| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_MATHFUNCTIONS_H |
| 11 | #define EIGEN_MATHFUNCTIONS_H |
| 12 | |
| 13 | // source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html |
| 14 | // TODO this should better be moved to NumTraits |
| 15 | #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L |
| 16 | |
| 17 | |
| 18 | namespace Eigen { |
| 19 | |
| 20 | // On WINCE, std::abs is defined for int only, so let's defined our own overloads: |
| 21 | // This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. |
| 22 | #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 |
| 23 | long abs(long x) { return (labs(x)); } |
| 24 | double abs(double x) { return (fabs(x)); } |
| 25 | float abs(float x) { return (fabsf(x)); } |
| 26 | long double abs(long double x) { return (fabsl(x)); } |
| 27 | #endif |
| 28 | |
| 29 | namespace internal { |
| 30 | |
| 31 | /** \internal \class global_math_functions_filtering_base |
| 32 | * |
| 33 | * What it does: |
| 34 | * Defines a typedef 'type' as follows: |
| 35 | * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then |
| 36 | * global_math_functions_filtering_base<T>::type is a typedef for it. |
| 37 | * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. |
| 38 | * |
| 39 | * How it's used: |
| 40 | * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. |
| 41 | * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know |
| 42 | * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. |
| 43 | * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization |
| 44 | * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. |
| 45 | * |
| 46 | * How it's implemented: |
| 47 | * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace |
| 48 | * the typename dummy by an integer template parameter, it doesn't work anymore! |
| 49 | */ |
| 50 | |
| 51 | template<typename T, typename dummy = void> |
| 52 | struct global_math_functions_filtering_base |
| 53 | { |
| 54 | typedef T type; |
| 55 | }; |
| 56 | |
| 57 | template<typename T> struct always_void { typedef void type; }; |
| 58 | |
| 59 | template<typename T> |
| 60 | struct global_math_functions_filtering_base |
| 61 | <T, |
| 62 | typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type |
| 63 | > |
| 64 | { |
| 65 | typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; |
| 66 | }; |
| 67 | |
| 68 | #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> |
| 69 | #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type |
| 70 | |
| 71 | /**************************************************************************** |
| 72 | * Implementation of real * |
| 73 | ****************************************************************************/ |
| 74 | |
| 75 | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| 76 | struct real_default_impl |
| 77 | { |
| 78 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 79 | EIGEN_DEVICE_FUNC |
| 80 | static inline RealScalar run(const Scalar& x) |
| 81 | { |
| 82 | return x; |
| 83 | } |
| 84 | }; |
| 85 | |
| 86 | template<typename Scalar> |
| 87 | struct real_default_impl<Scalar,true> |
| 88 | { |
| 89 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 90 | EIGEN_DEVICE_FUNC |
| 91 | static inline RealScalar run(const Scalar& x) |
| 92 | { |
| 93 | using std::real; |
| 94 | return real(x); |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; |
| 99 | |
| 100 | #ifdef __CUDA_ARCH__ |
| 101 | template<typename T> |
| 102 | struct real_impl<std::complex<T> > |
| 103 | { |
| 104 | typedef T RealScalar; |
| 105 | EIGEN_DEVICE_FUNC |
| 106 | static inline T run(const std::complex<T>& x) |
| 107 | { |
| 108 | return x.real(); |
| 109 | } |
| 110 | }; |
| 111 | #endif |
| 112 | |
| 113 | template<typename Scalar> |
| 114 | struct real_retval |
| 115 | { |
| 116 | typedef typename NumTraits<Scalar>::Real type; |
| 117 | }; |
| 118 | |
| 119 | /**************************************************************************** |
| 120 | * Implementation of imag * |
| 121 | ****************************************************************************/ |
| 122 | |
| 123 | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| 124 | struct imag_default_impl |
| 125 | { |
| 126 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 127 | EIGEN_DEVICE_FUNC |
| 128 | static inline RealScalar run(const Scalar&) |
| 129 | { |
| 130 | return RealScalar(0); |
| 131 | } |
| 132 | }; |
| 133 | |
| 134 | template<typename Scalar> |
| 135 | struct imag_default_impl<Scalar,true> |
| 136 | { |
| 137 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 138 | EIGEN_DEVICE_FUNC |
| 139 | static inline RealScalar run(const Scalar& x) |
| 140 | { |
| 141 | using std::imag; |
| 142 | return imag(x); |
| 143 | } |
| 144 | }; |
| 145 | |
| 146 | template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; |
| 147 | |
| 148 | #ifdef __CUDA_ARCH__ |
| 149 | template<typename T> |
| 150 | struct imag_impl<std::complex<T> > |
| 151 | { |
| 152 | typedef T RealScalar; |
| 153 | EIGEN_DEVICE_FUNC |
| 154 | static inline T run(const std::complex<T>& x) |
| 155 | { |
| 156 | return x.imag(); |
| 157 | } |
| 158 | }; |
| 159 | #endif |
| 160 | |
| 161 | template<typename Scalar> |
| 162 | struct imag_retval |
| 163 | { |
| 164 | typedef typename NumTraits<Scalar>::Real type; |
| 165 | }; |
| 166 | |
| 167 | /**************************************************************************** |
| 168 | * Implementation of real_ref * |
| 169 | ****************************************************************************/ |
| 170 | |
| 171 | template<typename Scalar> |
| 172 | struct real_ref_impl |
| 173 | { |
| 174 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 175 | EIGEN_DEVICE_FUNC |
| 176 | static inline RealScalar& run(Scalar& x) |
| 177 | { |
| 178 | return reinterpret_cast<RealScalar*>(&x)[0]; |
| 179 | } |
| 180 | EIGEN_DEVICE_FUNC |
| 181 | static inline const RealScalar& run(const Scalar& x) |
| 182 | { |
| 183 | return reinterpret_cast<const RealScalar*>(&x)[0]; |
| 184 | } |
| 185 | }; |
| 186 | |
| 187 | template<typename Scalar> |
