| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_HOUSEHOLDER_SEQUENCE_H |
| 12 | #define EIGEN_HOUSEHOLDER_SEQUENCE_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | /** \ingroup Householder_Module |
| 17 | * \householder_module |
| 18 | * \class HouseholderSequence |
| 19 | * \brief Sequence of Householder reflections acting on subspaces with decreasing size |
| 20 | * \tparam VectorsType type of matrix containing the Householder vectors |
| 21 | * \tparam CoeffsType type of vector containing the Householder coefficients |
| 22 | * \tparam Side either OnTheLeft (the default) or OnTheRight |
| 23 | * |
| 24 | * This class represents a product sequence of Householder reflections where the first Householder reflection |
| 25 | * acts on the whole space, the second Householder reflection leaves the one-dimensional subspace spanned by |
| 26 | * the first unit vector invariant, the third Householder reflection leaves the two-dimensional subspace |
| 27 | * spanned by the first two unit vectors invariant, and so on up to the last reflection which leaves all but |
| 28 | * one dimensions invariant and acts only on the last dimension. Such sequences of Householder reflections |
| 29 | * are used in several algorithms to zero out certain parts of a matrix. Indeed, the methods |
| 30 | * HessenbergDecomposition::matrixQ(), Tridiagonalization::matrixQ(), HouseholderQR::householderQ(), |
| 31 | * and ColPivHouseholderQR::householderQ() all return a %HouseholderSequence. |
| 32 | * |
| 33 | * More precisely, the class %HouseholderSequence represents an \f$ n \times n \f$ matrix \f$ H \f$ of the |
| 34 | * form \f$ H = \prod_{i=0}^{n-1} H_i \f$ where the i-th Householder reflection is \f$ H_i = I - h_i v_i |
| 35 | * v_i^* \f$. The i-th Householder coefficient \f$ h_i \f$ is a scalar and the i-th Householder vector \f$ |
| 36 | * v_i \f$ is a vector of the form |
| 37 | * \f[ |
| 38 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
| 39 | * \f] |
| 40 | * The last \f$ n-i \f$ entries of \f$ v_i \f$ are called the essential part of the Householder vector. |
| 41 | * |
| 42 | * Typical usages are listed below, where H is a HouseholderSequence: |
| 43 | * \code |
| 44 | * A.applyOnTheRight(H); // A = A * H |
| 45 | * A.applyOnTheLeft(H); // A = H * A |
| 46 | * A.applyOnTheRight(H.adjoint()); // A = A * H^* |
| 47 | * A.applyOnTheLeft(H.adjoint()); // A = H^* * A |
| 48 | * MatrixXd Q = H; // conversion to a dense matrix |
| 49 | * \endcode |
| 50 | * In addition to the adjoint, you can also apply the inverse (=adjoint), the transpose, and the conjugate operators. |
| 51 | * |
| 52 | * See the documentation for HouseholderSequence(const VectorsType&, const CoeffsType&) for an example. |
| 53 | * |
| 54 | * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() |
| 55 | */ |
| 56 | |
| 57 | namespace internal { |
| 58 | |
| 59 | template<typename VectorsType, typename CoeffsType, int Side> |
| 60 | struct traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| 61 | { |
| 62 | typedef typename VectorsType::Scalar Scalar; |
| 63 | typedef typename VectorsType::StorageIndex StorageIndex; |
| 64 | typedef typename VectorsType::StorageKind StorageKind; |
| 65 | enum { |
| 66 | RowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::RowsAtCompileTime |
| 67 | : traits<VectorsType>::ColsAtCompileTime, |
| 68 | ColsAtCompileTime = RowsAtCompileTime, |
| 69 | MaxRowsAtCompileTime = Side==OnTheLeft ? traits<VectorsType>::MaxRowsAtCompileTime |
| 70 | : traits<VectorsType>::MaxColsAtCompileTime, |
| 71 | MaxColsAtCompileTime = MaxRowsAtCompileTime, |
| 72 | Flags = 0 |
| 73 | }; |
| 74 | }; |
