| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|---|
| 6 | // | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 10 |  | 
|---|
| 11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H | 
|---|
| 12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H | 
|---|
| 13 |  | 
|---|
| 14 | namespace Eigen { | 
|---|
| 15 |  | 
|---|
| 16 | /** \ingroup Householder_Module | 
|---|
| 17 | * \householder_module | 
|---|
| 18 | * \class HouseholderSequence | 
|---|
| 19 | * \brief Sequence of Householder reflections acting on subspaces with decreasing size | 
|---|
| 20 | * \tparam VectorsType type of matrix containing the Householder vectors | 
|---|
| 21 | * \tparam CoeffsType  type of vector containing the Householder coefficients | 
|---|
| 22 | * \tparam Side        either OnTheLeft (the default) or OnTheRight | 
|---|
| 23 | * | 
|---|
| 24 | * This class represents a product sequence of Householder reflections where the first Householder reflection | 
|---|
| 25 | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by | 
|---|
| 26 | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace | 
|---|
| 27 | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but | 
|---|
| 28 | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections | 
|---|
| 29 | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods | 
|---|
| 30 | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), | 
|---|
| 31 | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. | 
|---|
| 32 | * | 
|---|
| 33 | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the | 
|---|
| 34 | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i | 
|---|
| 35 | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ | 
|---|
| 36 | * v_i \f$ is a vector of the form | 
|---|
| 37 | * \f[ | 
|---|
| 38 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. | 
|---|
| 39 | * \f] | 
|---|
| 40 | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. | 
|---|
| 41 | * | 
|---|
| 42 | * Typical usages are listed below, where H is a HouseholderSequence: | 
|---|
| 43 | * \code | 
|---|
| 44 | * A.applyOnTheRight(H);             // A = A * H | 
|---|
| 45 | * A.applyOnTheLeft(H);              // A = H * A | 
|---|
| 46 | * A.applyOnTheRight(H.adjoint());   // A = A * H^* | 
|---|
| 47 | * A.applyOnTheLeft(H.adjoint());    // A = H^* * A | 
|---|
| 48 | * MatrixXd Q = H;                   // conversion to a dense matrix | 
|---|
| 49 | * \endcode | 
|---|
| 50 | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. | 
|---|
| 51 | * | 
|---|
| 52 | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. | 
|---|
| 53 | * | 
|---|
| 54 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() | 
|---|
| 55 | */ | 
|---|
| 56 |  | 
|---|
| 57 | namespace internal { | 
|---|
| 58 |  | 
|---|
| 59 | template<typename VectorsType, typename CoeffsType, int Side> | 
|---|
| 60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > | 
|---|
| 61 | { | 
|---|
| 62 | typedef typename VectorsType::Scalar Scalar; | 
|---|
| 63 | typedef typename VectorsType::StorageIndex StorageIndex; | 
|---|
| 64 | typedef typename VectorsType::StorageKind StorageKind; | 
|---|
| 65 | enum { | 
|---|
| 66 | RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime | 
|---|
| 67 | : traits<VectorsType>::ColsAtCompileTime, | 
|---|
| 68 | ColsAtCompileTime = RowsAtCompileTime, | 
|---|
| 69 | MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime | 
|---|
| 70 | : traits<VectorsType>::MaxColsAtCompileTime, | 
|---|
| 71 | MaxColsAtCompileTime = MaxRowsAtCompileTime, | 
|---|
| 72 | Flags = 0 | 
|---|
| 73 | }; | 
|---|
| 74 | }; | 
|---|
| 75 |  | 
|---|
| 76 | struct HouseholderSequenceShape {}; | 
|---|
| 77 |  | 
|---|
| 78 | template<typename VectorsType, typename CoeffsType, int Side> | 
|---|
| 79 | struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> > | 
|---|
| 80 | : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> > | 
|---|
| 81 | { | 
|---|
| 82 | typedef HouseholderSequenceShape Shape; | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | template<typename VectorsType, typename CoeffsType, int Side> | 
|---|
| 86 | struct hseq_side_dependent_impl | 
|---|
| 87 | { | 
|---|
| 88 | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; | 
|---|
| 89 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; | 
|---|
| 90 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) | 
|---|
| 91 | { | 
|---|