| 188 | struct real_ref_retval |
| 189 | { |
| 190 | typedef typename NumTraits<Scalar>::Real & type; |
| 191 | }; |
| 192 | |
| 193 | /**************************************************************************** |
| 194 | * Implementation of imag_ref * |
| 195 | ****************************************************************************/ |
| 196 | |
| 197 | template<typename Scalar, bool IsComplex> |
| 198 | struct imag_ref_default_impl |
| 199 | { |
| 200 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 201 | EIGEN_DEVICE_FUNC |
| 202 | static inline RealScalar& run(Scalar& x) |
| 203 | { |
| 204 | return reinterpret_cast<RealScalar*>(&x)[1]; |
| 205 | } |
| 206 | EIGEN_DEVICE_FUNC |
| 207 | static inline const RealScalar& run(const Scalar& x) |
| 208 | { |
| 209 | return reinterpret_cast<RealScalar*>(&x)[1]; |
| 210 | } |
| 211 | }; |
| 212 | |
| 213 | template<typename Scalar> |
| 214 | struct imag_ref_default_impl<Scalar, false> |
| 215 | { |
| 216 | EIGEN_DEVICE_FUNC |
| 217 | static inline Scalar run(Scalar&) |
| 218 | { |
| 219 | return Scalar(0); |
| 220 | } |
| 221 | EIGEN_DEVICE_FUNC |
| 222 | static inline const Scalar run(const Scalar&) |
| 223 | { |
| 224 | return Scalar(0); |
| 225 | } |
| 226 | }; |
| 227 | |
| 228 | template<typename Scalar> |
| 229 | struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; |
| 230 | |
| 231 | template<typename Scalar> |
| 232 | struct imag_ref_retval |
| 233 | { |
| 234 | typedef typename NumTraits<Scalar>::Real & type; |
| 235 | }; |
| 236 | |
| 237 | /**************************************************************************** |
| 238 | * Implementation of conj * |
| 239 | ****************************************************************************/ |
| 240 | |
| 241 | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| 242 | struct conj_impl |
| 243 | { |
| 244 | EIGEN_DEVICE_FUNC |
| 245 | static inline Scalar run(const Scalar& x) |
| 246 | { |
| 247 | return x; |
| 248 | } |
| 249 | }; |
| 250 | |
| 251 | template<typename Scalar> |
| 252 | struct conj_impl<Scalar,true> |
| 253 | { |
| 254 | EIGEN_DEVICE_FUNC |
| 255 | static inline Scalar run(const Scalar& x) |
| 256 | { |
| 257 | using std::conj; |
| 258 | return conj(x); |
| 259 | } |
| 260 | }; |
| 261 | |
| 262 | template<typename Scalar> |
| 263 | struct conj_retval |
| 264 | { |
| 265 | typedef Scalar type; |
| 266 | }; |
| 267 | |
| 268 | /**************************************************************************** |
| 269 | * Implementation of abs2 * |
| 270 | ****************************************************************************/ |
| 271 | |
| 272 | template<typename Scalar,bool IsComplex> |
| 273 | struct abs2_impl_default |
| 274 | { |
| 275 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 276 | EIGEN_DEVICE_FUNC |
| 277 | static inline RealScalar run(const Scalar& x) |
| 278 | { |
| 279 | return x*x; |
| 280 | } |
| 281 | }; |
| 282 | |
| 283 | template<typename Scalar> |
| 284 | struct abs2_impl_default<Scalar, true> // IsComplex |
| 285 | { |
| 286 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 287 | EIGEN_DEVICE_FUNC |
| 288 | static inline RealScalar run(const Scalar& x) |
| 289 | { |
| 290 | return real(x)*real(x) + imag(x)*imag(x); |
| 291 | } |
| 292 | }; |
| 293 | |
| 294 | template<typename Scalar> |
| 295 | struct abs2_impl |
| 296 | { |
| 297 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 298 | EIGEN_DEVICE_FUNC |
| 299 | static inline RealScalar run(const Scalar& x) |
| 300 | { |
| 301 | return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x); |
| 302 | } |
| 303 | }; |
| 304 | |
| 305 | template<typename Scalar> |
| 306 | struct abs2_retval |
| 307 | { |
| 308 | typedef typename NumTraits<Scalar>::Real type; |
| 309 | }; |
| 310 | |
| 311 | /**************************************************************************** |
| 312 | * Implementation of norm1 * |
| 313 | ****************************************************************************/ |
| 314 | |
| 315 | template<typename Scalar, bool IsComplex> |
| 316 | struct norm1_default_impl |
| 317 | { |
| 318 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 319 | EIGEN_DEVICE_FUNC |
| 320 | static inline RealScalar run(const Scalar& x) |
| 321 | { |
| 322 | EIGEN_USING_STD_MATH(abs); |
| 323 | return abs(real(x)) + abs(imag(x)); |
| 324 | } |
| 325 | }; |
| 326 | |
| 327 | template<typename Scalar> |
| 328 | struct norm1_default_impl<Scalar, false> |
| 329 | { |
| 330 | EIGEN_DEVICE_FUNC |
| 331 | static inline Scalar run(const Scalar& x) |
| 332 | { |
| 333 | EIGEN_USING_STD_MATH(abs); |
| 334 | return abs(x); |
| 335 | } |
| 336 | }; |
| 337 | |
| 338 | template<typename Scalar> |
| 339 | struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; |
| 340 | |
| 341 | template<typename Scalar> |
| 342 | struct norm1_retval |
| 343 | { |
| 344 | typedef typename NumTraits<Scalar>::Real type; |
| 345 | }; |
| 346 | |
| 347 | /**************************************************************************** |
| 348 | * Implementation of hypot * |
| 349 | ****************************************************************************/ |
| 350 | |
| 351 | template<typename Scalar> struct hypot_impl; |
| 352 | |
| 353 | template<typename Scalar> |
| 354 | struct hypot_retval |
| 355 | { |
| 356 | typedef typename NumTraits<Scalar>::Real type; |
| 357 | }; |
| 358 | |
| 359 | /**************************************************************************** |
| 360 | * Implementation of cast * |
| 361 | ****************************************************************************/ |
| 362 | |
| 363 | template<typename OldType, typename NewType> |
| 364 | struct cast_impl |
| 365 | { |
| 366 | EIGEN_DEVICE_FUNC |
| 367 | static inline NewType run(const OldType& x) |
| 368 | { |
| 369 | return static_cast<NewType>(x); |
| 370 | } |
| 371 | }; |
| 372 | |
| 373 | // here, for once, we're plainly returning NewType: we don't want cast to do weird things. |
| 374 | |
| 375 | template<typename OldType, typename NewType> |
| 376 | EIGEN_DEVICE_FUNC |