| 75 | |
| 76 | struct HouseholderSequenceShape {}; |
| 77 | |
| 78 | template<typename VectorsType, typename CoeffsType, int Side> |
| 79 | struct evaluator_traits<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| 80 | : public evaluator_traits_base<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| 81 | { |
| 82 | typedef HouseholderSequenceShape Shape; |
| 83 | }; |
| 84 | |
| 85 | template<typename VectorsType, typename CoeffsType, int Side> |
| 86 | struct hseq_side_dependent_impl |
| 87 | { |
| 88 | typedef Block<const VectorsType, Dynamic, 1> EssentialVectorType; |
| 89 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheLeft> HouseholderSequenceType; |
| 90 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
| 91 | { |
| 92 | Index start = k+1+h.m_shift; |
| 93 | return Block<const VectorsType,Dynamic,1>(h.m_vectors, start, k, h.rows()-start, 1); |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | template<typename VectorsType, typename CoeffsType> |
| 98 | struct hseq_side_dependent_impl<VectorsType, CoeffsType, OnTheRight> |
| 99 | { |
| 100 | typedef Transpose<Block<const VectorsType, 1, Dynamic> > EssentialVectorType; |
| 101 | typedef HouseholderSequence<VectorsType, CoeffsType, OnTheRight> HouseholderSequenceType; |
| 102 | static inline const EssentialVectorType essentialVector(const HouseholderSequenceType& h, Index k) |
| 103 | { |
| 104 | Index start = k+1+h.m_shift; |
| 105 | return Block<const VectorsType,1,Dynamic>(h.m_vectors, k, start, 1, h.rows()-start).transpose(); |
| 106 | } |
| 107 | }; |
| 108 | |
| 109 | template<typename OtherScalarType, typename MatrixType> struct matrix_type_times_scalar_type |
| 110 | { |
| 111 | typedef typename ScalarBinaryOpTraits<OtherScalarType, typename MatrixType::Scalar>::ReturnType |
| 112 | ResultScalar; |
| 113 | typedef Matrix<ResultScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
| 114 | 0, MatrixType::MaxRowsAtCompileTime, MatrixType::MaxColsAtCompileTime> Type; |
| 115 | }; |
| 116 | |
| 117 | } // end namespace internal |
| 118 | |
| 119 | template<typename VectorsType, typename CoeffsType, int Side> class HouseholderSequence |
| 120 | : public EigenBase<HouseholderSequence<VectorsType,CoeffsType,Side> > |
| 121 | { |
| 122 | typedef typename internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::EssentialVectorType EssentialVectorType; |
| 123 | |
| 124 | public: |
| 125 | enum { |
| 126 | RowsAtCompileTime = internal::traits<HouseholderSequence>::RowsAtCompileTime, |
| 127 | ColsAtCompileTime = internal::traits<HouseholderSequence>::ColsAtCompileTime, |
| 128 | MaxRowsAtCompileTime = internal::traits<HouseholderSequence>::MaxRowsAtCompileTime, |
| 129 | MaxColsAtCompileTime = internal::traits<HouseholderSequence>::MaxColsAtCompileTime |
| 130 | }; |
| 131 | typedef typename internal::traits<HouseholderSequence>::Scalar Scalar; |
| 132 | |
| 133 | typedef HouseholderSequence< |
| 134 | typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| 135 | typename internal::remove_all<typename VectorsType::ConjugateReturnType>::type, |
| 136 | VectorsType>::type, |
| 137 | typename internal::conditional<NumTraits<Scalar>::IsComplex, |
| 138 | typename internal::remove_all<typename CoeffsType::ConjugateReturnType>::type, |
| 139 | CoeffsType>::type, |
| 140 | Side |
| 141 | > ConjugateReturnType; |
| 142 | |
| 143 | /** \brief Constructor. |
| 144 | * \param[in] v %Matrix containing the essential parts of the Householder vectors |
| 145 | * \param[in] h Vector containing the Householder coefficients |
| 146 | * |
| 147 | * Constructs the Householder sequence with coefficients given by \p h and vectors given by \p v. The |
