| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 5 | // | 
|---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 9 |  | 
|---|
| 10 | #ifndef EIGEN_LLT_H | 
|---|
| 11 | #define EIGEN_LLT_H | 
|---|
| 12 |  | 
|---|
| 13 | namespace Eigen { | 
|---|
| 14 |  | 
|---|
| 15 | namespace internal{ | 
|---|
| 16 | template<typename MatrixType, int UpLo> struct LLT_Traits; | 
|---|
| 17 | } | 
|---|
| 18 |  | 
|---|
| 19 | /** \ingroup Cholesky_Module | 
|---|
| 20 | * | 
|---|
| 21 | * \class LLT | 
|---|
| 22 | * | 
|---|
| 23 | * \brief Standard Cholesky decomposition (LL^T) of a matrix and associated features | 
|---|
| 24 | * | 
|---|
| 25 | * \tparam _MatrixType the type of the matrix of which we are computing the LL^T Cholesky decomposition | 
|---|
| 26 | * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. | 
|---|
| 27 | *               The other triangular part won't be read. | 
|---|
| 28 | * | 
|---|
| 29 | * This class performs a LL^T Cholesky decomposition of a symmetric, positive definite | 
|---|
| 30 | * matrix A such that A = LL^* = U^*U, where L is lower triangular. | 
|---|
| 31 | * | 
|---|
| 32 | * While the Cholesky decomposition is particularly useful to solve selfadjoint problems like  D^*D x = b, | 
|---|
| 33 | * for that purpose, we recommend the Cholesky decomposition without square root which is more stable | 
|---|
| 34 | * and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other | 
|---|
| 35 | * situations like generalised eigen problems with hermitian matrices. | 
|---|
| 36 | * | 
|---|
| 37 | * Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, | 
|---|
| 38 | * use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations | 
|---|
| 39 | * has a solution. | 
|---|
| 40 | * | 
|---|
| 41 | * Example: \include LLT_example.cpp | 
|---|
| 42 | * Output: \verbinclude LLT_example.out | 
|---|
| 43 | * | 
|---|
| 44 | * \b Performance: for best performance, it is recommended to use a column-major storage format | 
|---|
| 45 | * with the Lower triangular part (the default), or, equivalently, a row-major storage format | 
|---|
| 46 | * with the Upper triangular part. Otherwise, you might get a 20% slowdown for the full factorization | 
|---|
| 47 | * step, and rank-updates can be up to 3 times slower. | 
|---|
| 48 | * | 
|---|
| 49 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|---|
| 50 | * | 
|---|
| 51 | * Note that during the decomposition, only the lower (or upper, as defined by _UpLo) triangular part of A is considered. | 
|---|
| 52 | * Therefore, the strict lower part does not have to store correct values. | 
|---|
| 53 | * | 
|---|
| 54 | * \sa MatrixBase::llt(), SelfAdjointView::llt(), class LDLT | 
|---|
| 55 | */ | 
|---|
| 56 | template<typename _MatrixType, int _UpLo> class LLT | 
|---|
| 57 | { | 
|---|
| 58 | public: | 
|---|
| 59 | typedef _MatrixType MatrixType; | 
|---|
| 60 | enum { | 
|---|
| 61 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|---|
| 62 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|---|
| 63 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|---|
| 64 | }; | 
|---|
| 65 | typedef typename MatrixType::Scalar Scalar; | 
|---|
| 66 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|---|
| 67 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|---|
| 68 | typedef typename MatrixType::StorageIndex StorageIndex; | 
|---|
| 69 |  | 
|---|
| 70 | enum { | 
|---|
| 71 | PacketSize = internal::packet_traits<Scalar>::size, | 
