| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
| 6 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 7 | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > |
| 8 | // |
| 9 | // This Source Code Form is subject to the terms of the Mozilla |
| 10 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 11 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 12 | |
| 13 | #ifndef EIGEN_LDLT_H |
| 14 | #define EIGEN_LDLT_H |
| 15 | |
| 16 | namespace Eigen { |
| 17 | |
| 18 | namespace internal { |
| 19 | template<typename MatrixType, int UpLo> struct LDLT_Traits; |
| 20 | |
| 21 | // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef |
| 22 | enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; |
| 23 | } |
| 24 | |
| 25 | /** \ingroup Cholesky_Module |
| 26 | * |
| 27 | * \class LDLT |
| 28 | * |
| 29 | * \brief Robust Cholesky decomposition of a matrix with pivoting |
| 30 | * |
| 31 | * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition |
| 32 | * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
| 33 | * The other triangular part won't be read. |
| 34 | * |
| 35 | * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
| 36 | * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
| 37 | * is lower triangular with a unit diagonal and D is a diagonal matrix. |
| 38 | * |
| 39 | * The decomposition uses pivoting to ensure stability, so that L will have |
| 40 | * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
| 41 | * on D also stabilizes the computation. |
| 42 | * |
| 43 | * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
| 44 | * decomposition to determine whether a system of equations has a solution. |
| 45 | * |
| 46 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| 47 | * |
| 48 | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT |
| 49 | */ |
| 50 | template<typename _MatrixType, int _UpLo> class LDLT |
| 51 | { |
| 52 | public: |
| 53 | typedef _MatrixType MatrixType; |
| 54 | enum { |
| 55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 57 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 58 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 59 | UpLo = _UpLo |
| 60 | }; |
| 61 | typedef typename MatrixType::Scalar Scalar; |
| 62 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 63 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| 64 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 65 | typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; |
| 66 | |
| 67 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
| 68 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
| 69 | |
| 70 | typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
| 71 | |
| 72 | /** \brief Default Constructor. |
| 73 | * |
| 74 | * The default constructor is useful in cases in which the user intends to |
| 75 | * perform decompositions via LDLT::compute(const MatrixType&). |
| 76 | */ |
| 77 | LDLT() |
| 78 | : m_matrix(), |
| 79 | m_transpositions(), |
| 80 | m_sign(internal::ZeroSign), |
| 81 | m_isInitialized(false) |
| 82 | {} |
| 83 | |
| 84 | /** \brief Default Constructor with memory preallocation |
| 85 | * |
| 86 | * Like the default constructor but with preallocation of the internal data |
| 87 | * according to the specified problem \a size. |
| 88 | * \sa LDLT() |
| 89 | */ |
| 90 | explicit LDLT(Index size) |
| 91 | : m_matrix(size, size), |
| 92 | m_transpositions(size), |
| 93 | m_temporary(size), |
| 94 | m_sign(internal::ZeroSign), |
| 95 | m_isInitialized(false) |
| 96 | {} |
| 97 | |
| 98 | /** \brief Constructor with decomposition |
| 99 | * |
| 100 | * This calculates the decomposition for the input \a matrix. |
| 101 | * |
| 102 | * \sa LDLT(Index size) |
| 103 | */ |
| 104 | template<typename InputType> |
| 105 | explicit LDLT(const EigenBase<InputType>& matrix) |
| 106 | : m_matrix(matrix.rows(), matrix.cols()), |
| 107 | m_transpositions(matrix.rows()), |
| 108 | m_temporary(matrix.rows()), |
| 109 | m_sign(internal::ZeroSign), |
| 110 | m_isInitialized(false) |
| 111 | { |
| 112 | compute(matrix.derived()); |
| 113 | } |
| 114 | |
| 115 | /** \brief Constructs a LDLT factorization from a given matrix |
