1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_STABLENORM_H |
11 | #define EIGEN_STABLENORM_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | |
17 | template<typename ExpressionType, typename Scalar> |
18 | inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale) |
19 | { |
20 | Scalar maxCoeff = bl.cwiseAbs().maxCoeff(); |
21 | |
22 | if(maxCoeff>scale) |
23 | { |
24 | ssq = ssq * numext::abs2(scale/maxCoeff); |
25 | Scalar tmp = Scalar(1)/maxCoeff; |
26 | if(tmp > NumTraits<Scalar>::highest()) |
27 | { |
28 | invScale = NumTraits<Scalar>::highest(); |
29 | scale = Scalar(1)/invScale; |
30 | } |
31 | else if(maxCoeff>NumTraits<Scalar>::highest()) // we got a INF |
32 | { |
33 | invScale = Scalar(1); |
34 | scale = maxCoeff; |
35 | } |
36 | else |
37 | { |
38 | scale = maxCoeff; |
39 | invScale = tmp; |
40 | } |
41 | } |
42 | else if(maxCoeff!=maxCoeff) // we got a NaN |
43 | { |
44 | scale = maxCoeff; |
45 | } |
46 | |
47 | // TODO if the maxCoeff is much much smaller than the current scale, |
48 | // then we can neglect this sub vector |
49 | if(scale>Scalar(0)) // if scale==0, then bl is 0 |
50 | ssq += (bl*invScale).squaredNorm(); |
51 | } |
52 | |
53 | template<typename Derived> |
54 | inline typename NumTraits<typename traits<Derived>::Scalar>::Real |
55 | blueNorm_impl(const EigenBase<Derived>& _vec) |
56 | { |
57 | typedef typename Derived::RealScalar RealScalar; |
58 | using std::pow; |
59 | using std::sqrt; |
60 | using std::abs; |
61 | const Derived& vec(_vec.derived()); |
62 | static bool initialized = false; |
63 | static RealScalar b1, b2, s1m, s2m, rbig, relerr; |
64 | if(!initialized) |
65 | { |
66 | int ibeta, it, iemin, iemax, iexp; |
67 | RealScalar eps; |
68 | // This program calculates the machine-dependent constants |
69 | // bl, b2, slm, s2m, relerr overfl |
70 | // from the "basic" machine-dependent numbers |
71 | // nbig, ibeta, it, iemin, iemax, rbig. |
72 | // The following define the basic machine-dependent constants. |
73 | // For portability, the PORT subprograms "ilmaeh" and "rlmach" |
74 | // are used. For any specific computer, each of the assignment |
75 | // statements can be replaced |
76 | ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers |
77 | it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa |
78 | iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent |
79 | iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent |
80 | rbig = (std::numeric_limits<RealScalar>::max)(); // largest floating-point number |
81 | |
82 | iexp = -((1-iemin)/2); |
83 | b1 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // lower boundary of midrange |
84 | iexp = (iemax + 1 - it)/2; |
85 | b2 = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // upper boundary of midrange |
86 | |
87 | iexp = (2-iemin)/2; |
88 | s1m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for lower range |
89 | iexp = - ((iemax+it)/2); |
90 | s2m = RealScalar(pow(RealScalar(ibeta),RealScalar(iexp))); // scaling factor for upper range |
91 | |
92 | eps = RealScalar(pow(double(ibeta), 1-it)); |
93 | relerr = sqrt(eps); // tolerance for neglecting asml |
94 | initialized = true; |
95 | } |
96 | Index n = vec.size(); |
97 | RealScalar ab2 = b2 / RealScalar(n); |
98 | RealScalar asml = RealScalar(0); |
99 | RealScalar amed = RealScalar(0); |
100 | RealScalar abig = RealScalar(0); |
101 | for(typename Derived::InnerIterator it(vec, 0); it; ++it) |
102 | { |
103 | RealScalar ax = abs(it.value()); |
104 | if(ax > ab2) abig += numext::abs2(ax*s2m); |
105 | else if(ax < b1) asml += numext::abs2(ax*s1m); |
106 | else amed += numext::abs2(ax); |
107 | } |
108 | if(amed!=amed) |
109 | return amed; // we got a NaN |
110 | if(abig > RealScalar(0)) |
111 | { |
112 | abig = sqrt(abig); |
113 | if(abig > rbig) // overflow, or *this contains INF values |
114 | return abig; // return INF |
115 | if(amed > RealScalar(0)) |
116 | { |
117 | abig = abig/s2m; |
118 | amed = sqrt(amed); |
119 | } |