|---|
| 72 | AlignmentMask = int(PacketSize)-1, | 
|---|
| 73 | UpLo = _UpLo | 
|---|
| 74 | }; | 
|---|
| 75 |  | 
|---|
| 76 | typedef internal::LLT_Traits<MatrixType,UpLo> Traits; | 
|---|
| 77 |  | 
|---|
| 78 | /** | 
|---|
| 79 | * \brief Default Constructor. | 
|---|
| 80 | * | 
|---|
| 81 | * The default constructor is useful in cases in which the user intends to | 
|---|
| 82 | * perform decompositions via LLT::compute(const MatrixType&). | 
|---|
| 83 | */ | 
|---|
| 84 | LLT() : m_matrix(), m_isInitialized(false) {} | 
|---|
| 85 |  | 
|---|
| 86 | /** \brief Default Constructor with memory preallocation | 
|---|
| 87 | * | 
|---|
| 88 | * Like the default constructor but with preallocation of the internal data | 
|---|
| 89 | * according to the specified problem \a size. | 
|---|
| 90 | * \sa LLT() | 
|---|
| 91 | */ | 
|---|
| 92 | explicit LLT(Index size) : m_matrix(size, size), | 
|---|
| 93 | m_isInitialized(false) {} | 
|---|
| 94 |  | 
|---|
| 95 | template<typename InputType> | 
|---|
| 96 | explicit LLT(const EigenBase<InputType>& matrix) | 
|---|
| 97 | : m_matrix(matrix.rows(), matrix.cols()), | 
|---|
| 98 | m_isInitialized(false) | 
|---|
| 99 | { | 
|---|
| 100 | compute(matrix.derived()); | 
|---|
| 101 | } | 
|---|
| 102 |  | 
|---|
| 103 | /** \brief Constructs a LDLT factorization from a given matrix | 
|---|
| 104 | * | 
|---|
| 105 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when | 
|---|
| 106 | * \c MatrixType is a Eigen::Ref. | 
|---|
| 107 | * | 
|---|
| 108 | * \sa LLT(const EigenBase&) | 
|---|
| 109 | */ | 
|---|
| 110 | template<typename InputType> | 
|---|
| 111 | explicit LLT(EigenBase<InputType>& matrix) | 
|---|
| 112 | : m_matrix(matrix.derived()), | 
|---|
| 113 | m_isInitialized(false) | 
|---|
| 114 | { | 
|---|
| 115 | compute(matrix.derived()); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | /** \returns a view of the upper triangular matrix U */ | 
|---|
| 119 | inline typename Traits::MatrixU matrixU() const | 
|---|
| 120 | { | 
|---|
| 121 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 122 | return Traits::getU(m_matrix); | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | /** \returns a view of the lower triangular matrix L */ | 
|---|
| 126 | inline typename Traits::MatrixL matrixL() const | 
|---|
| 127 | { | 
|---|
| 128 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 129 | return Traits::getL(m_matrix); | 
|---|
| 130 | } | 
|---|
| 131 |  | 
|---|
| 132 | /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. | 
|---|
| 133 | * | 
|---|
| 134 | * Since this LLT class assumes anyway that the matrix A is invertible, the solution | 
|---|
| 135 | * theoretically exists and is unique regardless of b. | 
|---|
| 136 | * | 
|---|
| 137 | * Example: \include LLT_solve.cpp | 
|---|
| 138 | * Output: \verbinclude LLT_solve.out | 
|---|
| 139 | * | 
|---|
| 140 | * \sa solveInPlace(), MatrixBase::llt(), SelfAdjointView::llt() | 
|---|
| 141 | */ | 
|---|
| 142 | template<typename Rhs> | 
|---|
| 143 | inline const Solve<LLT, Rhs> | 
|---|
| 144 | solve(const MatrixBase<Rhs>& b) const | 
|---|
| 145 | { | 
|---|
| 146 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 147 | eigen_assert(m_matrix.rows()==b.rows() | 
|---|
| 148 | && "LLT::solve(): invalid number of rows of the right hand side matrix b"); | 
|---|
| 149 | return Solve<LLT, Rhs>(*this, b.derived()); | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | template<typename Derived> | 
