| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
| 12 | #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> > |
| 18 | : traits<_MatrixType> |
| 19 | { |
| 20 | enum { Flags = 0 }; |
| 21 | }; |
| 22 | |
| 23 | } // end namespace internal |
| 24 | |
| 25 | /** \ingroup QR_Module |
| 26 | * |
| 27 | * \class ColPivHouseholderQR |
| 28 | * |
| 29 | * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting |
| 30 | * |
| 31 | * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition |
| 32 | * |
| 33 | * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R |
| 34 | * such that |
| 35 | * \f[ |
| 36 | * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} |
| 37 | * \f] |
| 38 | * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an |
| 39 | * upper triangular matrix. |
| 40 | * |
| 41 | * This decomposition performs column pivoting in order to be rank-revealing and improve |
| 42 | * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. |
| 43 | * |
| 44 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| 45 | * |
| 46 | * \sa MatrixBase::colPivHouseholderQr() |
| 47 | */ |
| 48 | template<typename _MatrixType> class ColPivHouseholderQR |
| 49 | { |
| 50 | public: |
| 51 | |
| 52 | typedef _MatrixType MatrixType; |
| 53 | enum { |
| 54 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 55 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 58 | }; |
| 59 | typedef typename MatrixType::Scalar Scalar; |
| 60 | typedef typename MatrixType::RealScalar RealScalar; |
| 61 | // FIXME should be int |
| 62 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 63 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| 64 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; |
| 65 | typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; |
| 66 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
| 67 | typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; |
| 68 | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; |
| 69 | typedef typename MatrixType::PlainObject PlainObject; |
| 70 | |
| 71 | private: |
| 72 | |
| 73 | typedef typename PermutationType::StorageIndex PermIndexType; |
| 74 | |
| 75 | public: |
| 76 | |
| 77 | /** |
| 78 | * \brief Default Constructor. |
| 79 | * |
| 80 | * The default constructor is useful in cases in which the user intends to |
| 81 | * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). |
| 82 | */ |
| 83 | ColPivHouseholderQR() |
| 84 | : m_qr(), |
| 85 | m_hCoeffs(), |
| 86 | m_colsPermutation(), |
| 87 | m_colsTranspositions(), |
| 88 | m_temp(), |
| 89 | m_colNormsUpdated(), |
| 90 | m_colNormsDirect(), |
| 91 | m_isInitialized(false), |
| 92 | m_usePrescribedThreshold(false) {} |
| 93 | |
| 94 | /** \brief Default Constructor with memory preallocation |
| 95 | * |
| 96 | * Like the default constructor but with preallocation of the internal data |
| 97 | * according to the specified problem \a size. |
| 98 | * \sa ColPivHouseholderQR() |
| 99 | */ |
| 100 | ColPivHouseholderQR(Index rows, Index cols) |
| 101 | : m_qr(rows, cols), |
| 102 | m_hCoeffs((std::min)(rows,cols)), |
| 103 | m_colsPermutation(PermIndexType(cols)), |
| 104 | m_colsTranspositions(cols), |
| 105 | m_temp(cols), |
| 106 | m_colNormsUpdated(cols), |
| 107 | m_colNormsDirect(cols), |
| 108 | m_isInitialized(false), |
| 109 | m_usePrescribedThreshold(false) {} |
| 110 | |
| 111 | /** \brief Constructs a QR factorization from a given matrix |
| 112 | * |
| 113 | * This constructor computes the QR factorization of the matrix \a matrix by calling |
| 114 | * the method compute(). It is a short cut for: |
| 115 | * |
| 116 | * \code |
| 117 | * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
| 118 | * qr.compute(matrix); |
| 119 | * \endcode |
| 120 | * |
| 121 | * \sa compute() |
| 122 | */ |
| 123 | template<typename InputType> |
| 124 | explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix) |
| 125 | : m_qr(matrix.rows(), matrix.cols()), |
| 126 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
| 127 | m_colsPermutation(PermIndexType(matrix.cols())), |
| 128 | m_colsTranspositions(matrix.cols()), |
