1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_PARTIALLU_H |
12 | #define EIGEN_PARTIALLU_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | namespace internal { |
17 | template<typename _MatrixType> struct traits<PartialPivLU<_MatrixType> > |
18 | : traits<_MatrixType> |
19 | { |
20 | typedef MatrixXpr XprKind; |
21 | typedef SolverStorage StorageKind; |
22 | typedef traits<_MatrixType> BaseTraits; |
23 | enum { |
24 | Flags = BaseTraits::Flags & RowMajorBit, |
25 | CoeffReadCost = Dynamic |
26 | }; |
27 | }; |
28 | |
29 | template<typename T,typename Derived> |
30 | struct enable_if_ref; |
31 | // { |
32 | // typedef Derived type; |
33 | // }; |
34 | |
35 | template<typename T,typename Derived> |
36 | struct enable_if_ref<Ref<T>,Derived> { |
37 | typedef Derived type; |
38 | }; |
39 | |
40 | } // end namespace internal |
41 | |
42 | /** \ingroup LU_Module |
43 | * |
44 | * \class PartialPivLU |
45 | * |
46 | * \brief LU decomposition of a matrix with partial pivoting, and related features |
47 | * |
48 | * \tparam _MatrixType the type of the matrix of which we are computing the LU decomposition |
49 | * |
50 | * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A |
51 | * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P |
52 | * is a permutation matrix. |
53 | * |
54 | * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible |
55 | * matrices. Thus LAPACK's dgesv and dgesvx require the matrix to be square and invertible. The present class |
56 | * does the same. It will assert that the matrix is square, but it won't (actually it can't) check that the |
57 | * matrix is invertible: it is your task to check that you only use this decomposition on invertible matrices. |
58 | * |
59 | * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided |
60 | * by class FullPivLU. |
61 | * |
62 | * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class, |
63 | * such as rank computation. If you need these features, use class FullPivLU. |
64 | * |
65 | * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses |
66 | * in the general case. |
67 | * On the other hand, it is \b not suitable to determine whether a given matrix is invertible. |
68 | * |
69 | * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP(). |
70 | * |
71 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
72 | * |
73 | * \sa MatrixBase::partialPivLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class FullPivLU |
74 | */ |
75 | template<typename _MatrixType> class PartialPivLU |
76 | : public SolverBase<PartialPivLU<_MatrixType> > |
77 | { |
78 | public: |
79 | |
80 | typedef _MatrixType MatrixType; |
81 | typedef SolverBase<PartialPivLU> Base; |
82 | EIGEN_GENERIC_PUBLIC_INTERFACE(PartialPivLU) |
83 | // FIXME StorageIndex defined in EIGEN_GENERIC_PUBLIC_INTERFACE should be int |
84 | enum { |
85 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
86 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
87 | }; |
88 | typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; |
89 | typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; |
90 | typedef typename MatrixType::PlainObject PlainObject; |
91 | |
92 | /** |
93 | * \brief Default Constructor. |
94 | * |
95 | * The default constructor is useful in cases in which the user intends to |
96 | * perform decompositions via PartialPivLU::compute(const MatrixType&). |
97 | */ |
98 | PartialPivLU(); |
99 | |
100 | /** \brief Default Constructor with memory preallocation |
101 | * |
102 | * Like the default constructor but with preallocation of the internal data |
103 | * according to the specified problem \a size. |
104 | * \sa PartialPivLU() |
105 | */ |
106 | explicit PartialPivLU(Index size); |
107 | |
108 | /** Constructor. |
109 | * |
110 | * \param matrix the matrix of which to compute the LU decomposition. |
