computed */ |
| 1391 | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
| 1392 | tr->y0); /* height of the resolution level computed */ |
| 1393 | |
| 1394 | OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
| 1395 | 1].x1 - |
| 1396 | tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
| 1397 | OPJ_SIZE_T h_mem_size; |
| 1398 | int num_threads; |
| 1399 | |
| 1400 | if (numres == 1U) { |
| 1401 | return OPJ_TRUE; |
| 1402 | } |
| 1403 | num_threads = opj_thread_pool_get_thread_count(tp); |
| 1404 | h_mem_size = opj_dwt_max_resolution(tr, numres); |
| 1405 | /* overflow check */ |
| 1406 | if (h_mem_size > (SIZE_MAX / PARALLEL_COLS_53 / sizeof(OPJ_INT32))) { |
| 1407 | /* FIXME event manager error callback */ |
| 1408 | return OPJ_FALSE; |
| 1409 | } |
| 1410 | /* We need PARALLEL_COLS_53 times the height of the array, */ |
| 1411 | /* since for the vertical pass */ |
| 1412 | /* we process PARALLEL_COLS_53 columns at a time */ |
| 1413 | h_mem_size *= PARALLEL_COLS_53 * sizeof(OPJ_INT32); |
| 1414 | h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| 1415 | if (! h.mem) { |
| 1416 | /* FIXME event manager error callback */ |
| 1417 | return OPJ_FALSE; |
| 1418 | } |
| 1419 | |
| 1420 | v.mem = h.mem; |
| 1421 | |
| 1422 | while (--numres) { |
| 1423 | OPJ_INT32 * OPJ_RESTRICT tiledp = tilec->data; |
| 1424 | OPJ_UINT32 j; |
| 1425 | |
| 1426 | ++tr; |
| 1427 | h.sn = (OPJ_INT32)rw; |
| 1428 | v.sn = (OPJ_INT32)rh; |
| 1429 | |
| 1430 | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
| 1431 | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
| 1432 | |
| 1433 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| 1434 | h.cas = tr->x0 % 2; |
| 1435 | |
| 1436 | if (num_threads <= 1 || rh <= 1) { |
| 1437 | for (j = 0; j < rh; ++j) { |
| 1438 | opj_idwt53_h(&h, &tiledp[(OPJ_SIZE_T)j * w]); |
| 1439 | } |
| 1440 | } else { |
| 1441 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| 1442 | OPJ_UINT32 step_j; |
| 1443 | |
| 1444 | if (rh < num_jobs) { |
| 1445 | num_jobs = rh; |
| 1446 | } |
| 1447 | step_j = (rh / num_jobs); |
| 1448 | |
| 1449 | for (j = 0; j < num_jobs; j++) { |
| 1450 | opj_dwd_decode_h_job_t* job; |
| 1451 | |
| 1452 | job = (opj_dwd_decode_h_job_t*) opj_malloc(sizeof(opj_dwd_decode_h_job_t)); |
| 1453 | if (!job) { |
| 1454 | /* It would be nice to fallback to single thread case, but */ |
| 1455 | /* unfortunately some jobs may be launched and have modified */ |
| 1456 | /* tiledp, so it is not practical to recover from that error */ |
| 1457 | /* FIXME event manager error callback */ |
| 1458 | opj_thread_pool_wait_completion(tp, 0); |
| 1459 | opj_aligned_free(h.mem); |
| 1460 | return OPJ_FALSE; |
| 1461 | } |
| 1462 | job->h = h; |
| 1463 | job->rw = rw; |
| 1464 | job->w = w; |
| 1465 | job->tiledp = tiledp; |
| 1466 | job->min_j = j * step_j; |
| 1467 | job->max_j = (j + 1U) * step_j; /* this can overflow */ |
| 1468 | if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
| 1469 | job->max_j = rh; |
| 1470 | } |
| 1471 | job->h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| 1472 | if (!job->h.mem) { |
| 1473 | /* FIXME event manager error callback */ |
| 1474 | opj_thread_pool_wait_completion(tp, 0); |
| 1475 | opj_free(job); |
| 1476 | opj_aligned_free(h.mem); |
| 1477 | return OPJ_FALSE; |
| 1478 | } |
| 1479 | opj_thread_pool_submit_job(tp, opj_dwt_decode_h_func, job); |
| 1480 | } |
| 1481 | opj_thread_pool_wait_completion(tp, 0); |
| 1482 | } |
| 1483 | |
| 1484 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| 1485 | v.cas = tr->y0 % 2; |
| 1486 | |
| 1487 | if (num_threads <= 1 || rw <= 1) { |
| 1488 | for (j = 0; j + PARALLEL_COLS_53 <= rw; |
| 1489 | j += PARALLEL_COLS_53) { |
| 1490 | opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, PARALLEL_COLS_53); |
| 1491 | } |
| 1492 | if (j < rw) { |
| 1493 | opj_idwt53_v(&v, &tiledp[j], (OPJ_SIZE_T)w, (OPJ_INT32)(rw - j)); |
| 1494 | } |
| 1495 | } else { |
| 1496 | OPJ_UINT32 num_jobs = (OPJ_UINT32)num_threads; |
| 1497 | OPJ_UINT32 step_j; |
| 1498 | |
| 1499 | if (rw < num_jobs) { |
| 1500 | num_jobs = rw; |
| 1501 | } |
| 1502 | step_j = (rw / num_jobs); |
| 1503 | |
| 1504 | for (j = 0; j < num_jobs; j++) { |
| 1505 | opj_dwd_decode_v_job_t* job; |
| 1506 | |
| 1507 | job = (opj_dwd_decode_v_job_t*) opj_malloc(sizeof(opj_dwd_decode_v_job_t)); |
| 1508 | if (!job) { |
| 1509 | /* It would be nice to fallback to single thread case, but */ |
| 1510 | /* unfortunately some jobs may be launched and have modified */ |
| 1511 | /* tiledp, so it is not practical to recover from that error */ |
| 1512 | /* FIXME event manager error callback */ |
| 1513 | opj_thread_pool_wait_completion(tp, 0); |
| 1514 | opj_aligned_free(v.mem); |
| 1515 | return OPJ_FALSE; |
| 1516 | } |
| 1517 | job->v = v; |
| 1518 | job->rh = rh; |
| 1519 | job->w = w; |
| 1520 | job->tiledp = tiledp; |
| 1521 | job->min_j = j * step_j; |
| 1522 | job->max_j = (j + 1U) * step_j; /* this can overflow */ |
| 1523 | if (j == (num_jobs - 1U)) { /* this will take care of the overflow */ |
| 1524 | job->max_j = rw; |
| 1525 | } |
| 1526 | job->v.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| 1527 | if (!job->v.mem) { |
| 1528 | /* FIXME event manager error callback */ |
| 1529 | opj_thread_pool_wait_completion(tp, 0); |
| 1530 | opj_free(job); |
| 1531 | opj_aligned_free(v.mem); |
| 1532 | return OPJ_FALSE; |
| 1533 | } |
| 1534 | opj_thread_pool_submit_job(tp, opj_dwt_decode_v_func, job); |
| 1535 | } |
| 1536 | opj_thread_pool_wait_completion(tp, 0); |
| 1537 | } |
| 1538 | } |
| 1539 | opj_aligned_free(h.mem); |
| 1540 | return OPJ_TRUE; |
| 1541 | } |
| 1542 | |
| 1543 | static void opj_dwt_interleave_partial_h(OPJ_INT32 *dest, |
| 1544 | OPJ_INT32 cas, |
| 1545 | opj_sparse_array_int32_t* sa, |
| 1546 | OPJ_UINT32 sa_line, |
| 1547 | OPJ_UINT32 sn, |
| 1548 | OPJ_UINT32 win_l_x0, |
| 1549 | OPJ_UINT32 win_l_x1, |
| 1550 | OPJ_UINT32 win_h_x0, |
| 1551 | OPJ_UINT32 win_h_x1) |
| 1552 | { |
| 1553 | OPJ_BOOL ret; |
| 1554 | ret = opj_sparse_array_int32_read(sa, |
| 1555 | win_l_x0, sa_line, |
| 1556 | win_l_x1, sa_line + 1, |
| 1557 | dest + cas + 2 * win_l_x0, |
| 1558 | 2, 0, OPJ_TRUE); |
| 1559 | assert(ret); |
| 1560 | ret = opj_sparse_array_int32_read(sa, |
| 1561 | sn + win_h_x0, sa_line, |
| 1562 | sn + win_h_x1, sa_line + 1, |
| 1563 | dest + 1 - cas + 2 * win_h_x0, |
| 1564 | 2, 0, OPJ_TRUE); |
| 1565 | assert(ret); |
| 1566 | OPJ_UNUSED(ret); |
| 1567 | } |
| 1568 | |
| 1569 | |
| 1570 | static void opj_dwt_interleave_partial_v(OPJ_INT32 *dest, |
| 1571 | OPJ_INT32 cas, |
| 1572 | opj_sparse_array_int32_t* sa, |
| 1573 | OPJ_UINT32 sa_col, |
| 1574 | OPJ_UINT32 nb_cols, |
| 1575 | OPJ_UINT32 sn, |
| 1576 | OPJ_UINT32 win_l_y0, |
| 1577 | OPJ_UINT32 win_l_y1, |
| 1578 | OPJ_UINT32 win_h_y0, |
| 1579 | OPJ_UINT32 win_h_y1) |
| 1580 | { |
| 1581 | OPJ_BOOL ret; |
| 1582 | ret = opj_sparse_array_int32_read(sa, |