| 377 | inline NewType cast(const OldType& x) |
| 378 | { |
| 379 | return cast_impl<OldType, NewType>::run(x); |
| 380 | } |
| 381 | |
| 382 | /**************************************************************************** |
| 383 | * Implementation of round * |
| 384 | ****************************************************************************/ |
| 385 | |
| 386 | #if EIGEN_HAS_CXX11_MATH |
| 387 | template<typename Scalar> |
| 388 | struct round_impl { |
| 389 | static inline Scalar run(const Scalar& x) |
| 390 | { |
| 391 | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) |
| 392 | using std::round; |
| 393 | return round(x); |
| 394 | } |
| 395 | }; |
| 396 | #else |
| 397 | template<typename Scalar> |
| 398 | struct round_impl |
| 399 | { |
| 400 | static inline Scalar run(const Scalar& x) |
| 401 | { |
| 402 | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) |
| 403 | EIGEN_USING_STD_MATH(floor); |
| 404 | EIGEN_USING_STD_MATH(ceil); |
| 405 | return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); |
| 406 | } |
| 407 | }; |
| 408 | #endif |
| 409 | |
| 410 | template<typename Scalar> |
| 411 | struct round_retval |
| 412 | { |
| 413 | typedef Scalar type; |
| 414 | }; |
| 415 | |
| 416 | /**************************************************************************** |
| 417 | * Implementation of arg * |
| 418 | ****************************************************************************/ |
| 419 | |
| 420 | #if EIGEN_HAS_CXX11_MATH |
| 421 | template<typename Scalar> |
| 422 | struct arg_impl { |
| 423 | static inline Scalar run(const Scalar& x) |
| 424 | { |
| 425 | EIGEN_USING_STD_MATH(arg); |
| 426 | return arg(x); |
| 427 | } |
| 428 | }; |
| 429 | #else |
| 430 | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> |
| 431 | struct arg_default_impl |
| 432 | { |
| 433 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 434 | EIGEN_DEVICE_FUNC |
| 435 | static inline RealScalar run(const Scalar& x) |
| 436 | { |
| 437 | return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } |
| 438 | }; |
| 439 | |
| 440 | template<typename Scalar> |
| 441 | struct arg_default_impl<Scalar,true> |
| 442 | { |
| 443 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 444 | EIGEN_DEVICE_FUNC |
| 445 | static inline RealScalar run(const Scalar& x) |
| 446 | { |
| 447 | EIGEN_USING_STD_MATH(arg); |
| 448 | return arg(x); |
| 449 | } |
| 450 | }; |
| 451 | |
| 452 | template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; |
| 453 | #endif |
| 454 | |
| 455 | template<typename Scalar> |
| 456 | struct arg_retval |
| 457 | { |
| 458 | typedef typename NumTraits<Scalar>::Real type; |
| 459 | }; |
| 460 | |
| 461 | /**************************************************************************** |
| 462 | * Implementation of log1p * |
| 463 | ****************************************************************************/ |
| 464 | |
| 465 | namespace std_fallback { |
| 466 | // fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar, |
| 467 | // or that there is no suitable std::log1p function available |
| 468 | template<typename Scalar> |
| 469 | EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) { |
| 470 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| 471 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 472 | EIGEN_USING_STD_MATH(log); |
| 473 | Scalar x1p = RealScalar(1) + x; |
| 474 | return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | template<typename Scalar> |
| 479 | struct log1p_impl { |
| 480 | static inline Scalar run(const Scalar& x) |
| 481 | { |
| 482 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) |
| 483 | #if EIGEN_HAS_CXX11_MATH |
| 484 | using std::log1p; |
| 485 | #endif |
| 486 | using std_fallback::log1p; |
| 487 | return log1p(x); |
| 488 | } |
| 489 | }; |
| 490 | |
| 491 | |
| 492 | template<typename Scalar> |
| 493 | struct log1p_retval |
| 494 | { |
| 495 | typedef Scalar type; |
| 496 | }; |
| 497 | |
| 498 | /**************************************************************************** |
| 499 | * Implementation of pow * |
| 500 | ****************************************************************************/ |
| 501 | |
| 502 | template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger> |
| 503 | struct pow_impl |
| 504 | { |
| 505 | //typedef Scalar retval; |
| 506 | typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type; |
| 507 | static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y) |
| 508 | { |
| 509 | EIGEN_USING_STD_MATH(pow); |
| 510 | return pow(x, y); |
| 511 | } |
| 512 | }; |
| 513 | |
| 514 | template<typename ScalarX,typename ScalarY> |
| 515 | struct pow_impl<ScalarX,ScalarY, true> |
| 516 | { |
| 517 | typedef ScalarX result_type; |
| 518 | static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y) |
| 519 | { |
| 520 | ScalarX res(1); |
| 521 | eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0); |
| 522 | if(y & 1) res *= x; |
| 523 | y >>= 1; |
| 524 | while(y) |
| 525 | { |
| 526 | x *= x; |
| 527 | if(y&1) res *= x; |
| 528 | y >>= 1; |
| 529 | } |
| 530 | return res; |
| 531 | } |
| 532 | }; |
| 533 | |
| 534 | /**************************************************************************** |
| 535 | * Implementation of random * |
| 536 | ****************************************************************************/ |
| 537 | |
| 538 | template<typename Scalar, |
| 539 | bool IsComplex, |
| 540 | bool IsInteger> |
| 541 | struct random_default_impl {}; |
| 542 | |
| 543 | template<typename Scalar> |
| 544 | struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; |
| 545 | |
| 546 | template<typename Scalar> |
| 547 | struct random_retval |
| 548 | { |
| 549 | typedef Scalar type; |
| 550 | }; |
| 551 | |
| 552 | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); |
| 553 | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); |
| 554 | |
| 555 | template<typename Scalar> |
| 556 | struct random_default_impl<Scalar, false, false> |
| 557 | { |
| 558 | static inline Scalar run(const Scalar& x, const Scalar& y) |
| 559 | { |
