1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // Copyright (C) 2011-2012 Jitse Niesen <jitse@maths.leeds.ac.uk> |
7 | // |
8 | // This Source Code Form is subject to the terms of the Mozilla |
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
11 | |
12 | |
13 | #ifndef EIGEN_COREEVALUATORS_H |
14 | #define EIGEN_COREEVALUATORS_H |
15 | |
16 | namespace Eigen { |
17 | |
18 | namespace internal { |
19 | |
20 | // This class returns the evaluator kind from the expression storage kind. |
21 | // Default assumes index based accessors |
22 | template<typename StorageKind> |
23 | struct storage_kind_to_evaluator_kind { |
24 | typedef IndexBased Kind; |
25 | }; |
26 | |
27 | // This class returns the evaluator shape from the expression storage kind. |
28 | // It can be Dense, Sparse, Triangular, Diagonal, SelfAdjoint, Band, etc. |
29 | template<typename StorageKind> struct storage_kind_to_shape; |
30 | |
31 | template<> struct storage_kind_to_shape<Dense> { typedef DenseShape Shape; }; |
32 | template<> struct storage_kind_to_shape<SolverStorage> { typedef SolverShape Shape; }; |
33 | template<> struct storage_kind_to_shape<PermutationStorage> { typedef PermutationShape Shape; }; |
34 | template<> struct storage_kind_to_shape<TranspositionsStorage> { typedef TranspositionsShape Shape; }; |
35 | |
36 | // Evaluators have to be specialized with respect to various criteria such as: |
37 | // - storage/structure/shape |
38 | // - scalar type |
39 | // - etc. |
40 | // Therefore, we need specialization of evaluator providing additional template arguments for each kind of evaluators. |
41 | // We currently distinguish the following kind of evaluators: |
42 | // - unary_evaluator for expressions taking only one arguments (CwiseUnaryOp, CwiseUnaryView, Transpose, MatrixWrapper, ArrayWrapper, Reverse, Replicate) |
43 | // - binary_evaluator for expression taking two arguments (CwiseBinaryOp) |
44 | // - ternary_evaluator for expression taking three arguments (CwiseTernaryOp) |
45 | // - product_evaluator for linear algebra products (Product); special case of binary_evaluator because it requires additional tags for dispatching. |
46 | // - mapbase_evaluator for Map, Block, Ref |
47 | // - block_evaluator for Block (special dispatching to a mapbase_evaluator or unary_evaluator) |
48 | |
49 | template< typename T, |
50 | typename Arg1Kind = typename evaluator_traits<typename T::Arg1>::Kind, |
51 | typename Arg2Kind = typename evaluator_traits<typename T::Arg2>::Kind, |
52 | typename Arg3Kind = typename evaluator_traits<typename T::Arg3>::Kind, |
53 | typename Arg1Scalar = typename traits<typename T::Arg1>::Scalar, |
54 | typename Arg2Scalar = typename traits<typename T::Arg2>::Scalar, |
55 | typename Arg3Scalar = typename traits<typename T::Arg3>::Scalar> struct ternary_evaluator; |
56 | |
57 | template< typename T, |
58 | typename LhsKind = typename evaluator_traits<typename T::Lhs>::Kind, |
59 | typename RhsKind = typename evaluator_traits<typename T::Rhs>::Kind, |
60 | typename LhsScalar = typename traits<typename T::Lhs>::Scalar, |
61 | typename RhsScalar = typename traits<typename T::Rhs>::Scalar> struct binary_evaluator; |
62 | |
63 | template< typename T, |
64 | typename Kind = typename evaluator_traits<typename T::NestedExpression>::Kind, |
65 | typename Scalar = typename T::Scalar> struct unary_evaluator; |
66 | |
67 | // evaluator_traits<T> contains traits for evaluator<T> |
68 | |
69 | template<typename T> |
70 | struct evaluator_traits_base |
71 | { |
72 | // by default, get evaluator kind and shape from storage |
73 | typedef typename storage_kind_to_evaluator_kind<typename traits<T>::StorageKind>::Kind Kind; |
74 | typedef typename storage_kind_to_shape<typename traits<T>::StorageKind>::Shape Shape; |
75 | }; |
76 | |
77 | // Default evaluator traits |
78 | template<typename T> |
79 | struct evaluator_traits : public evaluator_traits_base<T> |
80 | { |
81 | }; |
82 | |
83 | template<typename T, typename Shape = typename evaluator_traits<T>::Shape > |
84 | struct evaluator_assume_aliasing { |
85 | static const bool value = false; |
86 | }; |
87 | |
88 | // By default, we assume a unary expression: |
89 | template<typename T> |
90 | struct evaluator : public unary_evaluator<T> |
91 | { |
92 | typedef unary_evaluator<T> Base; |
93 | EIGEN_DEVICE_FUNC explicit evaluator(const T& xpr) : Base(xpr) {} |
94 | }; |
95 | |
96 | |
97 | // TODO: Think about const-correctness |
98 | template<typename T> |
99 | struct evaluator<const T> |
100 | : evaluator<T> |
101 | { |
102 | EIGEN_DEVICE_FUNC |
103 | explicit evaluator(const T& xpr) : evaluator<T>(xpr) {} |
104 | }; |
105 | |
106 | // ---------- base class for all evaluators ---------- |
107 | |
108 | template<typename ExpressionType> |
109 | struct evaluator_base : public noncopyable |
110 | { |
111 | // TODO that's not very nice to have to propagate all these traits. They are currently only needed to handle outer,inner indices. |
112 | typedef traits<ExpressionType> ExpressionTraits; |
113 | |
114 | enum { |
115 | Alignment = 0 |
116 | }; |
117 | }; |
118 | |
119 | // -------------------- Matrix and Array -------------------- |
120 | // |
121 | // evaluator<PlainObjectBase> is a common base class for the |
122 | // Matrix and Array evaluators. |
123 | // Here we directly specialize evaluator. This is not really a unary expression, and it is, by definition, dense, |
124 | // so no need for more sophisticated dispatching. |
125 | |
126 | template<typename Derived> |
127 | struct evaluator<PlainObjectBase<Derived> > |
128 | : evaluator_base<Derived> |
129 | { |
130 | typedef PlainObjectBase<Derived> PlainObjectType; |
131 | typedef typename PlainObjectType::Scalar Scalar; |
132 | typedef typename PlainObjectType::CoeffReturnType CoeffReturnType; |
133 | |
134 | enum { |
135 | IsRowMajor = PlainObjectType::IsRowMajor, |
136 | IsVectorAtCompileTime = PlainObjectType::IsVectorAtCompileTime, |
137 | RowsAtCompileTime = PlainObjectType::RowsAtCompileTime, |
138 | ColsAtCompileTime = PlainObjectType::ColsAtCompileTime, |
139 | |
140 | CoeffReadCost = NumTraits<Scalar>::ReadCost, |
141 | Flags = traits<Derived>::EvaluatorFlags, |
142 | Alignment = traits<Derived>::Alignment |
143 | }; |
144 | |
145 | EIGEN_DEVICE_FUNC evaluator() |
146 | : m_data(0), |
147 | m_outerStride(IsVectorAtCompileTime ? 0 |
148 | : int(IsRowMajor) ? ColsAtCompileTime |
149 | : RowsAtCompileTime) |
150 | { |
151 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
152 | } |
153 | |
154 | EIGEN_DEVICE_FUNC explicit evaluator(const PlainObjectType& m) |
155 | : m_data(m.data()), m_outerStride(IsVectorAtCompileTime ? 0 : m.outerStride()) |
156 | { |
157 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
158 | } |
159 | |
160 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
161 | CoeffReturnType coeff(Index row, Index col) const |
162 | { |
163 | if (IsRowMajor) |
164 | return m_data[row * m_outerStride.value() + col]; |
165 | else |
166 | return m_data[row + col * m_outerStride.value()]; |
167 | } |
168 | |
169 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
170 | CoeffReturnType coeff(Index index) const |
171 | { |
172 | return m_data[index]; |
173 | } |
174 | |
175 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
176 | Scalar& coeffRef(Index row, Index col) |
177 | { |
178 | if (IsRowMajor) |
179 | return const_cast<Scalar*>(m_data)[row * m_outerStride.value() + col]; |
180 | else |
181 | return const_cast<Scalar*>(m_data)[row + col * m_outerStride.value()]; |
182 | } |
183 | |
184 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
185 | Scalar& coeffRef(Index index) |
186 | { |
187 | return const_cast<Scalar*>(m_data)[index]; |
188 | } |
189 | |
190 | template<int LoadMode, typename PacketType> |
191 | EIGEN_STRONG_INLINE |
192 | PacketType packet(Index row, Index col) const |
193 | { |
194 | if (IsRowMajor) |
195 | return ploadt<PacketType, LoadMode>(m_data + row * m_outerStride.value() + col); |
196 | else |
197 | return ploadt<PacketType, LoadMode>(m_data + row + col * m_outerStride.value()); |
198 | } |
199 | |
200 | template<int LoadMode, typename PacketType> |
201 | EIGEN_STRONG_INLINE |
202 | PacketType packet(Index index) const |
203 | { |
204 | return ploadt<PacketType, LoadMode>(m_data + index); |
205 | } |
206 | |
207 | template<int StoreMode,typename PacketType> |
208 | EIGEN_STRONG_INLINE |
209 | void writePacket(Index row, Index col, const PacketType& x) |
210 | { |
211 | if (IsRowMajor) |
212 | return pstoret<Scalar, PacketType, StoreMode> |
213 | (const_cast<Scalar*>(m_data) + row * m_outerStride.value() + col, x); |
214 | else |
