| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_LLT_H |
| 11 | #define EIGEN_LLT_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal{ |
| 16 | template<typename MatrixType, int UpLo> struct LLT_Traits; |
| 17 | } |
| 18 | |
| 19 | /** \ingroup Cholesky_Module |
| 20 | * |
| 21 | * \class LLT |
| 22 | * |
| 23 | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features |
| 24 | * |
| 25 | * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition |
| 26 | * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. |
| 27 | * The other triangular part won't be read. |
| 28 | * |
| 29 | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite |
| 30 | * matrix A such that A = LL^* = U^*U, where L is lower triangular. |
| 31 | * |
| 32 | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, |
| 33 | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable |
| 34 | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other |
| 35 | * situations like generalised eigen problems with hermitian matrices. |
| 36 | * |
| 37 | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, |
| 38 | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations |
| 39 | * has a solution. |
| 40 | * |
| 41 | * Example: \include LLT_example.cpp |
| 42 | * Output: \verbinclude LLT_example.out |
| 43 | * |
| 44 | * \b Performance: for best performance, it is recommended to use a column-major storage format |
| 45 | * with the Lower triangular part (the default), or, equivalently, a row-major storage format |
| 46 | * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization |
| 47 | * step, and rank-updates can be up to 3 times slower. |
| 48 | * |
| 49 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| 50 | * |
| 51 | * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. |
| 52 | * Therefore, the strict lower part does not have to store correct values. |
| 53 | * |
| 54 | * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT |
| 55 | */ |
| 56 | template<typename _MatrixType, int _UpLo> class LLT |
| 57 | { |
| 58 | public: |
| 59 | typedef _MatrixType MatrixType; |
| 60 | enum { |
| 61 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 62 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 63 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 64 | }; |
| 65 | typedef typename MatrixType::Scalar Scalar; |
| 66 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 67 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
| 68 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 69 | |
| 70 | enum { |
| 71 | PacketSize = internal::packet_traits<Scalar>::size, |
| 72 | AlignmentMask = int(PacketSize)-1, |
| 73 | UpLo = _UpLo |
| 74 | }; |
| 75 | |
| 76 | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; |
| 77 | |
| 78 | /** |
| 79 | * \brief Default Constructor. |
| 80 | * |
| 81 | * The default constructor is useful in cases in which the user intends to |
| 82 | * perform decompositions via LLT::compute(const MatrixType&). |
| 83 | */ |
| 84 | LLT() : m_matrix(), m_isInitialized(false) {} |
| 85 | |
| 86 | /** \brief Default Constructor with memory preallocation |
| 87 | * |
| 88 | * Like the default constructor but with preallocation of the internal data |
| 89 | * according to the specified problem \a size. |
| 90 | * \sa LLT() |
| 91 | */ |
| 92 | explicit LLT(Index size) : m_matrix(size, size), |
| 93 | m_isInitialized(false) {} |
| 94 | |
| 95 | template<typename InputType> |
| 96 | explicit LLT(const EigenBase<InputType>& matrix) |
| 97 | : m_matrix(matrix.rows(), matrix.cols()), |
| 98 | m_isInitialized(false) |
| 99 | { |
| 100 | compute(matrix.derived()); |
| 101 | } |
| 102 | |
| 103 | /** \brief Constructs a LDLT factorization from a given matrix |
| 104 | * |
| 105 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when |
| 106 | * \c MatrixType is a Eigen::Ref. |
| 107 | * |
| 108 | * \sa LLT(const EigenBase&) |
| 109 | */ |
