| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|---|
| 5 | // | 
|---|
| 6 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 9 |  | 
|---|
| 10 | #ifndef EIGEN_LU_H | 
|---|
| 11 | #define EIGEN_LU_H | 
|---|
| 12 |  | 
|---|
| 13 | namespace Eigen { | 
|---|
| 14 |  | 
|---|
| 15 | namespace internal { | 
|---|
| 16 | template<typename _MatrixType> struct traits<FullPivLU<_MatrixType> > | 
|---|
| 17 | : traits<_MatrixType> | 
|---|
| 18 | { | 
|---|
| 19 | typedef MatrixXpr XprKind; | 
|---|
| 20 | typedef SolverStorage StorageKind; | 
|---|
| 21 | enum { Flags = 0 }; | 
|---|
| 22 | }; | 
|---|
| 23 |  | 
|---|
| 24 | } // end namespace internal | 
|---|
| 25 |  | 
|---|
| 26 | /** \ingroup LU_Module | 
|---|
| 27 | * | 
|---|
| 28 | * \class FullPivLU | 
|---|
| 29 | * | 
|---|
| 30 | * \brief LU decomposition of a matrix with complete pivoting, and related features | 
|---|
| 31 | * | 
|---|
| 32 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition | 
|---|
| 33 | * | 
|---|
| 34 | * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is | 
|---|
| 35 | * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is | 
|---|
| 36 | * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU | 
|---|
| 37 | * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any | 
|---|
| 38 | * zeros are at the end. | 
|---|
| 39 | * | 
|---|
| 40 | * This decomposition provides the generic approach to solving systems of linear equations, computing | 
|---|
| 41 | * the rank, invertibility, inverse, kernel, and determinant. | 
|---|
| 42 | * | 
|---|
| 43 | * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD | 
|---|
| 44 | * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix, | 
|---|
| 45 | * working with the SVD allows to select the smallest singular values of the matrix, something that | 
|---|
| 46 | * the LU decomposition doesn't see. | 
|---|
| 47 | * | 
|---|
| 48 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), | 
|---|
| 49 | * permutationP(), permutationQ(). | 
|---|
| 50 | * | 
|---|
| 51 | * As an exemple, here is how the original matrix can be retrieved: | 
|---|
| 52 | * \include class_FullPivLU.cpp | 
|---|
| 53 | * Output: \verbinclude class_FullPivLU.out | 
|---|
| 54 | * | 
|---|
| 55 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|---|
| 56 | * | 
|---|
| 57 | * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse() | 
|---|
| 58 | */ | 
|---|
| 59 | template<typename _MatrixType> class FullPivLU | 
|---|
| 60 | : public SolverBase<FullPivLU<_MatrixType> > | 
|---|
| 61 | { | 
|---|
| 62 | public: | 
|---|
| 63 | typedef _MatrixType MatrixType; | 
|---|
| 64 | typedef SolverBase<FullPivLU> Base; | 
|---|
| 65 |  | 
|---|
| 66 | EIGEN_GENERIC_PUBLIC_INTERFACE(FullPivLU) | 
|---|
| 67 | // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int | 
|---|
| 68 | enum { | 
|---|
| 69 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|---|
| 70 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|---|
| 71 | }; | 
|---|
| 72 | typedef typename internal::plain_row_type<MatrixType, StorageIndex>::type IntRowVectorType; | 
|---|
| 73 | typedef typename internal::plain_col_type<MatrixType, StorageIndex>::type IntColVectorType; | 
|---|
| 74 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType; | 
|---|
| 75 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType; | 
|---|
| 76 | typedef typename MatrixType::PlainObject PlainObject; | 
|---|
| 77 |  | 
|---|
| 78 | /** | 
|---|
| 79 | * \brief Default Constructor. | 
|---|
| 80 | * | 
|---|
| 81 | * The default constructor is useful in cases in which the user intends to | 
|---|
| 82 | * perform decompositions via LU::compute(const MatrixType&). | 
|---|
| 83 | */ | 
|---|
| 84 | FullPivLU(); | 
|---|
| 85 |  | 
|---|
| 86 | /** \brief Default Constructor with memory preallocation | 
|---|
| 87 | * | 
|---|
| 88 | * Like the default constructor but with preallocation of the internal data | 
|---|
| 89 | * according to the specified problem \a size. | 
|---|
| 90 | * \sa FullPivLU() | 
|---|
| 91 | */ | 
|---|
| 92 | FullPivLU(Index rows, Index cols); | 
|---|
| 93 |  | 
|---|
| 94 | /** Constructor. | 
|---|
| 95 | * | 
|---|
| 96 | * \param matrix the matrix of which to compute the LU decomposition. | 
|---|
| 97 | *               It is required to be nonzero. | 
|---|
| 98 | */ | 
|---|
| 99 | template<typename InputType> | 
|---|
| 100 | explicit FullPivLU(const EigenBase<InputType>& matrix); | 
|---|
| 101 |  | 
|---|
| 102 | /** \brief Constructs a LU factorization from a given matrix | 
|---|
| 103 | * | 
|---|
| 104 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
|---|
| 105 | * | 
|---|
| 106 | * \sa FullPivLU(const EigenBase&) | 
|---|
| 107 | */ | 
|---|
| 108 | template<typename InputType> | 
|---|
| 109 | explicit FullPivLU(EigenBase<InputType>& matrix); | 
|---|
| 110 |  | 
|---|
| 111 | /** Computes the LU decomposition of the given matrix. | 
|---|
| 112 | * | 
|---|
| 113 | * \param matrix the matrix of which to compute the LU decomposition. | 
|---|
| 114 | *               It is required to be nonzero. | 
|---|
| 115 | * | 
|---|