| 1583 | sa_col, win_l_y0, |
| 1584 | sa_col + nb_cols, win_l_y1, |
| 1585 | dest + cas * 4 + 2 * 4 * win_l_y0, |
| 1586 | 1, 2 * 4, OPJ_TRUE); |
| 1587 | assert(ret); |
| 1588 | ret = opj_sparse_array_int32_read(sa, |
| 1589 | sa_col, sn + win_h_y0, |
| 1590 | sa_col + nb_cols, sn + win_h_y1, |
| 1591 | dest + (1 - cas) * 4 + 2 * 4 * win_h_y0, |
| 1592 | 1, 2 * 4, OPJ_TRUE); |
| 1593 | assert(ret); |
| 1594 | OPJ_UNUSED(ret); |
| 1595 | } |
| 1596 | |
| 1597 | static void opj_dwt_decode_partial_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, |
| 1598 | OPJ_INT32 cas, |
| 1599 | OPJ_INT32 win_l_x0, |
| 1600 | OPJ_INT32 win_l_x1, |
| 1601 | OPJ_INT32 win_h_x0, |
| 1602 | OPJ_INT32 win_h_x1) |
| 1603 | { |
| 1604 | OPJ_INT32 i; |
| 1605 | |
| 1606 | if (!cas) { |
| 1607 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 1608 | |
| 1609 | /* Naive version is : |
| 1610 | for (i = win_l_x0; i < i_max; i++) { |
| 1611 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 1612 | } |
| 1613 | for (i = win_h_x0; i < win_h_x1; i++) { |
| 1614 | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| 1615 | } |
| 1616 | but the compiler doesn't manage to unroll it to avoid bound |
| 1617 | checking in OPJ_S_ and OPJ_D_ macros |
| 1618 | */ |
| 1619 | |
| 1620 | i = win_l_x0; |
| 1621 | if (i < win_l_x1) { |
| 1622 | OPJ_INT32 i_max; |
| 1623 | |
| 1624 | /* Left-most case */ |
| 1625 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 1626 | i ++; |
| 1627 | |
| 1628 | i_max = win_l_x1; |
| 1629 | if (i_max > dn) { |
| 1630 | i_max = dn; |
| 1631 | } |
| 1632 | for (; i < i_max; i++) { |
| 1633 | /* No bound checking */ |
| 1634 | OPJ_S(i) -= (OPJ_D(i - 1) + OPJ_D(i) + 2) >> 2; |
| 1635 | } |
| 1636 | for (; i < win_l_x1; i++) { |
| 1637 | /* Right-most case */ |
| 1638 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 1639 | } |
| 1640 | } |
| 1641 | |
| 1642 | i = win_h_x0; |
| 1643 | if (i < win_h_x1) { |
| 1644 | OPJ_INT32 i_max = win_h_x1; |
| 1645 | if (i_max >= sn) { |
| 1646 | i_max = sn - 1; |
| 1647 | } |
| 1648 | for (; i < i_max; i++) { |
| 1649 | /* No bound checking */ |
| 1650 | OPJ_D(i) += (OPJ_S(i) + OPJ_S(i + 1)) >> 1; |
| 1651 | } |
| 1652 | for (; i < win_h_x1; i++) { |
| 1653 | /* Right-most case */ |
| 1654 | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| 1655 | } |
| 1656 | } |
| 1657 | } |
| 1658 | } else { |
| 1659 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| 1660 | OPJ_S(0) /= 2; |
| 1661 | } else { |
| 1662 | for (i = win_l_x0; i < win_l_x1; i++) { |
| 1663 | OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; |
| 1664 | } |
| 1665 | for (i = win_h_x0; i < win_h_x1; i++) { |
| 1666 | OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | } |
| 1671 | |
| 1672 | #define OPJ_S_off(i,off) a[(OPJ_UINT32)(i)*2*4+off] |
| 1673 | #define OPJ_D_off(i,off) a[(1+(OPJ_UINT32)(i)*2)*4+off] |
| 1674 | #define OPJ_S__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=sn?OPJ_S_off(sn-1,off):OPJ_S_off(i,off))) |
| 1675 | #define OPJ_D__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=dn?OPJ_D_off(dn-1,off):OPJ_D_off(i,off))) |
| 1676 | #define OPJ_SS__off(i,off) ((i)<0?OPJ_S_off(0,off):((i)>=dn?OPJ_S_off(dn-1,off):OPJ_S_off(i,off))) |
| 1677 | #define OPJ_DD__off(i,off) ((i)<0?OPJ_D_off(0,off):((i)>=sn?OPJ_D_off(sn-1,off):OPJ_D_off(i,off))) |
| 1678 | |
| 1679 | static void opj_dwt_decode_partial_1_parallel(OPJ_INT32 *a, |
| 1680 | OPJ_UINT32 nb_cols, |
| 1681 | OPJ_INT32 dn, OPJ_INT32 sn, |
| 1682 | OPJ_INT32 cas, |
| 1683 | OPJ_INT32 win_l_x0, |
| 1684 | OPJ_INT32 win_l_x1, |
| 1685 | OPJ_INT32 win_h_x0, |
| 1686 | OPJ_INT32 win_h_x1) |
| 1687 | { |
| 1688 | OPJ_INT32 i; |
| 1689 | OPJ_UINT32 off; |
| 1690 | |
| 1691 | (void)nb_cols; |
| 1692 | |
| 1693 | if (!cas) { |
| 1694 | if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ |
| 1695 | |
| 1696 | /* Naive version is : |
| 1697 | for (i = win_l_x0; i < i_max; i++) { |
| 1698 | OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; |
| 1699 | } |
| 1700 | for (i = win_h_x0; i < win_h_x1; i++) { |
| 1701 | OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; |
| 1702 | } |
| 1703 | but the compiler doesn't manage to unroll it to avoid bound |
| 1704 | checking in OPJ_S_ and OPJ_D_ macros |
| 1705 | */ |
| 1706 | |
| 1707 | i = win_l_x0; |
| 1708 | if (i < win_l_x1) { |
| 1709 | OPJ_INT32 i_max; |
| 1710 | |
| 1711 | /* Left-most case */ |
| 1712 | for (off = 0; off < 4; off++) { |
| 1713 | OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
| 1714 | } |
| 1715 | i ++; |
| 1716 | |
| 1717 | i_max = win_l_x1; |
| 1718 | if (i_max > dn) { |
| 1719 | i_max = dn; |
| 1720 | } |
| 1721 | |
| 1722 | #ifdef __SSE2__ |
| 1723 | if (i + 1 < i_max) { |
| 1724 | const __m128i two = _mm_set1_epi32(2); |
| 1725 | __m128i Dm1 = _mm_load_si128((__m128i * const)(a + 4 + (i - 1) * 8)); |
| 1726 | for (; i + 1 < i_max; i += 2) { |
| 1727 | /* No bound checking */ |
| 1728 | __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
| 1729 | __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
| 1730 | __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
| 1731 | __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
| 1732 | S = _mm_sub_epi32(S, |
| 1733 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(Dm1, D), two), 2)); |
| 1734 | S1 = _mm_sub_epi32(S1, |
| 1735 | _mm_srai_epi32(_mm_add_epi32(_mm_add_epi32(D, D1), two), 2)); |
| 1736 | _mm_store_si128((__m128i*)(a + i * 8), S); |
| 1737 | _mm_store_si128((__m128i*)(a + (i + 1) * 8), S1); |
| 1738 | Dm1 = D1; |
| 1739 | } |
| 1740 | } |
| 1741 | #endif |
| 1742 | |
| 1743 | for (; i < i_max; i++) { |
| 1744 | /* No bound checking */ |
| 1745 | for (off = 0; off < 4; off++) { |
| 1746 | OPJ_S_off(i, off) -= (OPJ_D_off(i - 1, off) + OPJ_D_off(i, off) + 2) >> 2; |
| 1747 | } |
| 1748 | } |
| 1749 | for (; i < win_l_x1; i++) { |
| 1750 | /* Right-most case */ |
| 1751 | for (off = 0; off < 4; off++) { |
| 1752 | OPJ_S_off(i, off) -= (OPJ_D__off(i - 1, off) + OPJ_D__off(i, off) + 2) >> 2; |
| 1753 | } |
| 1754 | } |
| 1755 | } |
| 1756 | |
| 1757 | i = win_h_x0; |
| 1758 | if (i < win_h_x1) { |
| 1759 | OPJ_INT32 i_max = win_h_x1; |
| 1760 | if (i_max >= sn) { |
| 1761 | i_max = sn - 1; |
| 1762 | } |
| 1763 | |
| 1764 | #ifdef __SSE2__ |
| 1765 | if (i + 1 < i_max) { |
| 1766 | __m128i S = _mm_load_si128((__m128i * const)(a + i * 8)); |
| 1767 | for (; i + 1 < i_max; i += 2) { |
| 1768 | /* No bound checking */ |
| 1769 | __m128i D = _mm_load_si128((__m128i * const)(a + 4 + i * 8)); |
| 1770 | __m128i S1 = _mm_load_si128((__m128i * const)(a + (i + 1) * 8)); |
| 1771 | __m128i D1 = _mm_load_si128((__m128i * const)(a + 4 + (i + 1) * 8)); |
| 1772 | __m128i S2 = _mm_load_si128((__m128i * const)(a + (i + 2) * 8)); |
| 1773 | D = _mm_add_epi32(D, _mm_srai_epi32(_mm_add_epi32(S, S1), 1)); |
| 1774 | D1 = _mm_add_epi32(D1, _mm_srai_epi32(_mm_add_epi32(S1, S2), 1)); |