215 | return pstoret<Scalar, PacketType, StoreMode> |
216 | (const_cast<Scalar*>(m_data) + row + col * m_outerStride.value(), x); |
217 | } |
218 | |
219 | template<int StoreMode, typename PacketType> |
220 | EIGEN_STRONG_INLINE |
221 | void writePacket(Index index, const PacketType& x) |
222 | { |
223 | return pstoret<Scalar, PacketType, StoreMode>(const_cast<Scalar*>(m_data) + index, x); |
224 | } |
225 | |
226 | protected: |
227 | const Scalar *m_data; |
228 | |
229 | // We do not need to know the outer stride for vectors |
230 | variable_if_dynamic<Index, IsVectorAtCompileTime ? 0 |
231 | : int(IsRowMajor) ? ColsAtCompileTime |
232 | : RowsAtCompileTime> m_outerStride; |
233 | }; |
234 | |
235 | template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
236 | struct evaluator<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
237 | : evaluator<PlainObjectBase<Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > > |
238 | { |
239 | typedef Matrix<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType; |
240 | |
241 | EIGEN_DEVICE_FUNC evaluator() {} |
242 | |
243 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) |
244 | : evaluator<PlainObjectBase<XprType> >(m) |
245 | { } |
246 | }; |
247 | |
248 | template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols> |
249 | struct evaluator<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > |
250 | : evaluator<PlainObjectBase<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> > > |
251 | { |
252 | typedef Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> XprType; |
253 | |
254 | EIGEN_DEVICE_FUNC evaluator() {} |
255 | |
256 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& m) |
257 | : evaluator<PlainObjectBase<XprType> >(m) |
258 | { } |
259 | }; |
260 | |
261 | // -------------------- Transpose -------------------- |
262 | |
263 | template<typename ArgType> |
264 | struct unary_evaluator<Transpose<ArgType>, IndexBased> |
265 | : evaluator_base<Transpose<ArgType> > |
266 | { |
267 | typedef Transpose<ArgType> XprType; |
268 | |
269 | enum { |
270 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
271 | Flags = evaluator<ArgType>::Flags ^ RowMajorBit, |
272 | Alignment = evaluator<ArgType>::Alignment |
273 | }; |
274 | |
275 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& t) : m_argImpl(t.nestedExpression()) {} |
276 | |
277 | typedef typename XprType::Scalar Scalar; |
278 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
279 | |
280 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
281 | CoeffReturnType coeff(Index row, Index col) const |
282 | { |
283 | return m_argImpl.coeff(col, row); |
284 | } |
285 | |
286 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
287 | CoeffReturnType coeff(Index index) const |
288 | { |
289 | return m_argImpl.coeff(index); |
290 | } |
291 | |
292 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
293 | Scalar& coeffRef(Index row, Index col) |
294 | { |
295 | return m_argImpl.coeffRef(col, row); |
296 | } |
297 | |
298 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
299 | typename XprType::Scalar& coeffRef(Index index) |
300 | { |
301 | return m_argImpl.coeffRef(index); |
302 | } |
303 | |
304 | template<int LoadMode, typename PacketType> |
305 | EIGEN_STRONG_INLINE |
306 | PacketType packet(Index row, Index col) const |
307 | { |
308 | return m_argImpl.template packet<LoadMode,PacketType>(col, row); |
309 | } |
310 | |
311 | template<int LoadMode, typename PacketType> |
312 | EIGEN_STRONG_INLINE |
313 | PacketType packet(Index index) const |
314 | { |
315 | return m_argImpl.template packet<LoadMode,PacketType>(index); |
316 | } |
317 | |
318 | template<int StoreMode, typename PacketType> |
319 | EIGEN_STRONG_INLINE |
320 | void writePacket(Index row, Index col, const PacketType& x) |
321 | { |
322 | m_argImpl.template writePacket<StoreMode,PacketType>(col, row, x); |
323 | } |
324 | |
325 | template<int StoreMode, typename PacketType> |
326 | EIGEN_STRONG_INLINE |
327 | void writePacket(Index index, const PacketType& x) |
328 | { |
329 | m_argImpl.template writePacket<StoreMode,PacketType>(index, x); |
330 | } |
331 | |
332 | protected: |
333 | evaluator<ArgType> m_argImpl; |
334 | }; |
335 | |
336 | // -------------------- CwiseNullaryOp -------------------- |
337 | // Like Matrix and Array, this is not really a unary expression, so we directly specialize evaluator. |
338 | // Likewise, there is not need to more sophisticated dispatching here. |
339 | |
340 | template<typename Scalar,typename NullaryOp, |
341 | bool has_nullary = has_nullary_operator<NullaryOp>::value, |
342 | bool has_unary = has_unary_operator<NullaryOp>::value, |
343 | bool has_binary = has_binary_operator<NullaryOp>::value> |
344 | struct nullary_wrapper |
345 | { |
346 | template <typename IndexType> |
347 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { return op(i,j); } |
348 | template <typename IndexType> |
349 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } |
350 | |
351 | template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { return op.template packetOp<T>(i,j); } |
352 | template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); } |
353 | }; |
354 | |
355 | template<typename Scalar,typename NullaryOp> |
356 | struct nullary_wrapper<Scalar,NullaryOp,true,false,false> |
357 | { |
358 | template <typename IndexType> |
359 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType=0, IndexType=0) const { return op(); } |
360 | template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType=0, IndexType=0) const { return op.template packetOp<T>(); } |
361 | }; |
362 | |
363 | template<typename Scalar,typename NullaryOp> |
364 | struct nullary_wrapper<Scalar,NullaryOp,false,false,true> |
365 | { |
366 | template <typename IndexType> |
367 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j=0) const { return op(i,j); } |
368 | template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j=0) const { return op.template packetOp<T>(i,j); } |
369 | }; |
370 | |
371 | // We need the following specialization for vector-only functors assigned to a runtime vector, |
372 | // for instance, using linspace and assigning a RowVectorXd to a MatrixXd or even a row of a MatrixXd. |
373 | // In this case, i==0 and j is used for the actual iteration. |
374 | template<typename Scalar,typename NullaryOp> |
375 | struct nullary_wrapper<Scalar,NullaryOp,false,true,false> |
376 | { |
377 | template <typename IndexType> |
378 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { |
379 | eigen_assert(i==0 || j==0); |
380 | return op(i+j); |
381 | } |
382 | template <typename T, typename IndexType> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { |
383 | eigen_assert(i==0 || j==0); |
384 | return op.template packetOp<T>(i+j); |
385 | } |
386 | |
387 | template <typename IndexType> |
388 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { return op(i); } |
389 | template <typename T, typename IndexType> |
390 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { return op.template packetOp<T>(i); } |
391 | }; |
392 | |
393 | template<typename Scalar,typename NullaryOp> |
394 | struct nullary_wrapper<Scalar,NullaryOp,false,false,false> {}; |
395 | |
396 | #if 0 && EIGEN_COMP_MSVC>0 |
397 | // Disable this ugly workaround. This is now handled in traits<Ref>::match, |
398 | // but this piece of code might still become handly if some other weird compilation |
399 | // erros pop up again. |
400 | |
401 | // MSVC exhibits a weird compilation error when |
402 | // compiling: |
403 | // Eigen::MatrixXf A = MatrixXf::Random(3,3); |
404 | // Ref<const MatrixXf> R = 2.f*A; |
405 | // and that has_*ary_operator<scalar_constant_op<float>> have not been instantiated yet. |
406 | // The "problem" is that evaluator<2.f*A> is instantiated by traits<Ref>::match<2.f*A> |
407 | // and at that time has_*ary_operator<T> returns true regardless of T. |
408 | // Then nullary_wrapper is badly instantiated as nullary_wrapper<.,.,true,true,true>. |
409 | // The trick is thus to defer the proper instantiation of nullary_wrapper when coeff(), |
410 | // and packet() are really instantiated as implemented below: |
411 | |
412 | // This is a simple wrapper around Index to enforce the re-instantiation of |
413 | // has_*ary_operator when needed. |
414 | template<typename T> struct nullary_wrapper_workaround_msvc { |
415 | nullary_wrapper_workaround_msvc(const T&); |
416 | operator T()const; |
417 | }; |
418 | |
419 | template<typename Scalar,typename NullaryOp> |
420 | struct nullary_wrapper<Scalar,NullaryOp,true,true,true> |
421 | { |
422 | template <typename IndexType> |
423 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i, IndexType j) const { |