| 560 | return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); |
| 561 | } |
| 562 | static inline Scalar run() |
| 563 | { |
| 564 | return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); |
| 565 | } |
| 566 | }; |
| 567 | |
| 568 | enum { |
| 569 | meta_floor_log2_terminate, |
| 570 | meta_floor_log2_move_up, |
| 571 | meta_floor_log2_move_down, |
| 572 | meta_floor_log2_bogus |
| 573 | }; |
| 574 | |
| 575 | template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector |
| 576 | { |
| 577 | enum { middle = (lower + upper) / 2, |
| 578 | value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) |
| 579 | : (n < (1 << middle)) ? int(meta_floor_log2_move_down) |
| 580 | : (n==0) ? int(meta_floor_log2_bogus) |
| 581 | : int(meta_floor_log2_move_up) |
| 582 | }; |
| 583 | }; |
| 584 | |
| 585 | template<unsigned int n, |
| 586 | int lower = 0, |
| 587 | int upper = sizeof(unsigned int) * CHAR_BIT - 1, |
| 588 | int selector = meta_floor_log2_selector<n, lower, upper>::value> |
| 589 | struct meta_floor_log2 {}; |
| 590 | |
| 591 | template<unsigned int n, int lower, int upper> |
| 592 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> |
| 593 | { |
| 594 | enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; |
| 595 | }; |
| 596 | |
| 597 | template<unsigned int n, int lower, int upper> |
| 598 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> |
| 599 | { |
| 600 | enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; |
| 601 | }; |
| 602 | |
| 603 | template<unsigned int n, int lower, int upper> |
| 604 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> |
| 605 | { |
| 606 | enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; |
| 607 | }; |
| 608 | |
| 609 | template<unsigned int n, int lower, int upper> |
| 610 | struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> |
| 611 | { |
| 612 | // no value, error at compile time |
| 613 | }; |
| 614 | |
| 615 | template<typename Scalar> |
| 616 | struct random_default_impl<Scalar, false, true> |
| 617 | { |
| 618 | static inline Scalar run(const Scalar& x, const Scalar& y) |
| 619 | { |
| 620 | if (y <= x) |
| 621 | return x; |
| 622 | // ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself. |
| 623 | typedef typename make_unsigned<Scalar>::type ScalarU; |
| 624 | // ScalarX is the widest of ScalarU and unsigned int. |
| 625 | // We'll deal only with ScalarX and unsigned int below thus avoiding signed |
| 626 | // types and arithmetic and signed overflows (which are undefined behavior). |
| 627 | typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX; |
| 628 | // The following difference doesn't overflow, provided our integer types are two's |
| 629 | // complement and have the same number of padding bits in signed and unsigned variants. |
| 630 | // This is the case in most modern implementations of C++. |
| 631 | ScalarX range = ScalarX(y) - ScalarX(x); |
| 632 | ScalarX offset = 0; |
| 633 | ScalarX divisor = 1; |
| 634 | ScalarX multiplier = 1; |
| 635 | const unsigned rand_max = RAND_MAX; |
| 636 | if (range <= rand_max) divisor = (rand_max + 1) / (range + 1); |
| 637 | else multiplier = 1 + range / (rand_max + 1); |
| 638 | // Rejection sampling. |
| 639 | do { |
| 640 | offset = (unsigned(std::rand()) * multiplier) / divisor; |
| 641 | } while (offset > range); |
| 642 | return Scalar(ScalarX(x) + offset); |
| 643 | } |
| 644 | |
| 645 | static inline Scalar run() |
| 646 | { |
| 647 | #ifdef EIGEN_MAKING_DOCS |
| 648 | return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); |
| 649 | #else |
| 650 | enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, |
| 651 | scalar_bits = sizeof(Scalar) * CHAR_BIT, |
| 652 | shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), |
| 653 | offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 |
| 654 | }; |
| 655 | return Scalar((std::rand() >> shift) - offset); |
| 656 | #endif |
| 657 | } |
| 658 | }; |
| 659 | |
| 660 | template<typename Scalar> |
| 661 | struct random_default_impl<Scalar, true, false> |
| 662 | { |
| 663 | static inline Scalar run(const Scalar& x, const Scalar& y) |
| 664 | { |
| 665 | return Scalar(random(real(x), real(y)), |
| 666 | random(imag(x), imag(y))); |
| 667 | } |
| 668 | static inline Scalar run() |
| 669 | { |
| 670 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 671 | return Scalar(random<RealScalar>(), random<RealScalar>()); |
| 672 | } |
| 673 | }; |
| 674 | |
| 675 | template<typename Scalar> |
| 676 | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) |
| 677 | { |
| 678 | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); |
| 679 | } |
| 680 | |
| 681 | template<typename Scalar> |
| 682 | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() |
| 683 | { |
| 684 | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); |
| 685 | } |
| 686 | |
| 687 | // Implementatin of is* functions |
| 688 | |
| 689 | // std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang. |
| 690 | #if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG) |
| 691 | #define EIGEN_USE_STD_FPCLASSIFY 1 |
| 692 | #else |
| 693 | #define EIGEN_USE_STD_FPCLASSIFY 0 |
| 694 | #endif |
| 695 | |
| 696 | template<typename T> |
| 697 | EIGEN_DEVICE_FUNC |
| 698 | typename internal::enable_if<internal::is_integral<T>::value,bool>::type |
| 699 | isnan_impl(const T&) { return false; } |
| 700 | |
| 701 | template<typename T> |
| 702 | EIGEN_DEVICE_FUNC |
| 703 | typename internal::enable_if<internal::is_integral<T>::value,bool>::type |
| 704 | isinf_impl(const T&) { return false; } |
| 705 | |
| 706 | template<typename T> |
| 707 | EIGEN_DEVICE_FUNC |
| 708 | typename internal::enable_if<internal::is_integral<T>::value,bool>::type |
| 709 | isfinite_impl(const T&) { return true; } |
| 710 | |
| 711 | template<typename T> |
| 712 | EIGEN_DEVICE_FUNC |
| 713 | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type |
| 714 | isfinite_impl(const T& x) |
| 715 | { |
| 716 | #ifdef __CUDA_ARCH__ |
| 717 | return (::isfinite)(x); |
| 718 | #elif EIGEN_USE_STD_FPCLASSIFY |