| 148 | * i-th Householder coefficient \f$ h_i \f$ is given by \p h(i) and the essential part of the i-th |
| 149 | * Householder vector \f$ v_i \f$ is given by \p v(k,i) with \p k > \p i (the subdiagonal part of the |
| 150 | * i-th column). If \p v has fewer columns than rows, then the Householder sequence contains as many |
| 151 | * Householder reflections as there are columns. |
| 152 | * |
| 153 | * \note The %HouseholderSequence object stores \p v and \p h by reference. |
| 154 | * |
| 155 | * Example: \include HouseholderSequence_HouseholderSequence.cpp |
| 156 | * Output: \verbinclude HouseholderSequence_HouseholderSequence.out |
| 157 | * |
| 158 | * \sa setLength(), setShift() |
| 159 | */ |
| 160 | HouseholderSequence(const VectorsType& v, const CoeffsType& h) |
| 161 | : m_vectors(v), m_coeffs(h), m_trans(false), m_length(v.diagonalSize()), |
| 162 | m_shift(0) |
| 163 | { |
| 164 | } |
| 165 | |
| 166 | /** \brief Copy constructor. */ |
| 167 | HouseholderSequence(const HouseholderSequence& other) |
| 168 | : m_vectors(other.m_vectors), |
| 169 | m_coeffs(other.m_coeffs), |
| 170 | m_trans(other.m_trans), |
| 171 | m_length(other.m_length), |
| 172 | m_shift(other.m_shift) |
| 173 | { |
| 174 | } |
| 175 | |
| 176 | /** \brief Number of rows of transformation viewed as a matrix. |
| 177 | * \returns Number of rows |
| 178 | * \details This equals the dimension of the space that the transformation acts on. |
| 179 | */ |
| 180 | Index rows() const { return Side==OnTheLeft ? m_vectors.rows() : m_vectors.cols(); } |
| 181 | |
| 182 | /** \brief Number of columns of transformation viewed as a matrix. |
| 183 | * \returns Number of columns |
| 184 | * \details This equals the dimension of the space that the transformation acts on. |
| 185 | */ |
| 186 | Index cols() const { return rows(); } |
| 187 | |
| 188 | /** \brief Essential part of a Householder vector. |
| 189 | * \param[in] k Index of Householder reflection |
| 190 | * \returns Vector containing non-trivial entries of k-th Householder vector |
| 191 | * |
| 192 | * This function returns the essential part of the Householder vector \f$ v_i \f$. This is a vector of |
| 193 | * length \f$ n-i \f$ containing the last \f$ n-i \f$ entries of the vector |
| 194 | * \f[ |
| 195 | * v_i = [\underbrace{0, \ldots, 0}_{i-1\mbox{ zeros}}, 1, \underbrace{*, \ldots,*}_{n-i\mbox{ arbitrary entries}} ]. |
| 196 | * \f] |
| 197 | * The index \f$ i \f$ equals \p k + shift(), corresponding to the k-th column of the matrix \p v |
| 198 | * passed to the constructor. |
| 199 | * |
| 200 | * \sa setShift(), shift() |
| 201 | */ |
| 202 | const EssentialVectorType essentialVector(Index k) const |
| 203 | { |
| 204 | eigen_assert(k >= 0 && k < m_length); |
| 205 | return internal::hseq_side_dependent_impl<VectorsType,CoeffsType,Side>::essentialVector(*this, k); |
| 206 | } |
| 207 | |
| 208 | /** \brief %Transpose of the Householder sequence. */ |
| 209 | HouseholderSequence transpose() const |
| 210 | { |
| 211 | return HouseholderSequence(*this).setTrans(!m_trans); |
| 212 | } |
| 213 | |
| 214 | /** \brief Complex conjugate of the Householder sequence. */ |
| 215 | ConjugateReturnType conjugate() const |
| 216 | { |
| 217 | return ConjugateReturnType(m_vectors.conjugate(), m_coeffs.conjugate()) |
| 218 | .setTrans(m_trans) |
| 219 | .setLength(m_length) |
| 220 | .setShift(m_shift); |
| 221 | } |
| 222 | |
| 223 | /** \brief Adjoint (conjugate transpose) of the Householder sequence. */ |
| 224 | ConjugateReturnType adjoint() const |
| 225 | { |
| 226 | return conjugate().setTrans(!m_trans); |
| 227 | } |
| 228 | |