424 | return nullary_wrapper<Scalar,NullaryOp, |
425 | has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
426 | has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
427 | has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i,j); |
428 | } |
429 | template <typename IndexType> |
430 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar operator()(const NullaryOp& op, IndexType i) const { |
431 | return nullary_wrapper<Scalar,NullaryOp, |
432 | has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
433 | has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
434 | has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().operator()(op,i); |
435 | } |
436 | |
437 | template <typename T, typename IndexType> |
438 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i, IndexType j) const { |
439 | return nullary_wrapper<Scalar,NullaryOp, |
440 | has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
441 | has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
442 | has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i,j); |
443 | } |
444 | template <typename T, typename IndexType> |
445 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T packetOp(const NullaryOp& op, IndexType i) const { |
446 | return nullary_wrapper<Scalar,NullaryOp, |
447 | has_nullary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
448 | has_unary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value, |
449 | has_binary_operator<NullaryOp,nullary_wrapper_workaround_msvc<IndexType> >::value>().template packetOp<T>(op,i); |
450 | } |
451 | }; |
452 | #endif // MSVC workaround |
453 | |
454 | template<typename NullaryOp, typename PlainObjectType> |
455 | struct evaluator<CwiseNullaryOp<NullaryOp,PlainObjectType> > |
456 | : evaluator_base<CwiseNullaryOp<NullaryOp,PlainObjectType> > |
457 | { |
458 | typedef CwiseNullaryOp<NullaryOp,PlainObjectType> XprType; |
459 | typedef typename internal::remove_all<PlainObjectType>::type PlainObjectTypeCleaned; |
460 | |
461 | enum { |
462 | CoeffReadCost = internal::functor_traits<NullaryOp>::Cost, |
463 | |
464 | Flags = (evaluator<PlainObjectTypeCleaned>::Flags |
465 | & ( HereditaryBits |
466 | | (functor_has_linear_access<NullaryOp>::ret ? LinearAccessBit : 0) |
467 | | (functor_traits<NullaryOp>::PacketAccess ? PacketAccessBit : 0))) |
468 | | (functor_traits<NullaryOp>::IsRepeatable ? 0 : EvalBeforeNestingBit), |
469 | Alignment = AlignedMax |
470 | }; |
471 | |
472 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& n) |
473 | : m_functor(n.functor()), m_wrapper() |
474 | { |
475 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
476 | } |
477 | |
478 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
479 | |
480 | template <typename IndexType> |
481 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
482 | CoeffReturnType coeff(IndexType row, IndexType col) const |
483 | { |
484 | return m_wrapper(m_functor, row, col); |
485 | } |
486 | |
487 | template <typename IndexType> |
488 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
489 | CoeffReturnType coeff(IndexType index) const |
490 | { |
491 | return m_wrapper(m_functor,index); |
492 | } |
493 | |
494 | template<int LoadMode, typename PacketType, typename IndexType> |
495 | EIGEN_STRONG_INLINE |
496 | PacketType packet(IndexType row, IndexType col) const |
497 | { |
498 | return m_wrapper.template packetOp<PacketType>(m_functor, row, col); |
499 | } |
500 | |
501 | template<int LoadMode, typename PacketType, typename IndexType> |
502 | EIGEN_STRONG_INLINE |
503 | PacketType packet(IndexType index) const |
504 | { |
505 | return m_wrapper.template packetOp<PacketType>(m_functor, index); |
506 | } |
507 | |
508 | protected: |
509 | const NullaryOp m_functor; |
510 | const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper; |
511 | }; |
512 | |
513 | // -------------------- CwiseUnaryOp -------------------- |
514 | |
515 | template<typename UnaryOp, typename ArgType> |
516 | struct unary_evaluator<CwiseUnaryOp<UnaryOp, ArgType>, IndexBased > |
517 | : evaluator_base<CwiseUnaryOp<UnaryOp, ArgType> > |
518 | { |
519 | typedef CwiseUnaryOp<UnaryOp, ArgType> XprType; |
520 | |
521 | enum { |
522 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost, |
523 | |
524 | Flags = evaluator<ArgType>::Flags |
525 | & (HereditaryBits | LinearAccessBit | (functor_traits<UnaryOp>::PacketAccess ? PacketAccessBit : 0)), |
526 | Alignment = evaluator<ArgType>::Alignment |
527 | }; |
528 | |
529 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
530 | explicit unary_evaluator(const XprType& op) |
531 | : m_functor(op.functor()), |
532 | m_argImpl(op.nestedExpression()) |
533 | { |
534 | EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost); |
535 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
536 | } |
537 | |
538 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
539 | |
540 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
541 | CoeffReturnType coeff(Index row, Index col) const |
542 | { |
543 | return m_functor(m_argImpl.coeff(row, col)); |
544 | } |
545 | |
546 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
547 | CoeffReturnType coeff(Index index) const |
548 | { |
549 | return m_functor(m_argImpl.coeff(index)); |
550 | } |
551 | |
552 | template<int LoadMode, typename PacketType> |
553 | EIGEN_STRONG_INLINE |
554 | PacketType packet(Index row, Index col) const |
555 | { |
556 | return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(row, col)); |
557 | } |
558 | |
559 | template<int LoadMode, typename PacketType> |
560 | EIGEN_STRONG_INLINE |
561 | PacketType packet(Index index) const |
562 | { |
563 | return m_functor.packetOp(m_argImpl.template packet<LoadMode, PacketType>(index)); |
564 | } |
565 | |
566 | protected: |
567 | const UnaryOp m_functor; |
568 | evaluator<ArgType> m_argImpl; |
569 | }; |
570 | |
571 | // -------------------- CwiseTernaryOp -------------------- |
572 | |
573 | // this is a ternary expression |
574 | template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> |
575 | struct evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
576 | : public ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
577 | { |
578 | typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType; |
579 | typedef ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > Base; |
580 | |
581 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} |
582 | }; |
583 | |
584 | template<typename TernaryOp, typename Arg1, typename Arg2, typename Arg3> |
585 | struct ternary_evaluator<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3>, IndexBased, IndexBased> |
586 | : evaluator_base<CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> > |
587 | { |
588 | typedef CwiseTernaryOp<TernaryOp, Arg1, Arg2, Arg3> XprType; |
589 | |
590 | enum { |
591 | CoeffReadCost = evaluator<Arg1>::CoeffReadCost + evaluator<Arg2>::CoeffReadCost + evaluator<Arg3>::CoeffReadCost + functor_traits<TernaryOp>::Cost, |
592 | |
593 | Arg1Flags = evaluator<Arg1>::Flags, |
594 | Arg2Flags = evaluator<Arg2>::Flags, |
595 | Arg3Flags = evaluator<Arg3>::Flags, |
596 | SameType = is_same<typename Arg1::Scalar,typename Arg2::Scalar>::value && is_same<typename Arg1::Scalar,typename Arg3::Scalar>::value, |
597 | StorageOrdersAgree = (int(Arg1Flags)&RowMajorBit)==(int(Arg2Flags)&RowMajorBit) && (int(Arg1Flags)&RowMajorBit)==(int(Arg3Flags)&RowMajorBit), |
598 | Flags0 = (int(Arg1Flags) | int(Arg2Flags) | int(Arg3Flags)) & ( |
599 | HereditaryBits |
600 | | (int(Arg1Flags) & int(Arg2Flags) & int(Arg3Flags) & |
601 | ( (StorageOrdersAgree ? LinearAccessBit : 0) |
602 | | (functor_traits<TernaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) |
603 | ) |
604 | ) |
605 | ), |
606 | Flags = (Flags0 & ~RowMajorBit) | (Arg1Flags & RowMajorBit), |
607 | Alignment = EIGEN_PLAIN_ENUM_MIN( |
608 | EIGEN_PLAIN_ENUM_MIN(evaluator<Arg1>::Alignment, evaluator<Arg2>::Alignment), |
609 | evaluator<Arg3>::Alignment) |
610 | }; |
611 | |
612 | EIGEN_DEVICE_FUNC explicit ternary_evaluator(const XprType& xpr) |
613 | : m_functor(xpr.functor()), |
614 | m_arg1Impl(xpr.arg1()), |
615 | m_arg2Impl(xpr.arg2()), |
616 | m_arg3Impl(xpr.arg3()) |
617 | { |
618 | EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<TernaryOp>::Cost); |
619 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
620 | } |
621 | |
622 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
623 | |
624 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
625 | CoeffReturnType coeff(Index row, Index col) const |
626 | { |
627 | return m_functor(m_arg1Impl.coeff(row, col), m_arg2Impl.coeff(row, col), m_arg3Impl.coeff(row, col)); |
