1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H |
12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | /** \ingroup Householder_Module |
17 | * \householder_module |
18 | * \class HouseholderSequence |
19 | * \brief Sequence of Householder reflections acting on subspaces with decreasing size |
20 | * \tparam VectorsType type of matrix containing the Householder vectors |
21 | * \tparam CoeffsType type of vector containing the Householder coefficients |
22 | * \tparam Side either OnTheLeft (the default) or OnTheRight |
23 | * |
24 | * This class represents a product sequence of Householder reflections where the first Householder reflection |
25 | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by |
26 | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace |
27 | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but |
28 | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections |
29 | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods |
30 | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), |
31 | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. |
32 | * |
33 | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the |
34 | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i |
35 | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ |
36 | * v_i \f$ is a vector of the form |
37 | * \f[ |
38 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
39 | * \f] |
40 | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. |
41 | * |
42 | * Typical usages are listed below, where H is a HouseholderSequence: |
43 | * \code |
44 | * A.applyOnTheRight(H); // A = A * H |
45 | * A.applyOnTheLeft(H); // A = H * A |
46 | * A.applyOnTheRight(H.adjoint()); // A = A * H^* |
47 | * A.applyOnTheLeft(H.adjoint()); // A = H^* * A |
48 | * MatrixXd Q = H; // conversion to a dense matrix |
49 | * \endcode |
50 | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. |
51 | * |
52 | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. |
53 | * |
54 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
55 | */ |
56 | |
57 | namespace internal { |
58 | |
59 | template<typename VectorsType, typename CoeffsType, int Side> |
60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
61 | { |
62 | typedef typename VectorsType::Scalar Scalar; |
63 | typedef typename VectorsType::StorageIndex StorageIndex; |
64 | typedef typename VectorsType::StorageKind StorageKind; |
65 | enum { |
66 | RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime |
67 | : traits<VectorsType>::ColsAtCompileTime, |
68 | ColsAtCompileTime = RowsAtCompileTime, |
69 | MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime |
70 | : traits<VectorsType>::MaxColsAtCompileTime, |
71 | MaxColsAtCompileTime = MaxRowsAtCompileTime, |
72 | Flags = 0 |
73 | }; |
74 | }; |
75 | |
76 | struct HouseholderSequenceShape {}; |
77 | |
78 | template<typename VectorsType, typename CoeffsType, int Side> |
79 | struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
80 | : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> > |
81 | { |
82 | typedef HouseholderSequenceShape Shape; |
83 | }; |
84 | |
85 | template<typename VectorsType, typename CoeffsType, int Side> |
86 | struct hseq_side_dependent_impl |
87 | { |
88 | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; |
89 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; |
90 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
91 | { |
92 | Index start = k+1+h.m_shift; |
93 | return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); |
94 | } |
95 | }; |
96 | |
97 | template<typename VectorsType, typename CoeffsType> |
98 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> |
99 | { |
100 | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; |
101 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; |
102 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
103 | { |
104 | Index start = k+1+h.m_shift; |
105 | return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); |
106 | } |
107 | }; |
108 | |
109 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type |
110 | { |
111 | typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType |
112 | ResultScalar; |
113 | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
114 | 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; |
115 | }; |
116 | |
117 | } // end namespace internal |
118 | |
119 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence |
120 | : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > |
121 | { |
122 | typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType; |
123 | |
124 | public: |
125 | enum { |
126 | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, |
127 | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, |
128 | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, |
129 | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime |
130 | }; |
131 | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; |
132 | |
133 | typedef HouseholderSequence< |
134 | typename internal::conditional<NumTraits<Scalar>::IsComplex, |
135 | typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, |
136 | VectorsType>::type, |
137 | typename internal::conditional<NumTraits<Scalar>::IsComplex, |
138 | typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, |
139 | CoeffsType>::type, |
140 | Side |
141 | > ConjugateReturnType; |
142 | |
143 | /** \brief Constructor. |
144 | * \param[in] v %Matrix containing the essential parts of the Householder vectors |
145 | * \param[in] h Vector containing the Householder coefficients |
146 | * |
147 | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The |
148 | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th |
149 | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the |
150 | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many |
151 | * Householder reflections as there are columns. |