| 116 | * \returns a reference to *this | 
|---|
| 117 | */ | 
|---|
| 118 | template<typename InputType> | 
|---|
| 119 | FullPivLU& compute(const EigenBase<InputType>& matrix) { | 
|---|
| 120 | m_lu = matrix.derived(); | 
|---|
| 121 | computeInPlace(); | 
|---|
| 122 | return *this; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the | 
|---|
| 126 | * unit-lower-triangular part is L (at least for square matrices; in the non-square | 
|---|
| 127 | * case, special care is needed, see the documentation of class FullPivLU). | 
|---|
| 128 | * | 
|---|
| 129 | * \sa matrixL(), matrixU() | 
|---|
| 130 | */ | 
|---|
| 131 | inline const MatrixType& matrixLU() const | 
|---|
| 132 | { | 
|---|
| 133 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 134 | return m_lu; | 
|---|
| 135 | } | 
|---|
| 136 |  | 
|---|
| 137 | /** \returns the number of nonzero pivots in the LU decomposition. | 
|---|
| 138 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. | 
|---|
| 139 | * So that notion isn't really intrinsically interesting, but it is | 
|---|
| 140 | * still useful when implementing algorithms. | 
|---|
| 141 | * | 
|---|
| 142 | * \sa rank() | 
|---|
| 143 | */ | 
|---|
| 144 | inline Index nonzeroPivots() const | 
|---|
| 145 | { | 
|---|
| 146 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 147 | return m_nonzero_pivots; | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
|---|
| 151 | *          diagonal coefficient of U. | 
|---|
| 152 | */ | 
|---|
| 153 | RealScalar maxPivot() const { return m_maxpivot; } | 
|---|
| 154 |  | 
|---|
| 155 | /** \returns the permutation matrix P | 
|---|
| 156 | * | 
|---|
| 157 | * \sa permutationQ() | 
|---|
| 158 | */ | 
|---|
| 159 | EIGEN_DEVICE_FUNC inline const PermutationPType& permutationP() const | 
|---|
| 160 | { | 
|---|
| 161 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 162 | return m_p; | 
|---|
| 163 | } | 
|---|
| 164 |  | 
|---|
| 165 | /** \returns the permutation matrix Q | 
|---|
| 166 | * | 
|---|
| 167 | * \sa permutationP() | 
|---|
| 168 | */ | 
|---|
| 169 | inline const PermutationQType& permutationQ() const | 
|---|
| 170 | { | 
|---|
| 171 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 172 | return m_q; | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix | 
|---|
| 176 | * will form a basis of the kernel. | 
|---|
| 177 | * | 
|---|
| 178 | * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros. | 
|---|
| 179 | * | 
|---|
| 180 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 181 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 182 | *       setThreshold(const RealScalar&). | 
|---|
| 183 | * | 
|---|
| 184 | * Example: \include FullPivLU_kernel.cpp | 
|---|
| 185 | * Output: \verbinclude FullPivLU_kernel.out | 
|---|
| 186 | * | 
|---|
| 187 | * \sa image() | 
|---|
| 188 | */ | 
|---|
| 189 | inline const internal::kernel_retval<FullPivLU> kernel() const | 
|---|
| 190 | { | 
|---|
| 191 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 192 | return internal::kernel_retval<FullPivLU>(*this); | 
|---|
| 193 | } | 
|---|
| 194 |  | 
|---|
| 195 | /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix | 
|---|
| 196 | * will form a basis of the image (column-space). | 
|---|
| 197 | * | 
|---|
| 198 | * \param originalMatrix the original matrix, of which *this is the LU decomposition. | 
|---|
| 199 | *                       The reason why it is needed to pass it here, is that this allows | 
|---|
| 200 | *                       a large optimization, as otherwise this method would need to reconstruct it | 
|---|
| 201 | *                       from the LU decomposition. | 
|---|
| 202 | * | 
|---|
| 203 | * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros. | 
|---|
| 204 | * | 
|---|
| 205 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 206 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 207 | *       setThreshold(const RealScalar&). | 
|---|
| 208 | * | 
|---|
| 209 | * Example: \include FullPivLU_image.cpp | 
|---|
| 210 | * Output: \verbinclude FullPivLU_image.out | 
|---|
| 211 | * | 
|---|
| 212 | * \sa kernel() | 
|---|
| 213 | */ | 
|---|
| 214 | inline const internal::image_retval<FullPivLU> | 
|---|
| 215 | image(const MatrixType& originalMatrix) const | 
|---|
| 216 | { | 
|---|
| 217 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 218 | return internal::image_retval<FullPivLU>(*this, originalMatrix); | 
|---|
| 219 | } | 
|---|
| 220 |  | 
|---|
| 221 | /** \return a solution x to the equation Ax=b, where A is the matrix of which | 
|---|
| 222 | * *this is the LU decomposition. | 
|---|
| 223 | * | 
|---|
| 224 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, | 
|---|
| 225 | *          the only requirement in order for the equation to make sense is that | 
|---|
| 226 | *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. | 
|---|
| 227 | * | 
|---|
| 228 | * \returns a solution. | 
|---|
| 229 | * | 
|---|
| 230 | * \note_about_checking_solutions | 
|---|
| 231 | * | 
|---|
| 232 | * \note_about_arbitrary_choice_of_solution | 
|---|
| 233 | * \note_about_using_kernel_to_study_multiple_solutions | 
|---|