| 229 | /** \brief Inverse of the Householder sequence (equals the adjoint). */ |
| 230 | ConjugateReturnType inverse() const { return adjoint(); } |
| 231 | |
| 232 | /** \internal */ |
| 233 | template<typename DestType> inline void evalTo(DestType& dst) const |
| 234 | { |
| 235 | Matrix<Scalar, DestType::RowsAtCompileTime, 1, |
| 236 | AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> workspace(rows()); |
| 237 | evalTo(dst, workspace); |
| 238 | } |
| 239 | |
| 240 | /** \internal */ |
| 241 | template<typename Dest, typename Workspace> |
| 242 | void evalTo(Dest& dst, Workspace& workspace) const |
| 243 | { |
| 244 | workspace.resize(rows()); |
| 245 | Index vecs = m_length; |
| 246 | if(internal::is_same_dense(dst,m_vectors)) |
| 247 | { |
| 248 | // in-place |
| 249 | dst.diagonal().setOnes(); |
| 250 | dst.template triangularView<StrictlyUpper>().setZero(); |
| 251 | for(Index k = vecs-1; k >= 0; --k) |
| 252 | { |
| 253 | Index cornerSize = rows() - k - m_shift; |
| 254 | if(m_trans) |
| 255 | dst.bottomRightCorner(cornerSize, cornerSize) |
| 256 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
| 257 | else |
| 258 | dst.bottomRightCorner(cornerSize, cornerSize) |
| 259 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), workspace.data()); |
| 260 | |
| 261 | // clear the off diagonal vector |
| 262 | dst.col(k).tail(rows()-k-1).setZero(); |
| 263 | } |
| 264 | // clear the remaining columns if needed |
| 265 | for(Index k = 0; k<cols()-vecs ; ++k) |
| 266 | dst.col(k).tail(rows()-k-1).setZero(); |
| 267 | } |
| 268 | else |
| 269 | { |
| 270 | dst.setIdentity(rows(), rows()); |
| 271 | for(Index k = vecs-1; k >= 0; --k) |
| 272 | { |
| 273 | Index cornerSize = rows() - k - m_shift; |
| 274 | if(m_trans) |
| 275 | dst.bottomRightCorner(cornerSize, cornerSize) |
| 276 | .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
| 277 | else |
| 278 | dst.bottomRightCorner(cornerSize, cornerSize) |
| 279 | .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &workspace.coeffRef(0)); |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | /** \internal */ |
| 285 | template<typename Dest> inline void applyThisOnTheRight(Dest& dst) const |
| 286 | { |
| 287 | Matrix<Scalar,1,Dest::RowsAtCompileTime,RowMajor,1,Dest::MaxRowsAtCompileTime> workspace(dst.rows()); |
| 288 | applyThisOnTheRight(dst, workspace); |
| 289 | } |
| 290 | |
| 291 | /** \internal */ |
| 292 | template<typename Dest, typename Workspace> |
| 293 | inline void applyThisOnTheRight(Dest& dst, Workspace& workspace) const |
| 294 | { |
| 295 | workspace.resize(dst.rows()); |
| 296 | for(Index k = 0; k < m_length; ++k) |
| 297 | { |
| 298 | Index actual_k = m_trans ? m_length-k-1 : k; |
| 299 | dst.rightCols(rows()-m_shift-actual_k) |
| 300 | .applyHouseholderOnTheRight(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | /** \internal */ |
| 305 | template<typename Dest> inline void applyThisOnTheLeft(Dest& dst) const |
| 306 | { |
| 307 | Matrix<Scalar,1,Dest::ColsAtCompileTime,RowMajor,1,Dest::MaxColsAtCompileTime> workspace; |
| 308 | applyThisOnTheLeft(dst, workspace); |
| 309 | } |
| 310 | |
| 311 | /** \internal */ |
| 312 | template<typename Dest, typename Workspace> |
| 313 | inline void applyThisOnTheLeft(Dest& dst, Workspace& workspace) const |
| 314 | { |
| 315 | const Index BlockSize = 48; |
| 316 | // if the entries are large enough, then apply the reflectors by block |
| 317 | if(m_length>=BlockSize && dst.cols()>1) |
| 318 | { |
| 319 | for(Index i = 0; i < m_length; i+=BlockSize) |
| 320 | { |
| 321 | Index end = m_trans ? (std::min)(m_length,i+BlockSize) : m_length-i; |