| 110 | template<typename InputType> |
| 111 | explicit LLT(EigenBase<InputType>& matrix) |
| 112 | : m_matrix(matrix.derived()), |
| 113 | m_isInitialized(false) |
| 114 | { |
| 115 | compute(matrix.derived()); |
| 116 | } |
| 117 | |
| 118 | /** \returns a view of the upper triangular matrix U */ |
| 119 | inline typename Traits::MatrixU matrixU() const |
| 120 | { |
| 121 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 122 | return Traits::getU(m_matrix); |
| 123 | } |
| 124 | |
| 125 | /** \returns a view of the lower triangular matrix L */ |
| 126 | inline typename Traits::MatrixL matrixL() const |
| 127 | { |
| 128 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 129 | return Traits::getL(m_matrix); |
| 130 | } |
| 131 | |
| 132 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. |
| 133 | * |
| 134 | * Since this LLT class assumes anyway that the matrix A is invertible, the solution |
| 135 | * theoretically exists and is unique regardless of b. |
| 136 | * |
| 137 | * Example: \include LLT_solve.cpp |
| 138 | * Output: \verbinclude LLT_solve.out |
| 139 | * |
| 140 | * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() |
| 141 | */ |
| 142 | template<typename Rhs> |
| 143 | inline const Solve<LLT, Rhs> |
| 144 | solve(const MatrixBase<Rhs>& b) const |
| 145 | { |
| 146 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 147 | eigen_assert(m_matrix.rows()==b.rows() |
| 148 | && "LLT::solve(): invalid number of rows of the right hand side matrix b" ); |
| 149 | return Solve<LLT, Rhs>(*this, b.derived()); |
| 150 | } |
| 151 | |
| 152 | template<typename Derived> |
| 153 | void solveInPlace(const MatrixBase<Derived> &bAndX) const; |
| 154 | |
| 155 | template<typename InputType> |
| 156 | LLT& compute(const EigenBase<InputType>& matrix); |
| 157 | |
| 158 | /** \returns an estimate of the reciprocal condition number of the matrix of |
| 159 | * which \c *this is the Cholesky decomposition. |
| 160 | */ |
| 161 | RealScalar rcond() const |
| 162 | { |
| 163 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 164 | eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative" ); |
| 165 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
| 166 | } |
| 167 | |
| 168 | /** \returns the LLT decomposition matrix |
| 169 | * |
| 170 | * TODO: document the storage layout |
| 171 | */ |
| 172 | inline const MatrixType& matrixLLT() const |
| 173 | { |
| 174 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 175 | return m_matrix; |
| 176 | } |
| 177 | |
| 178 | MatrixType reconstructedMatrix() const; |
| 179 | |
| 180 | |
| 181 | /** \brief Reports whether previous computation was successful. |
| 182 | * |
| 183 | * \returns \c Success if computation was succesful, |
| 184 | * \c NumericalIssue if the matrix.appears not to be positive definite. |
| 185 | */ |
| 186 | ComputationInfo info() const |
| 187 | { |
| 188 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 189 | return m_info; |
| 190 | } |
| 191 | |
| 192 | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. |
| 193 | * |
| 194 | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: |
| 195 | * \code x = decomposition.adjoint().solve(b) \endcode |
| 196 | */ |
| 197 | const LLT& adjoint() const { return *this; }; |
| 198 | |
| 199 | inline Index rows() const { return m_matrix.rows(); } |
| 200 | inline Index cols() const { return m_matrix.cols(); } |
| 201 | |
| 202 | template<typename VectorType> |
| 203 | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); |
| 204 | |
| 205 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 206 | template<typename RhsType, typename DstType> |
| 207 | EIGEN_DEVICE_FUNC |
| 208 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 209 | #endif |
| 210 | |
| 211 | protected: |
| 212 | |
| 213 | static void check_template_parameters() |
| 214 | { |
| 215 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 216 | } |
| 217 | |