111 | * |
112 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
113 | * If you need to deal with non-full rank, use class FullPivLU instead. |
114 | */ |
115 | template<typename InputType> |
116 | explicit PartialPivLU(const EigenBase<InputType>& matrix); |
117 | |
118 | /** Constructor for \link InplaceDecomposition inplace decomposition \endlink |
119 | * |
120 | * \param matrix the matrix of which to compute the LU decomposition. |
121 | * |
122 | * \warning The matrix should have full rank (e.g. if it's square, it should be invertible). |
123 | * If you need to deal with non-full rank, use class FullPivLU instead. |
124 | */ |
125 | template<typename InputType> |
126 | explicit PartialPivLU(EigenBase<InputType>& matrix); |
127 | |
128 | template<typename InputType> |
129 | PartialPivLU& compute(const EigenBase<InputType>& matrix) { |
130 | m_lu = matrix.derived(); |
131 | compute(); |
132 | return *this; |
133 | } |
134 | |
135 | /** \returns the LU decomposition matrix: the upper-triangular part is U, the |
136 | * unit-lower-triangular part is L (at least for square matrices; in the non-square |
137 | * case, special care is needed, see the documentation of class FullPivLU). |
138 | * |
139 | * \sa matrixL(), matrixU() |
140 | */ |
141 | inline const MatrixType& matrixLU() const |
142 | { |
143 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
144 | return m_lu; |
145 | } |
146 | |
147 | /** \returns the permutation matrix P. |
148 | */ |
149 | inline const PermutationType& permutationP() const |
150 | { |
151 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
152 | return m_p; |
153 | } |
154 | |
155 | /** This method returns the solution x to the equation Ax=b, where A is the matrix of which |
156 | * *this is the LU decomposition. |
157 | * |
158 | * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix, |
159 | * the only requirement in order for the equation to make sense is that |
160 | * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition. |
161 | * |
162 | * \returns the solution. |
163 | * |
164 | * Example: \include PartialPivLU_solve.cpp |
165 | * Output: \verbinclude PartialPivLU_solve.out |
166 | * |
167 | * Since this PartialPivLU class assumes anyway that the matrix A is invertible, the solution |
168 | * theoretically exists and is unique regardless of b. |
169 | * |
170 | * \sa TriangularView::solve(), inverse(), computeInverse() |
171 | */ |
172 | // FIXME this is a copy-paste of the base-class member to add the isInitialized assertion. |
173 | template<typename Rhs> |
174 | inline const Solve<PartialPivLU, Rhs> |
175 | solve(const MatrixBase<Rhs>& b) const |
176 | { |
177 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
178 | return Solve<PartialPivLU, Rhs>(*this, b.derived()); |
179 | } |
180 | |
181 | /** \returns an estimate of the reciprocal condition number of the matrix of which \c *this is |
182 | the LU decomposition. |
183 | */ |
184 | inline RealScalar rcond() const |
185 | { |
186 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
187 | return internal::rcond_estimate_helper(m_l1_norm, *this); |
188 | } |
189 | |
190 | /** \returns the inverse of the matrix of which *this is the LU decomposition. |
191 | * |
192 | * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for |
193 | * invertibility, use class FullPivLU instead. |
194 | * |
195 | * \sa MatrixBase::inverse(), LU::inverse() |
196 | */ |
197 | inline const Inverse<PartialPivLU> inverse() const |
198 | { |
199 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
200 | return Inverse<PartialPivLU>(*this); |
201 | } |
202 | |
203 | /** \returns the determinant of the matrix of which |
204 | * *this is the LU decomposition. It has only linear complexity |