| 92 | Index start = k+1+h.m_shift; | 
|---|
| 93 | return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); | 
|---|
| 94 | } | 
|---|
| 95 | }; | 
|---|
| 96 |  | 
|---|
| 97 | template<typename VectorsType, typename CoeffsType> | 
|---|
| 98 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> | 
|---|
| 99 | { | 
|---|
| 100 | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; | 
|---|
| 101 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; | 
|---|
| 102 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) | 
|---|
| 103 | { | 
|---|
| 104 | Index start = k+1+h.m_shift; | 
|---|
| 105 | return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); | 
|---|
| 106 | } | 
|---|
| 107 | }; | 
|---|
| 108 |  | 
|---|
| 109 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type | 
|---|
| 110 | { | 
|---|
| 111 | typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType | 
|---|
| 112 | ResultScalar; | 
|---|
| 113 | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, | 
|---|
| 114 | 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; | 
|---|
| 115 | }; | 
|---|
| 116 |  | 
|---|
| 117 | } // end namespace internal | 
|---|
| 118 |  | 
|---|
| 119 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence | 
|---|
| 120 | : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > | 
|---|
| 121 | { | 
|---|
| 122 | typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType; | 
|---|
| 123 |  | 
|---|
| 124 | public: | 
|---|
| 125 | enum { | 
|---|
| 126 | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, | 
|---|
| 127 | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, | 
|---|
| 128 | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, | 
|---|
| 129 | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime | 
|---|
| 130 | }; | 
|---|
| 131 | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; | 
|---|
| 132 |  | 
|---|
| 133 | typedef HouseholderSequence< | 
|---|
| 134 | typename internal::conditional<NumTraits<Scalar>::IsComplex, | 
|---|
| 135 | typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, | 
|---|
| 136 | VectorsType>::type, | 
|---|
| 137 | typename internal::conditional<NumTraits<Scalar>::IsComplex, | 
|---|
| 138 | typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, | 
|---|
| 139 | CoeffsType>::type, | 
|---|
| 140 | Side | 
|---|
| 141 | > ConjugateReturnType; | 
|---|
| 142 |  | 
|---|
| 143 | /** \brief Constructor. | 
|---|
| 144 | * \param[in]  v      %Matrix containing the essential parts of the Householder vectors | 
|---|
| 145 | * \param[in]  h      Vector containing the Householder coefficients | 
|---|
| 146 | * | 
|---|
| 147 | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The | 
|---|
| 148 | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th | 
|---|
| 149 | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the | 
|---|
| 150 | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many | 
|---|
| 151 | * Householder reflections as there are columns. | 
|---|
| 152 | * | 
|---|
| 153 | * \note The %HouseholderSequence object stores \p v and \p h by reference. | 
|---|
| 154 | * | 
|---|
| 155 | * Example: \include HouseholderSequence_HouseholderSequence.cpp | 
|---|
| 156 | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out | 
|---|
| 157 | * | 
|---|
| 158 | * \sa setLength(), setShift() | 
|---|
| 159 | */ | 
|---|
| 160 | HouseholderSequence(const VectorsType& v, const CoeffsType& h) | 
|---|
| 161 | : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), | 
|---|
| 162 | m_shift(0) | 
|---|
| 163 | { | 
|---|
| 164 | } | 
|---|
| 165 |  | 
|---|
| 166 | /** \brief Copy constructor. */ | 
|---|
| 167 | HouseholderSequence(const HouseholderSequence& other) | 
|---|
| 168 | : m_vectors(other.m_vectors), | 
|---|
| 169 | m_coeffs(other.m_coeffs), | 
|---|
| 170 | m_trans(other.m_trans), | 
|---|
| 171 | m_length(other.m_length), | 
|---|
| 172 | m_shift(other.m_shift) | 
|---|
| 173 | { | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | /** \brief Number of rows of transformation viewed as a matrix. | 
|---|
| 177 | * \returns Number of rows | 
|---|
| 178 | * \details This equals the dimension of the space that the transformation acts on. | 
|---|
| 179 | */ | 
|---|
| 180 | Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } | 
|---|
| 181 |  | 
|---|
| 182 | /** \brief Number of columns of transformation viewed as a matrix. | 
|---|
| 183 | * \returns Number of columns | 