| 1775 | _mm_store_si128((__m128i*)(a + 4 + i * 8), D); |
| 1776 | _mm_store_si128((__m128i*)(a + 4 + (i + 1) * 8), D1); |
| 1777 | S = S2; |
| 1778 | } |
| 1779 | } |
| 1780 | #endif |
| 1781 | |
| 1782 | for (; i < i_max; i++) { |
| 1783 | /* No bound checking */ |
| 1784 | for (off = 0; off < 4; off++) { |
| 1785 | OPJ_D_off(i, off) += (OPJ_S_off(i, off) + OPJ_S_off(i + 1, off)) >> 1; |
| 1786 | } |
| 1787 | } |
| 1788 | for (; i < win_h_x1; i++) { |
| 1789 | /* Right-most case */ |
| 1790 | for (off = 0; off < 4; off++) { |
| 1791 | OPJ_D_off(i, off) += (OPJ_S__off(i, off) + OPJ_S__off(i + 1, off)) >> 1; |
| 1792 | } |
| 1793 | } |
| 1794 | } |
| 1795 | } |
| 1796 | } else { |
| 1797 | if (!sn && dn == 1) { /* NEW : CASE ONE ELEMENT */ |
| 1798 | for (off = 0; off < 4; off++) { |
| 1799 | OPJ_S_off(0, off) /= 2; |
| 1800 | } |
| 1801 | } else { |
| 1802 | for (i = win_l_x0; i < win_l_x1; i++) { |
| 1803 | for (off = 0; off < 4; off++) { |
| 1804 | OPJ_D_off(i, off) -= (OPJ_SS__off(i, off) + OPJ_SS__off(i + 1, off) + 2) >> 2; |
| 1805 | } |
| 1806 | } |
| 1807 | for (i = win_h_x0; i < win_h_x1; i++) { |
| 1808 | for (off = 0; off < 4; off++) { |
| 1809 | OPJ_S_off(i, off) += (OPJ_DD__off(i, off) + OPJ_DD__off(i - 1, off)) >> 1; |
| 1810 | } |
| 1811 | } |
| 1812 | } |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | static void opj_dwt_get_band_coordinates(opj_tcd_tilecomp_t* tilec, |
| 1817 | OPJ_UINT32 resno, |
| 1818 | OPJ_UINT32 bandno, |
| 1819 | OPJ_UINT32 tcx0, |
| 1820 | OPJ_UINT32 tcy0, |
| 1821 | OPJ_UINT32 tcx1, |
| 1822 | OPJ_UINT32 tcy1, |
| 1823 | OPJ_UINT32* tbx0, |
| 1824 | OPJ_UINT32* tby0, |
| 1825 | OPJ_UINT32* tbx1, |
| 1826 | OPJ_UINT32* tby1) |
| 1827 | { |
| 1828 | /* Compute number of decomposition for this band. See table F-1 */ |
| 1829 | OPJ_UINT32 nb = (resno == 0) ? |
| 1830 | tilec->numresolutions - 1 : |
| 1831 | tilec->numresolutions - resno; |
| 1832 | /* Map above tile-based coordinates to sub-band-based coordinates per */ |
| 1833 | /* equation B-15 of the standard */ |
| 1834 | OPJ_UINT32 x0b = bandno & 1; |
| 1835 | OPJ_UINT32 y0b = bandno >> 1; |
| 1836 | if (tbx0) { |
| 1837 | *tbx0 = (nb == 0) ? tcx0 : |
| 1838 | (tcx0 <= (1U << (nb - 1)) * x0b) ? 0 : |
| 1839 | opj_uint_ceildivpow2(tcx0 - (1U << (nb - 1)) * x0b, nb); |
| 1840 | } |
| 1841 | if (tby0) { |
| 1842 | *tby0 = (nb == 0) ? tcy0 : |
| 1843 | (tcy0 <= (1U << (nb - 1)) * y0b) ? 0 : |
| 1844 | opj_uint_ceildivpow2(tcy0 - (1U << (nb - 1)) * y0b, nb); |
| 1845 | } |
| 1846 | if (tbx1) { |
| 1847 | *tbx1 = (nb == 0) ? tcx1 : |
| 1848 | (tcx1 <= (1U << (nb - 1)) * x0b) ? 0 : |
| 1849 | opj_uint_ceildivpow2(tcx1 - (1U << (nb - 1)) * x0b, nb); |
| 1850 | } |
| 1851 | if (tby1) { |
| 1852 | *tby1 = (nb == 0) ? tcy1 : |
| 1853 | (tcy1 <= (1U << (nb - 1)) * y0b) ? 0 : |
| 1854 | opj_uint_ceildivpow2(tcy1 - (1U << (nb - 1)) * y0b, nb); |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | static void opj_dwt_segment_grow(OPJ_UINT32 filter_width, |
| 1859 | OPJ_UINT32 max_size, |
| 1860 | OPJ_UINT32* start, |
| 1861 | OPJ_UINT32* end) |
| 1862 | { |
| 1863 | *start = opj_uint_subs(*start, filter_width); |
| 1864 | *end = opj_uint_adds(*end, filter_width); |
| 1865 | *end = opj_uint_min(*end, max_size); |
| 1866 | } |
| 1867 | |
| 1868 | |
| 1869 | static opj_sparse_array_int32_t* opj_dwt_init_sparse_array( |
| 1870 | opj_tcd_tilecomp_t* tilec, |
| 1871 | OPJ_UINT32 numres) |
| 1872 | { |
| 1873 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
| 1874 | OPJ_UINT32 w = (OPJ_UINT32)(tr_max->x1 - tr_max->x0); |
| 1875 | OPJ_UINT32 h = (OPJ_UINT32)(tr_max->y1 - tr_max->y0); |
| 1876 | OPJ_UINT32 resno, bandno, precno, cblkno; |
| 1877 | opj_sparse_array_int32_t* sa = opj_sparse_array_int32_create( |
| 1878 | w, h, opj_uint_min(w, 64), opj_uint_min(h, 64)); |
| 1879 | if (sa == NULL) { |
| 1880 | return NULL; |
| 1881 | } |
| 1882 | |
| 1883 | for (resno = 0; resno < numres; ++resno) { |
| 1884 | opj_tcd_resolution_t* res = &tilec->resolutions[resno]; |
| 1885 | |
| 1886 | for (bandno = 0; bandno < res->numbands; ++bandno) { |
| 1887 | opj_tcd_band_t* band = &res->bands[bandno]; |
| 1888 | |
| 1889 | for (precno = 0; precno < res->pw * res->ph; ++precno) { |
| 1890 | opj_tcd_precinct_t* precinct = &band->precincts[precno]; |
| 1891 | for (cblkno = 0; cblkno < precinct->cw * precinct->ch; ++cblkno) { |
| 1892 | opj_tcd_cblk_dec_t* cblk = &precinct->cblks.dec[cblkno]; |
| 1893 | if (cblk->decoded_data != NULL) { |
| 1894 | OPJ_UINT32 x = (OPJ_UINT32)(cblk->x0 - band->x0); |
| 1895 | OPJ_UINT32 y = (OPJ_UINT32)(cblk->y0 - band->y0); |
| 1896 | OPJ_UINT32 cblk_w = (OPJ_UINT32)(cblk->x1 - cblk->x0); |
| 1897 | OPJ_UINT32 cblk_h = (OPJ_UINT32)(cblk->y1 - cblk->y0); |
| 1898 | |
| 1899 | if (band->bandno & 1) { |
| 1900 | opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
| 1901 | x += (OPJ_UINT32)(pres->x1 - pres->x0); |
| 1902 | } |
| 1903 | if (band->bandno & 2) { |
| 1904 | opj_tcd_resolution_t* pres = &tilec->resolutions[resno - 1]; |
| 1905 | y += (OPJ_UINT32)(pres->y1 - pres->y0); |
| 1906 | } |
| 1907 | |
| 1908 | if (!opj_sparse_array_int32_write(sa, x, y, |
| 1909 | x + cblk_w, y + cblk_h, |
| 1910 | cblk->decoded_data, |
| 1911 | 1, cblk_w, OPJ_TRUE)) { |
| 1912 | opj_sparse_array_int32_free(sa); |
| 1913 | return NULL; |
| 1914 | } |
| 1915 | } |
| 1916 | } |
| 1917 | } |
| 1918 | } |
| 1919 | } |
| 1920 | |
| 1921 | return sa; |
| 1922 | } |
| 1923 | |
| 1924 | |
| 1925 | static OPJ_BOOL opj_dwt_decode_partial_tile( |
| 1926 | opj_tcd_tilecomp_t* tilec, |
| 1927 | OPJ_UINT32 numres) |
| 1928 | { |
| 1929 | opj_sparse_array_int32_t* sa; |
| 1930 | opj_dwt_t h; |
| 1931 | opj_dwt_t v; |
| 1932 | OPJ_UINT32 resno; |
| 1933 | /* This value matches the maximum left/right extension given in tables */ |
| 1934 | /* F.2 and F.3 of the standard. */ |
| 1935 | const OPJ_UINT32 filter_width = 2U; |
| 1936 | |
| 1937 | opj_tcd_resolution_t* tr = tilec->resolutions; |
| 1938 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
| 1939 | |
| 1940 | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
| 1941 | tr->x0); /* width of the resolution level computed */ |
| 1942 | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
| 1943 | tr->y0); /* height of the resolution level computed */ |
| 1944 | |
| 1945 | OPJ_SIZE_T h_mem_size; |
| 1946 | |
| 1947 | /* Compute the intersection of the area of interest, expressed in tile coordinates */ |
| 1948 | /* with the tile coordinates */ |
| 1949 | OPJ_UINT32 win_tcx0 = tilec->win_x0; |
| 1950 | OPJ_UINT32 win_tcy0 = tilec->win_y0; |
| 1951 | OPJ_UINT32 win_tcx1 = tilec->win_x1; |
| 1952 | OPJ_UINT32 win_tcy1 = tilec->win_y1; |
| 1953 | |
| 1954 | if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
| 1955 | return OPJ_TRUE; |
| 1956 | } |
| 1957 | |
| 1958 | sa = opj_dwt_init_sparse_array(tilec, numres); |
| 1959 | if (sa == NULL) { |
| 1960 | return OPJ_FALSE; |
| 1961 | } |