| 719 | using std::isfinite; |
| 720 | return isfinite EIGEN_NOT_A_MACRO (x); |
| 721 | #else |
| 722 | return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest(); |
| 723 | #endif |
| 724 | } |
| 725 | |
| 726 | template<typename T> |
| 727 | EIGEN_DEVICE_FUNC |
| 728 | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type |
| 729 | isinf_impl(const T& x) |
| 730 | { |
| 731 | #ifdef __CUDA_ARCH__ |
| 732 | return (::isinf)(x); |
| 733 | #elif EIGEN_USE_STD_FPCLASSIFY |
| 734 | using std::isinf; |
| 735 | return isinf EIGEN_NOT_A_MACRO (x); |
| 736 | #else |
| 737 | return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); |
| 738 | #endif |
| 739 | } |
| 740 | |
| 741 | template<typename T> |
| 742 | EIGEN_DEVICE_FUNC |
| 743 | typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type |
| 744 | isnan_impl(const T& x) |
| 745 | { |
| 746 | #ifdef __CUDA_ARCH__ |
| 747 | return (::isnan)(x); |
| 748 | #elif EIGEN_USE_STD_FPCLASSIFY |
| 749 | using std::isnan; |
| 750 | return isnan EIGEN_NOT_A_MACRO (x); |
| 751 | #else |
| 752 | return x != x; |
| 753 | #endif |
| 754 | } |
| 755 | |
| 756 | #if (!EIGEN_USE_STD_FPCLASSIFY) |
| 757 | |
| 758 | #if EIGEN_COMP_MSVC |
| 759 | |
| 760 | template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x) |
| 761 | { |
| 762 | return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF; |
| 763 | } |
| 764 | |
| 765 | //MSVC defines a _isnan builtin function, but for double only |
| 766 | EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; } |
| 767 | EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; } |
| 768 | EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; } |
| 769 | |
| 770 | EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); } |
| 771 | EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); } |
| 772 | EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); } |
| 773 | |
| 774 | #elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC) |
| 775 | |
| 776 | #if EIGEN_GNUC_AT_LEAST(5,0) |
| 777 | #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only"))) |
| 778 | #else |
| 779 | // NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol), |
| 780 | // while the second prevent too aggressive optimizations in fast-math mode: |
| 781 | #define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only"))) |
| 782 | #endif |
| 783 | |
| 784 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); } |
| 785 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); } |
| 786 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); } |
| 787 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); } |
| 788 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); } |
| 789 | template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); } |
| 790 | |
| 791 | #undef EIGEN_TMP_NOOPT_ATTRIB |
| 792 | |
| 793 | #endif |
| 794 | |
| 795 | #endif |
| 796 | |
| 797 | // The following overload are defined at the end of this file |
| 798 | template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x); |
| 799 | template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x); |
| 800 | template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x); |
| 801 | |
| 802 | template<typename T> T generic_fast_tanh_float(const T& a_x); |
| 803 | |
| 804 | } // end namespace internal |
| 805 | |
| 806 | /**************************************************************************** |
| 807 | * Generic math functions * |
| 808 | ****************************************************************************/ |
| 809 | |
| 810 | namespace numext { |
| 811 | |
| 812 | #ifndef __CUDA_ARCH__ |
| 813 | template<typename T> |
| 814 | EIGEN_DEVICE_FUNC |
| 815 | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) |
| 816 | { |
| 817 | EIGEN_USING_STD_MATH(min); |
| 818 | return min EIGEN_NOT_A_MACRO (x,y); |
| 819 | } |
| 820 | |
| 821 | template<typename T> |
| 822 | EIGEN_DEVICE_FUNC |
| 823 | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) |
| 824 | { |
| 825 | EIGEN_USING_STD_MATH(max); |
| 826 | return max EIGEN_NOT_A_MACRO (x,y); |
| 827 | } |
| 828 | #else |
| 829 | template<typename T> |
| 830 | EIGEN_DEVICE_FUNC |
| 831 | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) |
| 832 | { |
| 833 | return y < x ? y : x; |
| 834 | } |
| 835 | template<> |
| 836 | EIGEN_DEVICE_FUNC |
| 837 | EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) |
| 838 | { |
| 839 | return fminf(x, y); |
| 840 | } |
| 841 | template<typename T> |
| 842 | EIGEN_DEVICE_FUNC |
| 843 | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) |
| 844 | { |
| 845 | return x < y ? y : x; |
| 846 | } |
| 847 | template<> |
| 848 | EIGEN_DEVICE_FUNC |
| 849 | EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) |
| 850 | { |
| 851 | return fmaxf(x, y); |
| 852 | } |
| 853 | #endif |
| 854 | |
| 855 | |
| 856 | template<typename Scalar> |
| 857 | EIGEN_DEVICE_FUNC |
| 858 | inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) |
| 859 | { |
| 860 | return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); |
| 861 | } |
| 862 | |
| 863 | template<typename Scalar> |
| 864 | EIGEN_DEVICE_FUNC |
| 865 | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) |
| 866 | { |
| 867 | return internal::real_ref_impl<Scalar>::run(x); |
| 868 | } |
| 869 | |
| 870 | template<typename Scalar> |
| 871 | EIGEN_DEVICE_FUNC |
| 872 | inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) |
| 873 | { |
| 874 | return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); |
| 875 | } |
| 876 | |
| 877 | template<typename Scalar> |
| 878 | EIGEN_DEVICE_FUNC |
| 879 | inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) |
| 880 | { |
| 881 | return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); |
| 882 | } |
| 883 | |
| 884 | template<typename Scalar> |
| 885 | EIGEN_DEVICE_FUNC |
| 886 | inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) |
| 887 | { |
| 888 | return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); |
| 889 | } |
| 890 | |
| 891 | template<typename Scalar> |
| 892 | EIGEN_DEVICE_FUNC |