|---|
| 153 | void solveInPlace(const MatrixBase<Derived> &bAndX) const; | 
|---|
| 154 |  | 
|---|
| 155 | template<typename InputType> | 
|---|
| 156 | LLT& compute(const EigenBase<InputType>& matrix); | 
|---|
| 157 |  | 
|---|
| 158 | /** \returns an estimate of the reciprocal condition number of the matrix of | 
|---|
| 159 | *  which \c *this is the Cholesky decomposition. | 
|---|
| 160 | */ | 
|---|
| 161 | RealScalar rcond() const | 
|---|
| 162 | { | 
|---|
| 163 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 164 | eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative"); | 
|---|
| 165 | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|---|
| 166 | } | 
|---|
| 167 |  | 
|---|
| 168 | /** \returns the LLT decomposition matrix | 
|---|
| 169 | * | 
|---|
| 170 | * TODO: document the storage layout | 
|---|
| 171 | */ | 
|---|
| 172 | inline const MatrixType& matrixLLT() const | 
|---|
| 173 | { | 
|---|
| 174 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 175 | return m_matrix; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | MatrixType reconstructedMatrix() const; | 
|---|
| 179 |  | 
|---|
| 180 |  | 
|---|
| 181 | /** \brief Reports whether previous computation was successful. | 
|---|
| 182 | * | 
|---|
| 183 | * \returns \c Success if computation was succesful, | 
|---|
| 184 | *          \c NumericalIssue if the matrix.appears not to be positive definite. | 
|---|
| 185 | */ | 
|---|
| 186 | ComputationInfo info() const | 
|---|
| 187 | { | 
|---|
| 188 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 189 | return m_info; | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|
| 192 | /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. | 
|---|
| 193 | * | 
|---|
| 194 | * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: | 
|---|
| 195 | * \code x = decomposition.adjoint().solve(b) \endcode | 
|---|
| 196 | */ | 
|---|
| 197 | const LLT& adjoint() const { return *this; }; | 
|---|
| 198 |  | 
|---|
| 199 | inline Index rows() const { return m_matrix.rows(); } | 
|---|
| 200 | inline Index cols() const { return m_matrix.cols(); } | 
|---|
| 201 |  | 
|---|
| 202 | template<typename VectorType> | 
|---|
| 203 | LLT rankUpdate(const VectorType& vec, const RealScalar& sigma = 1); | 
|---|
| 204 |  | 
|---|
| 205 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 206 | template<typename RhsType, typename DstType> | 
|---|
| 207 | EIGEN_DEVICE_FUNC | 
|---|
| 208 | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|---|
| 209 | #endif | 
|---|
| 210 |  | 
|---|
| 211 | protected: | 
|---|
| 212 |  | 
|---|
| 213 | static void check_template_parameters() | 
|---|
| 214 | { | 
|---|
| 215 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|---|
| 216 | } | 
|---|
| 217 |  | 
|---|
| 218 | /** \internal | 
|---|
| 219 | * Used to compute and store L | 
|---|
| 220 | * The strict upper part is not used and even not initialized. | 
|---|
| 221 | */ | 
|---|
| 222 | MatrixType m_matrix; | 
|---|
| 223 | RealScalar m_l1_norm; | 
|---|
| 224 | bool m_isInitialized; | 
|---|
| 225 | ComputationInfo m_info; | 
|---|
| 226 | }; | 
|---|
| 227 |  | 
|---|
| 228 | namespace internal { | 
|---|
| 229 |  | 
|---|
| 230 | template<typename Scalar, int UpLo> struct llt_inplace; | 
|---|
| 231 |  | 
|---|
| 232 | template<typename MatrixType, typename VectorType> | 
|---|
| 233 | static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec, const typename MatrixType::RealScalar& sigma) | 
