1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> |
6 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
7 | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > |
8 | // |
9 | // This Source Code Form is subject to the terms of the Mozilla |
10 | // Public License v. 2.0. If a copy of the MPL was not distributed |
11 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
12 | |
13 | #ifndef EIGEN_LDLT_H |
14 | #define EIGEN_LDLT_H |
15 | |
16 | namespace Eigen { |
17 | |
18 | namespace internal { |
19 | template<typename MatrixType, int UpLo> struct LDLT_Traits; |
20 | |
21 | // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef |
22 | enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; |
23 | } |
24 | |
25 | /** \ingroup Cholesky_Module |
26 | * |
27 | * \class LDLT |
28 | * |
29 | * \brief Robust Cholesky decomposition of a matrix with pivoting |
30 | * |
31 | * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition |
32 | * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
33 | * The other triangular part won't be read. |
34 | * |
35 | * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite |
36 | * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L |
37 | * is lower triangular with a unit diagonal and D is a diagonal matrix. |
38 | * |
39 | * The decomposition uses pivoting to ensure stability, so that L will have |
40 | * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root |
41 | * on D also stabilizes the computation. |
42 | * |
43 | * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky |
44 | * decomposition to determine whether a system of equations has a solution. |
45 | * |
46 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
47 | * |
48 | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT |
49 | */ |
50 | template<typename _MatrixType, int _UpLo> class LDLT |
51 | { |
52 | public: |
53 | typedef _MatrixType MatrixType; |
54 | enum { |
55 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
56 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
57 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
58 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
59 | UpLo = _UpLo |
60 | }; |
61 | typedef typename MatrixType::Scalar Scalar; |
62 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
63 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
64 | typedef typename MatrixType::StorageIndex StorageIndex; |
65 | typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; |
66 | |
67 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
68 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
69 | |
70 | typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; |
71 | |
72 | /** \brief Default Constructor. |
73 | * |
74 | * The default constructor is useful in cases in which the user intends to |
75 | * perform decompositions via LDLT::compute(const MatrixType&). |
76 | */ |
77 | LDLT() |
78 | : m_matrix(), |
79 | m_transpositions(), |
80 | m_sign(internal::ZeroSign), |
81 | m_isInitialized(false) |
82 | {} |
83 | |
84 | /** \brief Default Constructor with memory preallocation |
85 | * |
86 | * Like the default constructor but with preallocation of the internal data |
87 | * according to the specified problem \a size. |
88 | * \sa LDLT() |
89 | */ |
90 | explicit LDLT(Index size) |
91 | : m_matrix(size, size), |
92 | m_transpositions(size), |
93 | m_temporary(size), |
94 | m_sign(internal::ZeroSign), |
95 | m_isInitialized(false) |
96 | {} |
97 | |
98 | /** \brief Constructor with decomposition |
99 | * |
100 | * This calculates the decomposition for the input \a matrix. |
101 | * |
102 | * \sa LDLT(Index size) |
103 | */ |
104 | template<typename InputType> |
105 | explicit LDLT(const EigenBase<InputType>& matrix) |
106 | : m_matrix(matrix.rows(), matrix.cols()), |
107 | m_transpositions(matrix.rows()), |
108 | m_temporary(matrix.rows()), |
109 | m_sign(internal::ZeroSign), |
110 | m_isInitialized(false) |
111 | { |
112 | compute(matrix.derived()); |
113 | } |
114 | |
115 | /** \brief Constructs a LDLT factorization from a given matrix |
116 | * |
117 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
118 | * |
119 | * \sa LDLT(const EigenBase&) |
120 | */ |
121 | template<typename InputType> |
122 | explicit LDLT(EigenBase<InputType>& matrix) |
123 | : m_matrix(matrix.derived()), |
124 | m_transpositions(matrix.rows()), |
125 | m_temporary(matrix.rows()), |
126 | m_sign(internal::ZeroSign), |
127 | m_isInitialized(false) |
128 | { |
129 | compute(matrix.derived()); |
130 | } |
131 | |
132 | /** Clear any existing decomposition |
133 | * \sa rankUpdate(w,sigma) |
134 | */ |
135 | void setZero() |
136 | { |
137 | m_isInitialized = false; |
138 | } |
139 | |
140 | /** \returns a view of the upper triangular matrix U */ |
141 | inline typename Traits::MatrixU matrixU() const |