| 116 | * |
| 117 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
| 118 | * |
| 119 | * \sa LDLT(const EigenBase&) |
| 120 | */ |
| 121 | template<typename InputType> |
| 122 | explicit LDLT(EigenBase<InputType>& matrix) |
| 123 | : m_matrix(matrix.derived()), |
| 124 | m_transpositions(matrix.rows()), |
| 125 | m_temporary(matrix.rows()), |
| 126 | m_sign(internal::ZeroSign), |
| 127 | m_isInitialized(false) |
| 128 | { |
| 129 | compute(matrix.derived()); |
| 130 | } |
| 131 | |
| 132 | /** Clear any existing decomposition |
| 133 | * \sa rankUpdate(w,sigma) |
| 134 | */ |
| 135 | void setZero() |
| 136 | { |
| 137 | m_isInitialized = false; |
| 138 | } |
| 139 | |
| 140 | /** \returns a view of the upper triangular matrix U */ |
| 141 | inline typename Traits::MatrixU matrixU() const |
| 142 | { |
| 143 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 144 | return Traits::getU(m_matrix); |
| 145 | } |
| 146 | |
| 147 | /** \returns a view of the lower triangular matrix L */ |
| 148 | inline typename Traits::MatrixL matrixL() const |
| 149 | { |
| 150 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 151 | return Traits::getL(m_matrix); |
| 152 | } |
| 153 | |
| 154 | /** \returns the permutation matrix P as a transposition sequence. |
| 155 | */ |
| 156 | inline const TranspositionType& transpositionsP() const |
| 157 | { |
| 158 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 159 | return m_transpositions; |
| 160 | } |
| 161 | |
| 162 | /** \returns the coefficients of the diagonal matrix D */ |
| 163 | inline Diagonal<const MatrixType> vectorD() const |
| 164 | { |
| 165 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 166 | return m_matrix.diagonal(); |
| 167 | } |
| 168 | |
| 169 | /** \returns true if the matrix is positive (semidefinite) */ |
| 170 | inline bool isPositive() const |
| 171 | { |
| 172 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 173 | return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; |
| 174 | } |
| 175 | |
| 176 | /** \returns true if the matrix is negative (semidefinite) */ |
| 177 | inline bool isNegative(void) const |
| 178 | { |
| 179 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 180 | return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; |
| 181 | } |
| 182 | |
| 183 | /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
| 184 | * |
| 185 | * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . |
| 186 | * |
| 187 | * \note_about_checking_solutions |
| 188 | * |
| 189 | * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ |
| 190 | * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, |
| 191 | * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then |
| 192 | * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the |
| 193 | * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function |
| 194 | * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. |
| 195 | * |
| 196 | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() |
| 197 | */ |
| 198 | template<typename Rhs> |
| 199 | inline const Solve<LDLT, Rhs> |
| 200 | solve(const MatrixBase<Rhs>& b) const |
| 201 | { |
| 202 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 203 | eigen_assert(m_matrix.rows()==b.rows() |
| 204 | && "LDLT::solve(): invalid number of rows of the right hand side matrix b" ); |
| 205 | return Solve<LDLT, Rhs>(*this, b.derived()); |
| 206 | } |
| 207 | |
| 208 | template<typename Derived> |
| 209 | bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
| 210 | |
| 211 | template<typename InputType> |
| 212 | LDLT& compute(const EigenBase<InputType>& matrix); |
| 213 | |
| 214 | /** \returns an estimate of the reciprocal condition number of the matrix of |
| 215 | * which \c *this is the LDLT decomposition. |
| 216 | */ |
| 217 | RealScalar rcond() const |
| 218 | { |
| 219 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 220 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
| 221 | } |
| 222 | |
| 223 | template <typename Derived> |
| 224 | LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); |
| 225 | |
| 226 | /** \returns the internal LDLT decomposition matrix |