| 893 | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) |
| 894 | { |
| 895 | return internal::imag_ref_impl<Scalar>::run(x); |
| 896 | } |
| 897 | |
| 898 | template<typename Scalar> |
| 899 | EIGEN_DEVICE_FUNC |
| 900 | inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) |
| 901 | { |
| 902 | return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); |
| 903 | } |
| 904 | |
| 905 | template<typename Scalar> |
| 906 | EIGEN_DEVICE_FUNC |
| 907 | inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) |
| 908 | { |
| 909 | return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); |
| 910 | } |
| 911 | |
| 912 | template<typename Scalar> |
| 913 | EIGEN_DEVICE_FUNC |
| 914 | inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) |
| 915 | { |
| 916 | return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); |
| 917 | } |
| 918 | |
| 919 | template<typename Scalar> |
| 920 | EIGEN_DEVICE_FUNC |
| 921 | inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) |
| 922 | { |
| 923 | return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); |
| 924 | } |
| 925 | |
| 926 | template<typename Scalar> |
| 927 | EIGEN_DEVICE_FUNC |
| 928 | inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) |
| 929 | { |
| 930 | return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); |
| 931 | } |
| 932 | |
| 933 | template<typename Scalar> |
| 934 | EIGEN_DEVICE_FUNC |
| 935 | inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) |
| 936 | { |
| 937 | return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); |
| 938 | } |
| 939 | |
| 940 | #ifdef __CUDACC__ |
| 941 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 942 | float log1p(const float &x) { return ::log1pf(x); } |
| 943 | |
| 944 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 945 | double log1p(const double &x) { return ::log1p(x); } |
| 946 | #endif |
| 947 | |
| 948 | template<typename ScalarX,typename ScalarY> |
| 949 | EIGEN_DEVICE_FUNC |
| 950 | inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y) |
| 951 | { |
| 952 | return internal::pow_impl<ScalarX,ScalarY>::run(x, y); |
| 953 | } |
| 954 | |
| 955 | template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); } |
| 956 | template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); } |
| 957 | template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); } |
| 958 | |
| 959 | template<typename Scalar> |
| 960 | EIGEN_DEVICE_FUNC |
| 961 | inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) |
| 962 | { |
| 963 | return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); |
| 964 | } |
| 965 | |
| 966 | template<typename T> |
| 967 | EIGEN_DEVICE_FUNC |
| 968 | T (floor)(const T& x) |
| 969 | { |
| 970 | EIGEN_USING_STD_MATH(floor); |
| 971 | return floor(x); |
| 972 | } |
| 973 | |
| 974 | #ifdef __CUDACC__ |
| 975 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 976 | float floor(const float &x) { return ::floorf(x); } |
| 977 | |
| 978 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 979 | double floor(const double &x) { return ::floor(x); } |
| 980 | #endif |
| 981 | |
| 982 | template<typename T> |
| 983 | EIGEN_DEVICE_FUNC |
| 984 | T (ceil)(const T& x) |
| 985 | { |
| 986 | EIGEN_USING_STD_MATH(ceil); |
| 987 | return ceil(x); |
| 988 | } |
| 989 | |
| 990 | #ifdef __CUDACC__ |
| 991 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 992 | float ceil(const float &x) { return ::ceilf(x); } |
| 993 | |
| 994 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 995 | double ceil(const double &x) { return ::ceil(x); } |
| 996 | #endif |
| 997 | |
| 998 | |
| 999 | /** Log base 2 for 32 bits positive integers. |
| 1000 | * Conveniently returns 0 for x==0. */ |
| 1001 | inline int log2(int x) |
| 1002 | { |
| 1003 | eigen_assert(x>=0); |
| 1004 | unsigned int v(x); |
| 1005 | static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; |
| 1006 | v |= v >> 1; |
| 1007 | v |= v >> 2; |
| 1008 | v |= v >> 4; |
| 1009 | v |= v >> 8; |
| 1010 | v |= v >> 16; |
| 1011 | return table[(v * 0x07C4ACDDU) >> 27]; |
| 1012 | } |
| 1013 | |
| 1014 | /** \returns the square root of \a x. |
| 1015 | * |
| 1016 | * It is essentially equivalent to |
| 1017 | * \code using std::sqrt; return sqrt(x); \endcode |
| 1018 | * but slightly faster for float/double and some compilers (e.g., gcc), thanks to |
| 1019 | * specializations when SSE is enabled. |
| 1020 | * |
| 1021 | * It's usage is justified in performance critical functions, like norm/normalize. |
| 1022 | */ |
| 1023 | template<typename T> |
| 1024 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1025 | T sqrt(const T &x) |
| 1026 | { |
| 1027 | EIGEN_USING_STD_MATH(sqrt); |
| 1028 | return sqrt(x); |
| 1029 | } |
| 1030 | |
| 1031 | template<typename T> |
| 1032 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1033 | T log(const T &x) { |
| 1034 | EIGEN_USING_STD_MATH(log); |
| 1035 | return log(x); |
| 1036 | } |
| 1037 | |
| 1038 | #ifdef __CUDACC__ |
| 1039 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1040 | float log(const float &x) { return ::logf(x); } |
| 1041 | |
| 1042 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1043 | double log(const double &x) { return ::log(x); } |
| 1044 | #endif |
| 1045 | |
| 1046 | template<typename T> |
| 1047 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1048 | typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type |
| 1049 | abs(const T &x) { |
| 1050 | EIGEN_USING_STD_MATH(abs); |
| 1051 | return abs(x); |
| 1052 | } |
| 1053 | |
| 1054 | template<typename T> |
| 1055 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1056 | typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type |
| 1057 | abs(const T &x) { |
| 1058 | return x; |
| 1059 | } |
| 1060 | |
| 1061 | #if defined(__SYCL_DEVICE_ONLY__) |
| 1062 | EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); } |
| 1063 | EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); } |
| 1064 | #endif // defined(__SYCL_DEVICE_ONLY__) |
| 1065 | |
| 1066 | #ifdef __CUDACC__ |