142 | { |
143 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
144 | return Traits::getU(m_matrix); |
145 | } |
146 | |
147 | /** \returns a view of the lower triangular matrix L */ |
148 | inline typename Traits::MatrixL matrixL() const |
149 | { |
150 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
151 | return Traits::getL(m_matrix); |
152 | } |
153 | |
154 | /** \returns the permutation matrix P as a transposition sequence. |
155 | */ |
156 | inline const TranspositionType& transpositionsP() const |
157 | { |
158 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
159 | return m_transpositions; |
160 | } |
161 | |
162 | /** \returns the coefficients of the diagonal matrix D */ |
163 | inline Diagonal<const MatrixType> vectorD() const |
164 | { |
165 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
166 | return m_matrix.diagonal(); |
167 | } |
168 | |
169 | /** \returns true if the matrix is positive (semidefinite) */ |
170 | inline bool isPositive() const |
171 | { |
172 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
173 | return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; |
174 | } |
175 | |
176 | /** \returns true if the matrix is negative (semidefinite) */ |
177 | inline bool isNegative(void) const |
178 | { |
179 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
180 | return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; |
181 | } |
182 | |
183 | /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. |
184 | * |
185 | * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . |
186 | * |
187 | * \note_about_checking_solutions |
188 | * |
189 | * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ |
190 | * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, |
191 | * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then |
192 | * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the |
193 | * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function |
194 | * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. |
195 | * |
196 | * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() |
197 | */ |
198 | template<typename Rhs> |
199 | inline const Solve<LDLT, Rhs> |
200 | solve(const MatrixBase<Rhs>& b) const |
201 | { |
202 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
203 | eigen_assert(m_matrix.rows()==b.rows() |
204 | && "LDLT::solve(): invalid number of rows of the right hand side matrix b" ); |
205 | return Solve<LDLT, Rhs>(*this, b.derived()); |
206 | } |
207 | |
208 | template<typename Derived> |
209 | bool solveInPlace(MatrixBase<Derived> &bAndX) const; |
210 | |
211 | template<typename InputType> |
212 | LDLT& compute(const EigenBase<InputType>& matrix); |
213 | |
214 | /** \returns an estimate of the reciprocal condition number of the matrix of |
215 | * which \c *this is the LDLT decomposition. |
216 | */ |
217 | RealScalar rcond() const |
218 | { |
219 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
220 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
221 | } |
222 | |
223 | template <typename Derived> |
224 | LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); |
225 | |
226 | /** \returns the internal LDLT decomposition matrix |
227 | * |
228 | * TODO: document the storage layout |
229 | */ |
230 | inline const MatrixType& matrixLDLT() const |
231 | { |
232 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
233 | return m_matrix; |
234 | } |
235 | |
236 | MatrixType reconstructedMatrix() const; |
237 | |
238 | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. |
239 | * |
240 | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
241 | * \code x = decomposition.adjoint().solve(b) \endcode |
242 | */ |
243 | const LDLT& adjoint() const { return *this; }; |
244 | |
245 | inline Index rows() const { return m_matrix.rows(); } |
246 | inline Index cols() const { return m_matrix.cols(); } |
247 | |
248 | /** \brief Reports whether previous computation was successful. |
249 | * |
250 | * \returns \c Success if computation was succesful, |
251 | * \c NumericalIssue if the factorization failed because of a zero pivot. |
252 | */ |
253 | ComputationInfo info() const |
254 | { |
255 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
256 | return m_info; |
257 | } |
258 | |
259 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
260 | template<typename RhsType, typename DstType> |
261 | EIGEN_DEVICE_FUNC |
262 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
263 | #endif |
264 | |
265 | protected: |
266 | |
267 | static void check_template_parameters() |
268 | { |
269 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
270 | } |
271 | |
272 | /** \internal |
273 | * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. |
274 | * The strict upper part is used during the decomposition, the strict lower |