| 322 | Index k = m_trans ? i : (std::max)(Index(0),end-BlockSize); |
| 323 | Index bs = end-k; |
| 324 | Index start = k + m_shift; |
| 325 | |
| 326 | typedef Block<typename internal::remove_all<VectorsType>::type,Dynamic,Dynamic> SubVectorsType; |
| 327 | SubVectorsType sub_vecs1(m_vectors.const_cast_derived(), Side==OnTheRight ? k : start, |
| 328 | Side==OnTheRight ? start : k, |
| 329 | Side==OnTheRight ? bs : m_vectors.rows()-start, |
| 330 | Side==OnTheRight ? m_vectors.cols()-start : bs); |
| 331 | typename internal::conditional<Side==OnTheRight, Transpose<SubVectorsType>, SubVectorsType&>::type sub_vecs(sub_vecs1); |
| 332 | Block<Dest,Dynamic,Dynamic> sub_dst(dst,dst.rows()-rows()+m_shift+k,0, rows()-m_shift-k,dst.cols()); |
| 333 | apply_block_householder_on_the_left(sub_dst, sub_vecs, m_coeffs.segment(k, bs), !m_trans); |
| 334 | } |
| 335 | } |
| 336 | else |
| 337 | { |
| 338 | workspace.resize(dst.cols()); |
| 339 | for(Index k = 0; k < m_length; ++k) |
| 340 | { |
| 341 | Index actual_k = m_trans ? k : m_length-k-1; |
| 342 | dst.bottomRows(rows()-m_shift-actual_k) |
| 343 | .applyHouseholderOnTheLeft(essentialVector(actual_k), m_coeffs.coeff(actual_k), workspace.data()); |
| 344 | } |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /** \brief Computes the product of a Householder sequence with a matrix. |
| 349 | * \param[in] other %Matrix being multiplied. |
| 350 | * \returns Expression object representing the product. |
| 351 | * |
| 352 | * This function computes \f$ HM \f$ where \f$ H \f$ is the Householder sequence represented by \p *this |
| 353 | * and \f$ M \f$ is the matrix \p other. |
| 354 | */ |
| 355 | template<typename OtherDerived> |
| 356 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other) const |
| 357 | { |
| 358 | typename internal::matrix_type_times_scalar_type<Scalar, OtherDerived>::Type |
| 359 | res(other.template cast<typename internal::matrix_type_times_scalar_type<Scalar,OtherDerived>::ResultScalar>()); |
| 360 | applyThisOnTheLeft(res); |
| 361 | return res; |
| 362 | } |
| 363 | |
| 364 | template<typename _VectorsType, typename _CoeffsType, int _Side> friend struct internal::hseq_side_dependent_impl; |
| 365 | |
| 366 | /** \brief Sets the length of the Householder sequence. |
| 367 | * \param [in] length New value for the length. |
| 368 | * |
| 369 | * By default, the length \f$ n \f$ of the Householder sequence \f$ H = H_0 H_1 \ldots H_{n-1} \f$ is set |
| 370 | * to the number of columns of the matrix \p v passed to the constructor, or the number of rows if that |
| 371 | * is smaller. After this function is called, the length equals \p length. |
| 372 | * |
| 373 | * \sa length() |
| 374 | */ |
| 375 | HouseholderSequence& setLength(Index length) |
| 376 | { |
| 377 | m_length = length; |
| 378 | return *this; |
| 379 | } |
| 380 | |
| 381 | /** \brief Sets the shift of the Householder sequence. |
| 382 | * \param [in] shift New value for the shift. |
| 383 | * |
| 384 | * By default, a %HouseholderSequence object represents \f$ H = H_0 H_1 \ldots H_{n-1} \f$ and the i-th |
| 385 | * column of the matrix \p v passed to the constructor corresponds to the i-th Householder |
| 386 | * reflection. After this function is called, the object represents \f$ H = H_{\mathrm{shift}} |
| 387 | * H_{\mathrm{shift}+1} \ldots H_{n-1} \f$ and the i-th column of \p v corresponds to the (shift+i)-th |
| 388 | * Householder reflection. |
| 389 | * |
| 390 | * \sa shift() |
| 391 | */ |
| 392 | HouseholderSequence& setShift(Index shift) |
| 393 | { |
| 394 | m_shift = shift; |
| 395 | return *this; |
| 396 | } |
| 397 | |