|---|
| 184 | * \details This equals the dimension of the space that the transformation acts on. | 
|---|
| 185 | */ | 
|---|
| 186 | Index cols() const { return rows(); } | 
|---|
| 187 |  | 
|---|
| 188 | /** \brief Essential part of a Householder vector. | 
|---|
| 189 | * \param[in]  k  Index of Householder reflection | 
|---|
| 190 | * \returns    Vector containing non-trivial entries of k-th Householder vector | 
|---|
| 191 | * | 
|---|
| 192 | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of | 
|---|
| 193 | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector | 
|---|
| 194 | * \f[ | 
|---|
| 195 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. | 
|---|
| 196 | * \f] | 
|---|
| 197 | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v | 
|---|
| 198 | * passed to the constructor. | 
|---|
| 199 | * | 
|---|
| 200 | * \sa setShift(), shift() | 
|---|
| 201 | */ | 
|---|
| 202 | const EssentialVectorType essentialVector(Index k) const | 
|---|
| 203 | { | 
|---|
| 204 | eigen_assert(k >= 0 && k < m_length); | 
|---|
| 205 | return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | /** \brief %Transpose of the Householder sequence. */ | 
|---|
| 209 | HouseholderSequence transpose() const | 
|---|
| 210 | { | 
|---|
| 211 | return HouseholderSequence(*this).setTrans(!m_trans); | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 | /** \brief Complex conjugate of the Householder sequence. */ | 
|---|
| 215 | ConjugateReturnType conjugate() const | 
|---|
| 216 | { | 
|---|
| 217 | return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) | 
|---|
| 218 | .setTrans(m_trans) | 
|---|
| 219 | .setLength(m_length) | 
|---|
| 220 | .setShift(m_shift); | 
|---|
| 221 | } | 
|---|
| 222 |  | 
|---|
| 223 | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ | 
|---|
| 224 | ConjugateReturnType adjoint() const | 
|---|
| 225 | { | 
|---|
| 226 | return conjugate().setTrans(!m_trans); | 
|---|
| 227 | } | 
|---|
| 228 |  | 
|---|
| 229 | /** \brief Inverse of the Householder sequence (equals the adjoint). */ | 
|---|
| 230 | ConjugateReturnType inverse() const { return adjoint(); } | 
|---|
| 231 |  | 
|---|
| 232 | /** \internal */ | 
|---|
| 233 | template<typename DestType> inline void evalTo(DestType& dst) const | 
|---|
| 234 | { | 
|---|
| 235 | Matrix<Scalar, DestType::RowsAtCompileTime, 1, | 
|---|
| 236 | AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); | 
|---|
| 237 | evalTo(dst, workspace); | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|
| 240 | /** \internal */ | 
|---|
| 241 | template<typename Dest, typename Workspace> | 
|---|
| 242 | void evalTo(Dest& dst, Workspace& workspace) const | 
|---|
| 243 | { | 
|---|
| 244 | workspace.resize(rows()); | 
|---|
| 245 | Index vecs = m_length; | 
|---|
| 246 | if(internal::is_same_dense(dst,m_vectors)) | 
|---|
| 247 | { | 
|---|
| 248 | // in-place | 
|---|
| 249 | dst.diagonal().setOnes(); | 
|---|
| 250 | dst.template triangularView<StrictlyUpper>().setZero(); | 
|---|
| 251 | for(Index k = vecs-1; k >= 0; --k) | 
|---|
| 252 | { | 
|---|
| 253 | Index cornerSize = rows() - k - m_shift; | 
|---|
| 254 | if(m_trans) | 
|---|
| 255 | dst.bottomRightCorner(cornerSize, cornerSize) | 
|---|
| 256 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|---|
| 257 | else | 
|---|
| 258 | dst.bottomRightCorner(cornerSize, cornerSize) | 
|---|
| 259 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); | 
|---|
| 260 |  | 
|---|
| 261 | // clear the off diagonal vector | 
|---|
| 262 | dst.col(k).tail(rows()-k-1).setZero(); | 
|---|
| 263 | } | 
|---|
| 264 | // clear the remaining columns if needed | 
|---|
| 265 | for(Index k = 0; k<cols()-vecs ; ++k) | 
|---|
| 266 | dst.col(k).tail(rows()-k-1).setZero(); | 
|---|
| 267 | } | 
|---|
| 268 | else | 
|---|
| 269 | { | 
|---|
| 270 | dst.setIdentity(rows(), rows()); | 
|---|
| 271 | for(Index k = vecs-1; k >= 0; --k) | 
|---|
| 272 | { | 
|---|
| 273 | Index cornerSize = rows() - k - m_shift; | 
|---|
| 274 | if(m_trans) | 
|---|
| 275 | dst.bottomRightCorner(cornerSize, cornerSize) | 
|---|
| 276 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); | 
|---|
| 277 | else | 
|---|
| 278 | dst.bottomRightCorner(cornerSize, cornerSize) | 
|---|
| 279 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); | 
|---|
| 280 | } | 
|---|
| 281 | } | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | /** \internal */ | 