| 129 | m_temp(matrix.cols()), |
| 130 | m_colNormsUpdated(matrix.cols()), |
| 131 | m_colNormsDirect(matrix.cols()), |
| 132 | m_isInitialized(false), |
| 133 | m_usePrescribedThreshold(false) |
| 134 | { |
| 135 | compute(matrix.derived()); |
| 136 | } |
| 137 | |
| 138 | /** \brief Constructs a QR factorization from a given matrix |
| 139 | * |
| 140 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
| 141 | * |
| 142 | * \sa ColPivHouseholderQR(const EigenBase&) |
| 143 | */ |
| 144 | template<typename InputType> |
| 145 | explicit ColPivHouseholderQR(EigenBase<InputType>& matrix) |
| 146 | : m_qr(matrix.derived()), |
| 147 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
| 148 | m_colsPermutation(PermIndexType(matrix.cols())), |
| 149 | m_colsTranspositions(matrix.cols()), |
| 150 | m_temp(matrix.cols()), |
| 151 | m_colNormsUpdated(matrix.cols()), |
| 152 | m_colNormsDirect(matrix.cols()), |
| 153 | m_isInitialized(false), |
| 154 | m_usePrescribedThreshold(false) |
| 155 | { |
| 156 | computeInPlace(); |
| 157 | } |
| 158 | |
| 159 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| 160 | * *this is the QR decomposition, if any exists. |
| 161 | * |
| 162 | * \param b the right-hand-side of the equation to solve. |
| 163 | * |
| 164 | * \returns a solution. |
| 165 | * |
| 166 | * \note_about_checking_solutions |
| 167 | * |
| 168 | * \note_about_arbitrary_choice_of_solution |
| 169 | * |
| 170 | * Example: \include ColPivHouseholderQR_solve.cpp |
| 171 | * Output: \verbinclude ColPivHouseholderQR_solve.out |
| 172 | */ |
| 173 | template<typename Rhs> |
| 174 | inline const Solve<ColPivHouseholderQR, Rhs> |
| 175 | solve(const MatrixBase<Rhs>& b) const |
| 176 | { |
| 177 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 178 | return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived()); |
| 179 | } |
| 180 | |
| 181 | HouseholderSequenceType householderQ() const; |
| 182 | HouseholderSequenceType matrixQ() const |
| 183 | { |
| 184 | return householderQ(); |
| 185 | } |
| 186 | |
| 187 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| 188 | */ |
| 189 | const MatrixType& matrixQR() const |
| 190 | { |
| 191 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 192 | return m_qr; |
| 193 | } |
| 194 | |
| 195 | /** \returns a reference to the matrix where the result Householder QR is stored |
| 196 | * \warning The strict lower part of this matrix contains internal values. |
| 197 | * Only the upper triangular part should be referenced. To get it, use |
| 198 | * \code matrixR().template triangularView<Upper>() \endcode |
| 199 | * For rank-deficient matrices, use |
| 200 | * \code |
| 201 | * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() |
| 202 | * \endcode |
| 203 | */ |
| 204 | const MatrixType& matrixR() const |
| 205 | { |
| 206 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 207 | return m_qr; |
| 208 | } |
| 209 | |
| 210 | template<typename InputType> |
| 211 | ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); |
| 212 | |
| 213 | /** \returns a const reference to the column permutation matrix */ |
| 214 | const PermutationType& colsPermutation() const |
| 215 | { |
| 216 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 217 | return m_colsPermutation; |
| 218 | } |
| 219 | |
| 220 | /** \returns the absolute value of the determinant of the matrix of which |
| 221 | * *this is the QR decomposition. It has only linear complexity |
| 222 | * (that is, O(n) where n is the dimension of the square matrix) |
| 223 | * as the QR decomposition has already been computed. |
| 224 | * |
| 225 | * \note This is only for square matrices. |
| 226 | * |
| 227 | * \warning a determinant can be very big or small, so for matrices |
| 228 | * of large enough dimension, there is a risk of overflow/underflow. |
| 229 | * One way to work around that is to use logAbsDeterminant() instead. |
| 230 | * |
| 231 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
| 232 | */ |
| 233 | typename MatrixType::RealScalar absDeterminant() const; |
| 234 | |
| 235 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| 236 | * *this is the QR decomposition. It has only linear complexity |
