| 1 | // This file is part of Eigen, a lightweight C++ template library | 
|---|
| 2 | // for linear algebra. | 
|---|
| 3 | // | 
|---|
| 4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|---|
| 5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|---|
| 6 | // | 
|---|
| 7 | // This Source Code Form is subject to the terms of the Mozilla | 
|---|
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|---|
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|---|
| 10 |  | 
|---|
| 11 | #ifndef EIGEN_PARTIALLU_H | 
|---|
| 12 | #define EIGEN_PARTIALLU_H | 
|---|
| 13 |  | 
|---|
| 14 | namespace Eigen { | 
|---|
| 15 |  | 
|---|
| 16 | namespace internal { | 
|---|
| 17 | template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> > | 
|---|
| 18 | : traits<_MatrixType> | 
|---|
| 19 | { | 
|---|
| 20 | typedef MatrixXpr XprKind; | 
|---|
| 21 | typedef SolverStorage StorageKind; | 
|---|
| 22 | typedef traits<_MatrixType> BaseTraits; | 
|---|
| 23 | enum { | 
|---|
| 24 | Flags = BaseTraits::Flags & RowMajorBit, | 
|---|
| 25 | CoeffReadCost = Dynamic | 
|---|
| 26 | }; | 
|---|
| 27 | }; | 
|---|
| 28 |  | 
|---|
| 29 | template<typename T,typename Derived> | 
|---|
| 30 | struct enable_if_ref; | 
|---|
| 31 | // { | 
|---|
| 32 | //   typedef Derived type; | 
|---|
| 33 | // }; | 
|---|
| 34 |  | 
|---|
| 35 | template<typename T,typename Derived> | 
|---|
| 36 | struct enable_if_ref<Ref<T>,Derived> { | 
|---|
| 37 | typedef Derived type; | 
|---|
| 38 | }; | 
|---|
| 39 |  | 
|---|
| 40 | } // end namespace internal | 
|---|
| 41 |  | 
|---|
| 42 | /** \ingroup LU_Module | 
|---|
| 43 | * | 
|---|
| 44 | * \class PartialPivLU | 
|---|
| 45 | * | 
|---|
| 46 | * \brief LU decomposition of a matrix with partial pivoting, and related features | 
|---|
| 47 | * | 
|---|
| 48 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition | 
|---|
| 49 | * | 
|---|
| 50 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A | 
|---|
| 51 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P | 
|---|
| 52 | * is a permutation matrix. | 
|---|
| 53 | * | 
|---|
| 54 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible | 
|---|
| 55 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class | 
|---|
| 56 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the | 
|---|
| 57 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. | 
|---|
| 58 | * | 
|---|
| 59 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided | 
|---|
| 60 | * by class FullPivLU. | 
|---|
| 61 | * | 
|---|
| 62 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, | 
|---|
| 63 | * such as rank computation. If you need these features, use class FullPivLU. | 
|---|
| 64 | * | 
|---|
| 65 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses | 
|---|
| 66 | * in the general case. | 
|---|
| 67 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. | 
|---|
| 68 | * | 
|---|
| 69 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). | 
|---|
| 70 | * | 
|---|
| 71 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
|---|
| 72 | * | 
|---|
| 73 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU | 
|---|
| 74 | */ | 
|---|
| 75 | template<typename _MatrixType> class PartialPivLU | 
|---|
| 76 | : public SolverBase<PartialPivLU<_MatrixType> > | 
|---|
| 77 | { | 
|---|
| 78 | public: | 
|---|
| 79 |  | 
|---|
| 80 | typedef _MatrixType MatrixType; | 
|---|
| 81 | typedef SolverBase<PartialPivLU> Base; | 
|---|
| 82 | EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) | 
|---|
| 83 | // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int | 
|---|
| 84 | enum { | 
|---|
| 85 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|---|
| 86 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|---|
| 87 | }; | 
|---|
| 88 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
|---|