|---|
| 285 | template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const | 
|---|
| 286 | { | 
|---|
| 287 | Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); | 
|---|
| 288 | applyThisOnTheRight(dst, workspace); | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | /** \internal */ | 
|---|
| 292 | template<typename Dest, typename Workspace> | 
|---|
| 293 | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const | 
|---|
| 294 | { | 
|---|
| 295 | workspace.resize(dst.rows()); | 
|---|
| 296 | for(Index k = 0; k < m_length; ++k) | 
|---|
| 297 | { | 
|---|
| 298 | Index actual_k = m_trans ? m_length-k-1 : k; | 
|---|
| 299 | dst.rightCols(rows()-m_shift-actual_k) | 
|---|
| 300 | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); | 
|---|
| 301 | } | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | /** \internal */ | 
|---|
| 305 | template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const | 
|---|
| 306 | { | 
|---|
| 307 | Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace; | 
|---|
| 308 | applyThisOnTheLeft(dst, workspace); | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | /** \internal */ | 
|---|
| 312 | template<typename Dest, typename Workspace> | 
|---|
| 313 | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const | 
|---|
| 314 | { | 
|---|
| 315 | const Index BlockSize = 48; | 
|---|
| 316 | // if the entries are large enough, then apply the reflectors by block | 
|---|
| 317 | if(m_length>=BlockSize && dst.cols()>1) | 
|---|
| 318 | { | 
|---|
| 319 | for(Index i = 0; i < m_length; i+=BlockSize) | 
|---|
| 320 | { | 
|---|
| 321 | Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i; | 
|---|
| 322 | Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize); | 
|---|
| 323 | Index bs = end-k; | 
|---|
| 324 | Index start = k + m_shift; | 
|---|
| 325 |  | 
|---|
| 326 | typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType; | 
|---|
| 327 | SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, | 
|---|
| 328 | Side==OnTheRight ? start : k, | 
|---|
| 329 | Side==OnTheRight ? bs : m_vectors.rows()-start, | 
|---|
| 330 | Side==OnTheRight ? m_vectors.cols()-start : bs); | 
|---|
| 331 | typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1); | 
|---|
| 332 | Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols()); | 
|---|
| 333 | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans); | 
|---|
| 334 | } | 
|---|
| 335 | } | 
|---|
| 336 | else | 
|---|
| 337 | { | 
|---|
| 338 | workspace.resize(dst.cols()); | 
|---|
| 339 | for(Index k = 0; k < m_length; ++k) | 
|---|
| 340 | { | 
|---|
| 341 | Index actual_k = m_trans ? k : m_length-k-1; | 
|---|
| 342 | dst.bottomRows(rows()-m_shift-actual_k) | 
|---|
| 343 | .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); | 
|---|
| 344 | } | 
|---|
| 345 | } | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | /** \brief Computes the product of a Householder sequence with a matrix. | 
|---|
| 349 | * \param[in]  other  %Matrix being multiplied. | 
|---|
| 350 | * \returns    Expression object representing the product. | 
|---|
| 351 | * | 
|---|
| 352 | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this | 
|---|
| 353 | * and \f$ M \f$ is the matrix \p other. | 
|---|
| 354 | */ | 
|---|
| 355 | template<typename OtherDerived> | 
|---|
| 356 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const | 
|---|
| 357 | { | 
|---|
| 358 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type | 
|---|
| 359 | res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); | 
|---|
| 360 | applyThisOnTheLeft(res); | 
|---|
| 361 | return res; | 
|---|
| 362 | } | 
|---|
| 363 |  | 
|---|
| 364 | template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; | 
|---|
| 365 |  | 
|---|
| 366 | /** \brief Sets the length of the Householder sequence. | 
|---|
| 367 | * \param [in]  length  New value for the length. | 
|---|
| 368 | * | 
|---|
| 369 | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set | 
|---|
| 370 | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that | 
|---|
| 371 | * is smaller. After this function is called, the length equals \p length. | 
|---|
| 372 | * | 
|---|
| 373 | * \sa length() | 
|---|
| 374 | */ | 
|---|
| 375 | HouseholderSequence& setLength(Index length) | 
|---|
| 376 | { | 
|---|
| 377 | m_length = length; | 
|---|
| 378 | return *this; | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | /** \brief Sets the shift of the Householder sequence. | 