| 218 | /** \internal |
| 219 | * Used to compute and store L |
| 220 | * The strict upper part is not used and even not initialized. |
| 221 | */ |
| 222 | MatrixType m_matrix; |
| 223 | RealScalar m_l1_norm; |
| 224 | bool m_isInitialized; |
| 225 | ComputationInfo m_info; |
| 226 | }; |
| 227 | |
| 228 | namespace internal { |
| 229 | |
| 230 | template<typename Scalar, int UpLo> struct llt_inplace; |
| 231 | |
| 232 | template<typename MatrixType, typename VectorType> |
| 233 | static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) |
| 234 | { |
| 235 | using std::sqrt; |
| 236 | typedef typename MatrixType::Scalar Scalar; |
| 237 | typedef typename MatrixType::RealScalar RealScalar; |
| 238 | typedef typename MatrixType::ColXpr ColXpr; |
| 239 | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; |
| 240 | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; |
| 241 | typedef Matrix<Scalar,Dynamic,1> TempVectorType; |
| 242 | typedef typename TempVectorType::SegmentReturnType TempVecSegment; |
| 243 | |
| 244 | Index n = mat.cols(); |
| 245 | eigen_assert(mat.rows()==n && vec.size()==n); |
| 246 | |
| 247 | TempVectorType temp; |
| 248 | |
| 249 | if(sigma>0) |
| 250 | { |
| 251 | // This version is based on Givens rotations. |
| 252 | // It is faster than the other one below, but only works for updates, |
| 253 | // i.e., for sigma > 0 |
| 254 | temp = sqrt(sigma) * vec; |
| 255 | |
| 256 | for(Index i=0; i<n; ++i) |
| 257 | { |
| 258 | JacobiRotation<Scalar> g; |
| 259 | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); |
| 260 | |
| 261 | Index rs = n-i-1; |
| 262 | if(rs>0) |
| 263 | { |
| 264 | ColXprSegment x(mat.col(i).tail(rs)); |
| 265 | TempVecSegment y(temp.tail(rs)); |
| 266 | apply_rotation_in_the_plane(x, y, g); |
| 267 | } |
| 268 | } |
| 269 | } |
| 270 | else |
| 271 | { |
| 272 | temp = vec; |
| 273 | RealScalar beta = 1; |
| 274 | for(Index j=0; j<n; ++j) |
| 275 | { |
| 276 | RealScalar Ljj = numext::real(mat.coeff(j,j)); |
| 277 | RealScalar dj = numext::abs2(Ljj); |
| 278 | Scalar wj = temp.coeff(j); |
| 279 | RealScalar swj2 = sigma*numext::abs2(wj); |
| 280 | RealScalar gamma = dj*beta + swj2; |
| 281 | |
| 282 | RealScalar x = dj + swj2/beta; |
| 283 | if (x<=RealScalar(0)) |
| 284 | return j; |
| 285 | RealScalar nLjj = sqrt(x); |
| 286 | mat.coeffRef(j,j) = nLjj; |
| 287 | beta += swj2/dj; |
| 288 | |
| 289 | // Update the terms of L |
| 290 | Index rs = n-j-1; |
| 291 | if(rs) |
| 292 | { |
| 293 | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); |
| 294 | if(gamma != 0) |
| 295 | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | return -1; |
| 300 | } |
| 301 | |
| 302 | template<typename Scalar> struct llt_inplace<Scalar, Lower> |
| 303 | { |
| 304 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 305 | template<typename MatrixType> |
| 306 | static Index unblocked(MatrixType& mat) |
| 307 | { |
| 308 | using std::sqrt; |
| 309 | |
| 310 | eigen_assert(mat.rows()==mat.cols()); |
| 311 | const Index size = mat.rows(); |
| 312 | for(Index k = 0; k < size; ++k) |
| 313 | { |
| 314 | Index rs = size-k-1; // remaining size |
| 315 | |
| 316 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); |
| 317 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); |
| 318 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); |
| 319 | |
| 320 | RealScalar x = numext::real(mat.coeff(k,k)); |
| 321 | if (k>0) x -= A10.squaredNorm(); |
| 322 | if (x<=RealScalar(0)) |
| 323 | return k; |
| 324 | mat.coeffRef(k,k) = x = sqrt(x); |
| 325 | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); |
| 326 | if (rs>0) A21 /= x; |
| 327 | } |
| 328 | return -1; |
| 329 | } |
| 330 | |
| 331 | template<typename MatrixType> |
| 332 | static Index blocked(MatrixType& m) |
| 333 | { |
| 334 | eigen_assert(m.rows()==m.cols()); |
| 335 | Index size = m.rows(); |
| 336 | if(size<32) |
| 337 | return unblocked(m); |