| 89 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
|---|
| 90 | typedef typename MatrixType::PlainObject PlainObject; | 
|---|
| 91 |  | 
|---|
| 92 | /** | 
|---|
| 93 | * \brief Default Constructor. | 
|---|
| 94 | * | 
|---|
| 95 | * The default constructor is useful in cases in which the user intends to | 
|---|
| 96 | * perform decompositions via PartialPivLU::compute(const MatrixType&). | 
|---|
| 97 | */ | 
|---|
| 98 | PartialPivLU(); | 
|---|
| 99 |  | 
|---|
| 100 | /** \brief Default Constructor with memory preallocation | 
|---|
| 101 | * | 
|---|
| 102 | * Like the default constructor but with preallocation of the internal data | 
|---|
| 103 | * according to the specified problem \a size. | 
|---|
| 104 | * \sa PartialPivLU() | 
|---|
| 105 | */ | 
|---|
| 106 | explicit PartialPivLU(Index size); | 
|---|
| 107 |  | 
|---|
| 108 | /** Constructor. | 
|---|
| 109 | * | 
|---|
| 110 | * \param matrix the matrix of which to compute the LU decomposition. | 
|---|
| 111 | * | 
|---|
| 112 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). | 
|---|
| 113 | * If you need to deal with non-full rank, use class FullPivLU instead. | 
|---|
| 114 | */ | 
|---|
| 115 | template<typename InputType> | 
|---|
| 116 | explicit PartialPivLU(const EigenBase<InputType>& matrix); | 
|---|
| 117 |  | 
|---|
| 118 | /** Constructor for \link InplaceDecomposition inplace decomposition \endlink | 
|---|
| 119 | * | 
|---|
| 120 | * \param matrix the matrix of which to compute the LU decomposition. | 
|---|
| 121 | * | 
|---|
| 122 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). | 
|---|
| 123 | * If you need to deal with non-full rank, use class FullPivLU instead. | 
|---|
| 124 | */ | 
|---|
| 125 | template<typename InputType> | 
|---|
| 126 | explicit PartialPivLU(EigenBase<InputType>& matrix); | 
|---|
| 127 |  | 
|---|
| 128 | template<typename InputType> | 
|---|
| 129 | PartialPivLU& compute(const EigenBase<InputType>& matrix) { | 
|---|
| 130 | m_lu = matrix.derived(); | 
|---|
| 131 | compute(); | 
|---|
| 132 | return *this; | 
|---|
| 133 | } | 
|---|
| 134 |  | 
|---|
| 135 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the | 
|---|
| 136 | * unit-lower-triangular part is L (at least for square matrices; in the non-square | 
|---|
| 137 | * case, special care is needed, see the documentation of class FullPivLU). | 
|---|
| 138 | * | 
|---|
| 139 | * \sa matrixL(), matrixU() | 
|---|
| 140 | */ | 
|---|
| 141 | inline const MatrixType& matrixLU() const | 
|---|
| 142 | { | 
|---|
| 143 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 144 | return m_lu; | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | /** \returns the permutation matrix P. | 
|---|
| 148 | */ | 
|---|
| 149 | inline const PermutationType& permutationP() const | 
|---|
| 150 | { | 
|---|
| 151 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 152 | return m_p; | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which | 
|---|
| 156 | * *this is the LU decomposition. | 
|---|
| 157 | * | 
|---|
| 158 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, | 
|---|
| 159 | *          the only requirement in order for the equation to make sense is that | 
|---|
| 160 | *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. | 
|---|
| 161 | * | 
|---|
| 162 | * \returns the solution. | 
|---|
| 163 | * | 
|---|
| 164 | * Example: \include PartialPivLU_solve.cpp | 
|---|
| 165 | * Output: \verbinclude PartialPivLU_solve.out | 
|---|
| 166 | * | 
|---|
| 167 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution | 
|---|
| 168 | * theoretically exists and is unique regardless of b. | 
|---|
| 169 | * | 
|---|
| 170 | * \sa TriangularView::solve(), inverse(), computeInverse() | 
|---|
| 171 | */ | 
|---|
| 172 | // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. | 
|---|
