1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2007 Julien Pommier |
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | /* The sin, cos, exp, and log functions of this file come from |
12 | * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/ |
13 | */ |
14 | |
15 | #ifndef EIGEN_MATH_FUNCTIONS_SSE_H |
16 | #define EIGEN_MATH_FUNCTIONS_SSE_H |
17 | |
18 | namespace Eigen { |
19 | |
20 | namespace internal { |
21 | |
22 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
23 | Packet4f plog<Packet4f>(const Packet4f& _x) |
24 | { |
25 | Packet4f x = _x; |
26 | _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); |
27 | _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
28 | _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); |
29 | |
30 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000); |
31 | |
32 | /* the smallest non denormalized float number */ |
33 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000); |
34 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf, 0xff800000);//-1.f/0.f); |
35 | |
36 | /* natural logarithm computed for 4 simultaneous float |
37 | return NaN for x <= 0 |
38 | */ |
39 | _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f); |
40 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f); |
41 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f); |
42 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f); |
43 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f); |
44 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f); |
45 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f); |
46 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f); |
47 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f); |
48 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f); |
49 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f); |
50 | _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f); |
51 | |
52 | |
53 | Packet4i emm0; |
54 | |
55 | Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN |
56 | Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps()); |
57 | |
58 | x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */ |
59 | emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23); |
60 | |
61 | /* keep only the fractional part */ |
62 | x = _mm_and_ps(x, p4f_inv_mant_mask); |
63 | x = _mm_or_ps(x, p4f_half); |
64 | |
65 | emm0 = _mm_sub_epi32(emm0, p4i_0x7f); |
66 | Packet4f e = padd(Packet4f(_mm_cvtepi32_ps(emm0)), p4f_1); |
67 | |
68 | /* part2: |
69 | if( x < SQRTHF ) { |
70 | e -= 1; |
71 | x = x + x - 1.0; |
72 | } else { x = x - 1.0; } |
73 | */ |
74 | Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF); |
75 | Packet4f tmp = pand(x, mask); |
76 | x = psub(x, p4f_1); |
77 | e = psub(e, pand(p4f_1, mask)); |
78 | x = padd(x, tmp); |
79 | |
80 | Packet4f x2 = pmul(x,x); |
81 | Packet4f x3 = pmul(x2,x); |
82 | |
83 | Packet4f y, y1, y2; |
84 | y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1); |
85 | y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4); |
86 | y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7); |
87 | y = pmadd(y , x, p4f_cephes_log_p2); |
88 | y1 = pmadd(y1, x, p4f_cephes_log_p5); |
89 | y2 = pmadd(y2, x, p4f_cephes_log_p8); |
90 | y = pmadd(y, x3, y1); |
91 | y = pmadd(y, x3, y2); |
92 | y = pmul(y, x3); |
93 | |
94 | y1 = pmul(e, p4f_cephes_log_q1); |
95 | tmp = pmul(x2, p4f_half); |
96 | y = padd(y, y1); |
97 | x = psub(x, tmp); |
98 | y2 = pmul(e, p4f_cephes_log_q2); |
99 | x = padd(x, y); |
100 | x = padd(x, y2); |
101 | // negative arg will be NAN, 0 will be -INF |
102 | return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)), |
103 | _mm_and_ps(iszero_mask, p4f_minus_inf)); |
104 | } |
105 | |
106 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
107 | Packet4f pexp<Packet4f>(const Packet4f& _x) |
108 | { |
109 | Packet4f x = _x; |
110 | _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); |
111 | _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
112 | _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f); |
113 | |
114 | |
115 | _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f); |
116 | _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f); |
117 | |
118 | _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f); |