| 1067 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1068 | float abs(const float &x) { return ::fabsf(x); } |
| 1069 | |
| 1070 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1071 | double abs(const double &x) { return ::fabs(x); } |
| 1072 | |
| 1073 | template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1074 | float abs(const std::complex<float>& x) { |
| 1075 | return ::hypotf(x.real(), x.imag()); |
| 1076 | } |
| 1077 | |
| 1078 | template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1079 | double abs(const std::complex<double>& x) { |
| 1080 | return ::hypot(x.real(), x.imag()); |
| 1081 | } |
| 1082 | #endif |
| 1083 | |
| 1084 | template<typename T> |
| 1085 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1086 | T exp(const T &x) { |
| 1087 | EIGEN_USING_STD_MATH(exp); |
| 1088 | return exp(x); |
| 1089 | } |
| 1090 | |
| 1091 | #ifdef __CUDACC__ |
| 1092 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1093 | float exp(const float &x) { return ::expf(x); } |
| 1094 | |
| 1095 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1096 | double exp(const double &x) { return ::exp(x); } |
| 1097 | #endif |
| 1098 | |
| 1099 | template<typename T> |
| 1100 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1101 | T cos(const T &x) { |
| 1102 | EIGEN_USING_STD_MATH(cos); |
| 1103 | return cos(x); |
| 1104 | } |
| 1105 | |
| 1106 | #ifdef __CUDACC__ |
| 1107 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1108 | float cos(const float &x) { return ::cosf(x); } |
| 1109 | |
| 1110 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1111 | double cos(const double &x) { return ::cos(x); } |
| 1112 | #endif |
| 1113 | |
| 1114 | template<typename T> |
| 1115 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1116 | T sin(const T &x) { |
| 1117 | EIGEN_USING_STD_MATH(sin); |
| 1118 | return sin(x); |
| 1119 | } |
| 1120 | |
| 1121 | #ifdef __CUDACC__ |
| 1122 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1123 | float sin(const float &x) { return ::sinf(x); } |
| 1124 | |
| 1125 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1126 | double sin(const double &x) { return ::sin(x); } |
| 1127 | #endif |
| 1128 | |
| 1129 | template<typename T> |
| 1130 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1131 | T tan(const T &x) { |
| 1132 | EIGEN_USING_STD_MATH(tan); |
| 1133 | return tan(x); |
| 1134 | } |
| 1135 | |
| 1136 | #ifdef __CUDACC__ |
| 1137 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1138 | float tan(const float &x) { return ::tanf(x); } |
| 1139 | |
| 1140 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1141 | double tan(const double &x) { return ::tan(x); } |
| 1142 | #endif |
| 1143 | |
| 1144 | template<typename T> |
| 1145 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1146 | T acos(const T &x) { |
| 1147 | EIGEN_USING_STD_MATH(acos); |
| 1148 | return acos(x); |
| 1149 | } |
| 1150 | |
| 1151 | #ifdef __CUDACC__ |
| 1152 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1153 | float acos(const float &x) { return ::acosf(x); } |
| 1154 | |
| 1155 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1156 | double acos(const double &x) { return ::acos(x); } |
| 1157 | #endif |
| 1158 | |
| 1159 | template<typename T> |
| 1160 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1161 | T asin(const T &x) { |
| 1162 | EIGEN_USING_STD_MATH(asin); |
| 1163 | return asin(x); |
| 1164 | } |
| 1165 | |
| 1166 | #ifdef __CUDACC__ |
| 1167 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1168 | float asin(const float &x) { return ::asinf(x); } |
| 1169 | |
| 1170 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1171 | double asin(const double &x) { return ::asin(x); } |
| 1172 | #endif |
| 1173 | |
| 1174 | template<typename T> |
| 1175 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1176 | T atan(const T &x) { |
| 1177 | EIGEN_USING_STD_MATH(atan); |
| 1178 | return atan(x); |
| 1179 | } |
| 1180 | |
| 1181 | #ifdef __CUDACC__ |
| 1182 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1183 | float atan(const float &x) { return ::atanf(x); } |
| 1184 | |
| 1185 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1186 | double atan(const double &x) { return ::atan(x); } |
| 1187 | #endif |
| 1188 | |
| 1189 | |
| 1190 | template<typename T> |
| 1191 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1192 | T cosh(const T &x) { |
| 1193 | EIGEN_USING_STD_MATH(cosh); |
| 1194 | return cosh(x); |
| 1195 | } |
| 1196 | |
| 1197 | #ifdef __CUDACC__ |
| 1198 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1199 | float cosh(const float &x) { return ::coshf(x); } |
| 1200 | |
| 1201 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1202 | double cosh(const double &x) { return ::cosh(x); } |
| 1203 | #endif |
| 1204 | |
| 1205 | template<typename T> |
| 1206 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1207 | T sinh(const T &x) { |
| 1208 | EIGEN_USING_STD_MATH(sinh); |
| 1209 | return sinh(x); |
| 1210 | } |
| 1211 | |
| 1212 | #ifdef __CUDACC__ |
| 1213 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1214 | float sinh(const float &x) { return ::sinhf(x); } |
| 1215 | |
| 1216 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1217 | double sinh(const double &x) { return ::sinh(x); } |
| 1218 | #endif |
| 1219 | |
| 1220 | template<typename T> |
| 1221 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1222 | T tanh(const T &x) { |
| 1223 | EIGEN_USING_STD_MATH(tanh); |
| 1224 | return tanh(x); |
| 1225 | } |
| 1226 | |
| 1227 | #if (!defined(__CUDACC__)) && EIGEN_FAST_MATH |
| 1228 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1229 | float tanh(float x) { return internal::generic_fast_tanh_float(x); } |
| 1230 | #endif |
| 1231 | |
| 1232 | #ifdef __CUDACC__ |
| 1233 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1234 | float tanh(const float &x) { return ::tanhf(x); } |
| 1235 | |
| 1236 | template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1237 | double tanh(const double &x) { return ::tanh(x); } |
| 1238 | #endif |
| 1239 | |