| 173 | template<typename Rhs> | 
|---|
| 174 | inline const Solve<PartialPivLU, Rhs> | 
|---|
| 175 | solve(const MatrixBase<Rhs>& b) const | 
|---|
| 176 | { | 
|---|
| 177 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 178 | return Solve<PartialPivLU, Rhs>(*this, b.derived()); | 
|---|
| 179 | } | 
|---|
| 180 |  | 
|---|
| 181 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is | 
|---|
| 182 | the LU decomposition. | 
|---|
| 183 | */ | 
|---|
| 184 | inline RealScalar rcond() const | 
|---|
| 185 | { | 
|---|
| 186 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 187 | return internal::rcond_estimate_helper(m_l1_norm, *this); | 
|---|
| 188 | } | 
|---|
| 189 |  | 
|---|
| 190 | /** \returns the inverse of the matrix of which *this is the LU decomposition. | 
|---|
| 191 | * | 
|---|
| 192 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for | 
|---|
| 193 | *          invertibility, use class FullPivLU instead. | 
|---|
| 194 | * | 
|---|
| 195 | * \sa MatrixBase::inverse(), LU::inverse() | 
|---|
| 196 | */ | 
|---|
| 197 | inline const Inverse<PartialPivLU> inverse() const | 
|---|
| 198 | { | 
|---|
| 199 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 200 | return Inverse<PartialPivLU>(*this); | 
|---|
| 201 | } | 
|---|
| 202 |  | 
|---|
| 203 | /** \returns the determinant of the matrix of which | 
|---|
| 204 | * *this is the LU decomposition. It has only linear complexity | 
|---|
| 205 | * (that is, O(n) where n is the dimension of the square matrix) | 
|---|
| 206 | * as the LU decomposition has already been computed. | 
|---|
| 207 | * | 
|---|
| 208 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers | 
|---|
| 209 | *       optimized paths. | 
|---|
| 210 | * | 
|---|
| 211 | * \warning a determinant can be very big or small, so for matrices | 
|---|
| 212 | * of large enough dimension, there is a risk of overflow/underflow. | 
|---|
| 213 | * | 
|---|
| 214 | * \sa MatrixBase::determinant() | 
|---|
| 215 | */ | 
|---|
| 216 | Scalar determinant() const; | 
|---|
| 217 |  | 
|---|
| 218 | MatrixType reconstructedMatrix() const; | 
|---|
| 219 |  | 
|---|
| 220 | inline Index rows() const { return m_lu.rows(); } | 
|---|
| 221 | inline Index cols() const { return m_lu.cols(); } | 
|---|
| 222 |  | 
|---|
| 223 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|---|
| 224 | template<typename RhsType, typename DstType> | 
|---|
| 225 | EIGEN_DEVICE_FUNC | 
|---|
| 226 | void _solve_impl(const RhsType &rhs, DstType &dst) const { | 
|---|
| 227 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. | 
|---|
| 228 | * So we proceed as follows: | 
|---|
| 229 | * Step 1: compute c = Pb. | 
|---|
| 230 | * Step 2: replace c by the solution x to Lx = c. | 
|---|
| 231 | * Step 3: replace c by the solution x to Ux = c. | 
|---|
| 232 | */ | 
|---|
| 233 |  | 
|---|
| 234 | eigen_assert(rhs.rows() == m_lu.rows()); | 
|---|
| 235 |  | 
|---|
| 236 | // Step 1 | 
|---|
| 237 | dst = permutationP() * rhs; | 
|---|
| 238 |  | 
|---|
| 239 | // Step 2 | 
|---|
| 240 | m_lu.template triangularView<UnitLower>().solveInPlace(dst); | 
|---|
| 241 |  | 
|---|
| 242 | // Step 3 | 
|---|
| 243 | m_lu.template triangularView<Upper>().solveInPlace(dst); | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | template<bool Conjugate, typename RhsType, typename DstType> | 
|---|
| 247 | EIGEN_DEVICE_FUNC | 
|---|
| 248 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { | 
|---|
| 249 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. | 
|---|
| 250 | * So we proceed as follows: | 
|---|
| 251 | * Step 1: compute c = Pb. | 
|---|
| 252 | * Step 2: replace c by the solution x to Lx = c. | 
|---|
| 253 | * Step 3: replace c by the solution x to Ux = c. | 
|---|
| 254 | */ | 
|---|
| 255 |  | 
|---|
| 256 | eigen_assert(rhs.rows() == m_lu.cols()); | 