| 1962 | |
| 1963 | if (numres == 1U) { |
| 1964 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
| 1965 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
| 1966 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
| 1967 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
| 1968 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
| 1969 | tilec->data_win, |
| 1970 | 1, tr_max->win_x1 - tr_max->win_x0, |
| 1971 | OPJ_TRUE); |
| 1972 | assert(ret); |
| 1973 | OPJ_UNUSED(ret); |
| 1974 | opj_sparse_array_int32_free(sa); |
| 1975 | return OPJ_TRUE; |
| 1976 | } |
| 1977 | h_mem_size = opj_dwt_max_resolution(tr, numres); |
| 1978 | /* overflow check */ |
| 1979 | /* in vertical pass, we process 4 columns at a time */ |
| 1980 | if (h_mem_size > (SIZE_MAX / (4 * sizeof(OPJ_INT32)))) { |
| 1981 | /* FIXME event manager error callback */ |
| 1982 | opj_sparse_array_int32_free(sa); |
| 1983 | return OPJ_FALSE; |
| 1984 | } |
| 1985 | |
| 1986 | h_mem_size *= 4 * sizeof(OPJ_INT32); |
| 1987 | h.mem = (OPJ_INT32*)opj_aligned_32_malloc(h_mem_size); |
| 1988 | if (! h.mem) { |
| 1989 | /* FIXME event manager error callback */ |
| 1990 | opj_sparse_array_int32_free(sa); |
| 1991 | return OPJ_FALSE; |
| 1992 | } |
| 1993 | |
| 1994 | v.mem = h.mem; |
| 1995 | |
| 1996 | for (resno = 1; resno < numres; resno ++) { |
| 1997 | OPJ_UINT32 i, j; |
| 1998 | /* Window of interest subband-based coordinates */ |
| 1999 | OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
| 2000 | OPJ_UINT32 win_hl_x0, win_hl_x1; |
| 2001 | OPJ_UINT32 win_lh_y0, win_lh_y1; |
| 2002 | /* Window of interest tile-resolution-based coordinates */ |
| 2003 | OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
| 2004 | /* Tile-resolution subband-based coordinates */ |
| 2005 | OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
| 2006 | |
| 2007 | ++tr; |
| 2008 | |
| 2009 | h.sn = (OPJ_INT32)rw; |
| 2010 | v.sn = (OPJ_INT32)rh; |
| 2011 | |
| 2012 | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
| 2013 | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
| 2014 | |
| 2015 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| 2016 | h.cas = tr->x0 % 2; |
| 2017 | |
| 2018 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| 2019 | v.cas = tr->y0 % 2; |
| 2020 | |
| 2021 | /* Get the subband coordinates for the window of interest */ |
| 2022 | /* LL band */ |
| 2023 | opj_dwt_get_band_coordinates(tilec, resno, 0, |
| 2024 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2025 | &win_ll_x0, &win_ll_y0, |
| 2026 | &win_ll_x1, &win_ll_y1); |
| 2027 | |
| 2028 | /* HL band */ |
| 2029 | opj_dwt_get_band_coordinates(tilec, resno, 1, |
| 2030 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2031 | &win_hl_x0, NULL, &win_hl_x1, NULL); |
| 2032 | |
| 2033 | /* LH band */ |
| 2034 | opj_dwt_get_band_coordinates(tilec, resno, 2, |
| 2035 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2036 | NULL, &win_lh_y0, NULL, &win_lh_y1); |
| 2037 | |
| 2038 | /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
| 2039 | tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
| 2040 | tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
| 2041 | tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
| 2042 | tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
| 2043 | |
| 2044 | /* Substract the origin of the bands for this tile, to the subwindow */ |
| 2045 | /* of interest band coordinates, so as to get them relative to the */ |
| 2046 | /* tile */ |
| 2047 | win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
| 2048 | win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
| 2049 | win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
| 2050 | win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
| 2051 | win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
| 2052 | win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
| 2053 | win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
| 2054 | win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
| 2055 | |
| 2056 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
| 2057 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
| 2058 | |
| 2059 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
| 2060 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
| 2061 | |
| 2062 | /* Compute the tile-resolution-based coordinates for the window of interest */ |
| 2063 | if (h.cas == 0) { |
| 2064 | win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
| 2065 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
| 2066 | } else { |
| 2067 | win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
| 2068 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
| 2069 | } |
| 2070 | |
| 2071 | if (v.cas == 0) { |
| 2072 | win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
| 2073 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
| 2074 | } else { |
| 2075 | win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
| 2076 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
| 2077 | } |
| 2078 | |
| 2079 | for (j = 0; j < rh; ++j) { |
| 2080 | if ((j >= win_ll_y0 && j < win_ll_y1) || |
| 2081 | (j >= win_lh_y0 + (OPJ_UINT32)v.sn && j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
| 2082 | |
| 2083 | /* Avoids dwt.c:1584:44 (in opj_dwt_decode_partial_1): runtime error: */ |
| 2084 | /* signed integer overflow: -1094795586 + -1094795586 cannot be represented in type 'int' */ |
| 2085 | /* on opj_decompress -i ../../openjpeg/MAPA.jp2 -o out.tif -d 0,0,256,256 */ |
| 2086 | /* This is less extreme than memsetting the whole buffer to 0 */ |
| 2087 | /* although we could potentially do better with better handling of edge conditions */ |
| 2088 | if (win_tr_x1 >= 1 && win_tr_x1 < rw) { |
| 2089 | h.mem[win_tr_x1 - 1] = 0; |
| 2090 | } |
| 2091 | if (win_tr_x1 < rw) { |
| 2092 | h.mem[win_tr_x1] = 0; |
| 2093 | } |
| 2094 | |
| 2095 | opj_dwt_interleave_partial_h(h.mem, |
| 2096 | h.cas, |
| 2097 | sa, |
| 2098 | j, |
| 2099 | (OPJ_UINT32)h.sn, |
| 2100 | win_ll_x0, |
| 2101 | win_ll_x1, |
| 2102 | win_hl_x0, |
| 2103 | win_hl_x1); |
| 2104 | opj_dwt_decode_partial_1(h.mem, h.dn, h.sn, h.cas, |
| 2105 | (OPJ_INT32)win_ll_x0, |
| 2106 | (OPJ_INT32)win_ll_x1, |
| 2107 | (OPJ_INT32)win_hl_x0, |
| 2108 | (OPJ_INT32)win_hl_x1); |
| 2109 | if (!opj_sparse_array_int32_write(sa, |
| 2110 | win_tr_x0, j, |
| 2111 | win_tr_x1, j + 1, |
| 2112 | h.mem + win_tr_x0, |
| 2113 | 1, 0, OPJ_TRUE)) { |
| 2114 | /* FIXME event manager error callback */ |
| 2115 | opj_sparse_array_int32_free(sa); |
| 2116 | opj_aligned_free(h.mem); |
| 2117 | return OPJ_FALSE; |
| 2118 | } |
| 2119 | } |
| 2120 | } |
| 2121 | |
| 2122 | for (i = win_tr_x0; i < win_tr_x1;) { |
| 2123 | OPJ_UINT32 nb_cols = opj_uint_min(4U, win_tr_x1 - i); |
| 2124 | opj_dwt_interleave_partial_v(v.mem, |
| 2125 | v.cas, |
| 2126 | sa, |
| 2127 | i, |
| 2128 | nb_cols, |
| 2129 | (OPJ_UINT32)v.sn, |
| 2130 | win_ll_y0, |