120 | else |
121 | return abig/s2m; |
122 | } |
123 | else if(asml > RealScalar(0)) |
124 | { |
125 | if (amed > RealScalar(0)) |
126 | { |
127 | abig = sqrt(amed); |
128 | amed = sqrt(asml) / s1m; |
129 | } |
130 | else |
131 | return sqrt(asml)/s1m; |
132 | } |
133 | else |
134 | return sqrt(amed); |
135 | asml = numext::mini(abig, amed); |
136 | abig = numext::maxi(abig, amed); |
137 | if(asml <= abig*relerr) |
138 | return abig; |
139 | else |
140 | return abig * sqrt(RealScalar(1) + numext::abs2(asml/abig)); |
141 | } |
142 | |
143 | } // end namespace internal |
144 | |
145 | /** \returns the \em l2 norm of \c *this avoiding underflow and overflow. |
146 | * This version use a blockwise two passes algorithm: |
147 | * 1 - find the absolute largest coefficient \c s |
148 | * 2 - compute \f$ s \Vert \frac{*this}{s} \Vert \f$ in a standard way |
149 | * |
150 | * For architecture/scalar types supporting vectorization, this version |
151 | * is faster than blueNorm(). Otherwise the blueNorm() is much faster. |
152 | * |
153 | * \sa norm(), blueNorm(), hypotNorm() |
154 | */ |
155 | template<typename Derived> |
156 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
157 | MatrixBase<Derived>::stableNorm() const |
158 | { |
159 | using std::sqrt; |
160 | using std::abs; |
161 | const Index blockSize = 4096; |
162 | RealScalar scale(0); |
163 | RealScalar invScale(1); |
164 | RealScalar ssq(0); // sum of square |
165 | |
166 | typedef typename internal::nested_eval<Derived,2>::type DerivedCopy; |
167 | typedef typename internal::remove_all<DerivedCopy>::type DerivedCopyClean; |
168 | const DerivedCopy copy(derived()); |
169 | |
170 | enum { |
171 | CanAlign = ( (int(DerivedCopyClean::Flags)&DirectAccessBit) |
172 | || (int(internal::evaluator<DerivedCopyClean>::Alignment)>0) // FIXME Alignment)>0 might not be enough |
173 | ) && (blockSize*sizeof(Scalar)*2<EIGEN_STACK_ALLOCATION_LIMIT) |
174 | && (EIGEN_MAX_STATIC_ALIGN_BYTES>0) // if we cannot allocate on the stack, then let's not bother about this optimization |
175 | }; |
176 | typedef typename internal::conditional<CanAlign, Ref<const Matrix<Scalar,Dynamic,1,0,blockSize,1>, internal::evaluator<DerivedCopyClean>::Alignment>, |
177 | typename DerivedCopyClean::ConstSegmentReturnType>::type SegmentWrapper; |
178 | Index n = size(); |
179 | |
180 | if(n==1) |
181 | return abs(this->coeff(0)); |
182 | |
183 | Index bi = internal::first_default_aligned(copy); |
184 | if (bi>0) |
185 | internal::stable_norm_kernel(copy.head(bi), ssq, scale, invScale); |
186 | for (; bi<n; bi+=blockSize) |
187 | internal::stable_norm_kernel(SegmentWrapper(copy.segment(bi,numext::mini(blockSize, n - bi))), ssq, scale, invScale); |
188 | return scale * sqrt(ssq); |
189 | } |
190 | |
191 | /** \returns the \em l2 norm of \c *this using the Blue's algorithm. |
192 | * A Portable Fortran Program to Find the Euclidean Norm of a Vector, |
193 | * ACM TOMS, Vol 4, Issue 1, 1978. |
194 | * |
195 | * For architecture/scalar types without vectorization, this version |
196 | * is much faster than stableNorm(). Otherwise the stableNorm() is faster. |
197 | * |
198 | * \sa norm(), stableNorm(), hypotNorm() |
199 | */ |
200 | template<typename Derived> |
201 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
202 | MatrixBase<Derived>::blueNorm() const |
203 | { |
204 | return internal::blueNorm_impl(*this); |
205 | } |
206 | |
207 | /** \returns the \em l2 norm of \c *this avoiding undeflow and overflow. |
208 | * This version use a concatenation of hypot() calls, and it is very slow. |
209 | * |
210 | * \sa norm(), stableNorm() |
211 | */ |
212 | template<typename Derived> |
213 | inline typename NumTraits<typename internal::traits<Derived>::Scalar>::Real |
214 | MatrixBase<Derived>::hypotNorm() const |
215 | { |
216 | return this->cwiseAbs().redux(internal::scalar_hypot_op<RealScalar>()); |
217 | } |
218 | |
219 | } // end namespace Eigen |
220 | |
221 | #endif // EIGEN_STABLENORM_H |
222 | |