1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_LU_H |
11 | #define EIGEN_LU_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> > |
17 | : traits<_MatrixType> |
18 | { |
19 | typedef MatrixXpr XprKind; |
20 | typedef SolverStorage StorageKind; |
21 | enum { Flags = 0 }; |
22 | }; |
23 | |
24 | } // end namespace internal |
25 | |
26 | /** \ingroup LU_Module |
27 | * |
28 | * \class FullPivLU |
29 | * |
30 | * \brief LU decomposition of a matrix with complete pivoting, and related features |
31 | * |
32 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition |
33 | * |
34 | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is |
35 | * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is |
36 | * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU |
37 | * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any |
38 | * zeros are at the end. |
39 | * |
40 | * This decomposition provides the generic approach to solving systems of linear equations, computing |
41 | * the rank, invertibility, inverse, kernel, and determinant. |
42 | * |
43 | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD |
44 | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, |
45 | * working with the SVD allows to select the smallest singular values of the matrix, something that |
46 | * the LU decomposition doesn't see. |
47 | * |
48 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), |
49 | * permutationP(), permutationQ(). |
50 | * |
51 | * As an exemple, here is how the original matrix can be retrieved: |
52 | * \include class_FullPivLU.cpp |
53 | * Output: \verbinclude class_FullPivLU.out |
54 | * |
55 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
56 | * |
57 | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() |
58 | */ |
59 | template<typename _MatrixType> class FullPivLU |
60 | : public SolverBase<FullPivLU<_MatrixType> > |
61 | { |
62 | public: |
63 | typedef _MatrixType MatrixType; |
64 | typedef SolverBase<FullPivLU> Base; |
65 | |
66 | EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) |
67 | // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int |
68 | enum { |
69 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
70 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
71 | }; |
72 | typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType; |
73 | typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType; |
74 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; |
75 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; |
76 | typedef typename MatrixType::PlainObject PlainObject; |
77 | |
78 | /** |
79 | * \brief Default Constructor. |
80 | * |
81 | * The default constructor is useful in cases in which the user intends to |
82 | * perform decompositions via LU::compute(const MatrixType&). |
83 | */ |
84 | FullPivLU(); |
85 | |
86 | /** \brief Default Constructor with memory preallocation |
87 | * |
88 | * Like the default constructor but with preallocation of the internal data |
89 | * according to the specified problem \a size. |
90 | * \sa FullPivLU() |
91 | */ |
92 | FullPivLU(Index rows, Index cols); |
93 | |
94 | /** Constructor. |
95 | * |
96 | * \param matrix the matrix of which to compute the LU decomposition. |
97 | * It is required to be nonzero. |
98 | */ |
99 | template<typename InputType> |
100 | explicit FullPivLU(const EigenBase<InputType>& matrix); |
101 | |
102 | /** \brief Constructs a LU factorization from a given matrix |
103 | * |
104 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
105 | * |
106 | * \sa FullPivLU(const EigenBase&) |
107 | */ |
108 | template<typename InputType> |
109 | explicit FullPivLU(EigenBase<InputType>& matrix); |
110 | |
111 | /** Computes the LU decomposition of the given matrix. |
112 | * |
113 | * \param matrix the matrix of which to compute the LU decomposition. |
114 | * It is required to be nonzero. |
115 | * |
116 | * \returns a reference to *this |
117 | */ |
118 | template<typename InputType> |
119 | FullPivLU& compute(const EigenBase<InputType>& matrix) { |
120 | m_lu = matrix.derived(); |
121 | computeInPlace(); |
122 | return *this; |
123 | } |
124 | |
125 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
126 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
127 | * case, special care is needed, see the documentation of class FullPivLU). |
128 | * |
129 | * \sa matrixL(), matrixU() |
130 | */ |
131 | inline const MatrixType& matrixLU() const |
132 | { |
133 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
134 | return m_lu; |
135 | } |
136 | |
137 | /** \returns the number of nonzero pivots in the LU decomposition. |
138 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