| 237 | * (that is, O(n) where n is the dimension of the square matrix) |
| 238 | * as the QR decomposition has already been computed. |
| 239 | * |
| 240 | * \note This is only for square matrices. |
| 241 | * |
| 242 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| 243 | * to determinant computation. |
| 244 | * |
| 245 | * \sa absDeterminant(), MatrixBase::determinant() |
| 246 | */ |
| 247 | typename MatrixType::RealScalar logAbsDeterminant() const; |
| 248 | |
| 249 | /** \returns the rank of the matrix of which *this is the QR decomposition. |
| 250 | * |
| 251 | * \note This method has to determine which pivots should be considered nonzero. |
| 252 | * For that, it uses the threshold value that you can control by calling |
| 253 | * setThreshold(const RealScalar&). |
| 254 | */ |
| 255 | inline Index rank() const |
| 256 | { |
| 257 | using std::abs; |
| 258 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 259 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
| 260 | Index result = 0; |
| 261 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
| 262 | result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); |
| 263 | return result; |
| 264 | } |
| 265 | |
| 266 | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
| 267 | * |
| 268 | * \note This method has to determine which pivots should be considered nonzero. |
| 269 | * For that, it uses the threshold value that you can control by calling |
| 270 | * setThreshold(const RealScalar&). |
| 271 | */ |
| 272 | inline Index dimensionOfKernel() const |
| 273 | { |
| 274 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 275 | return cols() - rank(); |
| 276 | } |
| 277 | |
| 278 | /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
| 279 | * linear map, i.e. has trivial kernel; false otherwise. |
| 280 | * |
| 281 | * \note This method has to determine which pivots should be considered nonzero. |
| 282 | * For that, it uses the threshold value that you can control by calling |
| 283 | * setThreshold(const RealScalar&). |
| 284 | */ |
| 285 | inline bool isInjective() const |
| 286 | { |
| 287 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 288 | return rank() == cols(); |
| 289 | } |
| 290 | |
| 291 | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
| 292 | * linear map; false otherwise. |
| 293 | * |
| 294 | * \note This method has to determine which pivots should be considered nonzero. |
| 295 | * For that, it uses the threshold value that you can control by calling |
| 296 | * setThreshold(const RealScalar&). |
| 297 | */ |
| 298 | inline bool isSurjective() const |
| 299 | { |
| 300 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 301 | return rank() == rows(); |
| 302 | } |
| 303 | |
| 304 | /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
| 305 | * |
| 306 | * \note This method has to determine which pivots should be considered nonzero. |
| 307 | * For that, it uses the threshold value that you can control by calling |
| 308 | * setThreshold(const RealScalar&). |
| 309 | */ |
| 310 | inline bool isInvertible() const |
| 311 | { |
| 312 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 313 | return isInjective() && isSurjective(); |
| 314 | } |
| 315 | |
| 316 | /** \returns the inverse of the matrix of which *this is the QR decomposition. |
| 317 | * |
| 318 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| 319 | * Use isInvertible() to first determine whether this matrix is invertible. |
| 320 | */ |
| 321 | inline const Inverse<ColPivHouseholderQR> inverse() const |
| 322 | { |
| 323 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 324 | return Inverse<ColPivHouseholderQR>(*this); |
| 325 | } |
| 326 | |
| 327 | inline Index rows() const { return m_qr.rows(); } |
| 328 | inline Index cols() const { return m_qr.cols(); } |
| 329 | |
| 330 | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
| 331 | * |
| 332 | * For advanced uses only. |
| 333 | */ |
| 334 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| 335 | |
| 336 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
