| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_ARRAY_H |
| 11 | #define EIGEN_ARRAY_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| 17 | struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| 18 | { |
| 19 | typedef ArrayXpr XprKind; |
| 20 | typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase; |
| 21 | }; |
| 22 | } |
| 23 | |
| 24 | /** \class Array |
| 25 | * \ingroup Core_Module |
| 26 | * |
| 27 | * \brief General-purpose arrays with easy API for coefficient-wise operations |
| 28 | * |
| 29 | * The %Array class is very similar to the Matrix class. It provides |
| 30 | * general-purpose one- and two-dimensional arrays. The difference between the |
| 31 | * %Array and the %Matrix class is primarily in the API: the API for the |
| 32 | * %Array class provides easy access to coefficient-wise operations, while the |
| 33 | * API for the %Matrix class provides easy access to linear-algebra |
| 34 | * operations. |
| 35 | * |
| 36 | * See documentation of class Matrix for detailed information on the template parameters |
| 37 | * storage layout. |
| 38 | * |
| 39 | * This class can be extended with the help of the plugin mechanism described on the page |
| 40 | * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. |
| 41 | * |
| 42 | * \sa \blank \ref TutorialArrayClass, \ref TopicClassHierarchy |
| 43 | */ |
| 44 | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> |
| 45 | class Array |
| 46 | : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > |
| 47 | { |
| 48 | public: |
| 49 | |
| 50 | typedef PlainObjectBase<Array> Base; |
| 51 | EIGEN_DENSE_PUBLIC_INTERFACE(Array) |
| 52 | |
| 53 | enum { Options = _Options }; |
| 54 | typedef typename Base::PlainObject PlainObject; |
| 55 | |
| 56 | protected: |
| 57 | template <typename Derived, typename OtherDerived, bool IsVector> |
| 58 | friend struct internal::conservative_resize_like_impl; |
| 59 | |
| 60 | using Base::m_storage; |
| 61 | |
| 62 | public: |
| 63 | |
| 64 | using Base::base; |
| 65 | using Base::coeff; |
| 66 | using Base::coeffRef; |
| 67 | |
| 68 | /** |
| 69 | * The usage of |
| 70 | * using Base::operator=; |
| 71 | * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped |
| 72 | * the usage of 'using'. This should be done only for operator=. |
| 73 | */ |
| 74 | template<typename OtherDerived> |
| 75 | EIGEN_DEVICE_FUNC |
| 76 | EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other) |
| 77 | { |
| 78 | return Base::operator=(other); |
| 79 | } |
| 80 | |
| 81 | /** Set all the entries to \a value. |
| 82 | * \sa DenseBase::setConstant(), DenseBase::fill() |
| 83 | */ |
| 84 | /* This overload is needed because the usage of |
| 85 | * using Base::operator=; |
| 86 | * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped |
| 87 | * the usage of 'using'. This should be done only for operator=. |
| 88 | */ |
| 89 | EIGEN_DEVICE_FUNC |
| 90 | EIGEN_STRONG_INLINE Array& operator=(const Scalar &value) |
| 91 | { |
| 92 | Base::setConstant(value); |
| 93 | return *this; |
| 94 | } |
| 95 | |
| 96 | /** Copies the value of the expression \a other into \c *this with automatic resizing. |
| 97 | * |
| 98 | * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), |
| 99 | * it will be initialized. |
| 100 | * |
| 101 | * Note that copying a row-vector into a vector (and conversely) is allowed. |
| 102 | * The resizing, if any, is then done in the appropriate way so that row-vectors |
| 103 | * remain row-vectors and vectors remain vectors. |
| 104 | */ |
| 105 | template<typename OtherDerived> |
| 106 | EIGEN_DEVICE_FUNC |
| 107 | EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other) |
| 108 | { |
| 109 | return Base::_set(other); |
| 110 | } |
| 111 | |
| 112 | /** This is a special case of the templated operator=. Its purpose is to |
| 113 | * prevent a default operator= from hiding the templated operator=. |
| 114 | */ |
| 115 | EIGEN_DEVICE_FUNC |
| 116 | EIGEN_STRONG_INLINE Array& operator=(const Array& other) |
| 117 | { |
| 118 | return Base::_set(other); |
| 119 | } |
| 120 | |
| 121 | /** Default constructor. |
| 122 | * |
| 123 | * For fixed-size matrices, does nothing. |
| 124 | * |
| 125 | * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix |
| 126 | * is called a null matrix. This constructor is the unique way to create null matrices: resizing |
| 127 | * a matrix to 0 is not supported. |
| 128 | * |
| 129 | * \sa resize(Index,Index) |
| 130 | */ |
| 131 | EIGEN_DEVICE_FUNC |
| 132 | EIGEN_STRONG_INLINE Array() : Base() |
| 133 | { |
| 134 | Base::_check_template_params(); |
| 135 | EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| 136 | } |
| 137 | |
| 138 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 139 | // FIXME is it still needed ?? |
| 140 | /** \internal */ |
| 141 | EIGEN_DEVICE_FUNC |
| 142 | Array(internal::constructor_without_unaligned_array_assert) |
| 143 | : Base(internal::constructor_without_unaligned_array_assert()) |
| 144 | { |
| 145 | Base::_check_template_params(); |
| 146 | EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED |
| 147 | } |
| 148 | #endif |
| 149 | |
| 150 | #if EIGEN_HAS_RVALUE_REFERENCES |
| 151 | EIGEN_DEVICE_FUNC |
| 152 | Array(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value) |
| 153 | : Base(std::move(other)) |
| 154 | { |
| 155 | Base::_check_template_params(); |
| 156 | } |
| 157 | EIGEN_DEVICE_FUNC |
| 158 | Array& operator=(Array&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value) |
| 159 | { |
| 160 | other.swap(*this); |
| 161 | return *this; |
| 162 | } |
| 163 | #endif |
| 164 | |
| 165 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 166 | template<typename T> |
| 167 | EIGEN_DEVICE_FUNC |
| 168 | EIGEN_STRONG_INLINE explicit Array(const T& x) |
| 169 | { |
| 170 | Base::_check_template_params(); |
| 171 | Base::template _init1<T>(x); |
| 172 | } |
| 173 | |
| 174 | template<typename T0, typename T1> |
| 175 | EIGEN_DEVICE_FUNC |
| 176 | EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) |
| 177 | { |
| 178 | Base::_check_template_params(); |
| 179 | this->template _init2<T0,T1>(val0, val1); |
| 180 | } |
| 181 | #else |
| 182 | /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */ |
| 183 | EIGEN_DEVICE_FUNC explicit Array(const Scalar *data); |
| 184 | /** Constructs a vector or row-vector with given dimension. \only_for_vectors |
| 185 | * |
| 186 | * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, |
| 187 | * it is redundant to pass the dimension here, so it makes more sense to use the default |
| 188 | * constructor Array() instead. |
| 189 | */ |
| 190 | EIGEN_DEVICE_FUNC |
| 191 | EIGEN_STRONG_INLINE explicit Array(Index dim); |
| 192 | /** constructs an initialized 1x1 Array with the given coefficient */ |
| 193 | Array(const Scalar& value); |
| 194 | /** constructs an uninitialized array with \a rows rows and \a cols columns. |
| 195 | * |
| 196 | * This is useful for dynamic-size arrays. For fixed-size arrays, |
| 197 | * it is redundant to pass these parameters, so one should use the default constructor |
| 198 | * Array() instead. */ |
| 199 | Array(Index rows, Index cols); |
| 200 | /** constructs an initialized 2D vector with given coefficients */ |
| 201 | Array(const Scalar& val0, const Scalar& val1); |
| 202 | #endif |
| 203 | |
| 204 | /** constructs an initialized 3D vector with given coefficients */ |
| 205 | EIGEN_DEVICE_FUNC |
| 206 | EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) |
| 207 | { |
| 208 | Base::_check_template_params(); |
| 209 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) |
| 210 | m_storage.data()[0] = val0; |
| 211 | m_storage.data()[1] = val1; |
| 212 | m_storage.data()[2] = val2; |
| 213 | } |
| 214 | /** constructs an initialized 4D vector with given coefficients */ |
| 215 | EIGEN_DEVICE_FUNC |
| 216 | EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) |
| 217 | { |
| 218 | Base::_check_template_params(); |
| 219 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) |
| 220 | m_storage.data()[0] = val0; |
| 221 | m_storage.data()[1] = val1; |
| 222 | m_storage.data()[2] = val2; |
| 223 | m_storage.data()[3] = val3; |
| 224 | } |
| 225 | |
| 226 | /** Copy constructor */ |
| 227 | EIGEN_DEVICE_FUNC |
| 228 | EIGEN_STRONG_INLINE Array(const Array& other) |
| 229 | : Base(other) |
| 230 | { } |
| 231 | |
| 232 | private: |
| 233 | struct PrivateType {}; |
| 234 | public: |
| 235 | |
| 236 | /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */ |
| 237 | template<typename OtherDerived> |
| 238 | EIGEN_DEVICE_FUNC |
| 239 | EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other, |
| 240 | typename internal::enable_if<internal::is_convertible<typename OtherDerived::Scalar,Scalar>::value, |
| 241 | PrivateType>::type = PrivateType()) |
| 242 | : Base(other.derived()) |
| 243 | { } |
| 244 | |
| 245 | EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } |
| 246 | EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } |
| 247 | |
| 248 | #ifdef EIGEN_ARRAY_PLUGIN |
| 249 | #include EIGEN_ARRAY_PLUGIN |
| 250 | #endif |
| 251 | |
| 252 | private: |
| 253 | |
| 254 | template<typename MatrixType, typename OtherDerived, bool SwapPointers> |
| 255 | friend struct internal::matrix_swap_impl; |
| 256 | }; |
| 257 | |
| 258 | /** \defgroup arraytypedefs Global array typedefs |
| 259 | * \ingroup Core_Module |
| 260 | * |
| 261 | * Eigen defines several typedef shortcuts for most common 1D and 2D array types. |
| 262 | * |
| 263 | * The general patterns are the following: |
| 264 | * |
| 265 | * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, |
| 266 | * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd |
| 267 | * for complex double. |
| 268 | * |
| 269 | * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. |
| 270 | * |
| 271 | * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is |
| 272 | * a fixed-size 1D array of 4 complex floats. |
| 273 | * |
| 274 | * \sa class Array |
| 275 | */ |
| 276 | |
| 277 | #define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ |
| 278 | /** \ingroup arraytypedefs */ \ |
| 279 | typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix; \ |
| 280 | /** \ingroup arraytypedefs */ \ |
| 281 | typedef Array<Type, Size, 1> Array##SizeSuffix##TypeSuffix; |
| 282 | |
| 283 | #define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size) \ |
| 284 | /** \ingroup arraytypedefs */ \ |
| 285 | typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix; \ |
| 286 | /** \ingroup arraytypedefs */ \ |
| 287 | typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix; |
| 288 | |
| 289 | #define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ |
| 290 | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ |
| 291 | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ |
| 292 | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ |
| 293 | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ |
| 294 | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ |
| 295 | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ |
| 296 | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) |
| 297 | |
| 298 | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int, i) |
| 299 | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float, f) |
| 300 | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double, d) |
| 301 | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>, cf) |
| 302 | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) |
| 303 | |
| 304 | #undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES |
| 305 | #undef EIGEN_MAKE_ARRAY_TYPEDEFS |
| 306 | |
| 307 | #undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE |
| 308 | |
| 309 | #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ |
| 310 | using Eigen::Matrix##SizeSuffix##TypeSuffix; \ |
| 311 | using Eigen::Vector##SizeSuffix##TypeSuffix; \ |
| 312 | using Eigen::RowVector##SizeSuffix##TypeSuffix; |
| 313 | |
| 314 | #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ |
| 315 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ |
| 316 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ |
| 317 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ |
| 318 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ |
| 319 | |
| 320 | #define EIGEN_USING_ARRAY_TYPEDEFS \ |
| 321 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ |
| 322 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ |
| 323 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ |
| 324 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ |
| 325 | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) |
| 326 | |
| 327 | } // end namespace Eigen |
| 328 | |
| 329 | #endif // EIGEN_ARRAY_H |
| 330 | |