| 234 | * | 
|---|
| 235 | * Example: \include FullPivLU_solve.cpp | 
|---|
| 236 | * Output: \verbinclude FullPivLU_solve.out | 
|---|
| 237 | * | 
|---|
| 238 | * \sa TriangularView::solve(), kernel(), inverse() | 
|---|
| 239 | */ | 
|---|
| 240 | // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. | 
|---|
| 241 | template<typename Rhs> | 
|---|
| 242 | inline const Solve<FullPivLU, Rhs> | 
|---|
| 243 | solve(const MatrixBase<Rhs>& b) const | 
|---|
| 244 | { | 
|---|
| 245 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 246 | return Solve<FullPivLU, Rhs>(*this, b.derived()); | 
|---|
| 247 | } | 
|---|
| 248 |  | 
|---|
| 249 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is | 
|---|
| 250 | the LU decomposition. | 
|---|
| 251 | */ | 
|---|
| 252 | inline RealScalar rcond() const | 
|---|
| 253 | { | 
|---|
| 254 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 255 | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|---|
| 256 | } | 
|---|
| 257 |  | 
|---|
| 258 | /** \returns the determinant of the matrix of which | 
|---|
| 259 | * *this is the LU decomposition. It has only linear complexity | 
|---|
| 260 | * (that is, O(n) where n is the dimension of the square matrix) | 
|---|
| 261 | * as the LU decomposition has already been computed. | 
|---|
| 262 | * | 
|---|
| 263 | * \note This is only for square matrices. | 
|---|
| 264 | * | 
|---|
| 265 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers | 
|---|
| 266 | *       optimized paths. | 
|---|
| 267 | * | 
|---|
| 268 | * \warning a determinant can be very big or small, so for matrices | 
|---|
| 269 | * of large enough dimension, there is a risk of overflow/underflow. | 
|---|
| 270 | * | 
|---|
| 271 | * \sa MatrixBase::determinant() | 
|---|
| 272 | */ | 
|---|
| 273 | typename internal::traits<MatrixType>::Scalar determinant() const; | 
|---|
| 274 |  | 
|---|
| 275 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), | 
|---|
| 276 | * who need to determine when pivots are to be considered nonzero. This is not used for the | 
|---|
| 277 | * LU decomposition itself. | 
|---|
| 278 | * | 
|---|
| 279 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this | 
|---|
| 280 | * uses a formula to automatically determine a reasonable threshold. | 
|---|
| 281 | * Once you have called the present method setThreshold(const RealScalar&), | 
|---|
| 282 | * your value is used instead. | 
|---|
| 283 | * | 
|---|
| 284 | * \param threshold The new value to use as the threshold. | 
|---|
| 285 | * | 
|---|
| 286 | * A pivot will be considered nonzero if its absolute value is strictly greater than | 
|---|
| 287 | *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
|---|
| 288 | * where maxpivot is the biggest pivot. | 
|---|
| 289 | * | 
|---|
| 290 | * If you want to come back to the default behavior, call setThreshold(Default_t) | 
|---|
| 291 | */ | 
|---|
| 292 | FullPivLU& setThreshold(const RealScalar& threshold) | 
|---|
| 293 | { | 
|---|
| 294 | m_usePrescribedThreshold = true; | 
|---|
| 295 | m_prescribedThreshold = threshold; | 
|---|
| 296 | return *this; | 
|---|
| 297 | } | 
|---|
| 298 |  | 
|---|
| 299 | /** Allows to come back to the default behavior, letting Eigen use its default formula for | 
|---|
| 300 | * determining the threshold. | 
|---|
| 301 | * | 
|---|
| 302 | * You should pass the special object Eigen::Default as parameter here. | 
|---|
| 303 | * \code lu.setThreshold(Eigen::Default); \endcode | 
|---|
| 304 | * | 
|---|
| 305 | * See the documentation of setThreshold(const RealScalar&). | 
|---|
| 306 | */ | 
|---|
| 307 | FullPivLU& setThreshold(Default_t) | 
|---|
| 308 | { | 
|---|
| 309 | m_usePrescribedThreshold = false; | 
|---|
| 310 | return *this; | 
|---|
| 311 | } | 
|---|
| 312 |  | 
|---|
| 313 | /** Returns the threshold that will be used by certain methods such as rank(). | 
|---|
| 314 | * | 
|---|
| 315 | * See the documentation of setThreshold(const RealScalar&). | 
|---|
| 316 | */ | 
|---|
| 317 | RealScalar threshold() const | 
|---|
| 318 | { | 
|---|
| 319 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); | 
|---|
| 320 | return m_usePrescribedThreshold ? m_prescribedThreshold | 
|---|
| 321 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) | 
|---|
| 322 | // and turns out to be identical to Higham's formula used already in LDLt. | 
|---|
| 323 | : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize(); | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | /** \returns the rank of the matrix of which *this is the LU decomposition. | 
|---|
| 327 | * | 
|---|
| 328 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 329 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 330 | *       setThreshold(const RealScalar&). | 
|---|
| 331 | */ | 
|---|
| 332 | inline Index rank() const | 
|---|
| 333 | { | 
|---|
| 334 | using std::abs; | 
|---|
| 335 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 336 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); | 
|---|
| 337 | Index result = 0; | 
|---|
| 338 | for(Index i = 0; i < m_nonzero_pivots; ++i) | 
|---|