| 2131 | win_ll_y1, |
| 2132 | win_lh_y0, |
| 2133 | win_lh_y1); |
| 2134 | opj_dwt_decode_partial_1_parallel(v.mem, nb_cols, v.dn, v.sn, v.cas, |
| 2135 | (OPJ_INT32)win_ll_y0, |
| 2136 | (OPJ_INT32)win_ll_y1, |
| 2137 | (OPJ_INT32)win_lh_y0, |
| 2138 | (OPJ_INT32)win_lh_y1); |
| 2139 | if (!opj_sparse_array_int32_write(sa, |
| 2140 | i, win_tr_y0, |
| 2141 | i + nb_cols, win_tr_y1, |
| 2142 | v.mem + 4 * win_tr_y0, |
| 2143 | 1, 4, OPJ_TRUE)) { |
| 2144 | /* FIXME event manager error callback */ |
| 2145 | opj_sparse_array_int32_free(sa); |
| 2146 | opj_aligned_free(h.mem); |
| 2147 | return OPJ_FALSE; |
| 2148 | } |
| 2149 | |
| 2150 | i += nb_cols; |
| 2151 | } |
| 2152 | } |
| 2153 | opj_aligned_free(h.mem); |
| 2154 | |
| 2155 | { |
| 2156 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
| 2157 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
| 2158 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
| 2159 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
| 2160 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
| 2161 | tilec->data_win, |
| 2162 | 1, tr_max->win_x1 - tr_max->win_x0, |
| 2163 | OPJ_TRUE); |
| 2164 | assert(ret); |
| 2165 | OPJ_UNUSED(ret); |
| 2166 | } |
| 2167 | opj_sparse_array_int32_free(sa); |
| 2168 | return OPJ_TRUE; |
| 2169 | } |
| 2170 | |
| 2171 | static void opj_v4dwt_interleave_h(opj_v4dwt_t* OPJ_RESTRICT dwt, |
| 2172 | OPJ_FLOAT32* OPJ_RESTRICT a, |
| 2173 | OPJ_UINT32 width, |
| 2174 | OPJ_UINT32 remaining_height) |
| 2175 | { |
| 2176 | OPJ_FLOAT32* OPJ_RESTRICT bi = (OPJ_FLOAT32*)(dwt->wavelet + dwt->cas); |
| 2177 | OPJ_UINT32 i, k; |
| 2178 | OPJ_UINT32 x0 = dwt->win_l_x0; |
| 2179 | OPJ_UINT32 x1 = dwt->win_l_x1; |
| 2180 | |
| 2181 | for (k = 0; k < 2; ++k) { |
| 2182 | if (remaining_height >= 4 && ((OPJ_SIZE_T) a & 0x0f) == 0 && |
| 2183 | ((OPJ_SIZE_T) bi & 0x0f) == 0 && (width & 0x0f) == 0) { |
| 2184 | /* Fast code path */ |
| 2185 | for (i = x0; i < x1; ++i) { |
| 2186 | OPJ_UINT32 j = i; |
| 2187 | bi[i * 8 ] = a[j]; |
| 2188 | j += width; |
| 2189 | bi[i * 8 + 1] = a[j]; |
| 2190 | j += width; |
| 2191 | bi[i * 8 + 2] = a[j]; |
| 2192 | j += width; |
| 2193 | bi[i * 8 + 3] = a[j]; |
| 2194 | } |
| 2195 | } else { |
| 2196 | /* Slow code path */ |
| 2197 | for (i = x0; i < x1; ++i) { |
| 2198 | OPJ_UINT32 j = i; |
| 2199 | bi[i * 8 ] = a[j]; |
| 2200 | j += width; |
| 2201 | if (remaining_height == 1) { |
| 2202 | continue; |
| 2203 | } |
| 2204 | bi[i * 8 + 1] = a[j]; |
| 2205 | j += width; |
| 2206 | if (remaining_height == 2) { |
| 2207 | continue; |
| 2208 | } |
| 2209 | bi[i * 8 + 2] = a[j]; |
| 2210 | j += width; |
| 2211 | if (remaining_height == 3) { |
| 2212 | continue; |
| 2213 | } |
| 2214 | bi[i * 8 + 3] = a[j]; /* This one*/ |
| 2215 | } |
| 2216 | } |
| 2217 | |
| 2218 | bi = (OPJ_FLOAT32*)(dwt->wavelet + 1 - dwt->cas); |
| 2219 | a += dwt->sn; |
| 2220 | x0 = dwt->win_h_x0; |
| 2221 | x1 = dwt->win_h_x1; |
| 2222 | } |
| 2223 | } |
| 2224 | |
| 2225 | static void opj_v4dwt_interleave_partial_h(opj_v4dwt_t* dwt, |
| 2226 | opj_sparse_array_int32_t* sa, |
| 2227 | OPJ_UINT32 sa_line, |
| 2228 | OPJ_UINT32 remaining_height) |
| 2229 | { |
| 2230 | OPJ_UINT32 i; |
| 2231 | for (i = 0; i < remaining_height; i++) { |
| 2232 | OPJ_BOOL ret; |
| 2233 | ret = opj_sparse_array_int32_read(sa, |
| 2234 | dwt->win_l_x0, sa_line + i, |
| 2235 | dwt->win_l_x1, sa_line + i + 1, |
| 2236 | /* Nasty cast from float* to int32* */ |
| 2237 | (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0) + i, |
| 2238 | 8, 0, OPJ_TRUE); |
| 2239 | assert(ret); |
| 2240 | ret = opj_sparse_array_int32_read(sa, |
| 2241 | (OPJ_UINT32)dwt->sn + dwt->win_h_x0, sa_line + i, |
| 2242 | (OPJ_UINT32)dwt->sn + dwt->win_h_x1, sa_line + i + 1, |
| 2243 | /* Nasty cast from float* to int32* */ |
| 2244 | (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0) + i, |
| 2245 | 8, 0, OPJ_TRUE); |
| 2246 | assert(ret); |
| 2247 | OPJ_UNUSED(ret); |
| 2248 | } |
| 2249 | } |
| 2250 | |
| 2251 | static void opj_v4dwt_interleave_v(opj_v4dwt_t* OPJ_RESTRICT dwt, |
| 2252 | OPJ_FLOAT32* OPJ_RESTRICT a, |
| 2253 | OPJ_UINT32 width, |
| 2254 | OPJ_UINT32 nb_elts_read) |
| 2255 | { |
| 2256 | opj_v4_t* OPJ_RESTRICT bi = dwt->wavelet + dwt->cas; |
| 2257 | OPJ_UINT32 i; |
| 2258 | |
| 2259 | for (i = dwt->win_l_x0; i < dwt->win_l_x1; ++i) { |
| 2260 | memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
| 2261 | (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
| 2262 | } |
| 2263 | |
| 2264 | a += (OPJ_UINT32)dwt->sn * (OPJ_SIZE_T)width; |
| 2265 | bi = dwt->wavelet + 1 - dwt->cas; |
| 2266 | |
| 2267 | for (i = dwt->win_h_x0; i < dwt->win_h_x1; ++i) { |
| 2268 | memcpy(&bi[i * 2], &a[i * (OPJ_SIZE_T)width], |
| 2269 | (OPJ_SIZE_T)nb_elts_read * sizeof(OPJ_FLOAT32)); |
| 2270 | } |
| 2271 | } |
| 2272 | |
| 2273 | static void opj_v4dwt_interleave_partial_v(opj_v4dwt_t* OPJ_RESTRICT dwt, |
| 2274 | opj_sparse_array_int32_t* sa, |
| 2275 | OPJ_UINT32 sa_col, |
| 2276 | OPJ_UINT32 nb_elts_read) |
| 2277 | { |
| 2278 | OPJ_BOOL ret; |
| 2279 | ret = opj_sparse_array_int32_read(sa, |
| 2280 | sa_col, dwt->win_l_x0, |
| 2281 | sa_col + nb_elts_read, dwt->win_l_x1, |
| 2282 | (OPJ_INT32*)(dwt->wavelet + dwt->cas + 2 * dwt->win_l_x0), |
| 2283 | 1, 8, OPJ_TRUE); |
| 2284 | assert(ret); |
| 2285 | ret = opj_sparse_array_int32_read(sa, |
| 2286 | sa_col, (OPJ_UINT32)dwt->sn + dwt->win_h_x0, |
| 2287 | sa_col + nb_elts_read, (OPJ_UINT32)dwt->sn + dwt->win_h_x1, |
| 2288 | (OPJ_INT32*)(dwt->wavelet + 1 - dwt->cas + 2 * dwt->win_h_x0), |
| 2289 | 1, 8, OPJ_TRUE); |
| 2290 | assert(ret); |
| 2291 | OPJ_UNUSED(ret); |
| 2292 | } |
| 2293 | |
| 2294 | #ifdef __SSE__ |
| 2295 | |
| 2296 | static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, |
| 2297 | OPJ_UINT32 start, |
| 2298 | OPJ_UINT32 end, |
| 2299 | const __m128 c) |
| 2300 | { |
| 2301 | __m128* OPJ_RESTRICT vw = (__m128*) w; |
| 2302 | OPJ_UINT32 i; |
| 2303 | /* 4x unrolled loop */ |
| 2304 | vw += 2 * start; |
| 2305 | for (i = start; i + 3 < end; i += 4, vw += 8) { |
| 2306 | __m128 xmm0 = _mm_mul_ps(vw[0], c); |
| 2307 | __m128 xmm2 = _mm_mul_ps(vw[2], c); |
| 2308 | __m128 xmm4 = _mm_mul_ps(vw[4], c); |
| 2309 | __m128 xmm6 = _mm_mul_ps(vw[6], c); |
| 2310 | vw[0] = xmm0; |
| 2311 | vw[2] = xmm2; |
| 2312 | vw[4] = xmm4; |
| 2313 | vw[6] = xmm6; |
| 2314 | } |
| 2315 | for (; i < end; ++i, vw += 2) { |
| 2316 | vw[0] = _mm_mul_ps(vw[0], c); |
| 2317 | } |
| 2318 | } |
| 2319 | |
| 2320 | static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, |
| 2321 | OPJ_UINT32 start, |
| 2322 | OPJ_UINT32 end, |
| 2323 | OPJ_UINT32 m, |
| 2324 | __m128 c) |
| 2325 | { |
| 2326 | __m128* OPJ_RESTRICT vl = (__m128*) l; |
| 2327 | __m128* OPJ_RESTRICT vw = (__m128*) w; |
| 2328 | OPJ_UINT32 i; |
| 2329 | OPJ_UINT32 imax = opj_uint_min(end, m); |
| 2330 | __m128 tmp1, tmp2, tmp3; |
| 2331 | if (start == 0) { |