205 | * (that is, O(n) where n is the dimension of the square matrix) |
206 | * as the LU decomposition has already been computed. |
207 | * |
208 | * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers |
209 | * optimized paths. |
210 | * |
211 | * \warning a determinant can be very big or small, so for matrices |
212 | * of large enough dimension, there is a risk of overflow/underflow. |
213 | * |
214 | * \sa MatrixBase::determinant() |
215 | */ |
216 | Scalar determinant() const; |
217 | |
218 | MatrixType reconstructedMatrix() const; |
219 | |
220 | inline Index rows() const { return m_lu.rows(); } |
221 | inline Index cols() const { return m_lu.cols(); } |
222 | |
223 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
224 | template<typename RhsType, typename DstType> |
225 | EIGEN_DEVICE_FUNC |
226 | void _solve_impl(const RhsType &rhs, DstType &dst) const { |
227 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
228 | * So we proceed as follows: |
229 | * Step 1: compute c = Pb. |
230 | * Step 2: replace c by the solution x to Lx = c. |
231 | * Step 3: replace c by the solution x to Ux = c. |
232 | */ |
233 | |
234 | eigen_assert(rhs.rows() == m_lu.rows()); |
235 | |
236 | // Step 1 |
237 | dst = permutationP() * rhs; |
238 | |
239 | // Step 2 |
240 | m_lu.template triangularView<UnitLower>().solveInPlace(dst); |
241 | |
242 | // Step 3 |
243 | m_lu.template triangularView<Upper>().solveInPlace(dst); |
244 | } |
245 | |
246 | template<bool Conjugate, typename RhsType, typename DstType> |
247 | EIGEN_DEVICE_FUNC |
248 | void _solve_impl_transposed(const RhsType &rhs, DstType &dst) const { |
249 | /* The decomposition PA = LU can be rewritten as A = P^{-1} L U. |
250 | * So we proceed as follows: |
251 | * Step 1: compute c = Pb. |
252 | * Step 2: replace c by the solution x to Lx = c. |
253 | * Step 3: replace c by the solution x to Ux = c. |
254 | */ |
255 | |
256 | eigen_assert(rhs.rows() == m_lu.cols()); |
257 | |
258 | if (Conjugate) { |
259 | // Step 1 |
260 | dst = m_lu.template triangularView<Upper>().adjoint().solve(rhs); |
261 | // Step 2 |
262 | m_lu.template triangularView<UnitLower>().adjoint().solveInPlace(dst); |
263 | } else { |
264 | // Step 1 |
265 | dst = m_lu.template triangularView<Upper>().transpose().solve(rhs); |
266 | // Step 2 |
267 | m_lu.template triangularView<UnitLower>().transpose().solveInPlace(dst); |
268 | } |
269 | // Step 3 |
270 | dst = permutationP().transpose() * dst; |
271 | } |
272 | #endif |
273 | |
274 | protected: |
275 | |
276 | static void check_template_parameters() |
277 | { |
278 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
279 | } |
280 | |
281 | void compute(); |
282 | |
283 | MatrixType m_lu; |
284 | PermutationType m_p; |
285 | TranspositionType m_rowsTranspositions; |
286 | RealScalar m_l1_norm; |
287 | signed char m_det_p; |
288 | bool m_isInitialized; |
289 | }; |
290 | |
291 | template<typename MatrixType> |
292 | PartialPivLU<MatrixType>::PartialPivLU() |
293 | : m_lu(), |
294 | m_p(), |
295 | m_rowsTranspositions(), |
296 | m_l1_norm(0), |
297 | m_det_p(0), |
298 | m_isInitialized(false) |
299 | { |
300 | } |
301 | |
302 | template<typename MatrixType> |
303 | PartialPivLU<MatrixType>::PartialPivLU(Index size) |
304 | : m_lu(size, size), |
305 | m_p(size), |
306 | m_rowsTranspositions(size), |
307 | m_l1_norm(0), |
308 | m_det_p(0), |
309 | m_isInitialized(false) |
310 | { |
311 | } |
312 | |
313 | template<typename MatrixType> |
314 | template<typename InputType> |
315 | PartialPivLU<MatrixType>::PartialPivLU(const EigenBase<InputType>& matrix) |
316 | : m_lu(matrix.rows(),matrix.cols()), |
317 | m_p(matrix.rows()), |
318 | m_rowsTranspositions(matrix.rows()), |
319 | m_l1_norm(0), |
320 | m_det_p(0), |
321 | m_isInitialized(false) |
322 | { |