119 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f); |
120 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f); |
121 | |
122 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f); |
123 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f); |
124 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f); |
125 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f); |
126 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f); |
127 | _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f); |
128 | |
129 | Packet4f tmp, fx; |
130 | Packet4i emm0; |
131 | |
132 | // clamp x |
133 | x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo); |
134 | |
135 | /* express exp(x) as exp(g + n*log(2)) */ |
136 | fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half); |
137 | |
138 | #ifdef EIGEN_VECTORIZE_SSE4_1 |
139 | fx = _mm_floor_ps(fx); |
140 | #else |
141 | emm0 = _mm_cvttps_epi32(fx); |
142 | tmp = _mm_cvtepi32_ps(emm0); |
143 | /* if greater, substract 1 */ |
144 | Packet4f mask = _mm_cmpgt_ps(tmp, fx); |
145 | mask = _mm_and_ps(mask, p4f_1); |
146 | fx = psub(tmp, mask); |
147 | #endif |
148 | |
149 | tmp = pmul(fx, p4f_cephes_exp_C1); |
150 | Packet4f z = pmul(fx, p4f_cephes_exp_C2); |
151 | x = psub(x, tmp); |
152 | x = psub(x, z); |
153 | |
154 | z = pmul(x,x); |
155 | |
156 | Packet4f y = p4f_cephes_exp_p0; |
157 | y = pmadd(y, x, p4f_cephes_exp_p1); |
158 | y = pmadd(y, x, p4f_cephes_exp_p2); |
159 | y = pmadd(y, x, p4f_cephes_exp_p3); |
160 | y = pmadd(y, x, p4f_cephes_exp_p4); |
161 | y = pmadd(y, x, p4f_cephes_exp_p5); |
162 | y = pmadd(y, z, x); |
163 | y = padd(y, p4f_1); |
164 | |
165 | // build 2^n |
166 | emm0 = _mm_cvttps_epi32(fx); |
167 | emm0 = _mm_add_epi32(emm0, p4i_0x7f); |
168 | emm0 = _mm_slli_epi32(emm0, 23); |
169 | return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x); |
170 | } |
171 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
172 | Packet2d pexp<Packet2d>(const Packet2d& _x) |
173 | { |
174 | Packet2d x = _x; |
175 | |
176 | _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0); |
177 | _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0); |
178 | _EIGEN_DECLARE_CONST_Packet2d(half, 0.5); |
179 | |
180 | _EIGEN_DECLARE_CONST_Packet2d(exp_hi, 709.437); |
181 | _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303); |
182 | |
183 | _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599); |
184 | |
185 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4); |
186 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2); |
187 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1); |
188 | |
189 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6); |
190 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3); |
191 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1); |
192 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0); |
193 | |
194 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125); |
195 | _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6); |
196 | static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0); |
197 | |
198 | Packet2d tmp, fx; |
199 | Packet4i emm0; |
200 | |
201 | // clamp x |
202 | x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo); |
203 | /* express exp(x) as exp(g + n*log(2)) */ |
204 | fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half); |
205 | |
206 | #ifdef EIGEN_VECTORIZE_SSE4_1 |
207 | fx = _mm_floor_pd(fx); |
208 | #else |
209 | emm0 = _mm_cvttpd_epi32(fx); |
210 | tmp = _mm_cvtepi32_pd(emm0); |
211 | /* if greater, substract 1 */ |
212 | Packet2d mask = _mm_cmpgt_pd(tmp, fx); |
213 | mask = _mm_and_pd(mask, p2d_1); |
214 | fx = psub(tmp, mask); |
215 | #endif |
216 | |
217 | tmp = pmul(fx, p2d_cephes_exp_C1); |
218 | Packet2d z = pmul(fx, p2d_cephes_exp_C2); |
219 | x = psub(x, tmp); |
220 | x = psub(x, z); |
221 | |
222 | Packet2d x2 = pmul(x,x); |
223 | |
224 | Packet2d px = p2d_cephes_exp_p0; |
225 | px = pmadd(px, x2, p2d_cephes_exp_p1); |
226 | px = pmadd(px, x2, p2d_cephes_exp_p2); |
227 | px = pmul (px, x); |
228 | |
229 | Packet2d qx = p2d_cephes_exp_q0; |
230 | qx = pmadd(qx, x2, p2d_cephes_exp_q1); |
231 | qx = pmadd(qx, x2, p2d_cephes_exp_q2); |
232 | qx = pmadd(qx, x2, p2d_cephes_exp_q3); |
233 | |
234 | x = pdiv(px,psub(qx,px)); |