275 | * part correspond to the coefficients of L (its diagonal is equal to 1 and |
276 | * is not stored), and the diagonal entries correspond to D. |
277 | */ |
278 | MatrixType m_matrix; |
279 | RealScalar m_l1_norm; |
280 | TranspositionType m_transpositions; |
281 | TmpMatrixType m_temporary; |
282 | internal::SignMatrix m_sign; |
283 | bool m_isInitialized; |
284 | ComputationInfo m_info; |
285 | }; |
286 | |
287 | namespace internal { |
288 | |
289 | template<int UpLo> struct ldlt_inplace; |
290 | |
291 | template<> struct ldlt_inplace<Lower> |
292 | { |
293 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
294 | static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
295 | { |
296 | using std::abs; |
297 | typedef typename MatrixType::Scalar Scalar; |
298 | typedef typename MatrixType::RealScalar RealScalar; |
299 | typedef typename TranspositionType::StorageIndex IndexType; |
300 | eigen_assert(mat.rows()==mat.cols()); |
301 | const Index size = mat.rows(); |
302 | bool found_zero_pivot = false; |
303 | bool ret = true; |
304 | |
305 | if (size <= 1) |
306 | { |
307 | transpositions.setIdentity(); |
308 | if(size==0) sign = ZeroSign; |
309 | else if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; |
310 | else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
311 | else sign = ZeroSign; |
312 | return true; |
313 | } |
314 | |
315 | for (Index k = 0; k < size; ++k) |
316 | { |
317 | // Find largest diagonal element |
318 | Index index_of_biggest_in_corner; |
319 | mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); |
320 | index_of_biggest_in_corner += k; |
321 | |
322 | transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); |
323 | if(k != index_of_biggest_in_corner) |
324 | { |
325 | // apply the transposition while taking care to consider only |
326 | // the lower triangular part |
327 | Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element |
328 | mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); |
329 | mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); |
330 | std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); |
331 | for(Index i=k+1;i<index_of_biggest_in_corner;++i) |
332 | { |
333 | Scalar tmp = mat.coeffRef(i,k); |
334 | mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); |
335 | mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); |
336 | } |
337 | if(NumTraits<Scalar>::IsComplex) |
338 | mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); |
339 | } |
340 | |
341 | // partition the matrix: |
342 | // A00 | - | - |
343 | // lu = A10 | A11 | - |
344 | // A20 | A21 | A22 |
345 | Index rs = size - k - 1; |
346 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
347 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
348 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
349 | |
350 | if(k>0) |
351 | { |
352 | temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); |
353 | mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); |
354 | if(rs>0) |
355 | A21.noalias() -= A20 * temp.head(k); |
356 | } |
357 | |
358 | // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot |
359 | // was smaller than the cutoff value. However, since LDLT is not rank-revealing |
360 | // we should only make sure that we do not introduce INF or NaN values. |
361 | // Remark that LAPACK also uses 0 as the cutoff value. |
362 | RealScalar realAkk = numext::real(mat.coeffRef(k,k)); |
363 | bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); |
364 | |
365 | if(k==0 && !pivot_is_valid) |
366 | { |
367 | // The entire diagonal is zero, there is nothing more to do |
368 | // except filling the transpositions, and checking whether the matrix is zero. |
369 | sign = ZeroSign; |
370 | for(Index j = 0; j<size; ++j) |
371 | { |
372 | transpositions.coeffRef(j) = IndexType(j); |
373 | ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); |
374 | } |
375 | return ret; |
376 | } |
377 | |
378 | if((rs>0) && pivot_is_valid) |
379 | A21 /= realAkk; |
380 | else if(rs>0) |
381 | ret = ret && (A21.array()==Scalar(0)).all(); |
382 | |
383 | if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed |
384 | else if(!pivot_is_valid) found_zero_pivot = true; |
385 | |
386 | if (sign == PositiveSemiDef) { |
387 | if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; |
388 | } else if (sign == NegativeSemiDef) { |
389 | if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; |
390 | } else if (sign == ZeroSign) { |
391 | if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; |
392 | else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; |
393 | } |
394 | } |
395 | |
396 | return ret; |
397 | } |
398 | |
399 | // Reference for the algorithm: Davis and Hager, "Multiple Rank |
400 | // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) |