628 | } |
629 | |
630 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
631 | CoeffReturnType coeff(Index index) const |
632 | { |
633 | return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index)); |
634 | } |
635 | |
636 | template<int LoadMode, typename PacketType> |
637 | EIGEN_STRONG_INLINE |
638 | PacketType packet(Index row, Index col) const |
639 | { |
640 | return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(row, col), |
641 | m_arg2Impl.template packet<LoadMode,PacketType>(row, col), |
642 | m_arg3Impl.template packet<LoadMode,PacketType>(row, col)); |
643 | } |
644 | |
645 | template<int LoadMode, typename PacketType> |
646 | EIGEN_STRONG_INLINE |
647 | PacketType packet(Index index) const |
648 | { |
649 | return m_functor.packetOp(m_arg1Impl.template packet<LoadMode,PacketType>(index), |
650 | m_arg2Impl.template packet<LoadMode,PacketType>(index), |
651 | m_arg3Impl.template packet<LoadMode,PacketType>(index)); |
652 | } |
653 | |
654 | protected: |
655 | const TernaryOp m_functor; |
656 | evaluator<Arg1> m_arg1Impl; |
657 | evaluator<Arg2> m_arg2Impl; |
658 | evaluator<Arg3> m_arg3Impl; |
659 | }; |
660 | |
661 | // -------------------- CwiseBinaryOp -------------------- |
662 | |
663 | // this is a binary expression |
664 | template<typename BinaryOp, typename Lhs, typename Rhs> |
665 | struct evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
666 | : public binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
667 | { |
668 | typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType; |
669 | typedef binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > Base; |
670 | |
671 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) : Base(xpr) {} |
672 | }; |
673 | |
674 | template<typename BinaryOp, typename Lhs, typename Rhs> |
675 | struct binary_evaluator<CwiseBinaryOp<BinaryOp, Lhs, Rhs>, IndexBased, IndexBased> |
676 | : evaluator_base<CwiseBinaryOp<BinaryOp, Lhs, Rhs> > |
677 | { |
678 | typedef CwiseBinaryOp<BinaryOp, Lhs, Rhs> XprType; |
679 | |
680 | enum { |
681 | CoeffReadCost = evaluator<Lhs>::CoeffReadCost + evaluator<Rhs>::CoeffReadCost + functor_traits<BinaryOp>::Cost, |
682 | |
683 | LhsFlags = evaluator<Lhs>::Flags, |
684 | RhsFlags = evaluator<Rhs>::Flags, |
685 | SameType = is_same<typename Lhs::Scalar,typename Rhs::Scalar>::value, |
686 | StorageOrdersAgree = (int(LhsFlags)&RowMajorBit)==(int(RhsFlags)&RowMajorBit), |
687 | Flags0 = (int(LhsFlags) | int(RhsFlags)) & ( |
688 | HereditaryBits |
689 | | (int(LhsFlags) & int(RhsFlags) & |
690 | ( (StorageOrdersAgree ? LinearAccessBit : 0) |
691 | | (functor_traits<BinaryOp>::PacketAccess && StorageOrdersAgree && SameType ? PacketAccessBit : 0) |
692 | ) |
693 | ) |
694 | ), |
695 | Flags = (Flags0 & ~RowMajorBit) | (LhsFlags & RowMajorBit), |
696 | Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<Lhs>::Alignment,evaluator<Rhs>::Alignment) |
697 | }; |
698 | |
699 | EIGEN_DEVICE_FUNC explicit binary_evaluator(const XprType& xpr) |
700 | : m_functor(xpr.functor()), |
701 | m_lhsImpl(xpr.lhs()), |
702 | m_rhsImpl(xpr.rhs()) |
703 | { |
704 | EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<BinaryOp>::Cost); |
705 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
706 | } |
707 | |
708 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
709 | |
710 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
711 | CoeffReturnType coeff(Index row, Index col) const |
712 | { |
713 | return m_functor(m_lhsImpl.coeff(row, col), m_rhsImpl.coeff(row, col)); |
714 | } |
715 | |
716 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
717 | CoeffReturnType coeff(Index index) const |
718 | { |
719 | return m_functor(m_lhsImpl.coeff(index), m_rhsImpl.coeff(index)); |
720 | } |
721 | |
722 | template<int LoadMode, typename PacketType> |
723 | EIGEN_STRONG_INLINE |
724 | PacketType packet(Index row, Index col) const |
725 | { |
726 | return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(row, col), |
727 | m_rhsImpl.template packet<LoadMode,PacketType>(row, col)); |
728 | } |
729 | |
730 | template<int LoadMode, typename PacketType> |
731 | EIGEN_STRONG_INLINE |
732 | PacketType packet(Index index) const |
733 | { |
734 | return m_functor.packetOp(m_lhsImpl.template packet<LoadMode,PacketType>(index), |
735 | m_rhsImpl.template packet<LoadMode,PacketType>(index)); |
736 | } |
737 | |
738 | protected: |
739 | const BinaryOp m_functor; |
740 | evaluator<Lhs> m_lhsImpl; |
741 | evaluator<Rhs> m_rhsImpl; |
742 | }; |
743 | |
744 | // -------------------- CwiseUnaryView -------------------- |
745 | |
746 | template<typename UnaryOp, typename ArgType> |
747 | struct unary_evaluator<CwiseUnaryView<UnaryOp, ArgType>, IndexBased> |
748 | : evaluator_base<CwiseUnaryView<UnaryOp, ArgType> > |
749 | { |
750 | typedef CwiseUnaryView<UnaryOp, ArgType> XprType; |
751 | |
752 | enum { |
753 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost + functor_traits<UnaryOp>::Cost, |
754 | |
755 | Flags = (evaluator<ArgType>::Flags & (HereditaryBits | LinearAccessBit | DirectAccessBit)), |
756 | |
757 | Alignment = 0 // FIXME it is not very clear why alignment is necessarily lost... |
758 | }; |
759 | |
760 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op) |
761 | : m_unaryOp(op.functor()), |
762 | m_argImpl(op.nestedExpression()) |
763 | { |
764 | EIGEN_INTERNAL_CHECK_COST_VALUE(functor_traits<UnaryOp>::Cost); |
765 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
766 | } |
767 | |
768 | typedef typename XprType::Scalar Scalar; |
769 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
770 | |
771 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
772 | CoeffReturnType coeff(Index row, Index col) const |
773 | { |
774 | return m_unaryOp(m_argImpl.coeff(row, col)); |
775 | } |
776 | |
777 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
778 | CoeffReturnType coeff(Index index) const |
779 | { |
780 | return m_unaryOp(m_argImpl.coeff(index)); |
781 | } |
782 | |
783 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
784 | Scalar& coeffRef(Index row, Index col) |
785 | { |
786 | return m_unaryOp(m_argImpl.coeffRef(row, col)); |
787 | } |
788 | |
789 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
790 | Scalar& coeffRef(Index index) |
791 | { |
792 | return m_unaryOp(m_argImpl.coeffRef(index)); |
793 | } |
794 | |
795 | protected: |
796 | const UnaryOp m_unaryOp; |
797 | evaluator<ArgType> m_argImpl; |
798 | }; |
799 | |
800 | // -------------------- Map -------------------- |
801 | |
802 | // FIXME perhaps the PlainObjectType could be provided by Derived::PlainObject ? |
803 | // but that might complicate template specialization |
804 | template<typename Derived, typename PlainObjectType> |
805 | struct mapbase_evaluator; |
806 | |
807 | template<typename Derived, typename PlainObjectType> |
808 | struct mapbase_evaluator : evaluator_base<Derived> |
809 | { |
810 | typedef Derived XprType; |
811 | typedef typename XprType::PointerType PointerType; |
812 | typedef typename XprType::Scalar Scalar; |
813 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
814 | |
815 | enum { |
816 | IsRowMajor = XprType::RowsAtCompileTime, |
817 | ColsAtCompileTime = XprType::ColsAtCompileTime, |
818 | CoeffReadCost = NumTraits<Scalar>::ReadCost |
819 | }; |
820 | |
821 | EIGEN_DEVICE_FUNC explicit mapbase_evaluator(const XprType& map) |
822 | : m_data(const_cast<PointerType>(map.data())), |
823 | m_innerStride(map.innerStride()), |
824 | m_outerStride(map.outerStride()) |
825 | { |
826 | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(evaluator<Derived>::Flags&PacketAccessBit, internal::inner_stride_at_compile_time<Derived>::ret==1), |
827 | PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1); |
828 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
829 | } |
830 | |
831 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
832 | CoeffReturnType coeff(Index row, Index col) const |
833 | { |
834 | return m_data[col * colStride() + row * rowStride()]; |
835 | } |
836 | |
837 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
838 | CoeffReturnType coeff(Index index) const |
839 | { |
840 | return m_data[index * m_innerStride.value()]; |
841 | } |
842 | |
843 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
844 | Scalar& coeffRef(Index row, Index col) |
845 | { |
846 | return m_data[col * colStride() + row * rowStride()]; |
847 | } |
848 | |
849 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
850 | Scalar& coeffRef(Index index) |
851 | { |
852 | return m_data[index * m_innerStride.value()]; |
853 | } |
854 | |
855 | template<int LoadMode, typename PacketType> |