|---|
| 257 |  | 
|---|
| 258 | if (Conjugate) { | 
|---|
| 259 | // Step 1 | 
|---|
| 260 | dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs); | 
|---|
| 261 | // Step 2 | 
|---|
| 262 | m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst); | 
|---|
| 263 | } else { | 
|---|
| 264 | // Step 1 | 
|---|
| 265 | dst = m_lu.template triangularView<Upper>().transpose().solve(rhs); | 
|---|
| 266 | // Step 2 | 
|---|
| 267 | m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst); | 
|---|
| 268 | } | 
|---|
| 269 | // Step 3 | 
|---|
| 270 | dst = permutationP().transpose() * dst; | 
|---|
| 271 | } | 
|---|
| 272 | #endif | 
|---|
| 273 |  | 
|---|
| 274 | protected: | 
|---|
| 275 |  | 
|---|
| 276 | static void check_template_parameters() | 
|---|
| 277 | { | 
|---|
| 278 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|---|
| 279 | } | 
|---|
| 280 |  | 
|---|
| 281 | void compute(); | 
|---|
| 282 |  | 
|---|
| 283 | MatrixType m_lu; | 
|---|
| 284 | PermutationType m_p; | 
|---|
| 285 | TranspositionType m_rowsTranspositions; | 
|---|
| 286 | RealScalar m_l1_norm; | 
|---|
| 287 | signed char m_det_p; | 
|---|
| 288 | bool m_isInitialized; | 
|---|
| 289 | }; | 
|---|
| 290 |  | 
|---|
| 291 | template<typename MatrixType> | 
|---|
| 292 | PartialPivLU<MatrixType>::PartialPivLU() | 
|---|
| 293 | : m_lu(), | 
|---|
| 294 | m_p(), | 
|---|
| 295 | m_rowsTranspositions(), | 
|---|
| 296 | m_l1_norm(0), | 
|---|
| 297 | m_det_p(0), | 
|---|
| 298 | m_isInitialized(false) | 
|---|
| 299 | { | 
|---|
| 300 | } | 
|---|
| 301 |  | 
|---|
| 302 | template<typename MatrixType> | 
|---|
| 303 | PartialPivLU<MatrixType>::PartialPivLU(Index size) | 
|---|
| 304 | : m_lu(size, size), | 
|---|
| 305 | m_p(size), | 
|---|
| 306 | m_rowsTranspositions(size), | 
|---|
| 307 | m_l1_norm(0), | 
|---|
| 308 | m_det_p(0), | 
|---|
| 309 | m_isInitialized(false) | 
|---|
| 310 | { | 
|---|
| 311 | } | 
|---|
| 312 |  | 
|---|
| 313 | template<typename MatrixType> | 
|---|
| 314 | template<typename InputType> | 
|---|
| 315 | PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix) | 
|---|
| 316 | : m_lu(matrix.rows(),matrix.cols()), | 
|---|
| 317 | m_p(matrix.rows()), | 
|---|
| 318 | m_rowsTranspositions(matrix.rows()), | 
|---|
| 319 | m_l1_norm(0), | 
|---|
| 320 | m_det_p(0), | 
|---|
| 321 | m_isInitialized(false) | 
|---|
| 322 | { | 
|---|
| 323 | compute(matrix.derived()); | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | template<typename MatrixType> | 
|---|
| 327 | template<typename InputType> | 
|---|
| 328 | PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix) | 
|---|
| 329 | : m_lu(matrix.derived()), | 
|---|
| 330 | m_p(matrix.rows()), | 
|---|
| 331 | m_rowsTranspositions(matrix.rows()), | 
|---|
| 332 | m_l1_norm(0), | 
|---|
| 333 | m_det_p(0), | 
|---|
| 334 | m_isInitialized(false) | 
|---|
| 335 | { | 
|---|
| 336 | compute(); | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | namespace internal { | 
|---|
| 340 |  | 
|---|
| 341 | /** \internal This is the blocked version of fullpivlu_unblocked() */ | 
|---|
| 342 | template<typename Scalar, int StorageOrder, typename PivIndex> | 
|---|
| 343 | struct partial_lu_impl | 
|---|
| 344 | { | 
|---|
| 345 | // FIXME add a stride to Map, so that the following mapping becomes easier, | 
|---|
| 346 | // another option would be to create an expression being able to automatically | 
|---|
| 347 | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly | 
|---|
| 348 | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, | 
|---|
| 349 | // and Block. | 
|---|
| 350 | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; | 
|---|
| 351 | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; | 
|---|
| 352 | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; | 
|---|