|---|
| 234 | { | 
|---|
| 235 | using std::sqrt; | 
|---|
| 236 | typedef typename MatrixType::Scalar Scalar; | 
|---|
| 237 | typedef typename MatrixType::RealScalar RealScalar; | 
|---|
| 238 | typedef typename MatrixType::ColXpr ColXpr; | 
|---|
| 239 | typedef typename internal::remove_all<ColXpr>::type ColXprCleaned; | 
|---|
| 240 | typedef typename ColXprCleaned::SegmentReturnType ColXprSegment; | 
|---|
| 241 | typedef Matrix<Scalar,Dynamic,1> TempVectorType; | 
|---|
| 242 | typedef typename TempVectorType::SegmentReturnType TempVecSegment; | 
|---|
| 243 |  | 
|---|
| 244 | Index n = mat.cols(); | 
|---|
| 245 | eigen_assert(mat.rows()==n && vec.size()==n); | 
|---|
| 246 |  | 
|---|
| 247 | TempVectorType temp; | 
|---|
| 248 |  | 
|---|
| 249 | if(sigma>0) | 
|---|
| 250 | { | 
|---|
| 251 | // This version is based on Givens rotations. | 
|---|
| 252 | // It is faster than the other one below, but only works for updates, | 
|---|
| 253 | // i.e., for sigma > 0 | 
|---|
| 254 | temp = sqrt(sigma) * vec; | 
|---|
| 255 |  | 
|---|
| 256 | for(Index i=0; i<n; ++i) | 
|---|
| 257 | { | 
|---|
| 258 | JacobiRotation<Scalar> g; | 
|---|
| 259 | g.makeGivens(mat(i,i), -temp(i), &mat(i,i)); | 
|---|
| 260 |  | 
|---|
| 261 | Index rs = n-i-1; | 
|---|
| 262 | if(rs>0) | 
|---|
| 263 | { | 
|---|
| 264 | ColXprSegment x(mat.col(i).tail(rs)); | 
|---|
| 265 | TempVecSegment y(temp.tail(rs)); | 
|---|
| 266 | apply_rotation_in_the_plane(x, y, g); | 
|---|
| 267 | } | 
|---|
| 268 | } | 
|---|
| 269 | } | 
|---|
| 270 | else | 
|---|
| 271 | { | 
|---|
| 272 | temp = vec; | 
|---|
| 273 | RealScalar beta = 1; | 
|---|
| 274 | for(Index j=0; j<n; ++j) | 
|---|
| 275 | { | 
|---|
| 276 | RealScalar Ljj = numext::real(mat.coeff(j,j)); | 
|---|
| 277 | RealScalar dj = numext::abs2(Ljj); | 
|---|
| 278 | Scalar wj = temp.coeff(j); | 
|---|
| 279 | RealScalar swj2 = sigma*numext::abs2(wj); | 
|---|
| 280 | RealScalar gamma = dj*beta + swj2; | 
|---|
| 281 |  | 
|---|
| 282 | RealScalar x = dj + swj2/beta; | 
|---|
| 283 | if (x<=RealScalar(0)) | 
|---|
| 284 | return j; | 
|---|
| 285 | RealScalar nLjj = sqrt(x); | 
|---|
| 286 | mat.coeffRef(j,j) = nLjj; | 
|---|
| 287 | beta += swj2/dj; | 
|---|
| 288 |  | 
|---|
| 289 | // Update the terms of L | 
|---|
| 290 | Index rs = n-j-1; | 
|---|
| 291 | if(rs) | 
|---|
| 292 | { | 
|---|
| 293 | temp.tail(rs) -= (wj/Ljj) * mat.col(j).tail(rs); | 
|---|
| 294 | if(gamma != 0) | 
|---|
| 295 | mat.col(j).tail(rs) = (nLjj/Ljj) * mat.col(j).tail(rs) + (nLjj * sigma*numext::conj(wj)/gamma)*temp.tail(rs); | 
|---|
| 296 | } | 
|---|
| 297 | } | 
|---|
| 298 | } | 
|---|
| 299 | return -1; | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | template<typename Scalar> struct llt_inplace<Scalar, Lower> | 
|---|
| 303 | { | 
|---|
| 304 | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|---|
| 305 | template<typename MatrixType> | 
|---|
| 306 | static Index unblocked(MatrixType& mat) | 
|---|
| 307 | { | 
|---|
| 308 | using std::sqrt; | 
|---|
| 309 |  | 
|---|
| 310 | eigen_assert(mat.rows()==mat.cols()); | 
|---|
| 311 | const Index size = mat.rows(); | 
|---|
| 312 | for(Index k = 0; k < size; ++k) | 
|---|
| 313 | { | 
|---|
| 314 | Index rs = size-k-1; // remaining size | 
|---|
| 315 |  | 
|---|
| 316 | Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
|---|
| 317 | Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
|---|