| 398 | Index length() const { return m_length; } /**< \brief Returns the length of the Householder sequence. */ |
| 399 | Index shift() const { return m_shift; } /**< \brief Returns the shift of the Householder sequence. */ |
| 400 | |
| 401 | /* Necessary for .adjoint() and .conjugate() */ |
| 402 | template <typename VectorsType2, typename CoeffsType2, int Side2> friend class HouseholderSequence; |
| 403 | |
| 404 | protected: |
| 405 | |
| 406 | /** \brief Sets the transpose flag. |
| 407 | * \param [in] trans New value of the transpose flag. |
| 408 | * |
| 409 | * By default, the transpose flag is not set. If the transpose flag is set, then this object represents |
| 410 | * \f$ H^T = H_{n-1}^T \ldots H_1^T H_0^T \f$ instead of \f$ H = H_0 H_1 \ldots H_{n-1} \f$. |
| 411 | * |
| 412 | * \sa trans() |
| 413 | */ |
| 414 | HouseholderSequence& setTrans(bool trans) |
| 415 | { |
| 416 | m_trans = trans; |
| 417 | return *this; |
| 418 | } |
| 419 | |
| 420 | bool trans() const { return m_trans; } /**< \brief Returns the transpose flag. */ |
| 421 | |
| 422 | typename VectorsType::Nested m_vectors; |
| 423 | typename CoeffsType::Nested m_coeffs; |
| 424 | bool m_trans; |
| 425 | Index m_length; |
| 426 | Index m_shift; |
| 427 | }; |
| 428 | |
| 429 | /** \brief Computes the product of a matrix with a Householder sequence. |
| 430 | * \param[in] other %Matrix being multiplied. |
| 431 | * \param[in] h %HouseholderSequence being multiplied. |
| 432 | * \returns Expression object representing the product. |
| 433 | * |
| 434 | * This function computes \f$ MH \f$ where \f$ M \f$ is the matrix \p other and \f$ H \f$ is the |
| 435 | * Householder sequence represented by \p h. |
| 436 | */ |
| 437 | template<typename OtherDerived, typename VectorsType, typename CoeffsType, int Side> |
| 438 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type operator*(const MatrixBase<OtherDerived>& other, const HouseholderSequence<VectorsType,CoeffsType,Side>& h) |
| 439 | { |
| 440 | typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::Type |
| 441 | res(other.template cast<typename internal::matrix_type_times_scalar_type<typename VectorsType::Scalar,OtherDerived>::ResultScalar>()); |
| 442 | h.applyThisOnTheRight(res); |
| 443 | return res; |
| 444 | } |
| 445 | |
| 446 | /** \ingroup Householder_Module \householder_module |
| 447 | * \brief Convenience function for constructing a Householder sequence. |
| 448 | * \returns A HouseholderSequence constructed from the specified arguments. |
| 449 | */ |
| 450 | template<typename VectorsType, typename CoeffsType> |
| 451 | HouseholderSequence<VectorsType,CoeffsType> householderSequence(const VectorsType& v, const CoeffsType& h) |
| 452 | { |
| 453 | return HouseholderSequence<VectorsType,CoeffsType,OnTheLeft>(v, h); |
| 454 | } |
| 455 | |
| 456 | /** \ingroup Householder_Module \householder_module |
| 457 | * \brief Convenience function for constructing a Householder sequence. |
| 458 | * \returns A HouseholderSequence constructed from the specified arguments. |
| 459 | * \details This function differs from householderSequence() in that the template argument \p OnTheSide of |
| 460 | * the constructed HouseholderSequence is set to OnTheRight, instead of the default OnTheLeft. |
| 461 | */ |
| 462 | template<typename VectorsType, typename CoeffsType> |
| 463 | HouseholderSequence<VectorsType,CoeffsType,OnTheRight> rightHouseholderSequence(const VectorsType& v, const CoeffsType& h) |
| 464 | { |
| 465 | return HouseholderSequence<VectorsType,CoeffsType,OnTheRight>(v, h); |
| 466 | } |
| 467 | |
| 468 | } // end namespace Eigen |
| 469 | |
| 470 | #endif // EIGEN_HOUSEHOLDER_SEQUENCE_H |
| 471 | |