139 | * So that notion isn't really intrinsically interesting, but it is |
140 | * still useful when implementing algorithms. |
141 | * |
142 | * \sa rank() |
143 | */ |
144 | inline Index nonzeroPivots() const |
145 | { |
146 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
147 | return m_nonzero_pivots; |
148 | } |
149 | |
150 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
151 | * diagonal coefficient of U. |
152 | */ |
153 | RealScalar maxPivot() const { return m_maxpivot; } |
154 | |
155 | /** \returns the permutation matrix P |
156 | * |
157 | * \sa permutationQ() |
158 | */ |
159 | EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const |
160 | { |
161 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
162 | return m_p; |
163 | } |
164 | |
165 | /** \returns the permutation matrix Q |
166 | * |
167 | * \sa permutationP() |
168 | */ |
169 | inline const PermutationQType& permutationQ() const |
170 | { |
171 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
172 | return m_q; |
173 | } |
174 | |
175 | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix |
176 | * will form a basis of the kernel. |
177 | * |
178 | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. |
179 | * |
180 | * \note This method has to determine which pivots should be considered nonzero. |
181 | * For that, it uses the threshold value that you can control by calling |
182 | * setThreshold(const RealScalar&). |
183 | * |
184 | * Example: \include FullPivLU_kernel.cpp |
185 | * Output: \verbinclude FullPivLU_kernel.out |
186 | * |
187 | * \sa image() |
188 | */ |
189 | inline const internal::kernel_retval<FullPivLU> kernel() const |
190 | { |
191 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
192 | return internal::kernel_retval<FullPivLU>(*this); |
193 | } |
194 | |
195 | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix |
196 | * will form a basis of the image (column-space). |
197 | * |
198 | * \param originalMatrix the original matrix, of which *this is the LU decomposition. |
199 | * The reason why it is needed to pass it here, is that this allows |
200 | * a large optimization, as otherwise this method would need to reconstruct it |
201 | * from the LU decomposition. |
202 | * |
203 | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. |
204 | * |
205 | * \note This method has to determine which pivots should be considered nonzero. |
206 | * For that, it uses the threshold value that you can control by calling |
207 | * setThreshold(const RealScalar&). |
208 | * |
209 | * Example: \include FullPivLU_image.cpp |
210 | * Output: \verbinclude FullPivLU_image.out |
211 | * |
212 | * \sa kernel() |
213 | */ |
214 | inline const internal::image_retval<FullPivLU> |
215 | image(const MatrixType& originalMatrix) const |
216 | { |
217 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
218 | return internal::image_retval<FullPivLU>(*this, originalMatrix); |
219 | } |
220 | |
221 | /** \return a solution x to the equation Ax=b, where A is the matrix of which |
222 | * *this is the LU decomposition. |
223 | * |
224 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
225 | * the only requirement in order for the equation to make sense is that |
226 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
227 | * |
228 | * \returns a solution. |
229 | * |
230 | * \note_about_checking_solutions |
231 | * |
232 | * \note_about_arbitrary_choice_of_solution |
233 | * \note_about_using_kernel_to_study_multiple_solutions |
234 | * |
235 | * Example: \include FullPivLU_solve.cpp |
236 | * Output: \verbinclude FullPivLU_solve.out |
237 | * |
238 | * \sa TriangularView::solve(), kernel(), inverse() |
239 | */ |
240 | // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. |
241 | template<typename Rhs> |
242 | inline const Solve<FullPivLU, Rhs> |
243 | solve(const MatrixBase<Rhs>& b) const |
244 | { |
245 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
246 | return Solve<FullPivLU, Rhs>(*this, b.derived()); |
247 | } |
248 | |
249 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is |
250 | the LU decomposition. |
251 | */ |
252 | inline RealScalar rcond() const |
253 | { |
254 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
255 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
256 | } |
257 | |
258 | /** \returns the determinant of the matrix of which |
259 | * *this is the LU decomposition. It has only linear complexity |
260 | * (that is, O(n) where n is the dimension of the square matrix) |
261 | * as the LU decomposition has already been computed. |
262 | * |
263 | * \note This is only for square matrices. |
264 | * |