| 353 | typedef typename MatrixType::RealScalar RealScalar; | 
|---|
| 354 |  | 
|---|
| 355 | /** \internal performs the LU decomposition in-place of the matrix \a lu | 
|---|
| 356 | * using an unblocked algorithm. | 
|---|
| 357 | * | 
|---|
| 358 | * In addition, this function returns the row transpositions in the | 
|---|
| 359 | * vector \a row_transpositions which must have a size equal to the number | 
|---|
| 360 | * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
|---|
| 361 | * which returns the actual number of transpositions. | 
|---|
| 362 | * | 
|---|
| 363 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. | 
|---|
| 364 | */ | 
|---|
| 365 | static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) | 
|---|
| 366 | { | 
|---|
| 367 | typedef scalar_score_coeff_op<Scalar> Scoring; | 
|---|
| 368 | typedef typename Scoring::result_type Score; | 
|---|
| 369 | const Index rows = lu.rows(); | 
|---|
| 370 | const Index cols = lu.cols(); | 
|---|
| 371 | const Index size = (std::min)(rows,cols); | 
|---|
| 372 | nb_transpositions = 0; | 
|---|
| 373 | Index first_zero_pivot = -1; | 
|---|
| 374 | for(Index k = 0; k < size; ++k) | 
|---|
| 375 | { | 
|---|
| 376 | Index rrows = rows-k-1; | 
|---|
| 377 | Index rcols = cols-k-1; | 
|---|
| 378 |  | 
|---|
| 379 | Index row_of_biggest_in_col; | 
|---|
| 380 | Score biggest_in_corner | 
|---|
| 381 | = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); | 
|---|
| 382 | row_of_biggest_in_col += k; | 
|---|
| 383 |  | 
|---|
| 384 | row_transpositions[k] = PivIndex(row_of_biggest_in_col); | 
|---|
| 385 |  | 
|---|
| 386 | if(biggest_in_corner != Score(0)) | 
|---|
| 387 | { | 
|---|
| 388 | if(k != row_of_biggest_in_col) | 
|---|
| 389 | { | 
|---|
| 390 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); | 
|---|
| 391 | ++nb_transpositions; | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) | 
|---|
| 395 | // overflow but not the actual quotient? | 
|---|
| 396 | lu.col(k).tail(rrows) /= lu.coeff(k,k); | 
|---|
| 397 | } | 
|---|
| 398 | else if(first_zero_pivot==-1) | 
|---|
| 399 | { | 
|---|
| 400 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, | 
|---|
| 401 | // and continue the factorization such we still have A = PLU | 
|---|
| 402 | first_zero_pivot = k; | 
|---|
| 403 | } | 
|---|
| 404 |  | 
|---|
| 405 | if(k<rows-1) | 
|---|
| 406 | lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); | 
|---|
| 407 | } | 
|---|
| 408 | return first_zero_pivot; | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | /** \internal performs the LU decomposition in-place of the matrix represented | 
|---|
| 412 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a | 
|---|
| 413 | * recursive, blocked algorithm. | 
|---|
| 414 | * | 
|---|
| 415 | * In addition, this function returns the row transpositions in the | 
|---|
| 416 | * vector \a row_transpositions which must have a size equal to the number | 
|---|
| 417 | * of columns of the matrix \a lu, and an integer \a nb_transpositions | 
|---|
| 418 | * which returns the actual number of transpositions. | 
|---|
| 419 | * | 
|---|
| 420 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. | 
|---|
| 421 | * | 
|---|
| 422 | * \note This very low level interface using pointers, etc. is to: | 
|---|
| 423 | *   1 - reduce the number of instanciations to the strict minimum | 
|---|
| 424 | *   2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > | 
|---|
| 425 | */ | 
|---|
| 426 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) | 
|---|
| 427 | { | 
|---|
| 428 | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); | 
|---|
| 429 | MatrixType lu(lu1,0,0,rows,cols); | 
|---|
| 430 |  | 
|---|
| 431 | const Index size = (std::min)(rows,cols); | 
|---|
| 432 |  | 
|---|
| 433 | // if the matrix is too small, no blocking: | 
|---|
| 434 | if(size<=16) | 