| 227 | * |
| 228 | * TODO: document the storage layout |
| 229 | */ |
| 230 | inline const MatrixType& matrixLDLT() const |
| 231 | { |
| 232 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 233 | return m_matrix; |
| 234 | } |
| 235 | |
| 236 | MatrixType reconstructedMatrix() const; |
| 237 | |
| 238 | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. |
| 239 | * |
| 240 | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
| 241 | * \code x = decomposition.adjoint().solve(b) \endcode |
| 242 | */ |
| 243 | const LDLT& adjoint() const { return *this; }; |
| 244 | |
| 245 | inline Index rows() const { return m_matrix.rows(); } |
| 246 | inline Index cols() const { return m_matrix.cols(); } |
| 247 | |
| 248 | /** \brief Reports whether previous computation was successful. |
| 249 | * |
| 250 | * \returns \c Success if computation was succesful, |
| 251 | * \c NumericalIssue if the factorization failed because of a zero pivot. |
| 252 | */ |
| 253 | ComputationInfo info() const |
| 254 | { |
| 255 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 256 | return m_info; |
| 257 | } |
| 258 | |
| 259 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 260 | template<typename RhsType, typename DstType> |
| 261 | EIGEN_DEVICE_FUNC |
| 262 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 263 | #endif |
| 264 | |
| 265 | protected: |
| 266 | |
| 267 | static void check_template_parameters() |
| 268 | { |
| 269 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 270 | } |
| 271 | |
| 272 | /** \internal |
| 273 | * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
| 274 | * The strict upper part is used during the decomposition, the strict lower |
| 275 | * part correspond to the coefficients of L (its diagonal is equal to 1 and |
| 276 | * is not stored), and the diagonal entries correspond to D. |
| 277 | */ |
| 278 | MatrixType m_matrix; |
| 279 | RealScalar m_l1_norm; |
| 280 | TranspositionType m_transpositions; |
| 281 | TmpMatrixType m_temporary; |
| 282 | internal::SignMatrix m_sign; |
| 283 | bool m_isInitialized; |
| 284 | ComputationInfo m_info; |
| 285 | }; |
| 286 | |
| 287 | namespace internal { |
| 288 | |
| 289 | template<int UpLo> struct ldlt_inplace; |
| 290 | |
| 291 | template<> struct ldlt_inplace<Lower> |
| 292 | { |
| 293 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
| 294 | static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
| 295 | { |
| 296 | using std::abs; |
| 297 | typedef typename MatrixType::Scalar Scalar; |
| 298 | typedef typename MatrixType::RealScalar RealScalar; |
| 299 | typedef typename TranspositionType::StorageIndex IndexType; |
| 300 | eigen_assert(mat.rows()==mat.cols()); |
| 301 | const Index size = mat.rows(); |
| 302 | bool found_zero_pivot = false; |
| 303 | bool ret = true; |
| 304 | |
| 305 | if (size <= 1) |
| 306 | { |
| 307 | transpositions.setIdentity(); |
| 308 | if(size==0) sign = ZeroSign; |
| 309 | else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; |
| 310 | else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
| 311 | else sign = ZeroSign; |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | for (Index k = 0; k < size; ++k) |
| 316 | { |
| 317 | // Find largest diagonal element |
| 318 | Index index_of_biggest_in_corner; |
| 319 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
| 320 | index_of_biggest_in_corner += k; |
| 321 | |
| 322 | transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); |
| 323 | if(k != index_of_biggest_in_corner) |
| 324 | { |
| 325 | // apply the transposition while taking care to consider only |
| 326 | // the lower triangular part |
| 327 | Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
| 328 | mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
| 329 | mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
| 330 | std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
| 331 | for(Index i=k+1;i<index_of_biggest_in_corner;++i) |
| 332 | { |
| 333 | Scalar tmp = mat.coeffRef(i,k); |
| 334 | mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
| 335 | mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); |