152 | * |
153 | * \note The %HouseholderSequence object stores \p v and \p h by reference. |
154 | * |
155 | * Example: \include HouseholderSequence_HouseholderSequence.cpp |
156 | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out |
157 | * |
158 | * \sa setLength(), setShift() |
159 | */ |
160 | HouseholderSequence(const VectorsType& v, const CoeffsType& h) |
161 | : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), |
162 | m_shift(0) |
163 | { |
164 | } |
165 | |
166 | /** \brief Copy constructor. */ |
167 | HouseholderSequence(const HouseholderSequence& other) |
168 | : m_vectors(other.m_vectors), |
169 | m_coeffs(other.m_coeffs), |
170 | m_trans(other.m_trans), |
171 | m_length(other.m_length), |
172 | m_shift(other.m_shift) |
173 | { |
174 | } |
175 | |
176 | /** \brief Number of rows of transformation viewed as a matrix. |
177 | * \returns Number of rows |
178 | * \details This equals the dimension of the space that the transformation acts on. |
179 | */ |
180 | Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } |
181 | |
182 | /** \brief Number of columns of transformation viewed as a matrix. |
183 | * \returns Number of columns |
184 | * \details This equals the dimension of the space that the transformation acts on. |
185 | */ |
186 | Index cols() const { return rows(); } |
187 | |
188 | /** \brief Essential part of a Householder vector. |
189 | * \param[in] k Index of Householder reflection |
190 | * \returns Vector containing non-trivial entries of k-th Householder vector |
191 | * |
192 | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of |
193 | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector |
194 | * \f[ |
195 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
196 | * \f] |
197 | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v |
198 | * passed to the constructor. |
199 | * |
200 | * \sa setShift(), shift() |
201 | */ |
202 | const EssentialVectorType essentialVector(Index k) const |
203 | { |
204 | eigen_assert(k >= 0 && k < m_length); |
205 | return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); |
206 | } |
207 | |
208 | /** \brief %Transpose of the Householder sequence. */ |
209 | HouseholderSequence transpose() const |
210 | { |
211 | return HouseholderSequence(*this).setTrans(!m_trans); |
212 | } |
213 | |
214 | /** \brief Complex conjugate of the Householder sequence. */ |
215 | ConjugateReturnType conjugate() const |
216 | { |
217 | return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) |
218 | .setTrans(m_trans) |
219 | .setLength(m_length) |
220 | .setShift(m_shift); |
221 | } |
222 | |
223 | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ |
224 | ConjugateReturnType adjoint() const |
225 | { |
226 | return conjugate().setTrans(!m_trans); |
227 | } |
228 | |
229 | /** \brief Inverse of the Householder sequence (equals the adjoint). */ |
230 | ConjugateReturnType inverse() const { return adjoint(); } |
231 | |
232 | /** \internal */ |
233 | template<typename DestType> inline void evalTo(DestType& dst) const |
234 | { |
235 | Matrix<Scalar, DestType::RowsAtCompileTime, 1, |
236 | AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); |
237 | evalTo(dst, workspace); |
238 | } |
239 | |
240 | /** \internal */ |
241 | template<typename Dest, typename Workspace> |
242 | void evalTo(Dest& dst, Workspace& workspace) const |
243 | { |
244 | workspace.resize(rows()); |
245 | Index vecs = m_length; |
246 | if(internal::is_same_dense(dst,m_vectors)) |
247 | { |
248 | // in-place |
249 | dst.diagonal().setOnes(); |
250 | dst.template triangularView<StrictlyUpper>().setZero(); |
251 | for(Index k = vecs-1; k >= 0; --k) |
252 | { |
253 | Index cornerSize = rows() - k - m_shift; |
254 | if(m_trans) |
255 | dst.bottomRightCorner(cornerSize, cornerSize) |
256 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
257 | else |
258 | dst.bottomRightCorner(cornerSize, cornerSize) |
259 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
260 | |
261 | // clear the off diagonal vector |
262 | dst.col(k).tail(rows()-k-1).setZero(); |
263 | } |
264 | // clear the remaining columns if needed |
265 | for(Index k = 0; k<cols()-vecs ; ++k) |
266 | dst.col(k).tail(rows()-k-1).setZero(); |
267 | } |
268 | else |
269 | { |
270 | dst.setIdentity(rows(), rows()); |
271 | for(Index k = vecs-1; k >= 0; --k) |
272 | { |
273 | Index cornerSize = rows() - k - m_shift; |
274 | if(m_trans) |
275 | dst.bottomRightCorner(cornerSize, cornerSize) |
276 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
277 | else |
278 | dst.bottomRightCorner(cornerSize, cornerSize) |
279 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
280 | } |
281 | } |
282 | } |
283 | |
284 | /** \internal */ |
285 | template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const |
286 | { |
287 | Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); |
288 | applyThisOnTheRight(dst, workspace); |
289 | } |
290 | |
291 | /** \internal */ |
292 | template<typename Dest, typename Workspace> |
293 | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const |
294 | { |
295 | workspace.resize(dst.rows()); |
296 | for(Index k = 0; k < m_length; ++k) |
297 | { |
298 | Index actual_k = m_trans ? m_length-k-1 : k; |
299 | dst.rightCols(rows()-m_shift-actual_k) |
300 | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
301 | } |
302 | } |
303 | |
304 | /** \internal */ |
305 | template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const |
306 | { |
307 | Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace; |
308 | applyThisOnTheLeft(dst, workspace); |
309 | } |
310 | |
311 | /** \internal */ |
312 | template<typename Dest, typename Workspace> |
313 | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const |
314 | { |
315 | const Index BlockSize = 48; |
316 | // if the entries are large enough, then apply the reflectors by block |