| 1240 | template <typename T> |
| 1241 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1242 | T fmod(const T& a, const T& b) { |
| 1243 | EIGEN_USING_STD_MATH(fmod); |
| 1244 | return fmod(a, b); |
| 1245 | } |
| 1246 | |
| 1247 | #ifdef __CUDACC__ |
| 1248 | template <> |
| 1249 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1250 | float fmod(const float& a, const float& b) { |
| 1251 | return ::fmodf(a, b); |
| 1252 | } |
| 1253 | |
| 1254 | template <> |
| 1255 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
| 1256 | double fmod(const double& a, const double& b) { |
| 1257 | return ::fmod(a, b); |
| 1258 | } |
| 1259 | #endif |
| 1260 | |
| 1261 | } // end namespace numext |
| 1262 | |
| 1263 | namespace internal { |
| 1264 | |
| 1265 | template<typename T> |
| 1266 | EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x) |
| 1267 | { |
| 1268 | return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); |
| 1269 | } |
| 1270 | |
| 1271 | template<typename T> |
| 1272 | EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x) |
| 1273 | { |
| 1274 | return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); |
| 1275 | } |
| 1276 | |
| 1277 | template<typename T> |
| 1278 | EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x) |
| 1279 | { |
| 1280 | return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); |
| 1281 | } |
| 1282 | |
| 1283 | /**************************************************************************** |
| 1284 | * Implementation of fuzzy comparisons * |
| 1285 | ****************************************************************************/ |
| 1286 | |
| 1287 | template<typename Scalar, |
| 1288 | bool IsComplex, |
| 1289 | bool IsInteger> |
| 1290 | struct scalar_fuzzy_default_impl {}; |
| 1291 | |
| 1292 | template<typename Scalar> |
| 1293 | struct scalar_fuzzy_default_impl<Scalar, false, false> |
| 1294 | { |
| 1295 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 1296 | template<typename OtherScalar> EIGEN_DEVICE_FUNC |
| 1297 | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) |
| 1298 | { |
| 1299 | return numext::abs(x) <= numext::abs(y) * prec; |
| 1300 | } |
| 1301 | EIGEN_DEVICE_FUNC |
| 1302 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) |
| 1303 | { |
| 1304 | return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec; |
| 1305 | } |
| 1306 | EIGEN_DEVICE_FUNC |
| 1307 | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) |
| 1308 | { |
| 1309 | return x <= y || isApprox(x, y, prec); |
| 1310 | } |
| 1311 | }; |
| 1312 | |
| 1313 | template<typename Scalar> |
| 1314 | struct scalar_fuzzy_default_impl<Scalar, false, true> |
| 1315 | { |
| 1316 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 1317 | template<typename OtherScalar> EIGEN_DEVICE_FUNC |
| 1318 | static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) |
| 1319 | { |
| 1320 | return x == Scalar(0); |
| 1321 | } |
| 1322 | EIGEN_DEVICE_FUNC |
| 1323 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) |
| 1324 | { |
| 1325 | return x == y; |
| 1326 | } |
| 1327 | EIGEN_DEVICE_FUNC |
| 1328 | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) |
| 1329 | { |
| 1330 | return x <= y; |
| 1331 | } |
| 1332 | }; |
| 1333 | |
| 1334 | template<typename Scalar> |
| 1335 | struct scalar_fuzzy_default_impl<Scalar, true, false> |
| 1336 | { |
| 1337 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 1338 | template<typename OtherScalar> EIGEN_DEVICE_FUNC |
| 1339 | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) |
| 1340 | { |
| 1341 | return numext::abs2(x) <= numext::abs2(y) * prec * prec; |
| 1342 | } |
| 1343 | EIGEN_DEVICE_FUNC |
| 1344 | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) |
| 1345 | { |
| 1346 | return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec; |
| 1347 | } |
| 1348 | }; |
| 1349 | |
| 1350 | template<typename Scalar> |
| 1351 | struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; |
| 1352 | |
| 1353 | template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC |
| 1354 | inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, |
| 1355 | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) |
| 1356 | { |
| 1357 | return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); |
| 1358 | } |
| 1359 | |
| 1360 | template<typename Scalar> EIGEN_DEVICE_FUNC |
| 1361 | inline bool isApprox(const Scalar& x, const Scalar& y, |
| 1362 | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) |
| 1363 | { |
| 1364 | return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); |
| 1365 | } |
| 1366 | |
| 1367 | template<typename Scalar> EIGEN_DEVICE_FUNC |
| 1368 | inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, |
| 1369 | const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision()) |
| 1370 | { |
| 1371 | return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); |
| 1372 | } |
| 1373 | |
| 1374 | /****************************************** |
| 1375 | *** The special case of the bool type *** |
| 1376 | ******************************************/ |
| 1377 | |
| 1378 | template<> struct random_impl<bool> |
| 1379 | { |
| 1380 | static inline bool run() |
| 1381 | { |
| 1382 | return random<int>(0,1)==0 ? false : true; |
| 1383 | } |
| 1384 | }; |
| 1385 | |
| 1386 | template<> struct scalar_fuzzy_impl<bool> |
| 1387 | { |
| 1388 | typedef bool RealScalar; |
| 1389 | |
| 1390 | template<typename OtherScalar> EIGEN_DEVICE_FUNC |
| 1391 | static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) |
| 1392 | { |
| 1393 | return !x; |
| 1394 | } |
| 1395 | |
| 1396 | EIGEN_DEVICE_FUNC |
| 1397 | static inline bool isApprox(bool x, bool y, bool) |
| 1398 | { |
| 1399 | return x == y; |
| 1400 | } |
| 1401 | |
| 1402 | EIGEN_DEVICE_FUNC |
| 1403 | static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) |
| 1404 | { |
| 1405 | return (!x) || y; |
| 1406 | } |
| 1407 | |
| 1408 | }; |
| 1409 | |
| 1410 | |
| 1411 | } // end namespace internal |
| 1412 | |
| 1413 | } // end namespace Eigen |
| 1414 | |
| 1415 | #endif // EIGEN_MATHFUNCTIONS_H |
| 1416 | |