265 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
266 | * optimized paths. |
267 | * |
268 | * \warning a determinant can be very big or small, so for matrices |
269 | * of large enough dimension, there is a risk of overflow/underflow. |
270 | * |
271 | * \sa MatrixBase::determinant() |
272 | */ |
273 | typename internal::traits<MatrixType>::Scalar determinant() const; |
274 | |
275 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
276 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
277 | * LU decomposition itself. |
278 | * |
279 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
280 | * uses a formula to automatically determine a reasonable threshold. |
281 | * Once you have called the present method setThreshold(const RealScalar&), |
282 | * your value is used instead. |
283 | * |
284 | * \param threshold The new value to use as the threshold. |
285 | * |
286 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
287 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
288 | * where maxpivot is the biggest pivot. |
289 | * |
290 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
291 | */ |
292 | FullPivLU& setThreshold(const RealScalar& threshold) |
293 | { |
294 | m_usePrescribedThreshold = true; |
295 | m_prescribedThreshold = threshold; |
296 | return *this; |
297 | } |
298 | |
299 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
300 | * determining the threshold. |
301 | * |
302 | * You should pass the special object Eigen::Default as parameter here. |
303 | * \code lu.setThreshold(Eigen::Default); \endcode |
304 | * |
305 | * See the documentation of setThreshold(const RealScalar&). |
306 | */ |
307 | FullPivLU& setThreshold(Default_t) |
308 | { |
309 | m_usePrescribedThreshold = false; |
310 | return *this; |
311 | } |
312 | |
313 | /** Returns the threshold that will be used by certain methods such as rank(). |
314 | * |
315 | * See the documentation of setThreshold(const RealScalar&). |
316 | */ |
317 | RealScalar threshold() const |
318 | { |
319 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
320 | return m_usePrescribedThreshold ? m_prescribedThreshold |
321 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
322 | // and turns out to be identical to Higham's formula used already in LDLt. |
323 | : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); |
324 | } |
325 | |
326 | /** \returns the rank of the matrix of which *this is the LU decomposition. |
327 | * |
328 | * \note This method has to determine which pivots should be considered nonzero. |
329 | * For that, it uses the threshold value that you can control by calling |
330 | * setThreshold(const RealScalar&). |
331 | */ |
332 | inline Index rank() const |
333 | { |
334 | using std::abs; |
335 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
336 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
337 | Index result = 0; |
338 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
339 | result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); |
340 | return result; |
341 | } |
342 | |
343 | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. |
344 | * |
345 | * \note This method has to determine which pivots should be considered nonzero. |
346 | * For that, it uses the threshold value that you can control by calling |
347 | * setThreshold(const RealScalar&). |
348 | */ |
349 | inline Index dimensionOfKernel() const |
350 | { |
351 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
352 | return cols() - rank(); |
353 | } |
354 | |
355 | /** \returns true if the matrix of which *this is the LU decomposition represents an injective |
356 | * linear map, i.e. has trivial kernel; false otherwise. |
357 | * |
358 | * \note This method has to determine which pivots should be considered nonzero. |
359 | * For that, it uses the threshold value that you can control by calling |
360 | * setThreshold(const RealScalar&). |
361 | */ |
362 | inline bool isInjective() const |
363 | { |
364 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
365 | return rank() == cols(); |
366 | } |
367 | |
368 | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective |
369 | * linear map; false otherwise. |
370 | * |
371 | * \note This method has to determine which pivots should be considered nonzero. |
372 | * For that, it uses the threshold value that you can control by calling |
373 | * setThreshold(const RealScalar&). |
374 | */ |
375 | inline bool isSurjective() const |
376 | { |
377 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
378 | return rank() == rows(); |
379 | } |
380 | |
381 | /** \returns true if the matrix of which *this is the LU decomposition is invertible. |