401 | // Trivial rearrangements of their computations (Timothy E. Holy) |
402 | // allow their algorithm to work for rank-1 updates even if the |
403 | // original matrix is not of full rank. |
404 | // Here only rank-1 updates are implemented, to reduce the |
405 | // requirement for intermediate storage and improve accuracy |
406 | template<typename MatrixType, typename WDerived> |
407 | static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) |
408 | { |
409 | using numext::isfinite; |
410 | typedef typename MatrixType::Scalar Scalar; |
411 | typedef typename MatrixType::RealScalar RealScalar; |
412 | |
413 | const Index size = mat.rows(); |
414 | eigen_assert(mat.cols() == size && w.size()==size); |
415 | |
416 | RealScalar alpha = 1; |
417 | |
418 | // Apply the update |
419 | for (Index j = 0; j < size; j++) |
420 | { |
421 | // Check for termination due to an original decomposition of low-rank |
422 | if (!(isfinite)(alpha)) |
423 | break; |
424 | |
425 | // Update the diagonal terms |
426 | RealScalar dj = numext::real(mat.coeff(j,j)); |
427 | Scalar wj = w.coeff(j); |
428 | RealScalar swj2 = sigma*numext::abs2(wj); |
429 | RealScalar gamma = dj*alpha + swj2; |
430 | |
431 | mat.coeffRef(j,j) += swj2/alpha; |
432 | alpha += swj2/dj; |
433 | |
434 | |
435 | // Update the terms of L |
436 | Index rs = size-j-1; |
437 | w.tail(rs) -= wj * mat.col(j).tail(rs); |
438 | if(gamma != 0) |
439 | mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); |
440 | } |
441 | return true; |
442 | } |
443 | |
444 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
445 | static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) |
446 | { |
447 | // Apply the permutation to the input w |
448 | tmp = transpositions * w; |
449 | |
450 | return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); |
451 | } |
452 | }; |
453 | |
454 | template<> struct ldlt_inplace<Upper> |
455 | { |
456 | template<typename MatrixType, typename TranspositionType, typename Workspace> |
457 | static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) |
458 | { |
459 | Transpose<MatrixType> matt(mat); |
460 | return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); |
461 | } |
462 | |
463 | template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> |
464 | static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) |
465 | { |
466 | Transpose<MatrixType> matt(mat); |
467 | return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); |
468 | } |
469 | }; |
470 | |
471 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> |
472 | { |
473 | typedef const TriangularView<const MatrixType, UnitLower> MatrixL; |
474 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; |
475 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
476 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
477 | }; |
478 | |
479 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> |
480 | { |
481 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; |
482 | typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; |
483 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
484 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
485 | }; |
486 | |
487 | } // end namespace internal |
488 | |
489 | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix |
490 | */ |
491 | template<typename MatrixType, int _UpLo> |
492 | template<typename InputType> |
493 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) |
494 | { |
495 | check_template_parameters(); |
496 | |
497 | eigen_assert(a.rows()==a.cols()); |
498 | const Index size = a.rows(); |
499 | |
500 | m_matrix = a.derived(); |
501 | |
502 | // Compute matrix L1 norm = max abs column sum. |
503 | m_l1_norm = RealScalar(0); |
504 | // TODO move this code to SelfAdjointView |
505 | for (Index col = 0; col < size; ++col) { |
506 | RealScalar abs_col_sum; |
507 | if (_UpLo == Lower) |
508 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
509 | else |
510 | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
511 | if (abs_col_sum > m_l1_norm) |
512 | m_l1_norm = abs_col_sum; |
513 | } |
514 | |
515 | m_transpositions.resize(size); |
516 | m_isInitialized = false; |
517 | m_temporary.resize(size); |
518 | m_sign = internal::ZeroSign; |
519 | |
520 | m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; |
521 | |
522 | m_isInitialized = true; |
523 | return *this; |
524 | } |
525 | |
526 | /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. |
527 | * \param w a vector to be incorporated into the decomposition. |
528 | * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
529 | * \sa setZero() |
530 | */ |
531 | template<typename MatrixType, int _UpLo> |
532 | template<typename Derived> |
533 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) |
534 | { |
535 | typedef typename TranspositionType::StorageIndex IndexType; |