| 339 | result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold); | 
|---|
| 340 | return result; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition. | 
|---|
| 344 | * | 
|---|
| 345 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 346 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 347 | *       setThreshold(const RealScalar&). | 
|---|
| 348 | */ | 
|---|
| 349 | inline Index dimensionOfKernel() const | 
|---|
| 350 | { | 
|---|
| 351 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 352 | return cols() - rank(); | 
|---|
| 353 | } | 
|---|
| 354 |  | 
|---|
| 355 | /** \returns true if the matrix of which *this is the LU decomposition represents an injective | 
|---|
| 356 | *          linear map, i.e. has trivial kernel; false otherwise. | 
|---|
| 357 | * | 
|---|
| 358 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 359 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 360 | *       setThreshold(const RealScalar&). | 
|---|
| 361 | */ | 
|---|
| 362 | inline bool isInjective() const | 
|---|
| 363 | { | 
|---|
| 364 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 365 | return rank() == cols(); | 
|---|
| 366 | } | 
|---|
| 367 |  | 
|---|
| 368 | /** \returns true if the matrix of which *this is the LU decomposition represents a surjective | 
|---|
| 369 | *          linear map; false otherwise. | 
|---|
| 370 | * | 
|---|
| 371 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 372 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 373 | *       setThreshold(const RealScalar&). | 
|---|
| 374 | */ | 
|---|
| 375 | inline bool isSurjective() const | 
|---|
| 376 | { | 
|---|
| 377 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 378 | return rank() == rows(); | 
|---|
| 379 | } | 
|---|
| 380 |  | 
|---|
| 381 | /** \returns true if the matrix of which *this is the LU decomposition is invertible. | 
|---|
| 382 | * | 
|---|
| 383 | * \note This method has to determine which pivots should be considered nonzero. | 
|---|
| 384 | *       For that, it uses the threshold value that you can control by calling | 
|---|
| 385 | *       setThreshold(const RealScalar&). | 
|---|
| 386 | */ | 
|---|
| 387 | inline bool isInvertible() const | 
|---|
| 388 | { | 
|---|
| 389 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 390 | return isInjective() && (m_lu.rows() == m_lu.cols()); | 
|---|
| 391 | } | 
|---|
| 392 |  | 
|---|
| 393 | /** \returns the inverse of the matrix of which *this is the LU decomposition. | 
|---|
| 394 | * | 
|---|
| 395 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. | 
|---|
| 396 | *       Use isInvertible() to first determine whether this matrix is invertible. | 
|---|
| 397 | * | 
|---|
| 398 | * \sa MatrixBase::inverse() | 
|---|
| 399 | */ | 
|---|
| 400 | inline const Inverse<FullPivLU> inverse() const | 
|---|
| 401 | { | 
|---|
| 402 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 403 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!"); | 
|---|
| 404 | return Inverse<FullPivLU>(*this); | 
|---|
| 405 | } | 
|---|
| 406 |  | 
|---|
| 407 | MatrixType reconstructedMatrix() const; | 
|---|
| 408 |  | 
|---|
| 409 | EIGEN_DEVICE_FUNC inline Index rows() const { return m_lu.rows(); } | 
|---|
| 410 | EIGEN_DEVICE_FUNC inline Index cols() const { return m_lu.cols(); } | 
|---|
| 411 |  | 
|---|
| 412 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 413 | template<typename RhsType, typename DstType> | 
|---|
| 414 | EIGEN_DEVICE_FUNC | 
|---|
| 415 | void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
|---|
| 416 |  | 
|---|
| 417 | template<bool Conjugate, typename RhsType, typename DstType> | 
|---|
| 418 | EIGEN_DEVICE_FUNC | 
|---|
| 419 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const; | 
|---|
| 420 | #endif | 
|---|
| 421 |  | 
|---|
| 422 | protected: | 
|---|
| 423 |  | 
|---|
| 424 | static void check_template_parameters() | 
|---|
| 425 | { | 
|---|
| 426 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | void computeInPlace(); | 
|---|
| 430 |  | 
|---|
| 431 | MatrixType m_lu; | 
|---|
| 432 | PermutationPType m_p; | 
|---|
| 433 | PermutationQType m_q; | 
|---|
| 434 | IntColVectorType m_rowsTranspositions; | 
|---|
| 435 | IntRowVectorType m_colsTranspositions; | 
|---|
| 436 | Index m_nonzero_pivots; | 
|---|
| 437 | RealScalar m_l1_norm; | 
|---|
| 438 | RealScalar m_maxpivot, m_prescribedThreshold; | 
|---|
| 439 | signed char m_det_pq; | 
|---|
| 440 | bool m_isInitialized, m_usePrescribedThreshold; | 
|---|
| 441 | }; | 
|---|
| 442 |  | 
|---|
| 443 | template<typename MatrixType> | 
|---|
| 444 | FullPivLU<MatrixType>::FullPivLU() | 
|---|
| 445 | : m_isInitialized(false), m_usePrescribedThreshold(false) | 
|---|
| 446 | { | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | template<typename MatrixType> | 
|---|
| 450 | FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols) | 
|---|
| 451 | : m_lu(rows, cols), | 
|---|
| 452 | m_p(rows), | 
|---|
| 453 | m_q(cols), | 
|---|
| 454 | m_rowsTranspositions(rows), | 
|---|
| 455 | m_colsTranspositions(cols), | 
|---|
| 456 | m_isInitialized(false), | 
|---|
| 457 | m_usePrescribedThreshold(false) | 