| 318 | Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
|---|
| 319 |  | 
|---|
| 320 | RealScalar x = numext::real(mat.coeff(k,k)); | 
|---|
| 321 | if (k>0) x -= A10.squaredNorm(); | 
|---|
| 322 | if (x<=RealScalar(0)) | 
|---|
| 323 | return k; | 
|---|
| 324 | mat.coeffRef(k,k) = x = sqrt(x); | 
|---|
| 325 | if (k>0 && rs>0) A21.noalias() -= A20 * A10.adjoint(); | 
|---|
| 326 | if (rs>0) A21 /= x; | 
|---|
| 327 | } | 
|---|
| 328 | return -1; | 
|---|
| 329 | } | 
|---|
| 330 |  | 
|---|
| 331 | template<typename MatrixType> | 
|---|
| 332 | static Index blocked(MatrixType& m) | 
|---|
| 333 | { | 
|---|
| 334 | eigen_assert(m.rows()==m.cols()); | 
|---|
| 335 | Index size = m.rows(); | 
|---|
| 336 | if(size<32) | 
|---|
| 337 | return unblocked(m); | 
|---|
| 338 |  | 
|---|
| 339 | Index blockSize = size/8; | 
|---|
| 340 | blockSize = (blockSize/16)*16; | 
|---|
| 341 | blockSize = (std::min)((std::max)(blockSize,Index(8)), Index(128)); | 
|---|
| 342 |  | 
|---|
| 343 | for (Index k=0; k<size; k+=blockSize) | 
|---|
| 344 | { | 
|---|
| 345 | // partition the matrix: | 
|---|
| 346 | //       A00 |  -  |  - | 
|---|
| 347 | // lu  = A10 | A11 |  - | 
|---|
| 348 | //       A20 | A21 | A22 | 
|---|
| 349 | Index bs = (std::min)(blockSize, size-k); | 
|---|
| 350 | Index rs = size - k - bs; | 
|---|
| 351 | Block<MatrixType,Dynamic,Dynamic> A11(m,k,   k,   bs,bs); | 
|---|
| 352 | Block<MatrixType,Dynamic,Dynamic> A21(m,k+bs,k,   rs,bs); | 
|---|
| 353 | Block<MatrixType,Dynamic,Dynamic> A22(m,k+bs,k+bs,rs,rs); | 
|---|
| 354 |  | 
|---|
| 355 | Index ret; | 
|---|
| 356 | if((ret=unblocked(A11))>=0) return k+ret; | 
|---|
| 357 | if(rs>0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21); | 
|---|
| 358 | if(rs>0) A22.template selfadjointView<Lower>().rankUpdate(A21,typename NumTraits<RealScalar>::Literal(-1)); // bottleneck | 
|---|
| 359 | } | 
|---|
| 360 | return -1; | 
|---|
| 361 | } | 
|---|
| 362 |  | 
|---|
| 363 | template<typename MatrixType, typename VectorType> | 
|---|
| 364 | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|---|
| 365 | { | 
|---|
| 366 | return Eigen::internal::llt_rank_update_lower(mat, vec, sigma); | 
|---|
| 367 | } | 
|---|
| 368 | }; | 
|---|
| 369 |  | 
|---|
| 370 | template<typename Scalar> struct llt_inplace<Scalar, Upper> | 
|---|
| 371 | { | 
|---|
| 372 | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|---|
| 373 |  | 
|---|
| 374 | template<typename MatrixType> | 
|---|
| 375 | static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) | 
|---|
| 376 | { | 
|---|
| 377 | Transpose<MatrixType> matt(mat); | 
|---|
| 378 | return llt_inplace<Scalar, Lower>::unblocked(matt); | 
|---|
| 379 | } | 
|---|
| 380 | template<typename MatrixType> | 
|---|
| 381 | static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) | 
|---|
| 382 | { | 
|---|
| 383 | Transpose<MatrixType> matt(mat); | 
|---|
| 384 | return llt_inplace<Scalar, Lower>::blocked(matt); | 
|---|
| 385 | } | 
|---|
| 386 | template<typename MatrixType, typename VectorType> | 
|---|
| 387 | static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) | 
|---|
| 388 | { | 
|---|
| 389 | Transpose<MatrixType> matt(mat); | 
|---|
| 390 | return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma); | 
|---|
| 391 | } | 
|---|
| 392 | }; | 
|---|
| 393 |  | 
|---|
| 394 | template<typename MatrixType> struct LLT_Traits<MatrixType,Lower> | 
|---|
| 395 | { | 
|---|
| 396 | typedef const TriangularView<const MatrixType, Lower> MatrixL; | 