856 | EIGEN_STRONG_INLINE |
857 | PacketType packet(Index row, Index col) const |
858 | { |
859 | PointerType ptr = m_data + row * rowStride() + col * colStride(); |
860 | return internal::ploadt<PacketType, LoadMode>(ptr); |
861 | } |
862 | |
863 | template<int LoadMode, typename PacketType> |
864 | EIGEN_STRONG_INLINE |
865 | PacketType packet(Index index) const |
866 | { |
867 | return internal::ploadt<PacketType, LoadMode>(m_data + index * m_innerStride.value()); |
868 | } |
869 | |
870 | template<int StoreMode, typename PacketType> |
871 | EIGEN_STRONG_INLINE |
872 | void writePacket(Index row, Index col, const PacketType& x) |
873 | { |
874 | PointerType ptr = m_data + row * rowStride() + col * colStride(); |
875 | return internal::pstoret<Scalar, PacketType, StoreMode>(ptr, x); |
876 | } |
877 | |
878 | template<int StoreMode, typename PacketType> |
879 | EIGEN_STRONG_INLINE |
880 | void writePacket(Index index, const PacketType& x) |
881 | { |
882 | internal::pstoret<Scalar, PacketType, StoreMode>(m_data + index * m_innerStride.value(), x); |
883 | } |
884 | protected: |
885 | EIGEN_DEVICE_FUNC |
886 | inline Index rowStride() const { return XprType::IsRowMajor ? m_outerStride.value() : m_innerStride.value(); } |
887 | EIGEN_DEVICE_FUNC |
888 | inline Index colStride() const { return XprType::IsRowMajor ? m_innerStride.value() : m_outerStride.value(); } |
889 | |
890 | PointerType m_data; |
891 | const internal::variable_if_dynamic<Index, XprType::InnerStrideAtCompileTime> m_innerStride; |
892 | const internal::variable_if_dynamic<Index, XprType::OuterStrideAtCompileTime> m_outerStride; |
893 | }; |
894 | |
895 | template<typename PlainObjectType, int MapOptions, typename StrideType> |
896 | struct evaluator<Map<PlainObjectType, MapOptions, StrideType> > |
897 | : public mapbase_evaluator<Map<PlainObjectType, MapOptions, StrideType>, PlainObjectType> |
898 | { |
899 | typedef Map<PlainObjectType, MapOptions, StrideType> XprType; |
900 | typedef typename XprType::Scalar Scalar; |
901 | // TODO: should check for smaller packet types once we can handle multi-sized packet types |
902 | typedef typename packet_traits<Scalar>::type PacketScalar; |
903 | |
904 | enum { |
905 | InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0 |
906 | ? int(PlainObjectType::InnerStrideAtCompileTime) |
907 | : int(StrideType::InnerStrideAtCompileTime), |
908 | OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0 |
909 | ? int(PlainObjectType::OuterStrideAtCompileTime) |
910 | : int(StrideType::OuterStrideAtCompileTime), |
911 | HasNoInnerStride = InnerStrideAtCompileTime == 1, |
912 | HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0, |
913 | HasNoStride = HasNoInnerStride && HasNoOuterStride, |
914 | IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic, |
915 | |
916 | PacketAccessMask = bool(HasNoInnerStride) ? ~int(0) : ~int(PacketAccessBit), |
917 | LinearAccessMask = bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime) ? ~int(0) : ~int(LinearAccessBit), |
918 | Flags = int( evaluator<PlainObjectType>::Flags) & (LinearAccessMask&PacketAccessMask), |
919 | |
920 | Alignment = int(MapOptions)&int(AlignedMask) |
921 | }; |
922 | |
923 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& map) |
924 | : mapbase_evaluator<XprType, PlainObjectType>(map) |
925 | { } |
926 | }; |
927 | |
928 | // -------------------- Ref -------------------- |
929 | |
930 | template<typename PlainObjectType, int RefOptions, typename StrideType> |
931 | struct evaluator<Ref<PlainObjectType, RefOptions, StrideType> > |
932 | : public mapbase_evaluator<Ref<PlainObjectType, RefOptions, StrideType>, PlainObjectType> |
933 | { |
934 | typedef Ref<PlainObjectType, RefOptions, StrideType> XprType; |
935 | |
936 | enum { |
937 | Flags = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Flags, |
938 | Alignment = evaluator<Map<PlainObjectType, RefOptions, StrideType> >::Alignment |
939 | }; |
940 | |
941 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& ref) |
942 | : mapbase_evaluator<XprType, PlainObjectType>(ref) |
943 | { } |
944 | }; |
945 | |
946 | // -------------------- Block -------------------- |
947 | |
948 | template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel, |
949 | bool HasDirectAccess = internal::has_direct_access<ArgType>::ret> struct block_evaluator; |
950 | |
951 | template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
952 | struct evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
953 | : block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> |
954 | { |
955 | typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
956 | typedef typename XprType::Scalar Scalar; |
957 | // TODO: should check for smaller packet types once we can handle multi-sized packet types |
958 | typedef typename packet_traits<Scalar>::type PacketScalar; |
959 | |
960 | enum { |
961 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
962 | |
963 | RowsAtCompileTime = traits<XprType>::RowsAtCompileTime, |
964 | ColsAtCompileTime = traits<XprType>::ColsAtCompileTime, |
965 | MaxRowsAtCompileTime = traits<XprType>::MaxRowsAtCompileTime, |
966 | MaxColsAtCompileTime = traits<XprType>::MaxColsAtCompileTime, |
967 | |
968 | ArgTypeIsRowMajor = (int(evaluator<ArgType>::Flags)&RowMajorBit) != 0, |
969 | IsRowMajor = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? 1 |
970 | : (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0 |
971 | : ArgTypeIsRowMajor, |
972 | HasSameStorageOrderAsArgType = (IsRowMajor == ArgTypeIsRowMajor), |
973 | InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), |
974 | InnerStrideAtCompileTime = HasSameStorageOrderAsArgType |
975 | ? int(inner_stride_at_compile_time<ArgType>::ret) |
976 | : int(outer_stride_at_compile_time<ArgType>::ret), |
977 | OuterStrideAtCompileTime = HasSameStorageOrderAsArgType |
978 | ? int(outer_stride_at_compile_time<ArgType>::ret) |
979 | : int(inner_stride_at_compile_time<ArgType>::ret), |
980 | MaskPacketAccessBit = (InnerStrideAtCompileTime == 1 || HasSameStorageOrderAsArgType) ? PacketAccessBit : 0, |
981 | |
982 | FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (evaluator<ArgType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0, |
983 | FlagsRowMajorBit = XprType::Flags&RowMajorBit, |
984 | Flags0 = evaluator<ArgType>::Flags & ( (HereditaryBits & ~RowMajorBit) | |
985 | DirectAccessBit | |
986 | MaskPacketAccessBit), |
987 | Flags = Flags0 | FlagsLinearAccessBit | FlagsRowMajorBit, |
988 | |
989 | PacketAlignment = unpacket_traits<PacketScalar>::alignment, |
990 | Alignment0 = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) |
991 | && (OuterStrideAtCompileTime!=0) |
992 | && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % int(PacketAlignment)) == 0)) ? int(PacketAlignment) : 0, |
993 | Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ArgType>::Alignment, Alignment0) |
994 | }; |
995 | typedef block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel> block_evaluator_type; |
996 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& block) : block_evaluator_type(block) |
997 | { |
998 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
999 | } |
1000 | }; |
1001 | |
1002 | // no direct-access => dispatch to a unary evaluator |
1003 | template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
1004 | struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /*HasDirectAccess*/ false> |
1005 | : unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
1006 | { |
1007 | typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
1008 | |
1009 | EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) |
1010 | : unary_evaluator<XprType>(block) |
1011 | {} |
1012 | }; |
1013 | |
1014 | template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
1015 | struct unary_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, IndexBased> |
1016 | : evaluator_base<Block<ArgType, BlockRows, BlockCols, InnerPanel> > |
1017 | { |
1018 | typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
1019 | |
1020 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& block) |
1021 | : m_argImpl(block.nestedExpression()), |
1022 | m_startRow(block.startRow()), |
1023 | m_startCol(block.startCol()), |
1024 | m_linear_offset(InnerPanel?(XprType::IsRowMajor ? block.startRow()*block.cols() : block.startCol()*block.rows()):0) |
1025 | { } |
1026 | |
1027 | typedef typename XprType::Scalar Scalar; |
1028 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1029 | |
1030 | enum { |
1031 | RowsAtCompileTime = XprType::RowsAtCompileTime, |
1032 | ForwardLinearAccess = InnerPanel && bool(evaluator<ArgType>::Flags&LinearAccessBit) |