| 2332 | tmp1 = vl[0]; |
| 2333 | } else { |
| 2334 | vw += start * 2; |
| 2335 | tmp1 = vw[-3]; |
| 2336 | } |
| 2337 | |
| 2338 | i = start; |
| 2339 | |
| 2340 | /* 4x loop unrolling */ |
| 2341 | for (; i + 3 < imax; i += 4) { |
| 2342 | __m128 tmp4, tmp5, tmp6, tmp7, tmp8, tmp9; |
| 2343 | tmp2 = vw[-1]; |
| 2344 | tmp3 = vw[ 0]; |
| 2345 | tmp4 = vw[ 1]; |
| 2346 | tmp5 = vw[ 2]; |
| 2347 | tmp6 = vw[ 3]; |
| 2348 | tmp7 = vw[ 4]; |
| 2349 | tmp8 = vw[ 5]; |
| 2350 | tmp9 = vw[ 6]; |
| 2351 | vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); |
| 2352 | vw[ 1] = _mm_add_ps(tmp4, _mm_mul_ps(_mm_add_ps(tmp3, tmp5), c)); |
| 2353 | vw[ 3] = _mm_add_ps(tmp6, _mm_mul_ps(_mm_add_ps(tmp5, tmp7), c)); |
| 2354 | vw[ 5] = _mm_add_ps(tmp8, _mm_mul_ps(_mm_add_ps(tmp7, tmp9), c)); |
| 2355 | tmp1 = tmp9; |
| 2356 | vw += 8; |
| 2357 | } |
| 2358 | |
| 2359 | for (; i < imax; ++i) { |
| 2360 | tmp2 = vw[-1]; |
| 2361 | tmp3 = vw[ 0]; |
| 2362 | vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); |
| 2363 | tmp1 = tmp3; |
| 2364 | vw += 2; |
| 2365 | } |
| 2366 | if (m < end) { |
| 2367 | assert(m + 1 == end); |
| 2368 | c = _mm_add_ps(c, c); |
| 2369 | c = _mm_mul_ps(c, vw[-2]); |
| 2370 | vw[-1] = _mm_add_ps(vw[-1], c); |
| 2371 | } |
| 2372 | } |
| 2373 | |
| 2374 | #else |
| 2375 | |
| 2376 | static void opj_v4dwt_decode_step1(opj_v4_t* w, |
| 2377 | OPJ_UINT32 start, |
| 2378 | OPJ_UINT32 end, |
| 2379 | const OPJ_FLOAT32 c) |
| 2380 | { |
| 2381 | OPJ_FLOAT32* OPJ_RESTRICT fw = (OPJ_FLOAT32*) w; |
| 2382 | OPJ_UINT32 i; |
| 2383 | for (i = start; i < end; ++i) { |
| 2384 | OPJ_FLOAT32 tmp1 = fw[i * 8 ]; |
| 2385 | OPJ_FLOAT32 tmp2 = fw[i * 8 + 1]; |
| 2386 | OPJ_FLOAT32 tmp3 = fw[i * 8 + 2]; |
| 2387 | OPJ_FLOAT32 tmp4 = fw[i * 8 + 3]; |
| 2388 | fw[i * 8 ] = tmp1 * c; |
| 2389 | fw[i * 8 + 1] = tmp2 * c; |
| 2390 | fw[i * 8 + 2] = tmp3 * c; |
| 2391 | fw[i * 8 + 3] = tmp4 * c; |
| 2392 | } |
| 2393 | } |
| 2394 | |
| 2395 | static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, |
| 2396 | OPJ_UINT32 start, |
| 2397 | OPJ_UINT32 end, |
| 2398 | OPJ_UINT32 m, |
| 2399 | OPJ_FLOAT32 c) |
| 2400 | { |
| 2401 | OPJ_FLOAT32* fl = (OPJ_FLOAT32*) l; |
| 2402 | OPJ_FLOAT32* fw = (OPJ_FLOAT32*) w; |
| 2403 | OPJ_UINT32 i; |
| 2404 | OPJ_UINT32 imax = opj_uint_min(end, m); |
| 2405 | if (start > 0) { |
| 2406 | fw += 8 * start; |
| 2407 | fl = fw - 8; |
| 2408 | } |
| 2409 | for (i = start; i < imax; ++i) { |
| 2410 | OPJ_FLOAT32 tmp1_1 = fl[0]; |
| 2411 | OPJ_FLOAT32 tmp1_2 = fl[1]; |
| 2412 | OPJ_FLOAT32 tmp1_3 = fl[2]; |
| 2413 | OPJ_FLOAT32 tmp1_4 = fl[3]; |
| 2414 | OPJ_FLOAT32 tmp2_1 = fw[-4]; |
| 2415 | OPJ_FLOAT32 tmp2_2 = fw[-3]; |
| 2416 | OPJ_FLOAT32 tmp2_3 = fw[-2]; |
| 2417 | OPJ_FLOAT32 tmp2_4 = fw[-1]; |
| 2418 | OPJ_FLOAT32 tmp3_1 = fw[0]; |
| 2419 | OPJ_FLOAT32 tmp3_2 = fw[1]; |
| 2420 | OPJ_FLOAT32 tmp3_3 = fw[2]; |
| 2421 | OPJ_FLOAT32 tmp3_4 = fw[3]; |
| 2422 | fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); |
| 2423 | fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); |
| 2424 | fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); |
| 2425 | fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); |
| 2426 | fl = fw; |
| 2427 | fw += 8; |
| 2428 | } |
| 2429 | if (m < end) { |
| 2430 | assert(m + 1 == end); |
| 2431 | c += c; |
| 2432 | fw[-4] = fw[-4] + fl[0] * c; |
| 2433 | fw[-3] = fw[-3] + fl[1] * c; |
| 2434 | fw[-2] = fw[-2] + fl[2] * c; |
| 2435 | fw[-1] = fw[-1] + fl[3] * c; |
| 2436 | } |
| 2437 | } |
| 2438 | |
| 2439 | #endif |
| 2440 | |
| 2441 | /* <summary> */ |
| 2442 | /* Inverse 9-7 wavelet transform in 1-D. */ |
| 2443 | /* </summary> */ |
| 2444 | static void opj_v4dwt_decode(opj_v4dwt_t* OPJ_RESTRICT dwt) |
| 2445 | { |
| 2446 | OPJ_INT32 a, b; |
| 2447 | if (dwt->cas == 0) { |
| 2448 | if (!((dwt->dn > 0) || (dwt->sn > 1))) { |
| 2449 | return; |
| 2450 | } |
| 2451 | a = 0; |
| 2452 | b = 1; |
| 2453 | } else { |
| 2454 | if (!((dwt->sn > 0) || (dwt->dn > 1))) { |
| 2455 | return; |
| 2456 | } |
| 2457 | a = 1; |
| 2458 | b = 0; |
| 2459 | } |
| 2460 | #ifdef __SSE__ |
| 2461 | opj_v4dwt_decode_step1_sse(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
| 2462 | _mm_set1_ps(opj_K)); |
| 2463 | opj_v4dwt_decode_step1_sse(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
| 2464 | _mm_set1_ps(opj_c13318)); |
| 2465 | opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
| 2466 | dwt->win_l_x0, dwt->win_l_x1, |
| 2467 | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
| 2468 | _mm_set1_ps(opj_dwt_delta)); |
| 2469 | opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
| 2470 | dwt->win_h_x0, dwt->win_h_x1, |
| 2471 | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
| 2472 | _mm_set1_ps(opj_dwt_gamma)); |
| 2473 | opj_v4dwt_decode_step2_sse(dwt->wavelet + b, dwt->wavelet + a + 1, |
| 2474 | dwt->win_l_x0, dwt->win_l_x1, |
| 2475 | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
| 2476 | _mm_set1_ps(opj_dwt_beta)); |
| 2477 | opj_v4dwt_decode_step2_sse(dwt->wavelet + a, dwt->wavelet + b + 1, |
| 2478 | dwt->win_h_x0, dwt->win_h_x1, |
| 2479 | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
| 2480 | _mm_set1_ps(opj_dwt_alpha)); |
| 2481 | #else |
| 2482 | opj_v4dwt_decode_step1(dwt->wavelet + a, dwt->win_l_x0, dwt->win_l_x1, |
| 2483 | opj_K); |
| 2484 | opj_v4dwt_decode_step1(dwt->wavelet + b, dwt->win_h_x0, dwt->win_h_x1, |
| 2485 | opj_c13318); |
| 2486 | opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
| 2487 | dwt->win_l_x0, dwt->win_l_x1, |
| 2488 | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
| 2489 | opj_dwt_delta); |
| 2490 | opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
| 2491 | dwt->win_h_x0, dwt->win_h_x1, |
| 2492 | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
| 2493 | opj_dwt_gamma); |
| 2494 | opj_v4dwt_decode_step2(dwt->wavelet + b, dwt->wavelet + a + 1, |
| 2495 | dwt->win_l_x0, dwt->win_l_x1, |
| 2496 | (OPJ_UINT32)opj_int_min(dwt->sn, dwt->dn - a), |
| 2497 | opj_dwt_beta); |
| 2498 | opj_v4dwt_decode_step2(dwt->wavelet + a, dwt->wavelet + b + 1, |
| 2499 | dwt->win_h_x0, dwt->win_h_x1, |
| 2500 | (OPJ_UINT32)opj_int_min(dwt->dn, dwt->sn - b), |
| 2501 | opj_dwt_alpha); |
| 2502 | #endif |
| 2503 | } |
| 2504 | |
| 2505 | |
| 2506 | /* <summary> */ |
| 2507 | /* Inverse 9-7 wavelet transform in 2-D. */ |
| 2508 | /* </summary> */ |
| 2509 | static |
| 2510 | OPJ_BOOL opj_dwt_decode_tile_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
| 2511 | OPJ_UINT32 numres) |
| 2512 | { |
| 2513 | opj_v4dwt_t h; |
| 2514 | opj_v4dwt_t v; |
| 2515 | |
| 2516 | opj_tcd_resolution_t* res = tilec->resolutions; |
| 2517 | |
| 2518 | OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - |
| 2519 | res->x0); /* width of the resolution level computed */ |
| 2520 | OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - |
| 2521 | res->y0); /* height of the resolution level computed */ |