| 338 | |
| 339 | Index blockSize = size/8; |
| 340 | blockSize = (blockSize/16)*16; |
| 341 | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); |
| 342 | |
| 343 | for (Index k=0; k<size; k+=blockSize) |
| 344 | { |
| 345 | // partition the matrix: |
| 346 | // A00 | - | - |
| 347 | // lu = A10 | A11 | - |
| 348 | // A20 | A21 | A22 |
| 349 | Index bs = (std::min)(blockSize, size-k); |
| 350 | Index rs = size - k - bs; |
| 351 | Block<MatrixType,Dynamic,Dynamic> A11(m,k, k, bs,bs); |
| 352 | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k, rs,bs); |
| 353 | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); |
| 354 | |
| 355 | Index ret; |
| 356 | if((ret=unblocked(A11))>=0) return k+ret; |
| 357 | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); |
| 358 | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck |
| 359 | } |
| 360 | return -1; |
| 361 | } |
| 362 | |
| 363 | template<typename MatrixType, typename VectorType> |
| 364 | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
| 365 | { |
| 366 | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); |
| 367 | } |
| 368 | }; |
| 369 | |
| 370 | template<typename Scalar> struct llt_inplace<Scalar, Upper> |
| 371 | { |
| 372 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 373 | |
| 374 | template<typename MatrixType> |
| 375 | static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) |
| 376 | { |
| 377 | Transpose<MatrixType> matt(mat); |
| 378 | return llt_inplace<Scalar, Lower>::unblocked(matt); |
| 379 | } |
| 380 | template<typename MatrixType> |
| 381 | static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) |
| 382 | { |
| 383 | Transpose<MatrixType> matt(mat); |
| 384 | return llt_inplace<Scalar, Lower>::blocked(matt); |
| 385 | } |
| 386 | template<typename MatrixType, typename VectorType> |
| 387 | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) |
| 388 | { |
| 389 | Transpose<MatrixType> matt(mat); |
| 390 | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); |
| 391 | } |
| 392 | }; |
| 393 | |
| 394 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> |
| 395 | { |
| 396 | typedef const TriangularView<const MatrixType, Lower> MatrixL; |
| 397 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; |
| 398 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } |
| 399 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } |
| 400 | static bool inplace_decomposition(MatrixType& m) |
| 401 | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } |
| 402 | }; |
| 403 | |
| 404 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> |
| 405 | { |
| 406 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; |
| 407 | typedef const TriangularView<const MatrixType, Upper> MatrixU; |
| 408 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } |
| 409 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } |
| 410 | static bool inplace_decomposition(MatrixType& m) |
| 411 | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } |
| 412 | }; |
| 413 | |
| 414 | } // end namespace internal |
| 415 | |
| 416 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix |
| 417 | * |
| 418 | * \returns a reference to *this |
| 419 | * |
| 420 | * Example: \include TutorialLinAlgComputeTwice.cpp |
| 421 | * Output: \verbinclude TutorialLinAlgComputeTwice.out |
| 422 | */ |
| 423 | template<typename MatrixType, int _UpLo> |
| 424 | template<typename InputType> |
| 425 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) |
| 426 | { |
| 427 | check_template_parameters(); |
| 428 | |
| 429 | eigen_assert(a.rows()==a.cols()); |
| 430 | const Index size = a.rows(); |
| 431 | m_matrix.resize(size, size); |
| 432 | if (!internal::is_same_dense(m_matrix, a.derived())) |
| 433 | m_matrix = a.derived(); |
| 434 | |
| 435 | // Compute matrix L1 norm = max abs column sum. |
| 436 | m_l1_norm = RealScalar(0); |
| 437 | // TODO move this code to SelfAdjointView |