323 | compute(matrix.derived()); |
324 | } |
325 | |
326 | template<typename MatrixType> |
327 | template<typename InputType> |
328 | PartialPivLU<MatrixType>::PartialPivLU(EigenBase<InputType>& matrix) |
329 | : m_lu(matrix.derived()), |
330 | m_p(matrix.rows()), |
331 | m_rowsTranspositions(matrix.rows()), |
332 | m_l1_norm(0), |
333 | m_det_p(0), |
334 | m_isInitialized(false) |
335 | { |
336 | compute(); |
337 | } |
338 | |
339 | namespace internal { |
340 | |
341 | /** \internal This is the blocked version of fullpivlu_unblocked() */ |
342 | template<typename Scalar, int StorageOrder, typename PivIndex> |
343 | struct partial_lu_impl |
344 | { |
345 | // FIXME add a stride to Map, so that the following mapping becomes easier, |
346 | // another option would be to create an expression being able to automatically |
347 | // warp any Map, Matrix, and Block expressions as a unique type, but since that's exactly |
348 | // a Map + stride, why not adding a stride to Map, and convenient ctors from a Matrix, |
349 | // and Block. |
350 | typedef Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > MapLU; |
351 | typedef Block<MapLU, Dynamic, Dynamic> MatrixType; |
352 | typedef Block<MatrixType,Dynamic,Dynamic> BlockType; |
353 | typedef typename MatrixType::RealScalar RealScalar; |
354 | |
355 | /** \internal performs the LU decomposition in-place of the matrix \a lu |
356 | * using an unblocked algorithm. |
357 | * |
358 | * In addition, this function returns the row transpositions in the |
359 | * vector \a row_transpositions which must have a size equal to the number |
360 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
361 | * which returns the actual number of transpositions. |
362 | * |
363 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
364 | */ |
365 | static Index unblocked_lu(MatrixType& lu, PivIndex* row_transpositions, PivIndex& nb_transpositions) |
366 | { |
367 | typedef scalar_score_coeff_op<Scalar> Scoring; |
368 | typedef typename Scoring::result_type Score; |
369 | const Index rows = lu.rows(); |
370 | const Index cols = lu.cols(); |
371 | const Index size = (std::min)(rows,cols); |
372 | nb_transpositions = 0; |
373 | Index first_zero_pivot = -1; |
374 | for(Index k = 0; k < size; ++k) |
375 | { |
376 | Index rrows = rows-k-1; |
377 | Index rcols = cols-k-1; |
378 | |
379 | Index row_of_biggest_in_col; |
380 | Score biggest_in_corner |
381 | = lu.col(k).tail(rows-k).unaryExpr(Scoring()).maxCoeff(&row_of_biggest_in_col); |
382 | row_of_biggest_in_col += k; |
383 | |
384 | row_transpositions[k] = PivIndex(row_of_biggest_in_col); |
385 | |
386 | if(biggest_in_corner != Score(0)) |
387 | { |
388 | if(k != row_of_biggest_in_col) |
389 | { |
390 | lu.row(k).swap(lu.row(row_of_biggest_in_col)); |
391 | ++nb_transpositions; |
392 | } |
393 | |
394 | // FIXME shall we introduce a safe quotient expression in cas 1/lu.coeff(k,k) |
395 | // overflow but not the actual quotient? |
396 | lu.col(k).tail(rrows) /= lu.coeff(k,k); |
397 | } |
398 | else if(first_zero_pivot==-1) |
399 | { |
400 | // the pivot is exactly zero, we record the index of the first pivot which is exactly 0, |
401 | // and continue the factorization such we still have A = PLU |
402 | first_zero_pivot = k; |
403 | } |
404 | |
405 | if(k<rows-1) |
406 | lu.bottomRightCorner(rrows,rcols).noalias() -= lu.col(k).tail(rrows) * lu.row(k).tail(rcols); |
407 | } |
408 | return first_zero_pivot; |
409 | } |
410 | |
411 | /** \internal performs the LU decomposition in-place of the matrix represented |
412 | * by the variables \a rows, \a cols, \a lu_data, and \a lu_stride using a |
413 | * recursive, blocked algorithm. |
414 | * |
415 | * In addition, this function returns the row transpositions in the |
416 | * vector \a row_transpositions which must have a size equal to the number |