235 | x = pmadd(p2d_2,x,p2d_1); |
236 | |
237 | // build 2^n |
238 | emm0 = _mm_cvttpd_epi32(fx); |
239 | emm0 = _mm_add_epi32(emm0, p4i_1023_0); |
240 | emm0 = _mm_slli_epi32(emm0, 20); |
241 | emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3)); |
242 | return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x); |
243 | } |
244 | |
245 | /* evaluation of 4 sines at onces, using SSE2 intrinsics. |
246 | |
247 | The code is the exact rewriting of the cephes sinf function. |
248 | Precision is excellent as long as x < 8192 (I did not bother to |
249 | take into account the special handling they have for greater values |
250 | -- it does not return garbage for arguments over 8192, though, but |
251 | the extra precision is missing). |
252 | |
253 | Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the |
254 | surprising but correct result. |
255 | */ |
256 | |
257 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
258 | Packet4f psin<Packet4f>(const Packet4f& _x) |
259 | { |
260 | Packet4f x = _x; |
261 | _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); |
262 | _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
263 | |
264 | _EIGEN_DECLARE_CONST_Packet4i(1, 1); |
265 | _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); |
266 | _EIGEN_DECLARE_CONST_Packet4i(2, 2); |
267 | _EIGEN_DECLARE_CONST_Packet4i(4, 4); |
268 | |
269 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000); |
270 | |
271 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); |
272 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); |
273 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); |
274 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); |
275 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); |
276 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); |
277 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); |
278 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); |
279 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); |
280 | _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI |
281 | |
282 | Packet4f xmm1, xmm2, xmm3, sign_bit, y; |
283 | |
284 | Packet4i emm0, emm2; |
285 | sign_bit = x; |
286 | /* take the absolute value */ |
287 | x = pabs(x); |
288 | |
289 | /* take the modulo */ |
290 | |
291 | /* extract the sign bit (upper one) */ |
292 | sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask); |
293 | |
294 | /* scale by 4/Pi */ |
295 | y = pmul(x, p4f_cephes_FOPI); |
296 | |
297 | /* store the integer part of y in mm0 */ |
298 | emm2 = _mm_cvttps_epi32(y); |
299 | /* j=(j+1) & (~1) (see the cephes sources) */ |
300 | emm2 = _mm_add_epi32(emm2, p4i_1); |
301 | emm2 = _mm_and_si128(emm2, p4i_not1); |
302 | y = _mm_cvtepi32_ps(emm2); |
303 | /* get the swap sign flag */ |
304 | emm0 = _mm_and_si128(emm2, p4i_4); |
305 | emm0 = _mm_slli_epi32(emm0, 29); |
306 | /* get the polynom selection mask |
307 | there is one polynom for 0 <= x <= Pi/4 |
308 | and another one for Pi/4<x<=Pi/2 |
309 | |
310 | Both branches will be computed. |
311 | */ |
312 | emm2 = _mm_and_si128(emm2, p4i_2); |
313 | emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); |
314 | |
315 | Packet4f swap_sign_bit = _mm_castsi128_ps(emm0); |
316 | Packet4f poly_mask = _mm_castsi128_ps(emm2); |
317 | sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit); |
318 | |
319 | /* The magic pass: "Extended precision modular arithmetic" |
320 | x = ((x - y * DP1) - y * DP2) - y * DP3; */ |
321 | xmm1 = pmul(y, p4f_minus_cephes_DP1); |
322 | xmm2 = pmul(y, p4f_minus_cephes_DP2); |
323 | xmm3 = pmul(y, p4f_minus_cephes_DP3); |
324 | x = padd(x, xmm1); |
325 | x = padd(x, xmm2); |
326 | x = padd(x, xmm3); |
327 | |
328 | /* Evaluate the first polynom (0 <= x <= Pi/4) */ |
329 | y = p4f_coscof_p0; |
330 | Packet4f z = _mm_mul_ps(x,x); |
331 | |
332 | y = pmadd(y, z, p4f_coscof_p1); |
333 | y = pmadd(y, z, p4f_coscof_p2); |
334 | y = pmul(y, z); |
335 | y = pmul(y, z); |
336 | Packet4f tmp = pmul(z, p4f_half); |
337 | y = psub(y, tmp); |
338 | y = padd(y, p4f_1); |
339 | |
340 | /* Evaluate the second polynom (Pi/4 <= x <= 0) */ |
341 | |
342 | Packet4f y2 = p4f_sincof_p0; |
343 | y2 = pmadd(y2, z, p4f_sincof_p1); |
344 | y2 = pmadd(y2, z, p4f_sincof_p2); |
345 | y2 = pmul(y2, z); |
346 | y2 = pmul(y2, x); |
