1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_UMEYAMA_H |
11 | #define EIGEN_UMEYAMA_H |
12 | |
13 | // This file requires the user to include |
14 | // * Eigen/Core |
15 | // * Eigen/LU |
16 | // * Eigen/SVD |
17 | // * Eigen/Array |
18 | |
19 | namespace Eigen { |
20 | |
21 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
22 | |
23 | // These helpers are required since it allows to use mixed types as parameters |
24 | // for the Umeyama. The problem with mixed parameters is that the return type |
25 | // cannot trivially be deduced when float and double types are mixed. |
26 | namespace internal { |
27 | |
28 | // Compile time return type deduction for different MatrixBase types. |
29 | // Different means here different alignment and parameters but the same underlying |
30 | // real scalar type. |
31 | template<typename MatrixType, typename OtherMatrixType> |
32 | struct umeyama_transform_matrix_type |
33 | { |
34 | enum { |
35 | MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime), |
36 | |
37 | // When possible we want to choose some small fixed size value since the result |
38 | // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want. |
39 | HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1 |
40 | }; |
41 | |
42 | typedef Matrix<typename traits<MatrixType>::Scalar, |
43 | HomogeneousDimension, |
44 | HomogeneousDimension, |
45 | AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), |
46 | HomogeneousDimension, |
47 | HomogeneousDimension |
48 | > type; |
49 | }; |
50 | |
51 | } |
52 | |
53 | #endif |
54 | |
55 | /** |
56 | * \geometry_module \ingroup Geometry_Module |
57 | * |
58 | * \brief Returns the transformation between two point sets. |
59 | * |
60 | * The algorithm is based on: |
61 | * "Least-squares estimation of transformation parameters between two point patterns", |
62 | * Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573 |
63 | * |
64 | * It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that |
65 | * \f{align*} |
66 | * \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2 |
67 | * \f} |
68 | * is minimized. |
69 | * |
70 | * The algorithm is based on the analysis of the covariance matrix |
71 | * \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$ |
72 | * of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where |
73 | * \f$d\f$ is corresponding to the dimension (which is typically small). |
74 | * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$ |
75 | * though the actual computational effort lies in the covariance |
76 | * matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when |
77 | * the input point sets have dimension \f$d \times m\f$. |
78 | * |
79 | * Currently the method is working only for floating point matrices. |
80 | * |
81 | * \todo Should the return type of umeyama() become a Transform? |
82 | * |
83 | * \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$. |
84 | * \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$. |
85 | * \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed. |
86 | * \return The homogeneous transformation |
87 | * \f{align*} |
88 | * T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} |
89 | * \f} |
90 | * minimizing the resudiual above. This transformation is always returned as an |
91 | * Eigen::Matrix. |
92 | */ |
93 | template <typename Derived, typename OtherDerived> |
94 | typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type |
95 | umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) |
96 | { |
97 | typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType; |
98 | typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar; |
99 | typedef typename NumTraits<Scalar>::Real RealScalar; |
100 | |
101 | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL) |
102 | EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value), |
103 | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) |
104 | |
105 | enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) }; |
106 | |
107 | typedef Matrix<Scalar, Dimension, 1> VectorType; |
108 | typedef Matrix<Scalar, Dimension, Dimension> MatrixType; |
109 | typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType; |
110 | |
111 | const Index m = src.rows(); // dimension |
112 | const Index n = src.cols(); // number of measurements |
113 | |
114 | // required for demeaning ... |
115 | const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n); |
116 | |
117 | // computation of mean |
118 | const VectorType src_mean = src.rowwise().sum() * one_over_n; |
119 | const VectorType dst_mean = dst.rowwise().sum() * one_over_n; |
120 | |
121 | // demeaning of src and dst points |
122 | const RowMajorMatrixType src_demean = src.colwise() - src_mean; |
123 | const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean; |
124 | |
125 | // Eq. (36)-(37) |
126 | const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n; |
127 | |
128 | // Eq. (38) |
129 | const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose(); |
130 | |
131 | JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV); |
132 | |
133 | // Initialize the resulting transformation with an identity matrix... |
134 | TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1); |
135 | |
136 | // Eq. (39) |
137 | VectorType S = VectorType::Ones(m); |
138 | |
139 | if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 ) |
140 | S(m-1) = -1; |
141 | |
142 | // Eq. (40) and (43) |
143 | Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose(); |
144 | |
145 | if (with_scaling) |
146 | { |
147 | // Eq. (42) |
148 | const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S); |
149 | |
150 | // Eq. (41) |
151 | Rt.col(m).head(m) = dst_mean; |
152 | Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean; |
153 | Rt.block(0,0,m,m) *= c; |
154 | } |
155 | else |
156 | { |
157 | Rt.col(m).head(m) = dst_mean; |
158 | Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean; |
159 | } |
160 | |
161 | return Rt; |
162 | } |
163 | |
164 | } // end namespace Eigen |
165 | |
166 | #endif // EIGEN_UMEYAMA_H |
167 | |