417 | * of columns of the matrix \a lu, and an integer \a nb_transpositions |
418 | * which returns the actual number of transpositions. |
419 | * |
420 | * \returns The index of the first pivot which is exactly zero if any, or a negative number otherwise. |
421 | * |
422 | * \note This very low level interface using pointers, etc. is to: |
423 | * 1 - reduce the number of instanciations to the strict minimum |
424 | * 2 - avoid infinite recursion of the instanciations with Block<Block<Block<...> > > |
425 | */ |
426 | static Index blocked_lu(Index rows, Index cols, Scalar* lu_data, Index luStride, PivIndex* row_transpositions, PivIndex& nb_transpositions, Index maxBlockSize=256) |
427 | { |
428 | MapLU lu1(lu_data,StorageOrder==RowMajor?rows:luStride,StorageOrder==RowMajor?luStride:cols); |
429 | MatrixType lu(lu1,0,0,rows,cols); |
430 | |
431 | const Index size = (std::min)(rows,cols); |
432 | |
433 | // if the matrix is too small, no blocking: |
434 | if(size<=16) |
435 | { |
436 | return unblocked_lu(lu, row_transpositions, nb_transpositions); |
437 | } |
438 | |
439 | // automatically adjust the number of subdivisions to the size |
440 | // of the matrix so that there is enough sub blocks: |
441 | Index blockSize; |
442 | { |
443 | blockSize = size/8; |
444 | blockSize = (blockSize/16)*16; |
445 | blockSize = (std::min)((std::max)(blockSize,Index(8)), maxBlockSize); |
446 | } |
447 | |
448 | nb_transpositions = 0; |
449 | Index first_zero_pivot = -1; |
450 | for(Index k = 0; k < size; k+=blockSize) |
451 | { |
452 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
453 | Index trows = rows - k - bs; // trailing rows |
454 | Index tsize = size - k - bs; // trailing size |
455 | |
456 | // partition the matrix: |
457 | // A00 | A01 | A02 |
458 | // lu = A_0 | A_1 | A_2 = A10 | A11 | A12 |
459 | // A20 | A21 | A22 |
460 | BlockType A_0(lu,0,0,rows,k); |
461 | BlockType A_2(lu,0,k+bs,rows,tsize); |
462 | BlockType A11(lu,k,k,bs,bs); |
463 | BlockType A12(lu,k,k+bs,bs,tsize); |
464 | BlockType A21(lu,k+bs,k,trows,bs); |
465 | BlockType A22(lu,k+bs,k+bs,trows,tsize); |
466 | |
467 | PivIndex nb_transpositions_in_panel; |
468 | // recursively call the blocked LU algorithm on [A11^T A21^T]^T |
469 | // with a very small blocking size: |
470 | Index ret = blocked_lu(trows+bs, bs, &lu.coeffRef(k,k), luStride, |
471 | row_transpositions+k, nb_transpositions_in_panel, 16); |
472 | if(ret>=0 && first_zero_pivot==-1) |
473 | first_zero_pivot = k+ret; |
474 | |
475 | nb_transpositions += nb_transpositions_in_panel; |
476 | // update permutations and apply them to A_0 |
477 | for(Index i=k; i<k+bs; ++i) |
478 | { |
479 | Index piv = (row_transpositions[i] += internal::convert_index<PivIndex>(k)); |
480 | A_0.row(i).swap(A_0.row(piv)); |
481 | } |
482 | |
483 | if(trows) |
484 | { |
485 | // apply permutations to A_2 |
486 | for(Index i=k;i<k+bs; ++i) |
487 | A_2.row(i).swap(A_2.row(row_transpositions[i])); |
488 | |
489 | // A12 = A11^-1 A12 |
490 | A11.template triangularView<UnitLower>().solveInPlace(A12); |
491 | |
492 | A22.noalias() -= A21 * A12; |
493 | } |
494 | } |
495 | return first_zero_pivot; |
496 | } |
497 | }; |
498 | |
499 | /** \internal performs the LU decomposition with partial pivoting in-place. |
500 | */ |
501 | template<typename MatrixType, typename TranspositionType> |
502 | void partial_lu_inplace(MatrixType& lu, TranspositionType& row_transpositions, typename TranspositionType::StorageIndex& nb_transpositions) |
503 | { |
504 | eigen_assert(lu.cols() == row_transpositions.size()); |
505 | eigen_assert((&row_transpositions.coeffRef(1)-&row_transpositions.coeffRef(0)) == 1); |
506 | |
507 | partial_lu_impl |