382 | * |
383 | * \note This method has to determine which pivots should be considered nonzero. |
384 | * For that, it uses the threshold value that you can control by calling |
385 | * setThreshold(const RealScalar&). |
386 | */ |
387 | inline bool isInvertible() const |
388 | { |
389 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
390 | return isInjective() && (m_lu.rows() == m_lu.cols()); |
391 | } |
392 | |
393 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
394 | * |
395 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
396 | * Use isInvertible() to first determine whether this matrix is invertible. |
397 | * |
398 | * \sa MatrixBase::inverse() |
399 | */ |
400 | inline const Inverse<FullPivLU> inverse() const |
401 | { |
402 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
403 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!" ); |
404 | return Inverse<FullPivLU>(*this); |
405 | } |
406 | |
407 | MatrixType reconstructedMatrix() const; |
408 | |
409 | EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); } |
410 | EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); } |
411 | |
412 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
413 | template<typename RhsType, typename DstType> |
414 | EIGEN_DEVICE_FUNC |
415 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
416 | |
417 | template<bool Conjugate, typename RhsType, typename DstType> |
418 | EIGEN_DEVICE_FUNC |
419 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; |
420 | #endif |
421 | |
422 | protected: |
423 | |
424 | static void check_template_parameters() |
425 | { |
426 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
427 | } |
428 | |
429 | void computeInPlace(); |
430 | |
431 | MatrixType m_lu; |
432 | PermutationPType m_p; |
433 | PermutationQType m_q; |
434 | IntColVectorType m_rowsTranspositions; |
435 | IntRowVectorType m_colsTranspositions; |
436 | Index m_nonzero_pivots; |
437 | RealScalar m_l1_norm; |
438 | RealScalar m_maxpivot, m_prescribedThreshold; |
439 | signed char m_det_pq; |
440 | bool m_isInitialized, m_usePrescribedThreshold; |
441 | }; |
442 | |
443 | template<typename MatrixType> |
444 | FullPivLU<MatrixType>::FullPivLU() |
445 | : m_isInitialized(false), m_usePrescribedThreshold(false) |
446 | { |
447 | } |
448 | |
449 | template<typename MatrixType> |
450 | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) |
451 | : m_lu(rows, cols), |
452 | m_p(rows), |
453 | m_q(cols), |
454 | m_rowsTranspositions(rows), |
455 | m_colsTranspositions(cols), |
456 | m_isInitialized(false), |
457 | m_usePrescribedThreshold(false) |
458 | { |
459 | } |
460 | |
461 | template<typename MatrixType> |
462 | template<typename InputType> |
463 | FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix) |
464 | : m_lu(matrix.rows(), matrix.cols()), |
465 | m_p(matrix.rows()), |
466 | m_q(matrix.cols()), |
467 | m_rowsTranspositions(matrix.rows()), |
468 | m_colsTranspositions(matrix.cols()), |
469 | m_isInitialized(false), |
470 | m_usePrescribedThreshold(false) |
471 | { |
472 | compute(matrix.derived()); |
473 | } |
474 | |
475 | template<typename MatrixType> |
476 | template<typename InputType> |
477 | FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix) |
478 | : m_lu(matrix.derived()), |
479 | m_p(matrix.rows()), |
480 | m_q(matrix.cols()), |
481 | m_rowsTranspositions(matrix.rows()), |
482 | m_colsTranspositions(matrix.cols()), |
483 | m_isInitialized(false), |
484 | m_usePrescribedThreshold(false) |
485 | { |
486 | computeInPlace(); |
487 | } |
488 | |
489 | template<typename MatrixType> |
490 | void FullPivLU<MatrixType>::computeInPlace() |
491 | { |
492 | check_template_parameters(); |
493 | |
494 | // the permutations are stored as int indices, so just to be sure: |
495 | eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest()); |
496 | |
497 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
498 | |
499 | const Index size = m_lu.diagonalSize(); |
500 | const Index rows = m_lu.rows(); |
501 | const Index cols = m_lu.cols(); |
502 | |
503 | // will store the transpositions, before we accumulate them at the end. |
504 | // can't accumulate on-the-fly because that will be done in reverse order for the rows. |
505 | m_rowsTranspositions.resize(m_lu.rows()); |
506 | m_colsTranspositions.resize(m_lu.cols()); |
507 | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i |
508 | |
509 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
510 | m_maxpivot = RealScalar(0); |
511 | |
512 | for(Index k = 0; k < size; ++k) |
513 | { |
514 | // First, we need to find the pivot. |
515 | |
516 | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) |