| 337 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
| 338 | * QR decomposition itself. |
| 339 | * |
| 340 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
| 341 | * uses a formula to automatically determine a reasonable threshold. |
| 342 | * Once you have called the present method setThreshold(const RealScalar&), |
| 343 | * your value is used instead. |
| 344 | * |
| 345 | * \param threshold The new value to use as the threshold. |
| 346 | * |
| 347 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
| 348 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
| 349 | * where maxpivot is the biggest pivot. |
| 350 | * |
| 351 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
| 352 | */ |
| 353 | ColPivHouseholderQR& setThreshold(const RealScalar& threshold) |
| 354 | { |
| 355 | m_usePrescribedThreshold = true; |
| 356 | m_prescribedThreshold = threshold; |
| 357 | return *this; |
| 358 | } |
| 359 | |
| 360 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| 361 | * determining the threshold. |
| 362 | * |
| 363 | * You should pass the special object Eigen::Default as parameter here. |
| 364 | * \code qr.setThreshold(Eigen::Default); \endcode |
| 365 | * |
| 366 | * See the documentation of setThreshold(const RealScalar&). |
| 367 | */ |
| 368 | ColPivHouseholderQR& setThreshold(Default_t) |
| 369 | { |
| 370 | m_usePrescribedThreshold = false; |
| 371 | return *this; |
| 372 | } |
| 373 | |
| 374 | /** Returns the threshold that will be used by certain methods such as rank(). |
| 375 | * |
| 376 | * See the documentation of setThreshold(const RealScalar&). |
| 377 | */ |
| 378 | RealScalar threshold() const |
| 379 | { |
| 380 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| 381 | return m_usePrescribedThreshold ? m_prescribedThreshold |
| 382 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
| 383 | // and turns out to be identical to Higham's formula used already in LDLt. |
| 384 | : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); |
| 385 | } |
| 386 | |
| 387 | /** \returns the number of nonzero pivots in the QR decomposition. |
| 388 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
| 389 | * So that notion isn't really intrinsically interesting, but it is |
| 390 | * still useful when implementing algorithms. |
| 391 | * |
| 392 | * \sa rank() |
| 393 | */ |
| 394 | inline Index nonzeroPivots() const |
| 395 | { |
| 396 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 397 | return m_nonzero_pivots; |
| 398 | } |
| 399 | |
| 400 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
| 401 | * diagonal coefficient of R. |
| 402 | */ |
| 403 | RealScalar maxPivot() const { return m_maxpivot; } |
| 404 | |
| 405 | /** \brief Reports whether the QR factorization was succesful. |
| 406 | * |
| 407 | * \note This function always returns \c Success. It is provided for compatibility |
| 408 | * with other factorization routines. |
| 409 | * \returns \c Success |
| 410 | */ |
| 411 | ComputationInfo info() const |
| 412 | { |
| 413 | eigen_assert(m_isInitialized && "Decomposition is not initialized." ); |
| 414 | return Success; |
| 415 | } |
| 416 | |
| 417 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 418 | template<typename RhsType, typename DstType> |
| 419 | EIGEN_DEVICE_FUNC |
| 420 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 421 | #endif |
| 422 | |
| 423 | protected: |
| 424 | |
| 425 | friend class CompleteOrthogonalDecomposition<MatrixType>; |
| 426 | |
| 427 | static void check_template_parameters() |
| 428 | { |
| 429 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 430 | } |
| 431 | |
| 432 | void computeInPlace(); |
| 433 | |
| 434 | MatrixType m_qr; |
| 435 | HCoeffsType m_hCoeffs; |
| 436 | PermutationType m_colsPermutation; |
| 437 | IntRowVectorType m_colsTranspositions; |
| 438 | RowVectorType m_temp; |
| 439 | RealRowVectorType m_colNormsUpdated; |
| 440 | RealRowVectorType m_colNormsDirect; |
| 441 | bool m_isInitialized, m_usePrescribedThreshold; |
| 442 | RealScalar m_prescribedThreshold, m_maxpivot; |
| 443 | Index m_nonzero_pivots; |
| 444 | Index m_det_pq; |