|---|
| 458 | { | 
|---|
| 459 | } | 
|---|
| 460 |  | 
|---|
| 461 | template<typename MatrixType> | 
|---|
| 462 | template<typename InputType> | 
|---|
| 463 | FullPivLU<MatrixType>::FullPivLU(const EigenBase<InputType>& matrix) | 
|---|
| 464 | : m_lu(matrix.rows(), matrix.cols()), | 
|---|
| 465 | m_p(matrix.rows()), | 
|---|
| 466 | m_q(matrix.cols()), | 
|---|
| 467 | m_rowsTranspositions(matrix.rows()), | 
|---|
| 468 | m_colsTranspositions(matrix.cols()), | 
|---|
| 469 | m_isInitialized(false), | 
|---|
| 470 | m_usePrescribedThreshold(false) | 
|---|
| 471 | { | 
|---|
| 472 | compute(matrix.derived()); | 
|---|
| 473 | } | 
|---|
| 474 |  | 
|---|
| 475 | template<typename MatrixType> | 
|---|
| 476 | template<typename InputType> | 
|---|
| 477 | FullPivLU<MatrixType>::FullPivLU(EigenBase<InputType>& matrix) | 
|---|
| 478 | : m_lu(matrix.derived()), | 
|---|
| 479 | m_p(matrix.rows()), | 
|---|
| 480 | m_q(matrix.cols()), | 
|---|
| 481 | m_rowsTranspositions(matrix.rows()), | 
|---|
| 482 | m_colsTranspositions(matrix.cols()), | 
|---|
| 483 | m_isInitialized(false), | 
|---|
| 484 | m_usePrescribedThreshold(false) | 
|---|
| 485 | { | 
|---|
| 486 | computeInPlace(); | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | template<typename MatrixType> | 
|---|
| 490 | void FullPivLU<MatrixType>::computeInPlace() | 
|---|
| 491 | { | 
|---|
| 492 | check_template_parameters(); | 
|---|
| 493 |  | 
|---|
| 494 | // the permutations are stored as int indices, so just to be sure: | 
|---|
| 495 | eigen_assert(m_lu.rows()<=NumTraits<int>::highest() && m_lu.cols()<=NumTraits<int>::highest()); | 
|---|
| 496 |  | 
|---|
| 497 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | 
|---|
| 498 |  | 
|---|
| 499 | const Index size = m_lu.diagonalSize(); | 
|---|
| 500 | const Index rows = m_lu.rows(); | 
|---|
| 501 | const Index cols = m_lu.cols(); | 
|---|
| 502 |  | 
|---|
| 503 | // will store the transpositions, before we accumulate them at the end. | 
|---|
| 504 | // can't accumulate on-the-fly because that will be done in reverse order for the rows. | 
|---|
| 505 | m_rowsTranspositions.resize(m_lu.rows()); | 
|---|
| 506 | m_colsTranspositions.resize(m_lu.cols()); | 
|---|
| 507 | Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i | 
|---|
| 508 |  | 
|---|
| 509 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) | 
|---|
| 510 | m_maxpivot = RealScalar(0); | 
|---|
| 511 |  | 
|---|
| 512 | for(Index k = 0; k < size; ++k) | 
|---|
| 513 | { | 
|---|
| 514 | // First, we need to find the pivot. | 
|---|
| 515 |  | 
|---|
| 516 | // biggest coefficient in the remaining bottom-right corner (starting at row k, col k) | 
|---|
| 517 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; | 
|---|
| 518 | typedef internal::scalar_score_coeff_op<Scalar> Scoring; | 
|---|
| 519 | typedef typename Scoring::result_type Score; | 
|---|
| 520 | Score biggest_in_corner; | 
|---|
| 521 | biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k) | 
|---|
| 522 | .unaryExpr(Scoring()) | 
|---|
| 523 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); | 
|---|
| 524 | row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner, | 
|---|
| 525 | col_of_biggest_in_corner += k; // need to add k to them. | 
|---|
| 526 |  | 
|---|
| 527 | if(biggest_in_corner==Score(0)) | 
|---|
| 528 | { | 
|---|
| 529 | // before exiting, make sure to initialize the still uninitialized transpositions | 
|---|
| 530 | // in a sane state without destroying what we already have. | 
|---|
| 531 | m_nonzero_pivots = k; | 
|---|
| 532 | for(Index i = k; i < size; ++i) | 
|---|
| 533 | { | 
|---|
| 534 | m_rowsTranspositions.coeffRef(i) = i; | 
|---|
| 535 | m_colsTranspositions.coeffRef(i) = i; | 
|---|
| 536 | } | 
|---|
| 537 | break; | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | RealScalar abs_pivot = internal::abs_knowing_score<Scalar>()(m_lu(row_of_biggest_in_corner, col_of_biggest_in_corner), biggest_in_corner); | 
|---|
| 541 | if(abs_pivot > m_maxpivot) m_maxpivot = abs_pivot; | 
|---|
| 542 |  | 
|---|
| 543 | // Now that we've found the pivot, we need to apply the row/col swaps to | 
|---|
| 544 | // bring it to the location (k,k). | 
|---|
| 545 |  | 
|---|
| 546 | m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner; | 
|---|
| 547 | m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner; | 
|---|
| 548 | if(k != row_of_biggest_in_corner) { | 
|---|
| 549 | m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner)); | 
|---|
| 550 | ++number_of_transpositions; | 
|---|
| 551 | } | 
|---|
| 552 | if(k != col_of_biggest_in_corner) { | 
|---|
| 553 | m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner)); | 
|---|
| 554 | ++number_of_transpositions; | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | // Now that the pivot is at the right location, we update the remaining | 
|---|
| 558 | // bottom-right corner by Gaussian elimination. | 
|---|
| 559 |  | 
|---|
| 560 | if(k<rows-1) | 
|---|
| 561 | m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k); | 
|---|
| 562 | if(k<size-1) | 
|---|
