| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2008, 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_DOT_H |
| 11 | #define EIGEN_DOT_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot |
| 18 | // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE |
| 19 | // looking at the static assertions. Thus this is a trick to get better compile errors. |
| 20 | template<typename T, typename U, |
| 21 | // the NeedToTranspose condition here is taken straight from Assign.h |
| 22 | bool NeedToTranspose = T::IsVectorAtCompileTime |
| 23 | && U::IsVectorAtCompileTime |
| 24 | && ((int(T::RowsAtCompileTime) == 1 && int(U::ColsAtCompileTime) == 1) |
| 25 | | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". |
| 26 | // revert to || as soon as not needed anymore. |
| 27 | (int(T::ColsAtCompileTime) == 1 && int(U::RowsAtCompileTime) == 1)) |
| 28 | > |
| 29 | struct dot_nocheck |
| 30 | { |
| 31 | typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; |
| 32 | typedef typename conj_prod::result_type ResScalar; |
| 33 | EIGEN_DEVICE_FUNC |
| 34 | EIGEN_STRONG_INLINE |
| 35 | static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
| 36 | { |
| 37 | return a.template binaryExpr<conj_prod>(b).sum(); |
| 38 | } |
| 39 | }; |
| 40 | |
| 41 | template<typename T, typename U> |
| 42 | struct dot_nocheck<T, U, true> |
| 43 | { |
| 44 | typedef scalar_conj_product_op<typename traits<T>::Scalar,typename traits<U>::Scalar> conj_prod; |
| 45 | typedef typename conj_prod::result_type ResScalar; |
| 46 | EIGEN_DEVICE_FUNC |
| 47 | EIGEN_STRONG_INLINE |
| 48 | static ResScalar run(const MatrixBase<T>& a, const MatrixBase<U>& b) |
| 49 | { |
| 50 | return a.transpose().template binaryExpr<conj_prod>(b).sum(); |
| 51 | } |
| 52 | }; |
| 53 | |
| 54 | } // end namespace internal |
| 55 | |
| 56 | /** \fn MatrixBase::dot |
| 57 | * \returns the dot product of *this with other. |
| 58 | * |
| 59 | * \only_for_vectors |
| 60 | * |
| 61 | * \note If the scalar type is complex numbers, then this function returns the hermitian |
| 62 | * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the |
| 63 | * second variable. |
| 64 | * |
| 65 | * \sa squaredNorm(), norm() |
| 66 | */ |
| 67 | template<typename Derived> |
| 68 | template<typename OtherDerived> |
| 69 | EIGEN_DEVICE_FUNC |
| 70 | EIGEN_STRONG_INLINE |
| 71 | typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType |
| 72 | MatrixBase<Derived>::dot(const MatrixBase<OtherDerived>& other) const |
| 73 | { |
| 74 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) |
| 75 | EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) |
| 76 | EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) |
| 77 | #if !(defined(EIGEN_NO_STATIC_ASSERT) && defined(EIGEN_NO_DEBUG)) |
| 78 | typedef internal::scalar_conj_product_op<Scalar,typename OtherDerived::Scalar> func; |
| 79 | EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); |
| 80 | #endif |
| 81 | |
| 82 | eigen_assert(size() == other.size()); |
| 83 | |
| 84 | return internal::dot_nocheck<Derived,OtherDerived>::run(*this, other); |
| 85 | } |
| 86 | |
| 87 | //---------- implementation of L2 norm and related functions ---------- |
| 88 | |
| 89 | /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. |
| 90 | * In both cases, it consists in the sum of the square of all the matrix entries. |
| 91 | * For vectors, this is also equals to the dot product of \c *this with itself. |
| 92 | * |
| 93 | * \sa dot(), norm(), lpNorm() |
| 94 | */ |
| 95 | template<typename Derived> |
| 96 | EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::squaredNorm() const |
| 97 | { |
| 98 | return numext::real((*this).cwiseAbs2().sum()); |
| 99 | } |
| 100 | |
| 101 | /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. |
| 102 | * In both cases, it consists in the square root of the sum of the square of all the matrix entries. |
| 103 | * For vectors, this is also equals to the square root of the dot product of \c *this with itself. |
| 104 | * |
| 105 | * \sa lpNorm(), dot(), squaredNorm() |
| 106 | */ |
| 107 | template<typename Derived> |
| 108 | EIGEN_STRONG_INLINE typename NumTraits<typename internal::traits<Derived>::Scalar>::Real MatrixBase<Derived>::norm() const |