1033 | }; |
1034 | |
1035 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1036 | CoeffReturnType coeff(Index row, Index col) const |
1037 | { |
1038 | return m_argImpl.coeff(m_startRow.value() + row, m_startCol.value() + col); |
1039 | } |
1040 | |
1041 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1042 | CoeffReturnType coeff(Index index) const |
1043 | { |
1044 | if (ForwardLinearAccess) |
1045 | return m_argImpl.coeff(m_linear_offset.value() + index); |
1046 | else |
1047 | return coeff(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); |
1048 | } |
1049 | |
1050 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1051 | Scalar& coeffRef(Index row, Index col) |
1052 | { |
1053 | return m_argImpl.coeffRef(m_startRow.value() + row, m_startCol.value() + col); |
1054 | } |
1055 | |
1056 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1057 | Scalar& coeffRef(Index index) |
1058 | { |
1059 | if (ForwardLinearAccess) |
1060 | return m_argImpl.coeffRef(m_linear_offset.value() + index); |
1061 | else |
1062 | return coeffRef(RowsAtCompileTime == 1 ? 0 : index, RowsAtCompileTime == 1 ? index : 0); |
1063 | } |
1064 | |
1065 | template<int LoadMode, typename PacketType> |
1066 | EIGEN_STRONG_INLINE |
1067 | PacketType packet(Index row, Index col) const |
1068 | { |
1069 | return m_argImpl.template packet<LoadMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col); |
1070 | } |
1071 | |
1072 | template<int LoadMode, typename PacketType> |
1073 | EIGEN_STRONG_INLINE |
1074 | PacketType packet(Index index) const |
1075 | { |
1076 | if (ForwardLinearAccess) |
1077 | return m_argImpl.template packet<LoadMode,PacketType>(m_linear_offset.value() + index); |
1078 | else |
1079 | return packet<LoadMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index, |
1080 | RowsAtCompileTime == 1 ? index : 0); |
1081 | } |
1082 | |
1083 | template<int StoreMode, typename PacketType> |
1084 | EIGEN_STRONG_INLINE |
1085 | void writePacket(Index row, Index col, const PacketType& x) |
1086 | { |
1087 | return m_argImpl.template writePacket<StoreMode,PacketType>(m_startRow.value() + row, m_startCol.value() + col, x); |
1088 | } |
1089 | |
1090 | template<int StoreMode, typename PacketType> |
1091 | EIGEN_STRONG_INLINE |
1092 | void writePacket(Index index, const PacketType& x) |
1093 | { |
1094 | if (ForwardLinearAccess) |
1095 | return m_argImpl.template writePacket<StoreMode,PacketType>(m_linear_offset.value() + index, x); |
1096 | else |
1097 | return writePacket<StoreMode,PacketType>(RowsAtCompileTime == 1 ? 0 : index, |
1098 | RowsAtCompileTime == 1 ? index : 0, |
1099 | x); |
1100 | } |
1101 | |
1102 | protected: |
1103 | evaluator<ArgType> m_argImpl; |
1104 | const variable_if_dynamic<Index, (ArgType::RowsAtCompileTime == 1 && BlockRows==1) ? 0 : Dynamic> m_startRow; |
1105 | const variable_if_dynamic<Index, (ArgType::ColsAtCompileTime == 1 && BlockCols==1) ? 0 : Dynamic> m_startCol; |
1106 | const variable_if_dynamic<Index, InnerPanel ? Dynamic : 0> m_linear_offset; |
1107 | }; |
1108 | |
1109 | // TODO: This evaluator does not actually use the child evaluator; |
1110 | // all action is via the data() as returned by the Block expression. |
1111 | |
1112 | template<typename ArgType, int BlockRows, int BlockCols, bool InnerPanel> |
1113 | struct block_evaluator<ArgType, BlockRows, BlockCols, InnerPanel, /* HasDirectAccess */ true> |
1114 | : mapbase_evaluator<Block<ArgType, BlockRows, BlockCols, InnerPanel>, |
1115 | typename Block<ArgType, BlockRows, BlockCols, InnerPanel>::PlainObject> |
1116 | { |
1117 | typedef Block<ArgType, BlockRows, BlockCols, InnerPanel> XprType; |
1118 | typedef typename XprType::Scalar Scalar; |
1119 | |
1120 | EIGEN_DEVICE_FUNC explicit block_evaluator(const XprType& block) |
1121 | : mapbase_evaluator<XprType, typename XprType::PlainObject>(block) |
1122 | { |
1123 | // TODO: for the 3.3 release, this should be turned to an internal assertion, but let's keep it as is for the beta lifetime |
1124 | eigen_assert(((internal::UIntPtr(block.data()) % EIGEN_PLAIN_ENUM_MAX(1,evaluator<XprType>::Alignment)) == 0) && "data is not aligned" ); |
1125 | } |
1126 | }; |
1127 | |
1128 | |
1129 | // -------------------- Select -------------------- |
1130 | // NOTE shall we introduce a ternary_evaluator? |
1131 | |
1132 | // TODO enable vectorization for Select |
1133 | template<typename ConditionMatrixType, typename ThenMatrixType, typename ElseMatrixType> |
1134 | struct evaluator<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> > |
1135 | : evaluator_base<Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> > |
1136 | { |
1137 | typedef Select<ConditionMatrixType, ThenMatrixType, ElseMatrixType> XprType; |
1138 | enum { |
1139 | CoeffReadCost = evaluator<ConditionMatrixType>::CoeffReadCost |
1140 | + EIGEN_PLAIN_ENUM_MAX(evaluator<ThenMatrixType>::CoeffReadCost, |
1141 | evaluator<ElseMatrixType>::CoeffReadCost), |
1142 | |
1143 | Flags = (unsigned int)evaluator<ThenMatrixType>::Flags & evaluator<ElseMatrixType>::Flags & HereditaryBits, |
1144 | |
1145 | Alignment = EIGEN_PLAIN_ENUM_MIN(evaluator<ThenMatrixType>::Alignment, evaluator<ElseMatrixType>::Alignment) |
1146 | }; |
1147 | |
1148 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& select) |
1149 | : m_conditionImpl(select.conditionMatrix()), |
1150 | m_thenImpl(select.thenMatrix()), |
1151 | m_elseImpl(select.elseMatrix()) |
1152 | { |
1153 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
1154 | } |
1155 | |
1156 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1157 | |
1158 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1159 | CoeffReturnType coeff(Index row, Index col) const |
1160 | { |
1161 | if (m_conditionImpl.coeff(row, col)) |
1162 | return m_thenImpl.coeff(row, col); |
1163 | else |
1164 | return m_elseImpl.coeff(row, col); |
1165 | } |
1166 | |
1167 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1168 | CoeffReturnType coeff(Index index) const |
1169 | { |
1170 | if (m_conditionImpl.coeff(index)) |
1171 | return m_thenImpl.coeff(index); |
1172 | else |
1173 | return m_elseImpl.coeff(index); |
1174 | } |
1175 | |
1176 | protected: |
1177 | evaluator<ConditionMatrixType> m_conditionImpl; |
1178 | evaluator<ThenMatrixType> m_thenImpl; |
1179 | evaluator<ElseMatrixType> m_elseImpl; |
1180 | }; |
1181 | |
1182 | |
1183 | // -------------------- Replicate -------------------- |
1184 | |
1185 | template<typename ArgType, int RowFactor, int ColFactor> |
1186 | struct unary_evaluator<Replicate<ArgType, RowFactor, ColFactor> > |
1187 | : evaluator_base<Replicate<ArgType, RowFactor, ColFactor> > |
1188 | { |
1189 | typedef Replicate<ArgType, RowFactor, ColFactor> XprType; |
1190 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1191 | enum { |
1192 | Factor = (RowFactor==Dynamic || ColFactor==Dynamic) ? Dynamic : RowFactor*ColFactor |
1193 | }; |
1194 | typedef typename internal::nested_eval<ArgType,Factor>::type ArgTypeNested; |
1195 | typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned; |
1196 | |
1197 | enum { |
1198 | CoeffReadCost = evaluator<ArgTypeNestedCleaned>::CoeffReadCost, |
1199 | LinearAccessMask = XprType::IsVectorAtCompileTime ? LinearAccessBit : 0, |
1200 | Flags = (evaluator<ArgTypeNestedCleaned>::Flags & (HereditaryBits|LinearAccessMask) & ~RowMajorBit) | (traits<XprType>::Flags & RowMajorBit), |
1201 | |
1202 | Alignment = evaluator<ArgTypeNestedCleaned>::Alignment |
1203 | }; |
1204 | |
1205 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& replicate) |
1206 | : m_arg(replicate.nestedExpression()), |
1207 | m_argImpl(m_arg), |
1208 | m_rows(replicate.nestedExpression().rows()), |
1209 | m_cols(replicate.nestedExpression().cols()) |
1210 | {} |
1211 | |
1212 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1213 | CoeffReturnType coeff(Index row, Index col) const |
1214 | { |
1215 | // try to avoid using modulo; this is a pure optimization strategy |
1216 | const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0 |
1217 | : RowFactor==1 ? row |
1218 | : row % m_rows.value(); |
1219 | const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0 |
1220 | : ColFactor==1 ? col |
1221 | : col % m_cols.value(); |
1222 | |
1223 | return m_argImpl.coeff(actual_row, actual_col); |
1224 | } |
1225 | |
1226 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1227 | CoeffReturnType coeff(Index index) const |
1228 | { |
1229 | // try to avoid using modulo; this is a pure optimization strategy |
1230 | const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1 |
1231 | ? (ColFactor==1 ? index : index%m_cols.value()) |
1232 | : (RowFactor==1 ? index : index%m_rows.value()); |