| 563 | m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1); | 
|---|
| 564 | } | 
|---|
| 565 |  | 
|---|
| 566 | // the main loop is over, we still have to accumulate the transpositions to find the | 
|---|
| 567 | // permutations P and Q | 
|---|
| 568 |  | 
|---|
| 569 | m_p.setIdentity(rows); | 
|---|
| 570 | for(Index k = size-1; k >= 0; --k) | 
|---|
| 571 | m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k)); | 
|---|
| 572 |  | 
|---|
| 573 | m_q.setIdentity(cols); | 
|---|
| 574 | for(Index k = 0; k < size; ++k) | 
|---|
| 575 | m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); | 
|---|
| 576 |  | 
|---|
| 577 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; | 
|---|
| 578 |  | 
|---|
| 579 | m_isInitialized = true; | 
|---|
| 580 | } | 
|---|
| 581 |  | 
|---|
| 582 | template<typename MatrixType> | 
|---|
| 583 | typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const | 
|---|
| 584 | { | 
|---|
| 585 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 586 | eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!"); | 
|---|
| 587 | return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod()); | 
|---|
| 588 | } | 
|---|
| 589 |  | 
|---|
| 590 | /** \returns the matrix represented by the decomposition, | 
|---|
| 591 | * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$. | 
|---|
| 592 | * This function is provided for debug purposes. */ | 
|---|
| 593 | template<typename MatrixType> | 
|---|
| 594 | MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const | 
|---|
| 595 | { | 
|---|
| 596 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 597 | const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols()); | 
|---|
| 598 | // LU | 
|---|
| 599 | MatrixType res(m_lu.rows(),m_lu.cols()); | 
|---|
| 600 | // FIXME the .toDenseMatrix() should not be needed... | 
|---|
| 601 | res = m_lu.leftCols(smalldim) | 
|---|
| 602 | .template triangularView<UnitLower>().toDenseMatrix() | 
|---|
| 603 | * m_lu.topRows(smalldim) | 
|---|
| 604 | .template triangularView<Upper>().toDenseMatrix(); | 
|---|
| 605 |  | 
|---|
| 606 | // P^{-1}(LU) | 
|---|
| 607 | res = m_p.inverse() * res; | 
|---|
| 608 |  | 
|---|
| 609 | // (P^{-1}LU)Q^{-1} | 
|---|
| 610 | res = res * m_q.inverse(); | 
|---|
| 611 |  | 
|---|
| 612 | return res; | 
|---|
| 613 | } | 
|---|
| 614 |  | 
|---|
| 615 | /********* Implementation of kernel() **************************************************/ | 
|---|
| 616 |  | 
|---|
| 617 | namespace internal { | 
|---|
| 618 | template<typename _MatrixType> | 
|---|
| 619 | struct kernel_retval<FullPivLU<_MatrixType> > | 
|---|
| 620 | : kernel_retval_base<FullPivLU<_MatrixType> > | 
|---|
| 621 | { | 
|---|
| 622 | EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>) | 
|---|
| 623 |  | 
|---|
| 624 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( | 
|---|
| 625 | MatrixType::MaxColsAtCompileTime, | 
|---|
| 626 | MatrixType::MaxRowsAtCompileTime) | 
|---|
| 627 | }; | 
|---|
| 628 |  | 
|---|
| 629 | template<typename Dest> void evalTo(Dest& dst) const | 
|---|
| 630 | { | 
|---|
| 631 | using std::abs; | 
|---|
| 632 | const Index cols = dec().matrixLU().cols(), dimker = cols - rank(); | 
|---|
| 633 | if(dimker == 0) | 
|---|
| 634 | { | 
|---|
| 635 | // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's | 
|---|
| 636 | // avoid crashing/asserting as that depends on floating point calculations. Let's | 
|---|
| 637 | // just return a single column vector filled with zeros. | 
|---|
| 638 | dst.setZero(); | 
|---|
| 639 | return; | 
|---|
| 640 | } | 
|---|
| 641 |  | 
|---|
| 642 | /* Let us use the following lemma: | 
|---|
| 643 | * | 
|---|
| 644 | * Lemma: If the matrix A has the LU decomposition PAQ = LU, | 
|---|
| 645 | * then Ker A = Q(Ker U). | 
|---|
| 646 | * | 
|---|
| 647 | * Proof: trivial: just keep in mind that P, Q, L are invertible. | 
|---|
| 648 | */ | 
|---|
| 649 |  | 
|---|
| 650 | /* Thus, all we need to do is to compute Ker U, and then apply Q. | 
|---|
| 651 | * | 
|---|
| 652 | * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end. | 
|---|
| 653 | * Thus, the diagonal of U ends with exactly | 
|---|
| 654 | * dimKer zero's. Let us use that to construct dimKer linearly | 
|---|
| 655 | * independent vectors in Ker U. | 
|---|
| 656 | */ | 
|---|
| 657 |  | 
|---|
| 658 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); | 
|---|
| 659 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); | 
|---|
| 660 | Index p = 0; | 
|---|
| 661 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) | 
|---|
| 662 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) | 
|---|
| 663 | pivots.coeffRef(p++) = i; | 
|---|
| 664 | eigen_internal_assert(p == rank()); | 
|---|
| 665 |  | 
|---|
| 666 | // we construct a temporaty trapezoid matrix m, by taking the U matrix and | 
|---|
| 667 | // permuting the rows and cols to bring the nonnegligible pivots to the top of | 
|---|
| 668 | // the main diagonal. We need that to be able to apply our triangular solvers. | 
|---|
| 669 | // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified | 
|---|
| 670 | Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options, | 