517 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
518 | typedef internal::scalar_score_coeff_op<Scalar> Scoring; |
519 | typedef typename Scoring::result_type Score; |
520 | Score biggest_in_corner; |
521 | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) |
522 | .unaryExpr(Scoring()) |
523 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
524 | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, |
525 | col_of_biggest_in_corner += k; // need to add k to them. |
526 | |
527 | if(biggest_in_corner==Score(0)) |
528 | { |
529 | // before exiting, make sure to initialize the still uninitialized transpositions |
530 | // in a sane state without destroying what we already have. |
531 | m_nonzero_pivots = k; |
532 | for(Index i = k; i < size; ++i) |
533 | { |
534 | m_rowsTranspositions.coeffRef(i) = i; |
535 | m_colsTranspositions.coeffRef(i) = i; |
536 | } |
537 | break; |
538 | } |
539 | |
540 | RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); |
541 | if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; |
542 | |
543 | // Now that we've found the pivot, we need to apply the row/col swaps to |
544 | // bring it to the location (k,k). |
545 | |
546 | m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; |
547 | m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; |
548 | if(k != row_of_biggest_in_corner) { |
549 | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); |
550 | ++number_of_transpositions; |
551 | } |
552 | if(k != col_of_biggest_in_corner) { |
553 | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); |
554 | ++number_of_transpositions; |
555 | } |
556 | |
557 | // Now that the pivot is at the right location, we update the remaining |
558 | // bottom-right corner by Gaussian elimination. |
559 | |
560 | if(k<rows-1) |
561 | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); |
562 | if(k<size-1) |
563 | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); |
564 | } |
565 | |
566 | // the main loop is over, we still have to accumulate the transpositions to find the |
567 | // permutations P and Q |
568 | |
569 | m_p.setIdentity(rows); |
570 | for(Index k = size-1; k >= 0; --k) |
571 | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); |
572 | |
573 | m_q.setIdentity(cols); |
574 | for(Index k = 0; k < size; ++k) |
575 | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); |
576 | |
577 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
578 | |
579 | m_isInitialized = true; |
580 | } |
581 | |
582 | template<typename MatrixType> |
583 | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const |
584 | { |
585 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
586 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!" ); |
587 | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); |
588 | } |
589 | |
590 | /** \returns the matrix represented by the decomposition, |
591 | * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. |
592 | * This function is provided for debug purposes. */ |
593 | template<typename MatrixType> |
594 | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const |
595 | { |
596 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
597 | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); |
598 | // LU |
599 | MatrixType res(m_lu.rows(),m_lu.cols()); |
600 | // FIXME the .toDenseMatrix() should not be needed... |
601 | res = m_lu.leftCols(smalldim) |
602 | .template triangularView<UnitLower>().toDenseMatrix() |
603 | * m_lu.topRows(smalldim) |
604 | .template triangularView<Upper>().toDenseMatrix(); |
605 | |
606 | // P^{-1}(LU) |
607 | res = m_p.inverse() * res; |
608 | |
609 | // (P^{-1}LU)Q^{-1} |
610 | res = res * m_q.inverse(); |
611 | |
612 | return res; |
613 | } |
614 | |
615 | /********* Implementation of kernel() **************************************************/ |
616 | |
617 | namespace internal { |
618 | template<typename _MatrixType> |
619 | struct kernel_retval<FullPivLU<_MatrixType> > |
620 | : kernel_retval_base<FullPivLU<_MatrixType> > |
621 | { |
622 | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) |
623 | |
624 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
625 | MatrixType::MaxColsAtCompileTime, |
626 | MatrixType::MaxRowsAtCompileTime) |
627 | }; |
628 | |
629 | template<typename Dest> void evalTo(Dest& dst) const |
630 | { |
631 | using std::abs; |
632 | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); |
633 | if(dimker == 0) |
634 | { |
635 | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's |
636 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
637 | // just return a single column vector filled with zeros. |