347 | y2 = padd(y2, x); |
348 | |
349 | /* select the correct result from the two polynoms */ |
350 | y2 = _mm_and_ps(poly_mask, y2); |
351 | y = _mm_andnot_ps(poly_mask, y); |
352 | y = _mm_or_ps(y,y2); |
353 | /* update the sign */ |
354 | return _mm_xor_ps(y, sign_bit); |
355 | } |
356 | |
357 | /* almost the same as psin */ |
358 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
359 | Packet4f pcos<Packet4f>(const Packet4f& _x) |
360 | { |
361 | Packet4f x = _x; |
362 | _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f); |
363 | _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f); |
364 | |
365 | _EIGEN_DECLARE_CONST_Packet4i(1, 1); |
366 | _EIGEN_DECLARE_CONST_Packet4i(not1, ~1); |
367 | _EIGEN_DECLARE_CONST_Packet4i(2, 2); |
368 | _EIGEN_DECLARE_CONST_Packet4i(4, 4); |
369 | |
370 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f); |
371 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f); |
372 | _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f); |
373 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f); |
374 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f); |
375 | _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f); |
376 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f); |
377 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f); |
378 | _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f); |
379 | _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI |
380 | |
381 | Packet4f xmm1, xmm2, xmm3, y; |
382 | Packet4i emm0, emm2; |
383 | |
384 | x = pabs(x); |
385 | |
386 | /* scale by 4/Pi */ |
387 | y = pmul(x, p4f_cephes_FOPI); |
388 | |
389 | /* get the integer part of y */ |
390 | emm2 = _mm_cvttps_epi32(y); |
391 | /* j=(j+1) & (~1) (see the cephes sources) */ |
392 | emm2 = _mm_add_epi32(emm2, p4i_1); |
393 | emm2 = _mm_and_si128(emm2, p4i_not1); |
394 | y = _mm_cvtepi32_ps(emm2); |
395 | |
396 | emm2 = _mm_sub_epi32(emm2, p4i_2); |
397 | |
398 | /* get the swap sign flag */ |
399 | emm0 = _mm_andnot_si128(emm2, p4i_4); |
400 | emm0 = _mm_slli_epi32(emm0, 29); |
401 | /* get the polynom selection mask */ |
402 | emm2 = _mm_and_si128(emm2, p4i_2); |
403 | emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); |
404 | |
405 | Packet4f sign_bit = _mm_castsi128_ps(emm0); |
406 | Packet4f poly_mask = _mm_castsi128_ps(emm2); |
407 | |
408 | /* The magic pass: "Extended precision modular arithmetic" |
409 | x = ((x - y * DP1) - y * DP2) - y * DP3; */ |
410 | xmm1 = pmul(y, p4f_minus_cephes_DP1); |
411 | xmm2 = pmul(y, p4f_minus_cephes_DP2); |
412 | xmm3 = pmul(y, p4f_minus_cephes_DP3); |
413 | x = padd(x, xmm1); |
414 | x = padd(x, xmm2); |
415 | x = padd(x, xmm3); |
416 | |
417 | /* Evaluate the first polynom (0 <= x <= Pi/4) */ |
418 | y = p4f_coscof_p0; |
419 | Packet4f z = pmul(x,x); |
420 | |
421 | y = pmadd(y,z,p4f_coscof_p1); |
422 | y = pmadd(y,z,p4f_coscof_p2); |
423 | y = pmul(y, z); |
424 | y = pmul(y, z); |
425 | Packet4f tmp = _mm_mul_ps(z, p4f_half); |
426 | y = psub(y, tmp); |
427 | y = padd(y, p4f_1); |
428 | |
429 | /* Evaluate the second polynom (Pi/4 <= x <= 0) */ |
430 | Packet4f y2 = p4f_sincof_p0; |
431 | y2 = pmadd(y2, z, p4f_sincof_p1); |
432 | y2 = pmadd(y2, z, p4f_sincof_p2); |
433 | y2 = pmul(y2, z); |
434 | y2 = pmadd(y2, x, x); |
435 | |
436 | /* select the correct result from the two polynoms */ |
437 | y2 = _mm_and_ps(poly_mask, y2); |
438 | y = _mm_andnot_ps(poly_mask, y); |
439 | y = _mm_or_ps(y,y2); |
440 | |
441 | /* update the sign */ |
442 | return _mm_xor_ps(y, sign_bit); |
443 | } |
444 | |
445 | #if EIGEN_FAST_MATH |
446 | |
447 | // Functions for sqrt. |
448 | // The EIGEN_FAST_MATH version uses the _mm_rsqrt_ps approximation and one step |
449 | // of Newton's method, at a cost of 1-2 bits of precision as opposed to the |
450 | // exact solution. It does not handle +inf, or denormalized numbers correctly. |
451 | // The main advantage of this approach is not just speed, but also the fact that |
452 | // it can be inlined and pipelined with other computations, further reducing its |
453 | // effective latency. This is similar to Quake3's fast inverse square root. |
454 | // For detail see here: http://www.beyond3d.com/content/articles/8/ |
455 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