|---|
| 435 | { | 
|---|
| 436 | return unblocked_lu(lu, row_transpositions, nb_transpositions); | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 | // automatically adjust the number of subdivisions to the size | 
|---|
| 440 | // of the matrix so that there is enough sub blocks: | 
|---|
| 441 | Index blockSize; | 
|---|
| 442 | { | 
|---|
| 443 | blockSize = size/8; | 
|---|
| 444 | blockSize = (blockSize/16)*16; | 
|---|
| 445 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); | 
|---|
| 446 | } | 
|---|
| 447 |  | 
|---|
| 448 | nb_transpositions = 0; | 
|---|
| 449 | Index first_zero_pivot = -1; | 
|---|
| 450 | for(Index k = 0; k < size; k+=blockSize) | 
|---|
| 451 | { | 
|---|
| 452 | Index bs = (std::min)(size-k,blockSize); // actual size of the block | 
|---|
| 453 | Index trows = rows - k - bs; // trailing rows | 
|---|
| 454 | Index tsize = size - k - bs; // trailing size | 
|---|
| 455 |  | 
|---|
| 456 | // partition the matrix: | 
|---|
| 457 | //                          A00 | A01 | A02 | 
|---|
| 458 | // lu  = A_0 | A_1 | A_2 =  A10 | A11 | A12 | 
|---|
| 459 | //                          A20 | A21 | A22 | 
|---|
| 460 | BlockType A_0(lu,0,0,rows,k); | 
|---|
| 461 | BlockType A_2(lu,0,k+bs,rows,tsize); | 
|---|
| 462 | BlockType A11(lu,k,k,bs,bs); | 
|---|
| 463 | BlockType A12(lu,k,k+bs,bs,tsize); | 
|---|
| 464 | BlockType A21(lu,k+bs,k,trows,bs); | 
|---|
| 465 | BlockType A22(lu,k+bs,k+bs,trows,tsize); | 
|---|
| 466 |  | 
|---|
| 467 | PivIndex nb_transpositions_in_panel; | 
|---|
| 468 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T | 
|---|
| 469 | // with a very small blocking size: | 
|---|
| 470 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, | 
|---|
| 471 | row_transpositions+k, nb_transpositions_in_panel, 16); | 
|---|
| 472 | if(ret>=0 && first_zero_pivot==-1) | 
|---|
| 473 | first_zero_pivot = k+ret; | 
|---|
| 474 |  | 
|---|
| 475 | nb_transpositions += nb_transpositions_in_panel; | 
|---|
| 476 | // update permutations and apply them to A_0 | 
|---|
| 477 | for(Index i=k; i<k+bs; ++i) | 
|---|
| 478 | { | 
|---|
| 479 | Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k)); | 
|---|
| 480 | A_0.row(i).swap(A_0.row(piv)); | 
|---|
| 481 | } | 
|---|
| 482 |  | 
|---|
| 483 | if(trows) | 
|---|
| 484 | { | 
|---|
| 485 | // apply permutations to A_2 | 
|---|
| 486 | for(Index i=k;i<k+bs; ++i) | 
|---|
| 487 | A_2.row(i).swap(A_2.row(row_transpositions[i])); | 
|---|
| 488 |  | 
|---|
| 489 | // A12 = A11^-1 A12 | 
|---|
| 490 | A11.template triangularView<UnitLower>().solveInPlace(A12); | 
|---|
| 491 |  | 
|---|
| 492 | A22.noalias() -= A21 * A12; | 
|---|
| 493 | } | 
|---|
| 494 | } | 
|---|
| 495 | return first_zero_pivot; | 
|---|
| 496 | } | 
|---|
| 497 | }; | 
|---|
| 498 |  | 
|---|
| 499 | /** \internal performs the LU decomposition with partial pivoting in-place. | 
|---|
| 500 | */ | 
|---|
| 501 | template<typename MatrixType, typename TranspositionType> | 
|---|
| 502 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) | 
|---|
| 503 | { | 
|---|
| 504 | eigen_assert(lu.cols() == row_transpositions.size()); | 
|---|
| 505 | eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); | 
|---|
| 506 |  | 
|---|
| 507 | partial_lu_impl | 
|---|
| 508 | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex> | 
|---|
| 509 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); | 
|---|
| 510 | } | 
|---|
| 511 |  | 
|---|
| 512 | } // end namespace internal | 
|---|
| 513 |  | 
|---|
| 514 | template<typename MatrixType> | 
|---|
| 515 | void PartialPivLU<MatrixType>::compute() | 
|---|
| 516 | { | 
|---|
| 517 | check_template_parameters(); | 
|---|
| 518 |  | 
|---|
| 519 | // the row permutation is stored as int indices, so just to be sure: | 
|---|
| 520 | eigen_assert(m_lu.rows()<NumTraits<int>::highest()); | 