| 336 | } |
| 337 | if(NumTraits<Scalar>::IsComplex) |
| 338 | mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); |
| 339 | } |
| 340 | |
| 341 | // partition the matrix: |
| 342 | // A00 | - | - |
| 343 | // lu = A10 | A11 | - |
| 344 | // A20 | A21 | A22 |
| 345 | Index rs = size - k - 1; |
| 346 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| 347 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| 348 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| 349 | |
| 350 | if(k>0) |
| 351 | { |
| 352 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); |
| 353 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
| 354 | if(rs>0) |
| 355 | A21.noalias() -= A20 * temp.head(k); |
| 356 | } |
| 357 | |
| 358 | // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot |
| 359 | // was smaller than the cutoff value. However, since LDLT is not rank-revealing |
| 360 | // we should only make sure that we do not introduce INF or NaN values. |
| 361 | // Remark that LAPACK also uses 0 as the cutoff value. |
| 362 | RealScalar realAkk = numext::real(mat.coeffRef(k,k)); |
| 363 | bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); |
| 364 | |
| 365 | if(k==0 && !pivot_is_valid) |
| 366 | { |
| 367 | // The entire diagonal is zero, there is nothing more to do |
| 368 | // except filling the transpositions, and checking whether the matrix is zero. |
| 369 | sign = ZeroSign; |
| 370 | for(Index j = 0; j<size; ++j) |
| 371 | { |
| 372 | transpositions.coeffRef(j) = IndexType(j); |
| 373 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); |
| 374 | } |
| 375 | return ret; |
| 376 | } |
| 377 | |
| 378 | if((rs>0) && pivot_is_valid) |
| 379 | A21 /= realAkk; |
| 380 | else if(rs>0) |
| 381 | ret = ret && (A21.array()==Scalar(0)).all(); |
| 382 | |
| 383 | if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed |
| 384 | else if(!pivot_is_valid) found_zero_pivot = true; |
| 385 | |
| 386 | if (sign == PositiveSemiDef) { |
| 387 | if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; |
| 388 | } else if (sign == NegativeSemiDef) { |
| 389 | if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; |
| 390 | } else if (sign == ZeroSign) { |
| 391 | if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; |
| 392 | else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | return ret; |
| 397 | } |
| 398 | |
| 399 | // Reference for the algorithm: Davis and Hager, "Multiple Rank |
| 400 | // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) |
| 401 | // Trivial rearrangements of their computations (Timothy E. Holy) |
| 402 | // allow their algorithm to work for rank-1 updates even if the |
| 403 | // original matrix is not of full rank. |
| 404 | // Here only rank-1 updates are implemented, to reduce the |
| 405 | // requirement for intermediate storage and improve accuracy |
| 406 | template<typename MatrixType, typename WDerived> |
| 407 | static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) |
| 408 | { |
| 409 | using numext::isfinite; |
| 410 | typedef typename MatrixType::Scalar Scalar; |
| 411 | typedef typename MatrixType::RealScalar RealScalar; |
| 412 | |
| 413 | const Index size = mat.rows(); |
| 414 | eigen_assert(mat.cols() == size && w.size()==size); |
| 415 | |
| 416 | RealScalar alpha = 1; |
| 417 | |
| 418 | // Apply the update |
| 419 | for (Index j = 0; j < size; j++) |
| 420 | { |
| 421 | // Check for termination due to an original decomposition of low-rank |
| 422 | if (!(isfinite)(alpha)) |
| 423 | break; |
| 424 | |
| 425 | // Update the diagonal terms |
| 426 | RealScalar dj = numext::real(mat.coeff(j,j)); |
| 427 | Scalar wj = w.coeff(j); |
| 428 | RealScalar swj2 = sigma*numext::abs2(wj); |
| 429 | RealScalar gamma = dj*alpha + swj2; |
| 430 | |
| 431 | mat.coeffRef(j,j) += swj2/alpha; |
| 432 | alpha += swj2/dj; |
| 433 | |
| 434 | |
| 435 | // Update the terms of L |
| 436 | Index rs = size-j-1; |
| 437 | w.tail(rs) -= wj * mat.col(j).tail(rs); |
| 438 | if(gamma != 0) |
| 439 | mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); |
| 440 | } |
| 441 | return true; |
| 442 | } |
| 443 | |