456 | Packet4f psqrt<Packet4f>(const Packet4f& _x) |
457 | { |
458 | Packet4f half = pmul(_x, pset1<Packet4f>(.5f)); |
459 | Packet4f denormal_mask = _mm_and_ps( |
460 | _mm_cmpge_ps(_x, _mm_setzero_ps()), |
461 | _mm_cmplt_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()))); |
462 | |
463 | // Compute approximate reciprocal sqrt. |
464 | Packet4f x = _mm_rsqrt_ps(_x); |
465 | // Do a single step of Newton's iteration. |
466 | x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x)))); |
467 | // Flush results for denormals to zero. |
468 | return _mm_andnot_ps(denormal_mask, pmul(_x,x)); |
469 | } |
470 | |
471 | #else |
472 | |
473 | template<>EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
474 | Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); } |
475 | |
476 | #endif |
477 | |
478 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
479 | Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); } |
480 | |
481 | #if EIGEN_FAST_MATH |
482 | |
483 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
484 | Packet4f prsqrt<Packet4f>(const Packet4f& _x) { |
485 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inf, 0x7f800000); |
486 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(nan, 0x7fc00000); |
487 | _EIGEN_DECLARE_CONST_Packet4f(one_point_five, 1.5f); |
488 | _EIGEN_DECLARE_CONST_Packet4f(minus_half, -0.5f); |
489 | _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(flt_min, 0x00800000); |
490 | |
491 | Packet4f neg_half = pmul(_x, p4f_minus_half); |
492 | |
493 | // select only the inverse sqrt of positive normal inputs (denormals are |
494 | // flushed to zero and cause infs as well). |
495 | Packet4f le_zero_mask = _mm_cmple_ps(_x, p4f_flt_min); |
496 | Packet4f x = _mm_andnot_ps(le_zero_mask, _mm_rsqrt_ps(_x)); |
497 | |
498 | // Fill in NaNs and Infs for the negative/zero entries. |
499 | Packet4f neg_mask = _mm_cmplt_ps(_x, _mm_setzero_ps()); |
500 | Packet4f zero_mask = _mm_andnot_ps(neg_mask, le_zero_mask); |
501 | Packet4f infs_and_nans = _mm_or_ps(_mm_and_ps(neg_mask, p4f_nan), |
502 | _mm_and_ps(zero_mask, p4f_inf)); |
503 | |
504 | // Do a single step of Newton's iteration. |
505 | x = pmul(x, pmadd(neg_half, pmul(x, x), p4f_one_point_five)); |
506 | |
507 | // Insert NaNs and Infs in all the right places. |
508 | return _mm_or_ps(x, infs_and_nans); |
509 | } |
510 | |
511 | #else |
512 | |
513 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
514 | Packet4f prsqrt<Packet4f>(const Packet4f& x) { |
515 | // Unfortunately we can't use the much faster mm_rqsrt_ps since it only provides an approximation. |
516 | return _mm_div_ps(pset1<Packet4f>(1.0f), _mm_sqrt_ps(x)); |
517 | } |
518 | |
519 | #endif |
520 | |
521 | template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED |
522 | Packet2d prsqrt<Packet2d>(const Packet2d& x) { |
523 | // Unfortunately we can't use the much faster mm_rqsrt_pd since it only provides an approximation. |
524 | return _mm_div_pd(pset1<Packet2d>(1.0), _mm_sqrt_pd(x)); |
525 | } |
526 | |
527 | // Hyperbolic Tangent function. |
528 | template <> |
529 | EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f |
530 | ptanh<Packet4f>(const Packet4f& x) { |
531 | return internal::generic_fast_tanh_float(x); |
532 | } |
533 | |
534 | } // end namespace internal |
535 | |
536 | namespace numext { |
537 | |
538 | template<> |
539 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
540 | float sqrt(const float &x) |
541 | { |
542 | return internal::pfirst(internal::Packet4f(_mm_sqrt_ss(_mm_set_ss(x)))); |
543 | } |
544 | |
545 | template<> |
546 | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE |
547 | double sqrt(const double &x) |
548 | { |
549 | #if EIGEN_COMP_GNUC_STRICT |
550 | // This works around a GCC bug generating poor code for _mm_sqrt_pd |
551 | // See https://bitbucket.org/eigen/eigen/commits/14f468dba4d350d7c19c9b93072e19f7b3df563b |
552 | return internal::pfirst(internal::Packet2d(__builtin_ia32_sqrtsd(_mm_set_sd(x)))); |
553 | #else |
554 | return internal::pfirst(internal::Packet2d(_mm_sqrt_pd(_mm_set_sd(x)))); |
555 | #endif |
556 | } |
557 | |
558 | } // end namespace numex |
559 | |
560 | } // end namespace Eigen |
561 | |
562 | #endif // EIGEN_MATH_FUNCTIONS_SSE_H |
563 | |