| 109 | { |
| 110 | return numext::sqrt(squaredNorm()); |
| 111 | } |
| 112 | |
| 113 | /** \returns an expression of the quotient of \c *this by its own norm. |
| 114 | * |
| 115 | * \warning If the input vector is too small (i.e., this->norm()==0), |
| 116 | * then this function returns a copy of the input. |
| 117 | * |
| 118 | * \only_for_vectors |
| 119 | * |
| 120 | * \sa norm(), normalize() |
| 121 | */ |
| 122 | template<typename Derived> |
| 123 | EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject |
| 124 | MatrixBase<Derived>::normalized() const |
| 125 | { |
| 126 | typedef typename internal::nested_eval<Derived,2>::type _Nested; |
| 127 | _Nested n(derived()); |
| 128 | RealScalar z = n.squaredNorm(); |
| 129 | // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU |
| 130 | if(z>RealScalar(0)) |
| 131 | return n / numext::sqrt(z); |
| 132 | else |
| 133 | return n; |
| 134 | } |
| 135 | |
| 136 | /** Normalizes the vector, i.e. divides it by its own norm. |
| 137 | * |
| 138 | * \only_for_vectors |
| 139 | * |
| 140 | * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. |
| 141 | * |
| 142 | * \sa norm(), normalized() |
| 143 | */ |
| 144 | template<typename Derived> |
| 145 | EIGEN_STRONG_INLINE void MatrixBase<Derived>::normalize() |
| 146 | { |
| 147 | RealScalar z = squaredNorm(); |
| 148 | // NOTE: after extensive benchmarking, this conditional does not impact performance, at least on recent x86 CPU |
| 149 | if(z>RealScalar(0)) |
| 150 | derived() /= numext::sqrt(z); |
| 151 | } |
| 152 | |
| 153 | /** \returns an expression of the quotient of \c *this by its own norm while avoiding underflow and overflow. |
| 154 | * |
| 155 | * \only_for_vectors |
| 156 | * |
| 157 | * This method is analogue to the normalized() method, but it reduces the risk of |
| 158 | * underflow and overflow when computing the norm. |
| 159 | * |
| 160 | * \warning If the input vector is too small (i.e., this->norm()==0), |
| 161 | * then this function returns a copy of the input. |
| 162 | * |
| 163 | * \sa stableNorm(), stableNormalize(), normalized() |
| 164 | */ |
| 165 | template<typename Derived> |
| 166 | EIGEN_STRONG_INLINE const typename MatrixBase<Derived>::PlainObject |
| 167 | MatrixBase<Derived>::stableNormalized() const |
| 168 | { |
| 169 | typedef typename internal::nested_eval<Derived,3>::type _Nested; |
| 170 | _Nested n(derived()); |
| 171 | RealScalar w = n.cwiseAbs().maxCoeff(); |
| 172 | RealScalar z = (n/w).squaredNorm(); |
| 173 | if(z>RealScalar(0)) |
| 174 | return n / (numext::sqrt(z)*w); |
| 175 | else |
| 176 | return n; |
| 177 | } |
| 178 | |
| 179 | /** Normalizes the vector while avoid underflow and overflow |
| 180 | * |
| 181 | * \only_for_vectors |
| 182 | * |
| 183 | * This method is analogue to the normalize() method, but it reduces the risk of |
| 184 | * underflow and overflow when computing the norm. |
| 185 | * |
| 186 | * \warning If the input vector is too small (i.e., this->norm()==0), then \c *this is left unchanged. |
| 187 | * |
| 188 | * \sa stableNorm(), stableNormalized(), normalize() |
| 189 | */ |
| 190 | template<typename Derived> |
| 191 | EIGEN_STRONG_INLINE void MatrixBase<Derived>::stableNormalize() |
| 192 | { |
| 193 | RealScalar w = cwiseAbs().maxCoeff(); |
| 194 | RealScalar z = (derived()/w).squaredNorm(); |
| 195 | if(z>RealScalar(0)) |
| 196 | derived() /= numext::sqrt(z)*w; |
| 197 | } |
| 198 | |
| 199 | //---------- implementation of other norms ---------- |
| 200 | |
| 201 | namespace internal { |
| 202 | |
| 203 | template<typename Derived, int p> |
| 204 | struct lpNorm_selector |
| 205 | { |
| 206 | typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; |
| 207 | EIGEN_DEVICE_FUNC |
| 208 | static inline RealScalar run(const MatrixBase<Derived>& m) |
| 209 | { |
| 210 | EIGEN_USING_STD_MATH(pow) |
| 211 | return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); |
| 212 | } |
| 213 | }; |
| 214 | |
| 215 | template<typename Derived> |
| 216 | struct lpNorm_selector<Derived, 1> |
| 217 | { |
| 218 | EIGEN_DEVICE_FUNC |
| 219 | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
| 220 | { |
| 221 | return m.cwiseAbs().sum(); |
| 222 | } |
| 223 | }; |
| 224 | |
| 225 | template<typename Derived> |