| 444 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| 445 | static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) |
| 446 | { |
| 447 | // Apply the permutation to the input w |
| 448 | tmp = transpositions * w; |
| 449 | |
| 450 | return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
| 451 | } |
| 452 | }; |
| 453 | |
| 454 | template<> struct ldlt_inplace<Upper> |
| 455 | { |
| 456 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
| 457 | static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
| 458 | { |
| 459 | Transpose<MatrixType> matt(mat); |
| 460 | return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
| 461 | } |
| 462 | |
| 463 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
| 464 | static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) |
| 465 | { |
| 466 | Transpose<MatrixType> matt(mat); |
| 467 | return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
| 468 | } |
| 469 | }; |
| 470 | |
| 471 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
| 472 | { |
| 473 | typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
| 474 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
| 475 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
| 476 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
| 477 | }; |
| 478 | |
| 479 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
| 480 | { |
| 481 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
| 482 | typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
| 483 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
| 484 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
| 485 | }; |
| 486 | |
| 487 | } // end namespace internal |
| 488 | |
| 489 | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
| 490 | */ |
| 491 | template<typename MatrixType, int _UpLo> |
| 492 | template<typename InputType> |
| 493 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) |
| 494 | { |
| 495 | check_template_parameters(); |
| 496 | |
| 497 | eigen_assert(a.rows()==a.cols()); |
| 498 | const Index size = a.rows(); |
| 499 | |
| 500 | m_matrix = a.derived(); |
| 501 | |
| 502 | // Compute matrix L1 norm = max abs column sum. |
| 503 | m_l1_norm = RealScalar(0); |
| 504 | // TODO move this code to SelfAdjointView |
| 505 | for (Index col = 0; col < size; ++col) { |
| 506 | RealScalar abs_col_sum; |
| 507 | if (_UpLo == Lower) |
| 508 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
| 509 | else |
| 510 | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
| 511 | if (abs_col_sum > m_l1_norm) |
| 512 | m_l1_norm = abs_col_sum; |
| 513 | } |
| 514 | |
| 515 | m_transpositions.resize(size); |
| 516 | m_isInitialized = false; |
| 517 | m_temporary.resize(size); |
| 518 | m_sign = internal::ZeroSign; |
| 519 | |
| 520 | m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; |
| 521 | |
| 522 | m_isInitialized = true; |
| 523 | return *this; |
| 524 | } |
| 525 | |
| 526 | /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. |
| 527 | * \param w a vector to be incorporated into the decomposition. |
| 528 | * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
| 529 | * \sa setZero() |
| 530 | */ |
| 531 | template<typename MatrixType, int _UpLo> |
| 532 | template<typename Derived> |
| 533 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) |
| 534 | { |
| 535 | typedef typename TranspositionType::StorageIndex IndexType; |
| 536 | const Index size = w.rows(); |
| 537 | if (m_isInitialized) |
| 538 | { |
| 539 | eigen_assert(m_matrix.rows()==size); |
| 540 | } |
| 541 | else |
| 542 | { |
| 543 | m_matrix.resize(size,size); |
| 544 | m_matrix.setZero(); |
| 545 | m_transpositions.resize(size); |
| 546 | for (Index i = 0; i < size; i++) |
| 547 | m_transpositions.coeffRef(i) = IndexType(i); |
| 548 | m_temporary.resize(size); |
| 549 | m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; |
| 550 | m_isInitialized = true; |
| 551 | } |
| 552 | |
| 553 | internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
| 554 | |
| 555 | return *this; |
| 556 | } |
| 557 | |
| 558 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 559 | template<typename _MatrixType, int _UpLo> |