| 2522 | |
| 2523 | OPJ_UINT32 w = (OPJ_UINT32)(tilec->resolutions[tilec->minimum_num_resolutions - |
| 2524 | 1].x1 - |
| 2525 | tilec->resolutions[tilec->minimum_num_resolutions - 1].x0); |
| 2526 | |
| 2527 | OPJ_SIZE_T l_data_size; |
| 2528 | |
| 2529 | l_data_size = opj_dwt_max_resolution(res, numres); |
| 2530 | /* overflow check */ |
| 2531 | if (l_data_size > (SIZE_MAX - 5U)) { |
| 2532 | /* FIXME event manager error callback */ |
| 2533 | return OPJ_FALSE; |
| 2534 | } |
| 2535 | l_data_size += 5U; |
| 2536 | /* overflow check */ |
| 2537 | if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) { |
| 2538 | /* FIXME event manager error callback */ |
| 2539 | return OPJ_FALSE; |
| 2540 | } |
| 2541 | h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t)); |
| 2542 | if (!h.wavelet) { |
| 2543 | /* FIXME event manager error callback */ |
| 2544 | return OPJ_FALSE; |
| 2545 | } |
| 2546 | v.wavelet = h.wavelet; |
| 2547 | |
| 2548 | while (--numres) { |
| 2549 | OPJ_FLOAT32 * OPJ_RESTRICT aj = (OPJ_FLOAT32*) tilec->data; |
| 2550 | OPJ_UINT32 j; |
| 2551 | |
| 2552 | h.sn = (OPJ_INT32)rw; |
| 2553 | v.sn = (OPJ_INT32)rh; |
| 2554 | |
| 2555 | ++res; |
| 2556 | |
| 2557 | rw = (OPJ_UINT32)(res->x1 - |
| 2558 | res->x0); /* width of the resolution level computed */ |
| 2559 | rh = (OPJ_UINT32)(res->y1 - |
| 2560 | res->y0); /* height of the resolution level computed */ |
| 2561 | |
| 2562 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| 2563 | h.cas = res->x0 % 2; |
| 2564 | |
| 2565 | h.win_l_x0 = 0; |
| 2566 | h.win_l_x1 = (OPJ_UINT32)h.sn; |
| 2567 | h.win_h_x0 = 0; |
| 2568 | h.win_h_x1 = (OPJ_UINT32)h.dn; |
| 2569 | for (j = 0; j + 3 < rh; j += 4) { |
| 2570 | OPJ_UINT32 k; |
| 2571 | opj_v4dwt_interleave_h(&h, aj, w, rh - j); |
| 2572 | opj_v4dwt_decode(&h); |
| 2573 | |
| 2574 | for (k = 0; k < rw; k++) { |
| 2575 | aj[k ] = h.wavelet[k].f[0]; |
| 2576 | aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1]; |
| 2577 | aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; |
| 2578 | aj[k + (OPJ_SIZE_T)w * 3] = h.wavelet[k].f[3]; |
| 2579 | } |
| 2580 | |
| 2581 | aj += w * 4; |
| 2582 | } |
| 2583 | |
| 2584 | if (j < rh) { |
| 2585 | OPJ_UINT32 k; |
| 2586 | opj_v4dwt_interleave_h(&h, aj, w, rh - j); |
| 2587 | opj_v4dwt_decode(&h); |
| 2588 | for (k = 0; k < rw; k++) { |
| 2589 | switch (rh - j) { |
| 2590 | case 3: |
| 2591 | aj[k + (OPJ_SIZE_T)w * 2] = h.wavelet[k].f[2]; |
| 2592 | /* FALLTHRU */ |
| 2593 | case 2: |
| 2594 | aj[k + (OPJ_SIZE_T)w ] = h.wavelet[k].f[1]; |
| 2595 | /* FALLTHRU */ |
| 2596 | case 1: |
| 2597 | aj[k] = h.wavelet[k].f[0]; |
| 2598 | } |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| 2603 | v.cas = res->y0 % 2; |
| 2604 | v.win_l_x0 = 0; |
| 2605 | v.win_l_x1 = (OPJ_UINT32)v.sn; |
| 2606 | v.win_h_x0 = 0; |
| 2607 | v.win_h_x1 = (OPJ_UINT32)v.dn; |
| 2608 | |
| 2609 | aj = (OPJ_FLOAT32*) tilec->data; |
| 2610 | for (j = rw; j > 3; j -= 4) { |
| 2611 | OPJ_UINT32 k; |
| 2612 | |
| 2613 | opj_v4dwt_interleave_v(&v, aj, w, 4); |
| 2614 | opj_v4dwt_decode(&v); |
| 2615 | |
| 2616 | for (k = 0; k < rh; ++k) { |
| 2617 | memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); |
| 2618 | } |
| 2619 | aj += 4; |
| 2620 | } |
| 2621 | |
| 2622 | if (rw & 0x03) { |
| 2623 | OPJ_UINT32 k; |
| 2624 | |
| 2625 | j = rw & 0x03; |
| 2626 | |
| 2627 | opj_v4dwt_interleave_v(&v, aj, w, j); |
| 2628 | opj_v4dwt_decode(&v); |
| 2629 | |
| 2630 | for (k = 0; k < rh; ++k) { |
| 2631 | memcpy(&aj[k * (OPJ_SIZE_T)w], &v.wavelet[k], |
| 2632 | (OPJ_SIZE_T)j * sizeof(OPJ_FLOAT32)); |
| 2633 | } |
| 2634 | } |
| 2635 | } |
| 2636 | |
| 2637 | opj_aligned_free(h.wavelet); |
| 2638 | return OPJ_TRUE; |
| 2639 | } |
| 2640 | |
| 2641 | static |
| 2642 | OPJ_BOOL opj_dwt_decode_partial_97(opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
| 2643 | OPJ_UINT32 numres) |
| 2644 | { |
| 2645 | opj_sparse_array_int32_t* sa; |
| 2646 | opj_v4dwt_t h; |
| 2647 | opj_v4dwt_t v; |
| 2648 | OPJ_UINT32 resno; |
| 2649 | /* This value matches the maximum left/right extension given in tables */ |
| 2650 | /* F.2 and F.3 of the standard. Note: in opj_tcd_is_subband_area_of_interest() */ |
| 2651 | /* we currently use 3. */ |
| 2652 | const OPJ_UINT32 filter_width = 4U; |
| 2653 | |
| 2654 | opj_tcd_resolution_t* tr = tilec->resolutions; |
| 2655 | opj_tcd_resolution_t* tr_max = &(tilec->resolutions[numres - 1]); |
| 2656 | |
| 2657 | OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - |
| 2658 | tr->x0); /* width of the resolution level computed */ |
| 2659 | OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - |
| 2660 | tr->y0); /* height of the resolution level computed */ |
| 2661 | |
| 2662 | OPJ_SIZE_T l_data_size; |
| 2663 | |
| 2664 | /* Compute the intersection of the area of interest, expressed in tile coordinates */ |
| 2665 | /* with the tile coordinates */ |
| 2666 | OPJ_UINT32 win_tcx0 = tilec->win_x0; |
| 2667 | OPJ_UINT32 win_tcy0 = tilec->win_y0; |
| 2668 | OPJ_UINT32 win_tcx1 = tilec->win_x1; |
| 2669 | OPJ_UINT32 win_tcy1 = tilec->win_y1; |
| 2670 | |
| 2671 | if (tr_max->x0 == tr_max->x1 || tr_max->y0 == tr_max->y1) { |
| 2672 | return OPJ_TRUE; |
| 2673 | } |
| 2674 | |
| 2675 | sa = opj_dwt_init_sparse_array(tilec, numres); |
| 2676 | if (sa == NULL) { |
| 2677 | return OPJ_FALSE; |
| 2678 | } |
| 2679 | |
| 2680 | if (numres == 1U) { |
| 2681 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
| 2682 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
| 2683 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
| 2684 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
| 2685 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
| 2686 | tilec->data_win, |
| 2687 | 1, tr_max->win_x1 - tr_max->win_x0, |
| 2688 | OPJ_TRUE); |
| 2689 | assert(ret); |
| 2690 | OPJ_UNUSED(ret); |
| 2691 | opj_sparse_array_int32_free(sa); |
| 2692 | return OPJ_TRUE; |
| 2693 | } |
| 2694 | |
| 2695 | l_data_size = opj_dwt_max_resolution(tr, numres); |
| 2696 | /* overflow check */ |
| 2697 | if (l_data_size > (SIZE_MAX - 5U)) { |
| 2698 | /* FIXME event manager error callback */ |
| 2699 | return OPJ_FALSE; |
| 2700 | } |
| 2701 | l_data_size += 5U; |
| 2702 | /* overflow check */ |
| 2703 | if (l_data_size > (SIZE_MAX / sizeof(opj_v4_t))) { |
| 2704 | /* FIXME event manager error callback */ |
| 2705 | return OPJ_FALSE; |
| 2706 | } |
| 2707 | h.wavelet = (opj_v4_t*) opj_aligned_malloc(l_data_size * sizeof(opj_v4_t)); |
| 2708 | if (!h.wavelet) { |
| 2709 | /* FIXME event manager error callback */ |
| 2710 | return OPJ_FALSE; |
| 2711 | } |
| 2712 | v.wavelet = h.wavelet; |
| 2713 | |
| 2714 | for (resno = 1; resno < numres; resno ++) { |
| 2715 | OPJ_UINT32 j; |
| 2716 | /* Window of interest subband-based coordinates */ |
| 2717 | OPJ_UINT32 win_ll_x0, win_ll_y0, win_ll_x1, win_ll_y1; |
| 2718 | OPJ_UINT32 win_hl_x0, win_hl_x1; |
| 2719 | OPJ_UINT32 win_lh_y0, win_lh_y1; |