|---|
| 397 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU; | 
|---|
| 398 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
|---|
| 399 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
|---|
| 400 | static bool inplace_decomposition(MatrixType& m) | 
|---|
| 401 | { return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m)==-1; } | 
|---|
| 402 | }; | 
|---|
| 403 |  | 
|---|
| 404 | template<typename MatrixType> struct LLT_Traits<MatrixType,Upper> | 
|---|
| 405 | { | 
|---|
| 406 | typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL; | 
|---|
| 407 | typedef const TriangularView<const MatrixType, Upper> MatrixU; | 
|---|
| 408 | static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
|---|
| 409 | static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
|---|
| 410 | static bool inplace_decomposition(MatrixType& m) | 
|---|
| 411 | { return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m)==-1; } | 
|---|
| 412 | }; | 
|---|
| 413 |  | 
|---|
| 414 | } // end namespace internal | 
|---|
| 415 |  | 
|---|
| 416 | /** Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of \a matrix | 
|---|
| 417 | * | 
|---|
| 418 | * \returns a reference to *this | 
|---|
| 419 | * | 
|---|
| 420 | * Example: \include TutorialLinAlgComputeTwice.cpp | 
|---|
| 421 | * Output: \verbinclude TutorialLinAlgComputeTwice.out | 
|---|
| 422 | */ | 
|---|
| 423 | template<typename MatrixType, int _UpLo> | 
|---|
| 424 | template<typename InputType> | 
|---|
| 425 | LLT<MatrixType,_UpLo>& LLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) | 
|---|
| 426 | { | 
|---|
| 427 | check_template_parameters(); | 
|---|
| 428 |  | 
|---|
| 429 | eigen_assert(a.rows()==a.cols()); | 
|---|
| 430 | const Index size = a.rows(); | 
|---|
| 431 | m_matrix.resize(size, size); | 
|---|
| 432 | if (!internal::is_same_dense(m_matrix, a.derived())) | 
|---|
| 433 | m_matrix = a.derived(); | 
|---|
| 434 |  | 
|---|
| 435 | // Compute matrix L1 norm = max abs column sum. | 
|---|
| 436 | m_l1_norm = RealScalar(0); | 
|---|
| 437 | // TODO move this code to SelfAdjointView | 
|---|
| 438 | for (Index col = 0; col < size; ++col) { | 
|---|
| 439 | RealScalar abs_col_sum; | 
|---|
| 440 | if (_UpLo == Lower) | 
|---|
| 441 | abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); | 
|---|
| 442 | else | 
|---|
| 443 | abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); | 
|---|
| 444 | if (abs_col_sum > m_l1_norm) | 
|---|
| 445 | m_l1_norm = abs_col_sum; | 
|---|
| 446 | } | 
|---|
| 447 |  | 
|---|
| 448 | m_isInitialized = true; | 
|---|
| 449 | bool ok = Traits::inplace_decomposition(m_matrix); | 
|---|
| 450 | m_info = ok ? Success : NumericalIssue; | 
|---|
| 451 |  | 
|---|
| 452 | return *this; | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | /** Performs a rank one update (or dowdate) of the current decomposition. | 
|---|
| 456 | * If A = LL^* before the rank one update, | 
|---|
| 457 | * then after it we have LL^* = A + sigma * v v^* where \a v must be a vector | 
|---|
| 458 | * of same dimension. | 
|---|
| 459 | */ | 
|---|
| 460 | template<typename _MatrixType, int _UpLo> | 
|---|
| 461 | template<typename VectorType> | 
|---|
| 462 | LLT<_MatrixType,_UpLo> LLT<_MatrixType,_UpLo>::rankUpdate(const VectorType& v, const RealScalar& sigma) | 
|---|
| 463 | { | 
|---|
| 464 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType); | 
|---|
| 465 | eigen_assert(v.size()==m_matrix.cols()); | 