|---|
| 671 | MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime> | 
|---|
| 672 | m(dec().matrixLU().block(0, 0, rank(), cols)); | 
|---|
| 673 | for(Index i = 0; i < rank(); ++i) | 
|---|
| 674 | { | 
|---|
| 675 | if(i) m.row(i).head(i).setZero(); | 
|---|
| 676 | m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i); | 
|---|
| 677 | } | 
|---|
| 678 | m.block(0, 0, rank(), rank()); | 
|---|
| 679 | m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero(); | 
|---|
| 680 | for(Index i = 0; i < rank(); ++i) | 
|---|
| 681 | m.col(i).swap(m.col(pivots.coeff(i))); | 
|---|
| 682 |  | 
|---|
| 683 | // ok, we have our trapezoid matrix, we can apply the triangular solver. | 
|---|
| 684 | // notice that the math behind this suggests that we should apply this to the | 
|---|
| 685 | // negative of the RHS, but for performance we just put the negative sign elsewhere, see below. | 
|---|
| 686 | m.topLeftCorner(rank(), rank()) | 
|---|
| 687 | .template triangularView<Upper>().solveInPlace( | 
|---|
| 688 | m.topRightCorner(rank(), dimker) | 
|---|
| 689 | ); | 
|---|
| 690 |  | 
|---|
| 691 | // now we must undo the column permutation that we had applied! | 
|---|
| 692 | for(Index i = rank()-1; i >= 0; --i) | 
|---|
| 693 | m.col(i).swap(m.col(pivots.coeff(i))); | 
|---|
| 694 |  | 
|---|
| 695 | // see the negative sign in the next line, that's what we were talking about above. | 
|---|
| 696 | for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker); | 
|---|
| 697 | for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero(); | 
|---|
| 698 | for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1); | 
|---|
| 699 | } | 
|---|
| 700 | }; | 
|---|
| 701 |  | 
|---|
| 702 | /***** Implementation of image() *****************************************************/ | 
|---|
| 703 |  | 
|---|
| 704 | template<typename _MatrixType> | 
|---|
| 705 | struct image_retval<FullPivLU<_MatrixType> > | 
|---|
| 706 | : image_retval_base<FullPivLU<_MatrixType> > | 
|---|
| 707 | { | 
|---|
| 708 | EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>) | 
|---|
| 709 |  | 
|---|
| 710 | enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED( | 
|---|
| 711 | MatrixType::MaxColsAtCompileTime, | 
|---|
| 712 | MatrixType::MaxRowsAtCompileTime) | 
|---|
| 713 | }; | 
|---|
| 714 |  | 
|---|
| 715 | template<typename Dest> void evalTo(Dest& dst) const | 
|---|
| 716 | { | 
|---|
| 717 | using std::abs; | 
|---|
| 718 | if(rank() == 0) | 
|---|
| 719 | { | 
|---|
| 720 | // The Image is just {0}, so it doesn't have a basis properly speaking, but let's | 
|---|
| 721 | // avoid crashing/asserting as that depends on floating point calculations. Let's | 
|---|
| 722 | // just return a single column vector filled with zeros. | 
|---|
| 723 | dst.setZero(); | 
|---|
| 724 | return; | 
|---|
| 725 | } | 
|---|
| 726 |  | 
|---|
| 727 | Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank()); | 
|---|
| 728 | RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold(); | 
|---|
| 729 | Index p = 0; | 
|---|
| 730 | for(Index i = 0; i < dec().nonzeroPivots(); ++i) | 
|---|
| 731 | if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold) | 
|---|
| 732 | pivots.coeffRef(p++) = i; | 
|---|
| 733 | eigen_internal_assert(p == rank()); | 
|---|
| 734 |  | 
|---|
| 735 | for(Index i = 0; i < rank(); ++i) | 
|---|
| 736 | dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i))); | 
|---|
| 737 | } | 
|---|
| 738 | }; | 
|---|
| 739 |  | 
|---|
| 740 | /***** Implementation of solve() *****************************************************/ | 
|---|
| 741 |  | 
|---|
| 742 | } // end namespace internal | 
|---|
| 743 |  | 
|---|
| 744 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 745 | template<typename _MatrixType> | 
|---|
| 746 | template<typename RhsType, typename DstType> | 
|---|
| 747 | void FullPivLU<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
|---|
| 748 | { | 
|---|
| 749 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}. | 
|---|
| 750 | * So we proceed as follows: | 
|---|
| 751 | * Step 1: compute c = P * rhs. | 
|---|
| 752 | * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible. | 
|---|
| 753 | * Step 3: replace c by the solution x to Ux = c. May or may not exist. | 
|---|
| 754 | * Step 4: result = Q * c; | 
|---|
| 755 | */ | 
|---|
| 756 |  | 
|---|
| 757 | const Index rows = this->rows(), | 
|---|
| 758 | cols = this->cols(), | 
|---|
| 759 | nonzero_pivots = this->rank(); | 
|---|
| 760 | eigen_assert(rhs.rows() == rows); | 
|---|
| 761 | const Index smalldim = (std::min)(rows, cols); | 
|---|
| 762 |  | 
|---|
| 763 | if(nonzero_pivots == 0) | 
|---|
| 764 | { | 
|---|
| 765 | dst.setZero(); | 
|---|
| 766 | return; | 
|---|
| 767 | } | 
|---|
| 768 |  | 
|---|
| 769 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); | 
|---|
| 770 |  | 
|---|
| 771 | // Step 1 | 
|---|
| 772 | c = permutationP() * rhs; | 
|---|
| 773 |  | 
|---|
| 774 | // Step 2 | 
|---|
| 775 | m_lu.topLeftCorner(smalldim,smalldim) | 
|---|
| 776 | .template triangularView<UnitLower>() | 
|---|