| 2720 | /* Window of interest tile-resolution-based coordinates */ |
| 2721 | OPJ_UINT32 win_tr_x0, win_tr_x1, win_tr_y0, win_tr_y1; |
| 2722 | /* Tile-resolution subband-based coordinates */ |
| 2723 | OPJ_UINT32 tr_ll_x0, tr_ll_y0, tr_hl_x0, tr_lh_y0; |
| 2724 | |
| 2725 | ++tr; |
| 2726 | |
| 2727 | h.sn = (OPJ_INT32)rw; |
| 2728 | v.sn = (OPJ_INT32)rh; |
| 2729 | |
| 2730 | rw = (OPJ_UINT32)(tr->x1 - tr->x0); |
| 2731 | rh = (OPJ_UINT32)(tr->y1 - tr->y0); |
| 2732 | |
| 2733 | h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); |
| 2734 | h.cas = tr->x0 % 2; |
| 2735 | |
| 2736 | v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); |
| 2737 | v.cas = tr->y0 % 2; |
| 2738 | |
| 2739 | /* Get the subband coordinates for the window of interest */ |
| 2740 | /* LL band */ |
| 2741 | opj_dwt_get_band_coordinates(tilec, resno, 0, |
| 2742 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2743 | &win_ll_x0, &win_ll_y0, |
| 2744 | &win_ll_x1, &win_ll_y1); |
| 2745 | |
| 2746 | /* HL band */ |
| 2747 | opj_dwt_get_band_coordinates(tilec, resno, 1, |
| 2748 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2749 | &win_hl_x0, NULL, &win_hl_x1, NULL); |
| 2750 | |
| 2751 | /* LH band */ |
| 2752 | opj_dwt_get_band_coordinates(tilec, resno, 2, |
| 2753 | win_tcx0, win_tcy0, win_tcx1, win_tcy1, |
| 2754 | NULL, &win_lh_y0, NULL, &win_lh_y1); |
| 2755 | |
| 2756 | /* Beware: band index for non-LL0 resolution are 0=HL, 1=LH and 2=HH */ |
| 2757 | tr_ll_x0 = (OPJ_UINT32)tr->bands[1].x0; |
| 2758 | tr_ll_y0 = (OPJ_UINT32)tr->bands[0].y0; |
| 2759 | tr_hl_x0 = (OPJ_UINT32)tr->bands[0].x0; |
| 2760 | tr_lh_y0 = (OPJ_UINT32)tr->bands[1].y0; |
| 2761 | |
| 2762 | /* Substract the origin of the bands for this tile, to the subwindow */ |
| 2763 | /* of interest band coordinates, so as to get them relative to the */ |
| 2764 | /* tile */ |
| 2765 | win_ll_x0 = opj_uint_subs(win_ll_x0, tr_ll_x0); |
| 2766 | win_ll_y0 = opj_uint_subs(win_ll_y0, tr_ll_y0); |
| 2767 | win_ll_x1 = opj_uint_subs(win_ll_x1, tr_ll_x0); |
| 2768 | win_ll_y1 = opj_uint_subs(win_ll_y1, tr_ll_y0); |
| 2769 | win_hl_x0 = opj_uint_subs(win_hl_x0, tr_hl_x0); |
| 2770 | win_hl_x1 = opj_uint_subs(win_hl_x1, tr_hl_x0); |
| 2771 | win_lh_y0 = opj_uint_subs(win_lh_y0, tr_lh_y0); |
| 2772 | win_lh_y1 = opj_uint_subs(win_lh_y1, tr_lh_y0); |
| 2773 | |
| 2774 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.sn, &win_ll_x0, &win_ll_x1); |
| 2775 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)h.dn, &win_hl_x0, &win_hl_x1); |
| 2776 | |
| 2777 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.sn, &win_ll_y0, &win_ll_y1); |
| 2778 | opj_dwt_segment_grow(filter_width, (OPJ_UINT32)v.dn, &win_lh_y0, &win_lh_y1); |
| 2779 | |
| 2780 | /* Compute the tile-resolution-based coordinates for the window of interest */ |
| 2781 | if (h.cas == 0) { |
| 2782 | win_tr_x0 = opj_uint_min(2 * win_ll_x0, 2 * win_hl_x0 + 1); |
| 2783 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_ll_x1, 2 * win_hl_x1 + 1), rw); |
| 2784 | } else { |
| 2785 | win_tr_x0 = opj_uint_min(2 * win_hl_x0, 2 * win_ll_x0 + 1); |
| 2786 | win_tr_x1 = opj_uint_min(opj_uint_max(2 * win_hl_x1, 2 * win_ll_x1 + 1), rw); |
| 2787 | } |
| 2788 | |
| 2789 | if (v.cas == 0) { |
| 2790 | win_tr_y0 = opj_uint_min(2 * win_ll_y0, 2 * win_lh_y0 + 1); |
| 2791 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_ll_y1, 2 * win_lh_y1 + 1), rh); |
| 2792 | } else { |
| 2793 | win_tr_y0 = opj_uint_min(2 * win_lh_y0, 2 * win_ll_y0 + 1); |
| 2794 | win_tr_y1 = opj_uint_min(opj_uint_max(2 * win_lh_y1, 2 * win_ll_y1 + 1), rh); |
| 2795 | } |
| 2796 | |
| 2797 | h.win_l_x0 = win_ll_x0; |
| 2798 | h.win_l_x1 = win_ll_x1; |
| 2799 | h.win_h_x0 = win_hl_x0; |
| 2800 | h.win_h_x1 = win_hl_x1; |
| 2801 | for (j = 0; j + 3 < rh; j += 4) { |
| 2802 | if ((j + 3 >= win_ll_y0 && j < win_ll_y1) || |
| 2803 | (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn && |
| 2804 | j < win_lh_y1 + (OPJ_UINT32)v.sn)) { |
| 2805 | opj_v4dwt_interleave_partial_h(&h, sa, j, opj_uint_min(4U, rh - j)); |
| 2806 | opj_v4dwt_decode(&h); |
| 2807 | if (!opj_sparse_array_int32_write(sa, |
| 2808 | win_tr_x0, j, |
| 2809 | win_tr_x1, j + 4, |
| 2810 | (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
| 2811 | 4, 1, OPJ_TRUE)) { |
| 2812 | /* FIXME event manager error callback */ |
| 2813 | opj_sparse_array_int32_free(sa); |
| 2814 | opj_aligned_free(h.wavelet); |
| 2815 | return OPJ_FALSE; |
| 2816 | } |
| 2817 | } |
| 2818 | } |
| 2819 | |
| 2820 | if (j < rh && |
| 2821 | ((j + 3 >= win_ll_y0 && j < win_ll_y1) || |
| 2822 | (j + 3 >= win_lh_y0 + (OPJ_UINT32)v.sn && |
| 2823 | j < win_lh_y1 + (OPJ_UINT32)v.sn))) { |
| 2824 | opj_v4dwt_interleave_partial_h(&h, sa, j, rh - j); |
| 2825 | opj_v4dwt_decode(&h); |
| 2826 | if (!opj_sparse_array_int32_write(sa, |
| 2827 | win_tr_x0, j, |
| 2828 | win_tr_x1, rh, |
| 2829 | (OPJ_INT32*)&h.wavelet[win_tr_x0].f[0], |
| 2830 | 4, 1, OPJ_TRUE)) { |
| 2831 | /* FIXME event manager error callback */ |
| 2832 | opj_sparse_array_int32_free(sa); |
| 2833 | opj_aligned_free(h.wavelet); |
| 2834 | return OPJ_FALSE; |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | v.win_l_x0 = win_ll_y0; |
| 2839 | v.win_l_x1 = win_ll_y1; |
| 2840 | v.win_h_x0 = win_lh_y0; |
| 2841 | v.win_h_x1 = win_lh_y1; |
| 2842 | for (j = win_tr_x0; j < win_tr_x1; j += 4) { |
| 2843 | OPJ_UINT32 nb_elts = opj_uint_min(4U, win_tr_x1 - j); |
| 2844 | |
| 2845 | opj_v4dwt_interleave_partial_v(&v, sa, j, nb_elts); |
| 2846 | opj_v4dwt_decode(&v); |
| 2847 | |
| 2848 | if (!opj_sparse_array_int32_write(sa, |
| 2849 | j, win_tr_y0, |
| 2850 | j + nb_elts, win_tr_y1, |
| 2851 | (OPJ_INT32*)&h.wavelet[win_tr_y0].f[0], |
| 2852 | 1, 4, OPJ_TRUE)) { |
| 2853 | /* FIXME event manager error callback */ |
| 2854 | opj_sparse_array_int32_free(sa); |
| 2855 | opj_aligned_free(h.wavelet); |
| 2856 | return OPJ_FALSE; |
| 2857 | } |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | { |
| 2862 | OPJ_BOOL ret = opj_sparse_array_int32_read(sa, |
| 2863 | tr_max->win_x0 - (OPJ_UINT32)tr_max->x0, |
| 2864 | tr_max->win_y0 - (OPJ_UINT32)tr_max->y0, |
| 2865 | tr_max->win_x1 - (OPJ_UINT32)tr_max->x0, |
| 2866 | tr_max->win_y1 - (OPJ_UINT32)tr_max->y0, |
| 2867 | tilec->data_win, |
| 2868 | 1, tr_max->win_x1 - tr_max->win_x0, |
| 2869 | OPJ_TRUE); |
| 2870 | assert(ret); |
| 2871 | OPJ_UNUSED(ret); |
| 2872 | } |
| 2873 | opj_sparse_array_int32_free(sa); |
| 2874 | |
| 2875 | opj_aligned_free(h.wavelet); |
| 2876 | return OPJ_TRUE; |
| 2877 | } |
| 2878 | |
| 2879 | |
| 2880 | OPJ_BOOL opj_dwt_decode_real(opj_tcd_t *p_tcd, |
| 2881 | opj_tcd_tilecomp_t* OPJ_RESTRICT tilec, |
| 2882 | OPJ_UINT32 numres) |
| 2883 | { |
| 2884 | if (p_tcd->whole_tile_decoding) { |
| 2885 | return opj_dwt_decode_tile_97(tilec, numres); |
| 2886 | } else { |
| 2887 | return opj_dwt_decode_partial_97(tilec, numres); |
| 2888 | } |
| 2889 | } |
| 2890 | |