1233 | |
1234 | return m_argImpl.coeff(actual_index); |
1235 | } |
1236 | |
1237 | template<int LoadMode, typename PacketType> |
1238 | EIGEN_STRONG_INLINE |
1239 | PacketType packet(Index row, Index col) const |
1240 | { |
1241 | const Index actual_row = internal::traits<XprType>::RowsAtCompileTime==1 ? 0 |
1242 | : RowFactor==1 ? row |
1243 | : row % m_rows.value(); |
1244 | const Index actual_col = internal::traits<XprType>::ColsAtCompileTime==1 ? 0 |
1245 | : ColFactor==1 ? col |
1246 | : col % m_cols.value(); |
1247 | |
1248 | return m_argImpl.template packet<LoadMode,PacketType>(actual_row, actual_col); |
1249 | } |
1250 | |
1251 | template<int LoadMode, typename PacketType> |
1252 | EIGEN_STRONG_INLINE |
1253 | PacketType packet(Index index) const |
1254 | { |
1255 | const Index actual_index = internal::traits<XprType>::RowsAtCompileTime==1 |
1256 | ? (ColFactor==1 ? index : index%m_cols.value()) |
1257 | : (RowFactor==1 ? index : index%m_rows.value()); |
1258 | |
1259 | return m_argImpl.template packet<LoadMode,PacketType>(actual_index); |
1260 | } |
1261 | |
1262 | protected: |
1263 | const ArgTypeNested m_arg; |
1264 | evaluator<ArgTypeNestedCleaned> m_argImpl; |
1265 | const variable_if_dynamic<Index, ArgType::RowsAtCompileTime> m_rows; |
1266 | const variable_if_dynamic<Index, ArgType::ColsAtCompileTime> m_cols; |
1267 | }; |
1268 | |
1269 | |
1270 | // -------------------- PartialReduxExpr -------------------- |
1271 | |
1272 | template< typename ArgType, typename MemberOp, int Direction> |
1273 | struct evaluator<PartialReduxExpr<ArgType, MemberOp, Direction> > |
1274 | : evaluator_base<PartialReduxExpr<ArgType, MemberOp, Direction> > |
1275 | { |
1276 | typedef PartialReduxExpr<ArgType, MemberOp, Direction> XprType; |
1277 | typedef typename internal::nested_eval<ArgType,1>::type ArgTypeNested; |
1278 | typedef typename internal::remove_all<ArgTypeNested>::type ArgTypeNestedCleaned; |
1279 | typedef typename ArgType::Scalar InputScalar; |
1280 | typedef typename XprType::Scalar Scalar; |
1281 | enum { |
1282 | TraversalSize = Direction==int(Vertical) ? int(ArgType::RowsAtCompileTime) : int(ArgType::ColsAtCompileTime) |
1283 | }; |
1284 | typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType; |
1285 | enum { |
1286 | CoeffReadCost = TraversalSize==Dynamic ? HugeCost |
1287 | : TraversalSize * evaluator<ArgType>::CoeffReadCost + int(CostOpType::value), |
1288 | |
1289 | Flags = (traits<XprType>::Flags&RowMajorBit) | (evaluator<ArgType>::Flags&(HereditaryBits&(~RowMajorBit))) | LinearAccessBit, |
1290 | |
1291 | Alignment = 0 // FIXME this will need to be improved once PartialReduxExpr is vectorized |
1292 | }; |
1293 | |
1294 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType xpr) |
1295 | : m_arg(xpr.nestedExpression()), m_functor(xpr.functor()) |
1296 | { |
1297 | EIGEN_INTERNAL_CHECK_COST_VALUE(TraversalSize==Dynamic ? HugeCost : int(CostOpType::value)); |
1298 | EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); |
1299 | } |
1300 | |
1301 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1302 | |
1303 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1304 | const Scalar coeff(Index i, Index j) const |
1305 | { |
1306 | if (Direction==Vertical) |
1307 | return m_functor(m_arg.col(j)); |
1308 | else |
1309 | return m_functor(m_arg.row(i)); |
1310 | } |
1311 | |
1312 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1313 | const Scalar coeff(Index index) const |
1314 | { |
1315 | if (Direction==Vertical) |
1316 | return m_functor(m_arg.col(index)); |
1317 | else |
1318 | return m_functor(m_arg.row(index)); |
1319 | } |
1320 | |
1321 | protected: |
1322 | typename internal::add_const_on_value_type<ArgTypeNested>::type m_arg; |
1323 | const MemberOp m_functor; |
1324 | }; |
1325 | |
1326 | |
1327 | // -------------------- MatrixWrapper and ArrayWrapper -------------------- |
1328 | // |
1329 | // evaluator_wrapper_base<T> is a common base class for the |
1330 | // MatrixWrapper and ArrayWrapper evaluators. |
1331 | |
1332 | template<typename XprType> |
1333 | struct evaluator_wrapper_base |
1334 | : evaluator_base<XprType> |
1335 | { |
1336 | typedef typename remove_all<typename XprType::NestedExpressionType>::type ArgType; |
1337 | enum { |
1338 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
1339 | Flags = evaluator<ArgType>::Flags, |
1340 | Alignment = evaluator<ArgType>::Alignment |
1341 | }; |
1342 | |
1343 | EIGEN_DEVICE_FUNC explicit evaluator_wrapper_base(const ArgType& arg) : m_argImpl(arg) {} |
1344 | |
1345 | typedef typename ArgType::Scalar Scalar; |
1346 | typedef typename ArgType::CoeffReturnType CoeffReturnType; |
1347 | |
1348 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1349 | CoeffReturnType coeff(Index row, Index col) const |
1350 | { |
1351 | return m_argImpl.coeff(row, col); |
1352 | } |
1353 | |
1354 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1355 | CoeffReturnType coeff(Index index) const |
1356 | { |
1357 | return m_argImpl.coeff(index); |
1358 | } |
1359 | |
1360 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1361 | Scalar& coeffRef(Index row, Index col) |
1362 | { |
1363 | return m_argImpl.coeffRef(row, col); |
1364 | } |
1365 | |
1366 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1367 | Scalar& coeffRef(Index index) |
1368 | { |
1369 | return m_argImpl.coeffRef(index); |
1370 | } |
1371 | |
1372 | template<int LoadMode, typename PacketType> |
1373 | EIGEN_STRONG_INLINE |
1374 | PacketType packet(Index row, Index col) const |
1375 | { |
1376 | return m_argImpl.template packet<LoadMode,PacketType>(row, col); |
1377 | } |
1378 | |
1379 | template<int LoadMode, typename PacketType> |
1380 | EIGEN_STRONG_INLINE |
1381 | PacketType packet(Index index) const |
1382 | { |
1383 | return m_argImpl.template packet<LoadMode,PacketType>(index); |
1384 | } |
1385 | |
1386 | template<int StoreMode, typename PacketType> |
1387 | EIGEN_STRONG_INLINE |
1388 | void writePacket(Index row, Index col, const PacketType& x) |
1389 | { |
1390 | m_argImpl.template writePacket<StoreMode>(row, col, x); |
1391 | } |
1392 | |
1393 | template<int StoreMode, typename PacketType> |
1394 | EIGEN_STRONG_INLINE |
1395 | void writePacket(Index index, const PacketType& x) |
1396 | { |
1397 | m_argImpl.template writePacket<StoreMode>(index, x); |
1398 | } |
1399 | |
1400 | protected: |
1401 | evaluator<ArgType> m_argImpl; |
1402 | }; |
1403 | |
1404 | template<typename TArgType> |
1405 | struct unary_evaluator<MatrixWrapper<TArgType> > |
1406 | : evaluator_wrapper_base<MatrixWrapper<TArgType> > |
1407 | { |
1408 | typedef MatrixWrapper<TArgType> XprType; |
1409 | |
1410 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) |
1411 | : evaluator_wrapper_base<MatrixWrapper<TArgType> >(wrapper.nestedExpression()) |
1412 | { } |
1413 | }; |
1414 | |
1415 | template<typename TArgType> |
1416 | struct unary_evaluator<ArrayWrapper<TArgType> > |
1417 | : evaluator_wrapper_base<ArrayWrapper<TArgType> > |
1418 | { |
1419 | typedef ArrayWrapper<TArgType> XprType; |
1420 | |
1421 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& wrapper) |
1422 | : evaluator_wrapper_base<ArrayWrapper<TArgType> >(wrapper.nestedExpression()) |
1423 | { } |
1424 | }; |
1425 | |
1426 | |
1427 | // -------------------- Reverse -------------------- |
1428 | |
1429 | // defined in Reverse.h: |
1430 | template<typename PacketType, bool ReversePacket> struct reverse_packet_cond; |
1431 | |
1432 | template<typename ArgType, int Direction> |
1433 | struct unary_evaluator<Reverse<ArgType, Direction> > |
1434 | : evaluator_base<Reverse<ArgType, Direction> > |
1435 | { |
1436 | typedef Reverse<ArgType, Direction> XprType; |
1437 | typedef typename XprType::Scalar Scalar; |
1438 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1439 | |
1440 | enum { |
1441 | IsRowMajor = XprType::IsRowMajor, |
1442 | IsColMajor = !IsRowMajor, |
1443 | ReverseRow = (Direction == Vertical) || (Direction == BothDirections), |
1444 | ReverseCol = (Direction == Horizontal) || (Direction == BothDirections), |
1445 | ReversePacket = (Direction == BothDirections) |
1446 | || ((Direction == Vertical) && IsColMajor) |
1447 | || ((Direction == Horizontal) && IsRowMajor), |
1448 | |
1449 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
1450 | |
1451 | // let's enable LinearAccess only with vectorization because of the product overhead |
1452 | // FIXME enable DirectAccess with negative strides? |
1453 | Flags0 = evaluator<ArgType>::Flags, |
1454 | LinearAccess = ( (Direction==BothDirections) && (int(Flags0)&PacketAccessBit) ) |
1455 | || ((ReverseRow && XprType::ColsAtCompileTime==1) || (ReverseCol && XprType::RowsAtCompileTime==1)) |