| 560 | template<typename RhsType, typename DstType> |
| 561 | void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| 562 | { |
| 563 | eigen_assert(rhs.rows() == rows()); |
| 564 | // dst = P b |
| 565 | dst = m_transpositions * rhs; |
| 566 | |
| 567 | // dst = L^-1 (P b) |
| 568 | matrixL().solveInPlace(dst); |
| 569 | |
| 570 | // dst = D^-1 (L^-1 P b) |
| 571 | // more precisely, use pseudo-inverse of D (see bug 241) |
| 572 | using std::abs; |
| 573 | const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); |
| 574 | // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) |
| 575 | // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: |
| 576 | // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); |
| 577 | // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest |
| 578 | // diagonal element is not well justified and leads to numerical issues in some cases. |
| 579 | // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. |
| 580 | // Using numeric_limits::min() gives us more robustness to denormals. |
| 581 | RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); |
| 582 | |
| 583 | for (Index i = 0; i < vecD.size(); ++i) |
| 584 | { |
| 585 | if(abs(vecD(i)) > tolerance) |
| 586 | dst.row(i) /= vecD(i); |
| 587 | else |
| 588 | dst.row(i).setZero(); |
| 589 | } |
| 590 | |
| 591 | // dst = L^-T (D^-1 L^-1 P b) |
| 592 | matrixU().solveInPlace(dst); |
| 593 | |
| 594 | // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b |
| 595 | dst = m_transpositions.transpose() * dst; |
| 596 | } |
| 597 | #endif |
| 598 | |
| 599 | /** \internal use x = ldlt_object.solve(x); |
| 600 | * |
| 601 | * This is the \em in-place version of solve(). |
| 602 | * |
| 603 | * \param bAndX represents both the right-hand side matrix b and result x. |
| 604 | * |
| 605 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
| 606 | * |
| 607 | * This version avoids a copy when the right hand side matrix b is not |
| 608 | * needed anymore. |
| 609 | * |
| 610 | * \sa LDLT::solve(), MatrixBase::ldlt() |
| 611 | */ |
| 612 | template<typename MatrixType,int _UpLo> |
| 613 | template<typename Derived> |
| 614 | bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
| 615 | { |
| 616 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 617 | eigen_assert(m_matrix.rows() == bAndX.rows()); |
| 618 | |
| 619 | bAndX = this->solve(bAndX); |
| 620 | |
| 621 | return true; |
| 622 | } |
| 623 | |
| 624 | /** \returns the matrix represented by the decomposition, |
| 625 | * i.e., it returns the product: P^T L D L^* P. |
| 626 | * This function is provided for debug purpose. */ |
| 627 | template<typename MatrixType, int _UpLo> |
| 628 | MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
| 629 | { |
| 630 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
| 631 | const Index size = m_matrix.rows(); |
| 632 | MatrixType res(size,size); |
| 633 | |
| 634 | // P |
| 635 | res.setIdentity(); |
| 636 | res = transpositionsP() * res; |
| 637 | // L^* P |
| 638 | res = matrixU() * res; |
| 639 | // D(L^*P) |
| 640 | res = vectorD().real().asDiagonal() * res; |
| 641 | // L(DL^*P) |
| 642 | res = matrixL() * res; |
| 643 | // P^T (LDL^*P) |
| 644 | res = transpositionsP().transpose() * res; |
| 645 | |
| 646 | return res; |
| 647 | } |
| 648 | |
| 649 | /** \cholesky_module |
| 650 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| 651 | * \sa MatrixBase::ldlt() |
| 652 | */ |
| 653 | template<typename MatrixType, unsigned int UpLo> |
| 654 | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| 655 | SelfAdjointView<MatrixType, UpLo>::ldlt() const |
| 656 | { |
| 657 | return LDLT<PlainObject,UpLo>(m_matrix); |
| 658 | } |
| 659 | |
| 660 | /** \cholesky_module |
| 661 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
| 662 | * \sa SelfAdjointView::ldlt() |
| 663 | */ |
| 664 | template<typename Derived> |
| 665 | inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
| 666 | MatrixBase<Derived>::ldlt() const |
| 667 | { |
| 668 | return LDLT<PlainObject>(derived()); |
| 669 | } |
| 670 | |
| 671 | } // end namespace Eigen |
| 672 | |
| 673 | #endif // EIGEN_LDLT_H |
| 674 | |