| 445 | }; |
| 446 | |
| 447 | template<typename MatrixType> |
| 448 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const |
| 449 | { |
| 450 | using std::abs; |
| 451 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 452 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
| 453 | return abs(m_qr.diagonal().prod()); |
| 454 | } |
| 455 | |
| 456 | template<typename MatrixType> |
| 457 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const |
| 458 | { |
| 459 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 460 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
| 461 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
| 462 | } |
| 463 | |
| 464 | /** Performs the QR factorization of the given matrix \a matrix. The result of |
| 465 | * the factorization is stored into \c *this, and a reference to \c *this |
| 466 | * is returned. |
| 467 | * |
| 468 | * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) |
| 469 | */ |
| 470 | template<typename MatrixType> |
| 471 | template<typename InputType> |
| 472 | ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) |
| 473 | { |
| 474 | m_qr = matrix.derived(); |
| 475 | computeInPlace(); |
| 476 | return *this; |
| 477 | } |
| 478 | |
| 479 | template<typename MatrixType> |
| 480 | void ColPivHouseholderQR<MatrixType>::computeInPlace() |
| 481 | { |
| 482 | check_template_parameters(); |
| 483 | |
| 484 | // the column permutation is stored as int indices, so just to be sure: |
| 485 | eigen_assert(m_qr.cols()<=NumTraits<int>::highest()); |
| 486 | |
| 487 | using std::abs; |
| 488 | |
| 489 | Index rows = m_qr.rows(); |
| 490 | Index cols = m_qr.cols(); |
| 491 | Index size = m_qr.diagonalSize(); |
| 492 | |
| 493 | m_hCoeffs.resize(size); |
| 494 | |
| 495 | m_temp.resize(cols); |
| 496 | |
| 497 | m_colsTranspositions.resize(m_qr.cols()); |
| 498 | Index number_of_transpositions = 0; |
| 499 | |
| 500 | m_colNormsUpdated.resize(cols); |
| 501 | m_colNormsDirect.resize(cols); |
| 502 | for (Index k = 0; k < cols; ++k) { |
| 503 | // colNormsDirect(k) caches the most recent directly computed norm of |
| 504 | // column k. |
| 505 | m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); |
| 506 | m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); |
| 507 | } |
| 508 | |
| 509 | RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows); |
| 510 | RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon()); |
| 511 | |
| 512 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
| 513 | m_maxpivot = RealScalar(0); |
| 514 | |
| 515 | for(Index k = 0; k < size; ++k) |
| 516 | { |
| 517 | // first, we look up in our table m_colNormsUpdated which column has the biggest norm |
| 518 | Index biggest_col_index; |
| 519 | RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); |
| 520 | biggest_col_index += k; |
| 521 | |
| 522 | // Track the number of meaningful pivots but do not stop the decomposition to make |
| 523 | // sure that the initial matrix is properly reproduced. See bug 941. |
| 524 | if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) |
| 525 | m_nonzero_pivots = k; |
| 526 | |
| 527 | // apply the transposition to the columns |
| 528 | m_colsTranspositions.coeffRef(k) = biggest_col_index; |
| 529 | if(k != biggest_col_index) { |
| 530 | m_qr.col(k).swap(m_qr.col(biggest_col_index)); |
| 531 | std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); |
| 532 | std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); |
| 533 | ++number_of_transpositions; |
| 534 | } |
| 535 | |
| 536 | // generate the householder vector, store it below the diagonal |
| 537 | RealScalar beta; |
| 538 | m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| 539 | |
| 540 | // apply the householder transformation to the diagonal coefficient |
| 541 | m_qr.coeffRef(k,k) = beta; |
| 542 | |
| 543 | // remember the maximum absolute value of diagonal coefficients |
| 544 | if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); |
| 545 | |
| 546 | // apply the householder transformation |
| 547 | m_qr.bottomRightCorner(rows-k, cols-k-1) |