| 226 | struct lpNorm_selector<Derived, 2> |
| 227 | { |
| 228 | EIGEN_DEVICE_FUNC |
| 229 | static inline typename NumTraits<typename traits<Derived>::Scalar>::Real run(const MatrixBase<Derived>& m) |
| 230 | { |
| 231 | return m.norm(); |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | template<typename Derived> |
| 236 | struct lpNorm_selector<Derived, Infinity> |
| 237 | { |
| 238 | typedef typename NumTraits<typename traits<Derived>::Scalar>::Real RealScalar; |
| 239 | EIGEN_DEVICE_FUNC |
| 240 | static inline RealScalar run(const MatrixBase<Derived>& m) |
| 241 | { |
| 242 | if(Derived::SizeAtCompileTime==0 || (Derived::SizeAtCompileTime==Dynamic && m.size()==0)) |
| 243 | return RealScalar(0); |
| 244 | return m.cwiseAbs().maxCoeff(); |
| 245 | } |
| 246 | }; |
| 247 | |
| 248 | } // end namespace internal |
| 249 | |
| 250 | /** \returns the \b coefficient-wise \f$ \ell^p \f$ norm of \c *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values |
| 251 | * of the coefficients of \c *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ |
| 252 | * norm, that is the maximum of the absolute values of the coefficients of \c *this. |
| 253 | * |
| 254 | * In all cases, if \c *this is empty, then the value 0 is returned. |
| 255 | * |
| 256 | * \note For matrices, this function does not compute the <a href="https://en.wikipedia.org/wiki/Operator_norm">operator-norm</a>. That is, if \c *this is a matrix, then its coefficients are interpreted as a 1D vector. Nonetheless, you can easily compute the 1-norm and \f$\infty\f$-norm matrix operator norms using \link TutorialReductionsVisitorsBroadcastingReductionsNorm partial reductions \endlink. |
| 257 | * |
| 258 | * \sa norm() |
| 259 | */ |
| 260 | template<typename Derived> |
| 261 | template<int p> |
| 262 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 263 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
| 264 | #else |
| 265 | MatrixBase<Derived>::RealScalar |
| 266 | #endif |
| 267 | MatrixBase<Derived>::lpNorm() const |
| 268 | { |
| 269 | return internal::lpNorm_selector<Derived, p>::run(*this); |
| 270 | } |
| 271 | |
| 272 | //---------- implementation of isOrthogonal / isUnitary ---------- |
| 273 | |
| 274 | /** \returns true if *this is approximately orthogonal to \a other, |
| 275 | * within the precision given by \a prec. |
| 276 | * |
| 277 | * Example: \include MatrixBase_isOrthogonal.cpp |
| 278 | * Output: \verbinclude MatrixBase_isOrthogonal.out |
| 279 | */ |
| 280 | template<typename Derived> |
| 281 | template<typename OtherDerived> |
| 282 | bool MatrixBase<Derived>::isOrthogonal |
| 283 | (const MatrixBase<OtherDerived>& other, const RealScalar& prec) const |
| 284 | { |
| 285 | typename internal::nested_eval<Derived,2>::type nested(derived()); |
| 286 | typename internal::nested_eval<OtherDerived,2>::type otherNested(other.derived()); |
| 287 | return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); |
| 288 | } |
| 289 | |
| 290 | /** \returns true if *this is approximately an unitary matrix, |
| 291 | * within the precision given by \a prec. In the case where the \a Scalar |
| 292 | * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. |
| 293 | * |
| 294 | * \note This can be used to check whether a family of vectors forms an orthonormal basis. |
| 295 | * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an |
| 296 | * orthonormal basis. |
| 297 | * |
| 298 | * Example: \include MatrixBase_isUnitary.cpp |
| 299 | * Output: \verbinclude MatrixBase_isUnitary.out |
| 300 | */ |
| 301 | template<typename Derived> |
| 302 | bool MatrixBase<Derived>::isUnitary(const RealScalar& prec) const |
| 303 | { |
| 304 | typename internal::nested_eval<Derived,1>::type self(derived()); |
| 305 | for(Index i = 0; i < cols(); ++i) |
| 306 | { |
| 307 | if(!internal::isApprox(self.col(i).squaredNorm(), static_cast<RealScalar>(1), prec)) |
| 308 | return false; |
| 309 | for(Index j = 0; j < i; ++j) |
| 310 | if(!internal::isMuchSmallerThan(self.col(i).dot(self.col(j)), static_cast<Scalar>(1), prec)) |
| 311 | return false; |
| 312 | } |
| 313 | return true; |
| 314 | } |
| 315 | |
| 316 | } // end namespace Eigen |
| 317 | |
| 318 | #endif // EIGEN_DOT_H |
| 319 | |