|---|
| 521 |  | 
|---|
| 522 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); | 
|---|
| 523 |  | 
|---|
| 524 | eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices"); | 
|---|
| 525 | const Index size = m_lu.rows(); | 
|---|
| 526 |  | 
|---|
| 527 | m_rowsTranspositions.resize(size); | 
|---|
| 528 |  | 
|---|
| 529 | typename TranspositionType::StorageIndex nb_transpositions; | 
|---|
| 530 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); | 
|---|
| 531 | m_det_p = (nb_transpositions%2) ? -1 : 1; | 
|---|
| 532 |  | 
|---|
| 533 | m_p = m_rowsTranspositions; | 
|---|
| 534 |  | 
|---|
| 535 | m_isInitialized = true; | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 | template<typename MatrixType> | 
|---|
| 539 | typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const | 
|---|
| 540 | { | 
|---|
| 541 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized."); | 
|---|
| 542 | return Scalar(m_det_p) * m_lu.diagonal().prod(); | 
|---|
| 543 | } | 
|---|
| 544 |  | 
|---|
| 545 | /** \returns the matrix represented by the decomposition, | 
|---|
| 546 | * i.e., it returns the product: P^{-1} L U. | 
|---|
| 547 | * This function is provided for debug purpose. */ | 
|---|
| 548 | template<typename MatrixType> | 
|---|
| 549 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const | 
|---|
| 550 | { | 
|---|
| 551 | eigen_assert(m_isInitialized && "LU is not initialized."); | 
|---|
| 552 | // LU | 
|---|
| 553 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() | 
|---|
| 554 | * m_lu.template triangularView<Upper>(); | 
|---|
| 555 |  | 
|---|
| 556 | // P^{-1}(LU) | 
|---|
| 557 | res = m_p.inverse() * res; | 
|---|
| 558 |  | 
|---|
| 559 | return res; | 
|---|
| 560 | } | 
|---|
| 561 |  | 
|---|
| 562 | /***** Implementation details *****************************************************/ | 
|---|
| 563 |  | 
|---|
| 564 | namespace internal { | 
|---|
| 565 |  | 
|---|
| 566 | /***** Implementation of inverse() *****************************************************/ | 
|---|
| 567 | template<typename DstXprType, typename MatrixType> | 
|---|
| 568 | struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense> | 
|---|
| 569 | { | 
|---|
| 570 | typedef PartialPivLU<MatrixType> LuType; | 
|---|
| 571 | typedef Inverse<LuType> SrcXprType; | 
|---|
| 572 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &) | 
|---|
| 573 | { | 
|---|
| 574 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); | 
|---|
| 575 | } | 
|---|
| 576 | }; | 
|---|
| 577 | } // end namespace internal | 
|---|
| 578 |  | 
|---|
| 579 | /******** MatrixBase methods *******/ | 
|---|
| 580 |  | 
|---|
| 581 | /** \lu_module | 
|---|
| 582 | * | 
|---|
| 583 | * \return the partial-pivoting LU decomposition of \c *this. | 
|---|
| 584 | * | 
|---|
| 585 | * \sa class PartialPivLU | 
|---|
| 586 | */ | 
|---|
| 587 | template<typename Derived> | 
|---|
| 588 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
|---|
| 589 | MatrixBase<Derived>::partialPivLu() const | 
|---|
| 590 | { | 
|---|
| 591 | return PartialPivLU<PlainObject>(eval()); | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 | /** \lu_module | 
|---|
| 595 | * | 
|---|
| 596 | * Synonym of partialPivLu(). | 
|---|
| 597 | * | 
|---|
| 598 | * \return the partial-pivoting LU decomposition of \c *this. | 
|---|
| 599 | * | 
|---|
| 600 | * \sa class PartialPivLU | 
|---|
| 601 | */ | 
|---|
| 602 | template<typename Derived> | 
|---|
| 603 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> | 
|---|
| 604 | MatrixBase<Derived>::lu() const | 
|---|
| 605 | { | 
|---|
| 606 | return PartialPivLU<PlainObject>(eval()); | 
|---|
| 607 | } | 
|---|
| 608 |  | 
|---|
| 609 | } // end namespace Eigen | 
|---|
| 610 |  | 
|---|
| 611 | #endif // EIGEN_PARTIALLU_H | 
|---|
| 612 |  | 
|---|