508 | <typename MatrixType::Scalar, MatrixType::Flags&RowMajorBit?RowMajor:ColMajor, typename TranspositionType::StorageIndex> |
509 | ::blocked_lu(lu.rows(), lu.cols(), &lu.coeffRef(0,0), lu.outerStride(), &row_transpositions.coeffRef(0), nb_transpositions); |
510 | } |
511 | |
512 | } // end namespace internal |
513 | |
514 | template<typename MatrixType> |
515 | void PartialPivLU<MatrixType>::compute() |
516 | { |
517 | check_template_parameters(); |
518 | |
519 | // the row permutation is stored as int indices, so just to be sure: |
520 | eigen_assert(m_lu.rows()<NumTraits<int>::highest()); |
521 | |
522 | m_l1_norm = m_lu.cwiseAbs().colwise().sum().maxCoeff(); |
523 | |
524 | eigen_assert(m_lu.rows() == m_lu.cols() && "PartialPivLU is only for square (and moreover invertible) matrices" ); |
525 | const Index size = m_lu.rows(); |
526 | |
527 | m_rowsTranspositions.resize(size); |
528 | |
529 | typename TranspositionType::StorageIndex nb_transpositions; |
530 | internal::partial_lu_inplace(m_lu, m_rowsTranspositions, nb_transpositions); |
531 | m_det_p = (nb_transpositions%2) ? -1 : 1; |
532 | |
533 | m_p = m_rowsTranspositions; |
534 | |
535 | m_isInitialized = true; |
536 | } |
537 | |
538 | template<typename MatrixType> |
539 | typename PartialPivLU<MatrixType>::Scalar PartialPivLU<MatrixType>::determinant() const |
540 | { |
541 | eigen_assert(m_isInitialized && "PartialPivLU is not initialized." ); |
542 | return Scalar(m_det_p) * m_lu.diagonal().prod(); |
543 | } |
544 | |
545 | /** \returns the matrix represented by the decomposition, |
546 | * i.e., it returns the product: P^{-1} L U. |
547 | * This function is provided for debug purpose. */ |
548 | template<typename MatrixType> |
549 | MatrixType PartialPivLU<MatrixType>::reconstructedMatrix() const |
550 | { |
551 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
552 | // LU |
553 | MatrixType res = m_lu.template triangularView<UnitLower>().toDenseMatrix() |
554 | * m_lu.template triangularView<Upper>(); |
555 | |
556 | // P^{-1}(LU) |
557 | res = m_p.inverse() * res; |
558 | |
559 | return res; |
560 | } |
561 | |
562 | /***** Implementation details *****************************************************/ |
563 | |
564 | namespace internal { |
565 | |
566 | /***** Implementation of inverse() *****************************************************/ |
567 | template<typename DstXprType, typename MatrixType> |
568 | struct Assignment<DstXprType, Inverse<PartialPivLU<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename PartialPivLU<MatrixType>::Scalar>, Dense2Dense> |
569 | { |
570 | typedef PartialPivLU<MatrixType> LuType; |
571 | typedef Inverse<LuType> SrcXprType; |
572 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename LuType::Scalar> &) |
573 | { |
574 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
575 | } |
576 | }; |
577 | } // end namespace internal |
578 | |
579 | /******** MatrixBase methods *******/ |
580 | |
581 | /** \lu_module |
582 | * |
583 | * \return the partial-pivoting LU decomposition of \c *this. |
584 | * |
585 | * \sa class PartialPivLU |
586 | */ |
587 | template<typename Derived> |
588 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
589 | MatrixBase<Derived>::partialPivLu() const |
590 | { |
591 | return PartialPivLU<PlainObject>(eval()); |
592 | } |
593 | |
594 | /** \lu_module |
595 | * |
596 | * Synonym of partialPivLu(). |
597 | * |
598 | * \return the partial-pivoting LU decomposition of \c *this. |
599 | * |
600 | * \sa class PartialPivLU |
601 | */ |
602 | template<typename Derived> |
603 | inline const PartialPivLU<typename MatrixBase<Derived>::PlainObject> |
604 | MatrixBase<Derived>::lu() const |
605 | { |
606 | return PartialPivLU<PlainObject>(eval()); |
607 | } |
608 | |
609 | } // end namespace Eigen |
610 | |
611 | #endif // EIGEN_PARTIALLU_H |
612 | |