| 548 | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); |
| 549 | |
| 550 | // update our table of norms of the columns |
| 551 | for (Index j = k + 1; j < cols; ++j) { |
| 552 | // The following implements the stable norm downgrade step discussed in |
| 553 | // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf |
| 554 | // and used in LAPACK routines xGEQPF and xGEQP3. |
| 555 | // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html |
| 556 | if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) { |
| 557 | RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); |
| 558 | temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); |
| 559 | temp = temp < RealScalar(0) ? RealScalar(0) : temp; |
| 560 | RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) / |
| 561 | m_colNormsDirect.coeffRef(j)); |
| 562 | if (temp2 <= norm_downdate_threshold) { |
| 563 | // The updated norm has become too inaccurate so re-compute the column |
| 564 | // norm directly. |
| 565 | m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); |
| 566 | m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); |
| 567 | } else { |
| 568 | m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | m_colsPermutation.setIdentity(PermIndexType(cols)); |
| 575 | for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k) |
| 576 | m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k))); |
| 577 | |
| 578 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
| 579 | m_isInitialized = true; |
| 580 | } |
| 581 | |
| 582 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 583 | template<typename _MatrixType> |
| 584 | template<typename RhsType, typename DstType> |
| 585 | void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| 586 | { |
| 587 | eigen_assert(rhs.rows() == rows()); |
| 588 | |
| 589 | const Index nonzero_pivots = nonzeroPivots(); |
| 590 | |
| 591 | if(nonzero_pivots == 0) |
| 592 | { |
| 593 | dst.setZero(); |
| 594 | return; |
| 595 | } |
| 596 | |
| 597 | typename RhsType::PlainObject c(rhs); |
| 598 | |
| 599 | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
| 600 | c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs) |
| 601 | .setLength(nonzero_pivots) |
| 602 | .transpose() |
| 603 | ); |
| 604 | |
| 605 | m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) |
| 606 | .template triangularView<Upper>() |
| 607 | .solveInPlace(c.topRows(nonzero_pivots)); |
| 608 | |
| 609 | for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); |
| 610 | for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); |
| 611 | } |
| 612 | #endif |
| 613 | |
| 614 | namespace internal { |
| 615 | |
| 616 | template<typename DstXprType, typename MatrixType> |
| 617 | struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense> |
| 618 | { |
| 619 | typedef ColPivHouseholderQR<MatrixType> QrType; |
| 620 | typedef Inverse<QrType> SrcXprType; |
| 621 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &) |
| 622 | { |
| 623 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
| 624 | } |
| 625 | }; |
| 626 | |
| 627 | } // end namespace internal |
| 628 | |
| 629 | /** \returns the matrix Q as a sequence of householder transformations. |
| 630 | * You can extract the meaningful part only by using: |
| 631 | * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ |
| 632 | template<typename MatrixType> |
| 633 | typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType> |
| 634 | ::householderQ() const |
| 635 | { |
| 636 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
| 637 | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
| 638 | } |
| 639 | |
| 640 | /** \return the column-pivoting Householder QR decomposition of \c *this. |
| 641 | * |
| 642 | * \sa class ColPivHouseholderQR |
| 643 | */ |
| 644 | template<typename Derived> |
| 645 | const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> |
| 646 | MatrixBase<Derived>::colPivHouseholderQr() const |
| 647 | { |
| 648 | return ColPivHouseholderQR<PlainObject>(eval()); |
| 649 | } |
| 650 | |
| 651 | } // end namespace Eigen |
| 652 | |
| 653 | #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
| 654 | |