| 438 | for (Index col = 0; col < size; ++col) { |
| 439 | RealScalar abs_col_sum; |
| 440 | if (_UpLo == Lower) |
| 441 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); |
| 442 | else |
| 443 | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); |
| 444 | if (abs_col_sum > m_l1_norm) |
| 445 | m_l1_norm = abs_col_sum; |
| 446 | } |
| 447 | |
| 448 | m_isInitialized = true; |
| 449 | bool ok = Traits::inplace_decomposition(m_matrix); |
| 450 | m_info = ok ? Success : NumericalIssue; |
| 451 | |
| 452 | return *this; |
| 453 | } |
| 454 | |
| 455 | /** Performs a rank one update (or dowdate) of the current decomposition. |
| 456 | * If A = LL^* before the rank one update, |
| 457 | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector |
| 458 | * of same dimension. |
| 459 | */ |
| 460 | template<typename _MatrixType, int _UpLo> |
| 461 | template<typename VectorType> |
| 462 | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) |
| 463 | { |
| 464 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); |
| 465 | eigen_assert(v.size()==m_matrix.cols()); |
| 466 | eigen_assert(m_isInitialized); |
| 467 | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) |
| 468 | m_info = NumericalIssue; |
| 469 | else |
| 470 | m_info = Success; |
| 471 | |
| 472 | return *this; |
| 473 | } |
| 474 | |
| 475 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 476 | template<typename _MatrixType,int _UpLo> |
| 477 | template<typename RhsType, typename DstType> |
| 478 | void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| 479 | { |
| 480 | dst = rhs; |
| 481 | solveInPlace(dst); |
| 482 | } |
| 483 | #endif |
| 484 | |
| 485 | /** \internal use x = llt_object.solve(x); |
| 486 | * |
| 487 | * This is the \em in-place version of solve(). |
| 488 | * |
| 489 | * \param bAndX represents both the right-hand side matrix b and result x. |
| 490 | * |
| 491 | * This version avoids a copy when the right hand side matrix b is not needed anymore. |
| 492 | * |
| 493 | * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. |
| 494 | * This function will const_cast it, so constness isn't honored here. |
| 495 | * |
| 496 | * \sa LLT::solve(), MatrixBase::llt() |
| 497 | */ |
| 498 | template<typename MatrixType, int _UpLo> |
| 499 | template<typename Derived> |
| 500 | void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const |
| 501 | { |
| 502 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 503 | eigen_assert(m_matrix.rows()==bAndX.rows()); |
| 504 | matrixL().solveInPlace(bAndX); |
| 505 | matrixU().solveInPlace(bAndX); |
| 506 | } |
| 507 | |
| 508 | /** \returns the matrix represented by the decomposition, |
| 509 | * i.e., it returns the product: L L^*. |
| 510 | * This function is provided for debug purpose. */ |
| 511 | template<typename MatrixType, int _UpLo> |
| 512 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const |
| 513 | { |
| 514 | eigen_assert(m_isInitialized && "LLT is not initialized." ); |
| 515 | return matrixL() * matrixL().adjoint().toDenseMatrix(); |
| 516 | } |
| 517 | |
| 518 | /** \cholesky_module |
| 519 | * \returns the LLT decomposition of \c *this |
| 520 | * \sa SelfAdjointView::llt() |
| 521 | */ |
| 522 | template<typename Derived> |
| 523 | inline const LLT<typename MatrixBase<Derived>::PlainObject> |
| 524 | MatrixBase<Derived>::llt() const |
| 525 | { |
| 526 | return LLT<PlainObject>(derived()); |
| 527 | } |
| 528 | |
| 529 | /** \cholesky_module |
| 530 | * \returns the LLT decomposition of \c *this |
| 531 | * \sa SelfAdjointView::llt() |
| 532 | */ |
| 533 | template<typename MatrixType, unsigned int UpLo> |
| 534 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> |
| 535 | SelfAdjointView<MatrixType, UpLo>::llt() const |
| 536 | { |
| 537 | return LLT<PlainObject,UpLo>(m_matrix); |
| 538 | } |
| 539 | |
| 540 | } // end namespace Eigen |
| 541 | |
| 542 | #endif // EIGEN_LLT_H |
| 543 | |