|---|
| 466 | eigen_assert(m_isInitialized); | 
|---|
| 467 | if(internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix,v,sigma)>=0) | 
|---|
| 468 | m_info = NumericalIssue; | 
|---|
| 469 | else | 
|---|
| 470 | m_info = Success; | 
|---|
| 471 |  | 
|---|
| 472 | return *this; | 
|---|
| 473 | } | 
|---|
| 474 |  | 
|---|
| 475 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 476 | template<typename _MatrixType,int _UpLo> | 
|---|
| 477 | template<typename RhsType, typename DstType> | 
|---|
| 478 | void LLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|---|
| 479 | { | 
|---|
| 480 | dst = rhs; | 
|---|
| 481 | solveInPlace(dst); | 
|---|
| 482 | } | 
|---|
| 483 | #endif | 
|---|
| 484 |  | 
|---|
| 485 | /** \internal use x = llt_object.solve(x); | 
|---|
| 486 | * | 
|---|
| 487 | * This is the \em in-place version of solve(). | 
|---|
| 488 | * | 
|---|
| 489 | * \param bAndX represents both the right-hand side matrix b and result x. | 
|---|
| 490 | * | 
|---|
| 491 | * This version avoids a copy when the right hand side matrix b is not needed anymore. | 
|---|
| 492 | * | 
|---|
| 493 | * \warning The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here. | 
|---|
| 494 | * This function will const_cast it, so constness isn't honored here. | 
|---|
| 495 | * | 
|---|
| 496 | * \sa LLT::solve(), MatrixBase::llt() | 
|---|
| 497 | */ | 
|---|
| 498 | template<typename MatrixType, int _UpLo> | 
|---|
| 499 | template<typename Derived> | 
|---|
| 500 | void LLT<MatrixType,_UpLo>::solveInPlace(const MatrixBase<Derived> &bAndX) const | 
|---|
| 501 | { | 
|---|
| 502 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 503 | eigen_assert(m_matrix.rows()==bAndX.rows()); | 
|---|
| 504 | matrixL().solveInPlace(bAndX); | 
|---|
| 505 | matrixU().solveInPlace(bAndX); | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | /** \returns the matrix represented by the decomposition, | 
|---|
| 509 | * i.e., it returns the product: L L^*. | 
|---|
| 510 | * This function is provided for debug purpose. */ | 
|---|
| 511 | template<typename MatrixType, int _UpLo> | 
|---|
| 512 | MatrixType LLT<MatrixType,_UpLo>::reconstructedMatrix() const | 
|---|
| 513 | { | 
|---|
| 514 | eigen_assert(m_isInitialized && "LLT is not initialized."); | 
|---|
| 515 | return matrixL() * matrixL().adjoint().toDenseMatrix(); | 
|---|
| 516 | } | 
|---|
| 517 |  | 
|---|
| 518 | /** \cholesky_module | 
|---|
| 519 | * \returns the LLT decomposition of \c *this | 
|---|
| 520 | * \sa SelfAdjointView::llt() | 
|---|
| 521 | */ | 
|---|
| 522 | template<typename Derived> | 
|---|
| 523 | inline const LLT<typename MatrixBase<Derived>::PlainObject> | 
|---|
| 524 | MatrixBase<Derived>::llt() const | 
|---|
| 525 | { | 
|---|
| 526 | return LLT<PlainObject>(derived()); | 
|---|
| 527 | } | 
|---|
| 528 |  | 
|---|
| 529 | /** \cholesky_module | 
|---|
| 530 | * \returns the LLT decomposition of \c *this | 
|---|
| 531 | * \sa SelfAdjointView::llt() | 
|---|
| 532 | */ | 
|---|
| 533 | template<typename MatrixType, unsigned int UpLo> | 
|---|
| 534 | inline const LLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
|---|
| 535 | SelfAdjointView<MatrixType, UpLo>::llt() const | 
|---|
| 536 | { | 
|---|
| 537 | return LLT<PlainObject,UpLo>(m_matrix); | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | } // end namespace Eigen | 
|---|
| 541 |  | 
|---|
| 542 | #endif // EIGEN_LLT_H | 
|---|
| 543 |  | 
|---|