638 | dst.setZero(); |
639 | return; |
640 | } |
641 | |
642 | /* Let us use the following lemma: |
643 | * |
644 | * Lemma: If the matrix A has the LU decomposition PAQ = LU, |
645 | * then Ker A = Q(Ker U). |
646 | * |
647 | * Proof: trivial: just keep in mind that P, Q, L are invertible. |
648 | */ |
649 | |
650 | /* Thus, all we need to do is to compute Ker U, and then apply Q. |
651 | * |
652 | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. |
653 | * Thus, the diagonal of U ends with exactly |
654 | * dimKer zero's. Let us use that to construct dimKer linearly |
655 | * independent vectors in Ker U. |
656 | */ |
657 | |
658 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
659 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
660 | Index p = 0; |
661 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
662 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
663 | pivots.coeffRef(p++) = i; |
664 | eigen_internal_assert(p == rank()); |
665 | |
666 | // we construct a temporaty trapezoid matrix m, by taking the U matrix and |
667 | // permuting the rows and cols to bring the nonnegligible pivots to the top of |
668 | // the main diagonal. We need that to be able to apply our triangular solvers. |
669 | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified |
670 | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, |
671 | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> |
672 | m(dec().matrixLU().block(0, 0, rank(), cols)); |
673 | for(Index i = 0; i < rank(); ++i) |
674 | { |
675 | if(i) m.row(i).head(i).setZero(); |
676 | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); |
677 | } |
678 | m.block(0, 0, rank(), rank()); |
679 | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); |
680 | for(Index i = 0; i < rank(); ++i) |
681 | m.col(i).swap(m.col(pivots.coeff(i))); |
682 | |
683 | // ok, we have our trapezoid matrix, we can apply the triangular solver. |
684 | // notice that the math behind this suggests that we should apply this to the |
685 | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. |
686 | m.topLeftCorner(rank(), rank()) |
687 | .template triangularView<Upper>().solveInPlace( |
688 | m.topRightCorner(rank(), dimker) |
689 | ); |
690 | |
691 | // now we must undo the column permutation that we had applied! |
692 | for(Index i = rank()-1; i >= 0; --i) |
693 | m.col(i).swap(m.col(pivots.coeff(i))); |
694 | |
695 | // see the negative sign in the next line, that's what we were talking about above. |
696 | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); |
697 | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); |
698 | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); |
699 | } |
700 | }; |
701 | |
702 | /***** Implementation of image() *****************************************************/ |
703 | |
704 | template<typename _MatrixType> |
705 | struct image_retval<FullPivLU<_MatrixType> > |
706 | : image_retval_base<FullPivLU<_MatrixType> > |
707 | { |
708 | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) |
709 | |
710 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( |
711 | MatrixType::MaxColsAtCompileTime, |
712 | MatrixType::MaxRowsAtCompileTime) |
713 | }; |
714 | |
715 | template<typename Dest> void evalTo(Dest& dst) const |
716 | { |
717 | using std::abs; |
718 | if(rank() == 0) |
719 | { |
720 | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's |
721 | // avoid crashing/asserting as that depends on floating point calculations. Let's |
722 | // just return a single column vector filled with zeros. |
723 | dst.setZero(); |
724 | return; |
725 | } |
726 | |
727 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); |
728 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); |
729 | Index p = 0; |
730 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) |
731 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) |
732 | pivots.coeffRef(p++) = i; |
733 | eigen_internal_assert(p == rank()); |
734 | |
735 | for(Index i = 0; i < rank(); ++i) |
736 | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); |
737 | } |
738 | }; |
739 | |
740 | /***** Implementation of solve() *****************************************************/ |
741 | |
742 | } // end namespace internal |
743 | |
744 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
745 | template<typename _MatrixType> |
746 | template<typename RhsType, typename DstType> |
747 | void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
748 | { |
749 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. |
750 | * So we proceed as follows: |
751 | * Step 1: compute c = P * rhs. |
752 | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. |