1456 | ? LinearAccessBit : 0, |
1457 | |
1458 | Flags = int(Flags0) & (HereditaryBits | PacketAccessBit | LinearAccess), |
1459 | |
1460 | Alignment = 0 // FIXME in some rare cases, Alignment could be preserved, like a Vector4f. |
1461 | }; |
1462 | |
1463 | EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& reverse) |
1464 | : m_argImpl(reverse.nestedExpression()), |
1465 | m_rows(ReverseRow ? reverse.nestedExpression().rows() : 1), |
1466 | m_cols(ReverseCol ? reverse.nestedExpression().cols() : 1) |
1467 | { } |
1468 | |
1469 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1470 | CoeffReturnType coeff(Index row, Index col) const |
1471 | { |
1472 | return m_argImpl.coeff(ReverseRow ? m_rows.value() - row - 1 : row, |
1473 | ReverseCol ? m_cols.value() - col - 1 : col); |
1474 | } |
1475 | |
1476 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1477 | CoeffReturnType coeff(Index index) const |
1478 | { |
1479 | return m_argImpl.coeff(m_rows.value() * m_cols.value() - index - 1); |
1480 | } |
1481 | |
1482 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1483 | Scalar& coeffRef(Index row, Index col) |
1484 | { |
1485 | return m_argImpl.coeffRef(ReverseRow ? m_rows.value() - row - 1 : row, |
1486 | ReverseCol ? m_cols.value() - col - 1 : col); |
1487 | } |
1488 | |
1489 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1490 | Scalar& coeffRef(Index index) |
1491 | { |
1492 | return m_argImpl.coeffRef(m_rows.value() * m_cols.value() - index - 1); |
1493 | } |
1494 | |
1495 | template<int LoadMode, typename PacketType> |
1496 | EIGEN_STRONG_INLINE |
1497 | PacketType packet(Index row, Index col) const |
1498 | { |
1499 | enum { |
1500 | PacketSize = unpacket_traits<PacketType>::size, |
1501 | OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, |
1502 | OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 |
1503 | }; |
1504 | typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet; |
1505 | return reverse_packet::run(m_argImpl.template packet<LoadMode,PacketType>( |
1506 | ReverseRow ? m_rows.value() - row - OffsetRow : row, |
1507 | ReverseCol ? m_cols.value() - col - OffsetCol : col)); |
1508 | } |
1509 | |
1510 | template<int LoadMode, typename PacketType> |
1511 | EIGEN_STRONG_INLINE |
1512 | PacketType packet(Index index) const |
1513 | { |
1514 | enum { PacketSize = unpacket_traits<PacketType>::size }; |
1515 | return preverse(m_argImpl.template packet<LoadMode,PacketType>(m_rows.value() * m_cols.value() - index - PacketSize)); |
1516 | } |
1517 | |
1518 | template<int LoadMode, typename PacketType> |
1519 | EIGEN_STRONG_INLINE |
1520 | void writePacket(Index row, Index col, const PacketType& x) |
1521 | { |
1522 | // FIXME we could factorize some code with packet(i,j) |
1523 | enum { |
1524 | PacketSize = unpacket_traits<PacketType>::size, |
1525 | OffsetRow = ReverseRow && IsColMajor ? PacketSize : 1, |
1526 | OffsetCol = ReverseCol && IsRowMajor ? PacketSize : 1 |
1527 | }; |
1528 | typedef internal::reverse_packet_cond<PacketType,ReversePacket> reverse_packet; |
1529 | m_argImpl.template writePacket<LoadMode>( |
1530 | ReverseRow ? m_rows.value() - row - OffsetRow : row, |
1531 | ReverseCol ? m_cols.value() - col - OffsetCol : col, |
1532 | reverse_packet::run(x)); |
1533 | } |
1534 | |
1535 | template<int LoadMode, typename PacketType> |
1536 | EIGEN_STRONG_INLINE |
1537 | void writePacket(Index index, const PacketType& x) |
1538 | { |
1539 | enum { PacketSize = unpacket_traits<PacketType>::size }; |
1540 | m_argImpl.template writePacket<LoadMode> |
1541 | (m_rows.value() * m_cols.value() - index - PacketSize, preverse(x)); |
1542 | } |
1543 | |
1544 | protected: |
1545 | evaluator<ArgType> m_argImpl; |
1546 | |
1547 | // If we do not reverse rows, then we do not need to know the number of rows; same for columns |
1548 | // Nonetheless, in this case it is important to set to 1 such that the coeff(index) method works fine for vectors. |
1549 | const variable_if_dynamic<Index, ReverseRow ? ArgType::RowsAtCompileTime : 1> m_rows; |
1550 | const variable_if_dynamic<Index, ReverseCol ? ArgType::ColsAtCompileTime : 1> m_cols; |
1551 | }; |
1552 | |
1553 | |
1554 | // -------------------- Diagonal -------------------- |
1555 | |
1556 | template<typename ArgType, int DiagIndex> |
1557 | struct evaluator<Diagonal<ArgType, DiagIndex> > |
1558 | : evaluator_base<Diagonal<ArgType, DiagIndex> > |
1559 | { |
1560 | typedef Diagonal<ArgType, DiagIndex> XprType; |
1561 | |
1562 | enum { |
1563 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
1564 | |
1565 | Flags = (unsigned int)(evaluator<ArgType>::Flags & (HereditaryBits | DirectAccessBit) & ~RowMajorBit) | LinearAccessBit, |
1566 | |
1567 | Alignment = 0 |
1568 | }; |
1569 | |
1570 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& diagonal) |
1571 | : m_argImpl(diagonal.nestedExpression()), |
1572 | m_index(diagonal.index()) |
1573 | { } |
1574 | |
1575 | typedef typename XprType::Scalar Scalar; |
1576 | typedef typename XprType::CoeffReturnType CoeffReturnType; |
1577 | |
1578 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1579 | CoeffReturnType coeff(Index row, Index) const |
1580 | { |
1581 | return m_argImpl.coeff(row + rowOffset(), row + colOffset()); |
1582 | } |
1583 | |
1584 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1585 | CoeffReturnType coeff(Index index) const |
1586 | { |
1587 | return m_argImpl.coeff(index + rowOffset(), index + colOffset()); |
1588 | } |
1589 | |
1590 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1591 | Scalar& coeffRef(Index row, Index) |
1592 | { |
1593 | return m_argImpl.coeffRef(row + rowOffset(), row + colOffset()); |
1594 | } |
1595 | |
1596 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE |
1597 | Scalar& coeffRef(Index index) |
1598 | { |
1599 | return m_argImpl.coeffRef(index + rowOffset(), index + colOffset()); |
1600 | } |
1601 | |
1602 | protected: |
1603 | evaluator<ArgType> m_argImpl; |
1604 | const internal::variable_if_dynamicindex<Index, XprType::DiagIndex> m_index; |
1605 | |
1606 | private: |
1607 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowOffset() const { return m_index.value() > 0 ? 0 : -m_index.value(); } |
1608 | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colOffset() const { return m_index.value() > 0 ? m_index.value() : 0; } |
1609 | }; |
1610 | |
1611 | |
1612 | //---------------------------------------------------------------------- |
1613 | // deprecated code |
1614 | //---------------------------------------------------------------------- |
1615 | |
1616 | // -------------------- EvalToTemp -------------------- |
1617 | |
1618 | // expression class for evaluating nested expression to a temporary |
1619 | |
1620 | template<typename ArgType> class EvalToTemp; |
1621 | |
1622 | template<typename ArgType> |
1623 | struct traits<EvalToTemp<ArgType> > |
1624 | : public traits<ArgType> |
1625 | { }; |
1626 | |
1627 | template<typename ArgType> |
1628 | class EvalToTemp |
1629 | : public dense_xpr_base<EvalToTemp<ArgType> >::type |
1630 | { |
1631 | public: |
1632 | |
1633 | typedef typename dense_xpr_base<EvalToTemp>::type Base; |
1634 | EIGEN_GENERIC_PUBLIC_INTERFACE(EvalToTemp) |
1635 | |
1636 | explicit EvalToTemp(const ArgType& arg) |
1637 | : m_arg(arg) |
1638 | { } |
1639 | |
1640 | const ArgType& arg() const |
1641 | { |
1642 | return m_arg; |
1643 | } |
1644 | |
1645 | Index rows() const |
1646 | { |
1647 | return m_arg.rows(); |
1648 | } |
1649 | |
1650 | Index cols() const |
1651 | { |
1652 | return m_arg.cols(); |
1653 | } |
1654 | |
1655 | private: |
1656 | const ArgType& m_arg; |
1657 | }; |
1658 | |
1659 | template<typename ArgType> |
1660 | struct evaluator<EvalToTemp<ArgType> > |
1661 | : public evaluator<typename ArgType::PlainObject> |
1662 | { |
1663 | typedef EvalToTemp<ArgType> XprType; |
1664 | typedef typename ArgType::PlainObject PlainObject; |
1665 | typedef evaluator<PlainObject> Base; |
1666 | |
1667 | EIGEN_DEVICE_FUNC explicit evaluator(const XprType& xpr) |
1668 | : m_result(xpr.arg()) |
1669 | { |
1670 | ::new (static_cast<Base*>(this)) Base(m_result); |
1671 | } |
1672 | |
1673 | // This constructor is used when nesting an EvalTo evaluator in another evaluator |
1674 | EIGEN_DEVICE_FUNC evaluator(const ArgType& arg) |
1675 | : m_result(arg) |
1676 | { |
1677 | ::new (static_cast<Base*>(this)) Base(m_result); |
1678 | } |
1679 | |
1680 | protected: |
1681 | PlainObject m_result; |
1682 | }; |
1683 | |
1684 | } // namespace internal |
1685 | |
1686 | } // end namespace Eigen |
1687 | |
1688 | #endif // EIGEN_COREEVALUATORS_H |
1689 | |