|---|
| 382 | * \param [in]  shift  New value for the shift. | 
|---|
| 383 | * | 
|---|
| 384 | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th | 
|---|
| 385 | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder | 
|---|
| 386 | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} | 
|---|
| 387 | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th | 
|---|
| 388 | * Householder reflection. | 
|---|
| 389 | * | 
|---|
| 390 | * \sa shift() | 
|---|
| 391 | */ | 
|---|
| 392 | HouseholderSequence& setShift(Index shift) | 
|---|
| 393 | { | 
|---|
| 394 | m_shift = shift; | 
|---|
| 395 | return *this; | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | Index length() const { return m_length; }  /**< \brief Returns the length of the Householder sequence. */ | 
|---|
| 399 | Index shift() const { return m_shift; }    /**< \brief Returns the shift of the Householder sequence. */ | 
|---|
| 400 |  | 
|---|
| 401 | /* Necessary for .adjoint() and .conjugate() */ | 
|---|
| 402 | template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; | 
|---|
| 403 |  | 
|---|
| 404 | protected: | 
|---|
| 405 |  | 
|---|
| 406 | /** \brief Sets the transpose flag. | 
|---|
| 407 | * \param [in]  trans  New value of the transpose flag. | 
|---|
| 408 | * | 
|---|
| 409 | * By default, the transpose flag is not set. If the transpose flag is set, then this object represents | 
|---|
| 410 | * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. | 
|---|
| 411 | * | 
|---|
| 412 | * \sa trans() | 
|---|
| 413 | */ | 
|---|
| 414 | HouseholderSequence& setTrans(bool trans) | 
|---|
| 415 | { | 
|---|
| 416 | m_trans = trans; | 
|---|
| 417 | return *this; | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | bool trans() const { return m_trans; }     /**< \brief Returns the transpose flag. */ | 
|---|
| 421 |  | 
|---|
| 422 | typename VectorsType::Nested m_vectors; | 
|---|
| 423 | typename CoeffsType::Nested m_coeffs; | 
|---|
| 424 | bool m_trans; | 
|---|
| 425 | Index m_length; | 
|---|
| 426 | Index m_shift; | 
|---|
| 427 | }; | 
|---|
| 428 |  | 
|---|
| 429 | /** \brief Computes the product of a matrix with a Householder sequence. | 
|---|
| 430 | * \param[in]  other  %Matrix being multiplied. | 
|---|
| 431 | * \param[in]  h      %HouseholderSequence being multiplied. | 
|---|
| 432 | * \returns    Expression object representing the product. | 
|---|
| 433 | * | 
|---|
| 434 | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the | 
|---|
| 435 | * Householder sequence represented by \p h. | 
|---|
| 436 | */ | 
|---|
| 437 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> | 
|---|
| 438 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) | 
|---|
| 439 | { | 
|---|
| 440 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type | 
|---|
| 441 | res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); | 
|---|
| 442 | h.applyThisOnTheRight(res); | 
|---|
| 443 | return res; | 
|---|
| 444 | } | 
|---|
| 445 |  | 
|---|
| 446 | /** \ingroup Householder_Module \householder_module | 
|---|
| 447 | * \brief Convenience function for constructing a Householder sequence. | 
|---|
| 448 | * \returns A HouseholderSequence constructed from the specified arguments. | 
|---|
| 449 | */ | 
|---|
| 450 | template<typename VectorsType, typename CoeffsType> | 
|---|
| 451 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) | 
|---|
| 452 | { | 
|---|
| 453 | return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); | 
|---|
| 454 | } | 
|---|
| 455 |  | 
|---|
| 456 | /** \ingroup Householder_Module \householder_module | 
|---|
| 457 | * \brief Convenience function for constructing a Householder sequence. | 
|---|
| 458 | * \returns A HouseholderSequence constructed from the specified arguments. | 
|---|
| 459 | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of | 
|---|
| 460 | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. | 
|---|
| 461 | */ | 
|---|
| 462 | template<typename VectorsType, typename CoeffsType> | 
|---|
| 463 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) | 
|---|
| 464 | { | 
|---|
| 465 | return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); | 
|---|
| 466 | } | 
|---|
| 467 |  | 
|---|
| 468 | } // end namespace Eigen | 
|---|
| 469 |  | 
|---|
| 470 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H | 
|---|
| 471 |  | 
|---|