| 777 | .solveInPlace(c.topRows(smalldim)); | 
|---|
| 778 | if(rows>cols) | 
|---|
| 779 | c.bottomRows(rows-cols) -= m_lu.bottomRows(rows-cols) * c.topRows(cols); | 
|---|
| 780 |  | 
|---|
| 781 | // Step 3 | 
|---|
| 782 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|---|
| 783 | .template triangularView<Upper>() | 
|---|
| 784 | .solveInPlace(c.topRows(nonzero_pivots)); | 
|---|
| 785 |  | 
|---|
| 786 | // Step 4 | 
|---|
| 787 | for(Index i = 0; i < nonzero_pivots; ++i) | 
|---|
| 788 | dst.row(permutationQ().indices().coeff(i)) = c.row(i); | 
|---|
| 789 | for(Index i = nonzero_pivots; i < m_lu.cols(); ++i) | 
|---|
| 790 | dst.row(permutationQ().indices().coeff(i)).setZero(); | 
|---|
| 791 | } | 
|---|
| 792 |  | 
|---|
| 793 | template<typename _MatrixType> | 
|---|
| 794 | template<bool Conjugate, typename RhsType, typename DstType> | 
|---|
| 795 | void FullPivLU<_MatrixType>::_solve_impl_transposed(const RhsType &rhs, DstType &dst) const | 
|---|
| 796 | { | 
|---|
| 797 | /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}, | 
|---|
| 798 | * and since permutations are real and unitary, we can write this | 
|---|
| 799 | * as   A^T = Q U^T L^T P, | 
|---|
| 800 | * So we proceed as follows: | 
|---|
| 801 | * Step 1: compute c = Q^T rhs. | 
|---|
| 802 | * Step 2: replace c by the solution x to U^T x = c. May or may not exist. | 
|---|
| 803 | * Step 3: replace c by the solution x to L^T x = c. | 
|---|
| 804 | * Step 4: result = P^T c. | 
|---|
| 805 | * If Conjugate is true, replace "^T" by "^*" above. | 
|---|
| 806 | */ | 
|---|
| 807 |  | 
|---|
| 808 | const Index rows = this->rows(), cols = this->cols(), | 
|---|
| 809 | nonzero_pivots = this->rank(); | 
|---|
| 810 | eigen_assert(rhs.rows() == cols); | 
|---|
| 811 | const Index smalldim = (std::min)(rows, cols); | 
|---|
| 812 |  | 
|---|
| 813 | if(nonzero_pivots == 0) | 
|---|
| 814 | { | 
|---|
| 815 | dst.setZero(); | 
|---|
| 816 | return; | 
|---|
| 817 | } | 
|---|
| 818 |  | 
|---|
| 819 | typename RhsType::PlainObject c(rhs.rows(), rhs.cols()); | 
|---|
| 820 |  | 
|---|
| 821 | // Step 1 | 
|---|
| 822 | c = permutationQ().inverse() * rhs; | 
|---|
| 823 |  | 
|---|
| 824 | if (Conjugate) { | 
|---|
| 825 | // Step 2 | 
|---|
| 826 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|---|
| 827 | .template triangularView<Upper>() | 
|---|
| 828 | .adjoint() | 
|---|
| 829 | .solveInPlace(c.topRows(nonzero_pivots)); | 
|---|
| 830 | // Step 3 | 
|---|
| 831 | m_lu.topLeftCorner(smalldim, smalldim) | 
|---|
| 832 | .template triangularView<UnitLower>() | 
|---|
| 833 | .adjoint() | 
|---|
| 834 | .solveInPlace(c.topRows(smalldim)); | 
|---|
| 835 | } else { | 
|---|
| 836 | // Step 2 | 
|---|
| 837 | m_lu.topLeftCorner(nonzero_pivots, nonzero_pivots) | 
|---|
| 838 | .template triangularView<Upper>() | 
|---|
| 839 | .transpose() | 
|---|
| 840 | .solveInPlace(c.topRows(nonzero_pivots)); | 
|---|
| 841 | // Step 3 | 
|---|
| 842 | m_lu.topLeftCorner(smalldim, smalldim) | 
|---|
| 843 | .template triangularView<UnitLower>() | 
|---|
| 844 | .transpose() | 
|---|
| 845 | .solveInPlace(c.topRows(smalldim)); | 
|---|
| 846 | } | 
|---|
| 847 |  | 
|---|
| 848 | // Step 4 | 
|---|
| 849 | PermutationPType invp = permutationP().inverse().eval(); | 
|---|
| 850 | for(Index i = 0; i < smalldim; ++i) | 
|---|
| 851 | dst.row(invp.indices().coeff(i)) = c.row(i); | 
|---|
| 852 | for(Index i = smalldim; i < rows; ++i) | 
|---|
| 853 | dst.row(invp.indices().coeff(i)).setZero(); | 
|---|
| 854 | } | 
|---|
| 855 |  | 
|---|
| 856 | #endif | 
|---|
| 857 |  | 
|---|
| 858 | namespace internal { | 
|---|
| 859 |  | 
|---|
| 860 |  | 
|---|
| 861 | /***** Implementation of inverse() *****************************************************/ | 
|---|
| 862 | template<typename DstXprType, typename MatrixType> | 
|---|
| 863 | struct Assignment<DstXprType, Inverse<FullPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivLU<MatrixType>::Scalar>, Dense2Dense> | 
|---|
| 864 | { | 
|---|
| 865 | typedef FullPivLU<MatrixType> LuType; | 
|---|
| 866 | typedef Inverse<LuType> SrcXprType; | 
|---|
| 867 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename MatrixType::Scalar> &) | 
|---|
| 868 | { | 
|---|
| 869 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | 
|---|
| 870 | } | 
|---|
| 871 | }; | 
|---|
| 872 | } // end namespace internal | 
|---|
| 873 |  | 
|---|
| 874 | /******* MatrixBase methods *****************************************************************/ | 
|---|
| 875 |  | 
|---|
| 876 | /** \lu_module | 
|---|
| 877 | * | 
|---|
| 878 | * \return the full-pivoting LU decomposition of \c *this. | 
|---|
| 879 | * | 
|---|
| 880 | * \sa class FullPivLU | 
|---|
| 881 | */ | 
|---|
| 882 | template<typename Derived> | 
|---|
| 883 | inline const FullPivLU<typename MatrixBase<Derived>::PlainObject> | 
|---|
| 884 | MatrixBase<Derived>::fullPivLu() const | 
|---|
| 885 | { | 
|---|
| 886 | return FullPivLU<PlainObject>(eval()); | 
|---|
| 887 | } | 
|---|
| 888 |  | 
|---|
| 889 | } // end namespace Eigen | 
|---|
| 890 |  | 
|---|
| 891 | #endif // EIGEN_LU_H | 
|---|
| 892 |  | 
|---|