536 | const Index size = w.rows(); |
537 | if (m_isInitialized) |
538 | { |
539 | eigen_assert(m_matrix.rows()==size); |
540 | } |
541 | else |
542 | { |
543 | m_matrix.resize(size,size); |
544 | m_matrix.setZero(); |
545 | m_transpositions.resize(size); |
546 | for (Index i = 0; i < size; i++) |
547 | m_transpositions.coeffRef(i) = IndexType(i); |
548 | m_temporary.resize(size); |
549 | m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; |
550 | m_isInitialized = true; |
551 | } |
552 | |
553 | internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); |
554 | |
555 | return *this; |
556 | } |
557 | |
558 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
559 | template<typename _MatrixType, int _UpLo> |
560 | template<typename RhsType, typename DstType> |
561 | void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const |
562 | { |
563 | eigen_assert(rhs.rows() == rows()); |
564 | // dst = P b |
565 | dst = m_transpositions * rhs; |
566 | |
567 | // dst = L^-1 (P b) |
568 | matrixL().solveInPlace(dst); |
569 | |
570 | // dst = D^-1 (L^-1 P b) |
571 | // more precisely, use pseudo-inverse of D (see bug 241) |
572 | using std::abs; |
573 | const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); |
574 | // In some previous versions, tolerance was set to the max of 1/highest (or rather numeric_limits::min()) |
575 | // and the maximal diagonal entry * epsilon as motivated by LAPACK's xGELSS: |
576 | // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); |
577 | // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest |
578 | // diagonal element is not well justified and leads to numerical issues in some cases. |
579 | // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. |
580 | // Using numeric_limits::min() gives us more robustness to denormals. |
581 | RealScalar tolerance = (std::numeric_limits<RealScalar>::min)(); |
582 | |
583 | for (Index i = 0; i < vecD.size(); ++i) |
584 | { |
585 | if(abs(vecD(i)) > tolerance) |
586 | dst.row(i) /= vecD(i); |
587 | else |
588 | dst.row(i).setZero(); |
589 | } |
590 | |
591 | // dst = L^-T (D^-1 L^-1 P b) |
592 | matrixU().solveInPlace(dst); |
593 | |
594 | // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b |
595 | dst = m_transpositions.transpose() * dst; |
596 | } |
597 | #endif |
598 | |
599 | /** \internal use x = ldlt_object.solve(x); |
600 | * |
601 | * This is the \em in-place version of solve(). |
602 | * |
603 | * \param bAndX represents both the right-hand side matrix b and result x. |
604 | * |
605 | * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. |
606 | * |
607 | * This version avoids a copy when the right hand side matrix b is not |
608 | * needed anymore. |
609 | * |
610 | * \sa LDLT::solve(), MatrixBase::ldlt() |
611 | */ |
612 | template<typename MatrixType,int _UpLo> |
613 | template<typename Derived> |
614 | bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const |
615 | { |
616 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
617 | eigen_assert(m_matrix.rows() == bAndX.rows()); |
618 | |
619 | bAndX = this->solve(bAndX); |
620 | |
621 | return true; |
622 | } |
623 | |
624 | /** \returns the matrix represented by the decomposition, |
625 | * i.e., it returns the product: P^T L D L^* P. |
626 | * This function is provided for debug purpose. */ |
627 | template<typename MatrixType, int _UpLo> |
628 | MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const |
629 | { |
630 | eigen_assert(m_isInitialized && "LDLT is not initialized." ); |
631 | const Index size = m_matrix.rows(); |
632 | MatrixType res(size,size); |
633 | |
634 | // P |
635 | res.setIdentity(); |
636 | res = transpositionsP() * res; |
637 | // L^* P |
638 | res = matrixU() * res; |
639 | // D(L^*P) |
640 | res = vectorD().real().asDiagonal() * res; |
641 | // L(DL^*P) |
642 | res = matrixL() * res; |
643 | // P^T (LDL^*P) |
644 | res = transpositionsP().transpose() * res; |
645 | |
646 | return res; |
647 | } |
648 | |
649 | /** \cholesky_module |
650 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
651 | * \sa MatrixBase::ldlt() |
652 | */ |
653 | template<typename MatrixType, unsigned int UpLo> |
654 | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
655 | SelfAdjointView<MatrixType, UpLo>::ldlt() const |
656 | { |
657 | return LDLT<PlainObject,UpLo>(m_matrix); |
658 | } |
659 | |
660 | /** \cholesky_module |
661 | * \returns the Cholesky decomposition with full pivoting without square root of \c *this |
662 | * \sa SelfAdjointView::ldlt() |
663 | */ |
664 | template<typename Derived> |
665 | inline const LDLT<typename MatrixBase<Derived>::PlainObject> |
666 | MatrixBase<Derived>::ldlt() const |
667 | { |
668 | return LDLT<PlainObject>(derived()); |
669 | } |
670 | |
671 | } // end namespace Eigen |
672 | |
673 | #endif // EIGEN_LDLT_H |
674 | |