317 | if(m_length>=BlockSize && dst.cols()>1) |
318 | { |
319 | for(Index i = 0; i < m_length; i+=BlockSize) |
320 | { |
321 | Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i; |
322 | Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize); |
323 | Index bs = end-k; |
324 | Index start = k + m_shift; |
325 | |
326 | typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType; |
327 | SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, |
328 | Side==OnTheRight ? start : k, |
329 | Side==OnTheRight ? bs : m_vectors.rows()-start, |
330 | Side==OnTheRight ? m_vectors.cols()-start : bs); |
331 | typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1); |
332 | Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols()); |
333 | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans); |
334 | } |
335 | } |
336 | else |
337 | { |
338 | workspace.resize(dst.cols()); |
339 | for(Index k = 0; k < m_length; ++k) |
340 | { |
341 | Index actual_k = m_trans ? k : m_length-k-1; |
342 | dst.bottomRows(rows()-m_shift-actual_k) |
343 | .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
344 | } |
345 | } |
346 | } |
347 | |
348 | /** \brief Computes the product of a Householder sequence with a matrix. |
349 | * \param[in] other %Matrix being multiplied. |
350 | * \returns Expression object representing the product. |
351 | * |
352 | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this |
353 | * and \f$ M \f$ is the matrix \p other. |
354 | */ |
355 | template<typename OtherDerived> |
356 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const |
357 | { |
358 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type |
359 | res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); |
360 | applyThisOnTheLeft(res); |
361 | return res; |
362 | } |
363 | |
364 | template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; |
365 | |
366 | /** \brief Sets the length of the Householder sequence. |
367 | * \param [in] length New value for the length. |
368 | * |
369 | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set |
370 | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that |
371 | * is smaller. After this function is called, the length equals \p length. |
372 | * |
373 | * \sa length() |
374 | */ |
375 | HouseholderSequence& setLength(Index length) |
376 | { |
377 | m_length = length; |
378 | return *this; |
379 | } |
380 | |
381 | /** \brief Sets the shift of the Householder sequence. |
382 | * \param [in] shift New value for the shift. |
383 | * |
384 | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th |
385 | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder |
386 | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} |
387 | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th |
388 | * Householder reflection. |
389 | * |
390 | * \sa shift() |
391 | */ |
392 | HouseholderSequence& setShift(Index shift) |
393 | { |
394 | m_shift = shift; |
395 | return *this; |
396 | } |
397 | |
398 | Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ |
399 | Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ |
400 | |
401 | /* Necessary for .adjoint() and .conjugate() */ |
402 | template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; |
403 | |
404 | protected: |
405 | |
406 | /** \brief Sets the transpose flag. |
407 | * \param [in] trans New value of the transpose flag. |
408 | * |
409 | * By default, the transpose flag is not set. If the transpose flag is set, then this object represents |
410 | * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. |
411 | * |
412 | * \sa trans() |
413 | */ |
414 | HouseholderSequence& setTrans(bool trans) |
415 | { |
416 | m_trans = trans; |
417 | return *this; |
418 | } |
419 | |
420 | bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */ |
421 | |
422 | typename VectorsType::Nested m_vectors; |
423 | typename CoeffsType::Nested m_coeffs; |
424 | bool m_trans; |
425 | Index m_length; |
426 | Index m_shift; |
427 | }; |
428 | |
429 | /** \brief Computes the product of a matrix with a Householder sequence. |
430 | * \param[in] other %Matrix being multiplied. |
431 | * \param[in] h %HouseholderSequence being multiplied. |
432 | * \returns Expression object representing the product. |
433 | * |
434 | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the |
435 | * Householder sequence represented by \p h. |
436 | */ |
437 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> |
438 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) |
439 | { |
440 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type |
441 | res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); |
442 | h.applyThisOnTheRight(res); |
443 | return res; |
444 | } |
445 | |
446 | /** \ingroup Householder_Module \householder_module |
447 | * \brief Convenience function for constructing a Householder sequence. |
448 | * \returns A HouseholderSequence constructed from the specified arguments. |
449 | */ |
450 | template<typename VectorsType, typename CoeffsType> |
451 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) |
452 | { |
453 | return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); |
454 | } |
455 | |
456 | /** \ingroup Householder_Module \householder_module |
457 | * \brief Convenience function for constructing a Householder sequence. |
458 | * \returns A HouseholderSequence constructed from the specified arguments. |
459 | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of |
460 | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. |
461 | */ |
462 | template<typename VectorsType, typename CoeffsType> |
463 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) |
464 | { |
465 | return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); |
466 | } |
467 | |
468 | } // end namespace Eigen |
469 | |
470 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H |
471 | |