753 | * Step 3: replace c by the solution x to Ux = c. May or may not exist. |
754 | * Step 4: result = Q * c; |
755 | */ |
756 | |
757 | const Index rows = this->rows(), |
758 | cols = this->cols(), |
759 | nonzero_pivots = this->rank(); |
760 | eigen_assert(rhs.rows() == rows); |
761 | const Index smalldim = (std::min)(rows, cols); |
762 | |
763 | if(nonzero_pivots == 0) |
764 | { |
765 | dst.setZero(); |
766 | return; |
767 | } |
768 | |
769 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
770 | |
771 | // Step 1 |
772 | c = permutationP() * rhs; |
773 | |
774 | // Step 2 |
775 | m_lu.topLeftCorner(smalldim,smalldim) |
776 | .template triangularView<UnitLower>() |
777 | .solveInPlace(c.topRows(smalldim)); |
778 | if(rows>cols) |
779 | c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); |
780 | |
781 | // Step 3 |
782 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
783 | .template triangularView<Upper>() |
784 | .solveInPlace(c.topRows(nonzero_pivots)); |
785 | |
786 | // Step 4 |
787 | for(Index i = 0; i < nonzero_pivots; ++i) |
788 | dst.row(permutationQ().indices().coeff(i)) = c.row(i); |
789 | for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) |
790 | dst.row(permutationQ().indices().coeff(i)).setZero(); |
791 | } |
792 | |
793 | template<typename _MatrixType> |
794 | template<bool Conjugate, typename RhsType, typename DstType> |
795 | void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const |
796 | { |
797 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, |
798 | * and since permutations are real and unitary, we can write this |
799 | * as A^T = Q U^T L^T P, |
800 | * So we proceed as follows: |
801 | * Step 1: compute c = Q^T rhs. |
802 | * Step 2: replace c by the solution x to U^T x = c. May or may not exist. |
803 | * Step 3: replace c by the solution x to L^T x = c. |
804 | * Step 4: result = P^T c. |
805 | * If Conjugate is true, replace "^T" by "^*" above. |
806 | */ |
807 | |
808 | const Index rows = this->rows(), cols = this->cols(), |
809 | nonzero_pivots = this->rank(); |
810 | eigen_assert(rhs.rows() == cols); |
811 | const Index smalldim = (std::min)(rows, cols); |
812 | |
813 | if(nonzero_pivots == 0) |
814 | { |
815 | dst.setZero(); |
816 | return; |
817 | } |
818 | |
819 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); |
820 | |
821 | // Step 1 |
822 | c = permutationQ().inverse() * rhs; |
823 | |
824 | if (Conjugate) { |
825 | // Step 2 |
826 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
827 | .template triangularView<Upper>() |
828 | .adjoint() |
829 | .solveInPlace(c.topRows(nonzero_pivots)); |
830 | // Step 3 |
831 | m_lu.topLeftCorner(smalldim, smalldim) |
832 | .template triangularView<UnitLower>() |
833 | .adjoint() |
834 | .solveInPlace(c.topRows(smalldim)); |
835 | } else { |
836 | // Step 2 |
837 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) |
838 | .template triangularView<Upper>() |
839 | .transpose() |
840 | .solveInPlace(c.topRows(nonzero_pivots)); |
841 | // Step 3 |
842 | m_lu.topLeftCorner(smalldim, smalldim) |
843 | .template triangularView<UnitLower>() |
844 | .transpose() |
845 | .solveInPlace(c.topRows(smalldim)); |
846 | } |
847 | |
848 | // Step 4 |
849 | PermutationPType invp = permutationP().inverse().eval(); |
850 | for(Index i = 0; i < smalldim; ++i) |
851 | dst.row(invp.indices().coeff(i)) = c.row(i); |
852 | for(Index i = smalldim; i < rows; ++i) |
853 | dst.row(invp.indices().coeff(i)).setZero(); |
854 | } |
855 | |
856 | #endif |
857 | |
858 | namespace internal { |
859 | |
860 | |
861 | /***** Implementation of inverse() *****************************************************/ |
862 | template<typename DstXprType, typename MatrixType> |
863 | struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense> |
864 | { |
865 | typedef FullPivLU<MatrixType> LuType; |
866 | typedef Inverse<LuType> SrcXprType; |
867 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &) |
868 | { |
869 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
870 | } |
871 | }; |
872 | } // end namespace internal |
873 | |
874 | /******* MatrixBase methods *****************************************************************/ |
875 | |
876 | /** \lu_module |
877 | * |
878 | * \return the full-pivoting LU decomposition of \c *this. |
879 | * |
880 | * \sa class FullPivLU |
881 | */ |
882 | template<typename Derived> |
883 | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> |
884 | MatrixBase<Derived>::fullPivLu() const |
885 | { |
886 | return FullPivLU<PlainObject>(eval()); |
887 | } |
888 | |
889 | } // end namespace Eigen |
890 | |
891 | #endif // EIGEN_LU_H |
892 | |