1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // |
7 | // This Source Code Form is subject to the terms of the Mozilla |
8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
10 | |
11 | #ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
12 | #define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
13 | |
14 | namespace Eigen { |
15 | |
16 | namespace internal { |
17 | template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> > |
18 | : traits<_MatrixType> |
19 | { |
20 | enum { Flags = 0 }; |
21 | }; |
22 | |
23 | } // end namespace internal |
24 | |
25 | /** \ingroup QR_Module |
26 | * |
27 | * \class ColPivHouseholderQR |
28 | * |
29 | * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting |
30 | * |
31 | * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition |
32 | * |
33 | * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R |
34 | * such that |
35 | * \f[ |
36 | * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} |
37 | * \f] |
38 | * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an |
39 | * upper triangular matrix. |
40 | * |
41 | * This decomposition performs column pivoting in order to be rank-revealing and improve |
42 | * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. |
43 | * |
44 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
45 | * |
46 | * \sa MatrixBase::colPivHouseholderQr() |
47 | */ |
48 | template<typename _MatrixType> class ColPivHouseholderQR |
49 | { |
50 | public: |
51 | |
52 | typedef _MatrixType MatrixType; |
53 | enum { |
54 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
55 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
56 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
57 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
58 | }; |
59 | typedef typename MatrixType::Scalar Scalar; |
60 | typedef typename MatrixType::RealScalar RealScalar; |
61 | // FIXME should be int |
62 | typedef typename MatrixType::StorageIndex StorageIndex; |
63 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
64 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; |
65 | typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType; |
66 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
67 | typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType; |
68 | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; |
69 | typedef typename MatrixType::PlainObject PlainObject; |
70 | |
71 | private: |
72 | |
73 | typedef typename PermutationType::StorageIndex PermIndexType; |
74 | |
75 | public: |
76 | |
77 | /** |
78 | * \brief Default Constructor. |
79 | * |
80 | * The default constructor is useful in cases in which the user intends to |
81 | * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). |
82 | */ |
83 | ColPivHouseholderQR() |
84 | : m_qr(), |
85 | m_hCoeffs(), |
86 | m_colsPermutation(), |
87 | m_colsTranspositions(), |
88 | m_temp(), |
89 | m_colNormsUpdated(), |
90 | m_colNormsDirect(), |
91 | m_isInitialized(false), |
92 | m_usePrescribedThreshold(false) {} |
93 | |
94 | /** \brief Default Constructor with memory preallocation |
95 | * |
96 | * Like the default constructor but with preallocation of the internal data |
97 | * according to the specified problem \a size. |
98 | * \sa ColPivHouseholderQR() |
99 | */ |
100 | ColPivHouseholderQR(Index rows, Index cols) |
101 | : m_qr(rows, cols), |
102 | m_hCoeffs((std::min)(rows,cols)), |
103 | m_colsPermutation(PermIndexType(cols)), |
104 | m_colsTranspositions(cols), |
105 | m_temp(cols), |
106 | m_colNormsUpdated(cols), |
107 | m_colNormsDirect(cols), |
108 | m_isInitialized(false), |
109 | m_usePrescribedThreshold(false) {} |
110 | |
111 | /** \brief Constructs a QR factorization from a given matrix |
112 | * |
113 | * This constructor computes the QR factorization of the matrix \a matrix by calling |
114 | * the method compute(). It is a short cut for: |
115 | * |
116 | * \code |
117 | * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
118 | * qr.compute(matrix); |
119 | * \endcode |
120 | * |
121 | * \sa compute() |
122 | */ |
123 | template<typename InputType> |
124 | explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix) |
125 | : m_qr(matrix.rows(), matrix.cols()), |
126 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
127 | m_colsPermutation(PermIndexType(matrix.cols())), |
128 | m_colsTranspositions(matrix.cols()), |
129 | m_temp(matrix.cols()), |
130 | m_colNormsUpdated(matrix.cols()), |
131 | m_colNormsDirect(matrix.cols()), |
132 | m_isInitialized(false), |
133 | m_usePrescribedThreshold(false) |
134 | { |
135 | compute(matrix.derived()); |
136 | } |
137 | |
138 | /** \brief Constructs a QR factorization from a given matrix |
139 | * |
140 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
141 | * |
142 | * \sa ColPivHouseholderQR(const EigenBase&) |
143 | */ |
144 | template<typename InputType> |
145 | explicit ColPivHouseholderQR(EigenBase<InputType>& matrix) |
146 | : m_qr(matrix.derived()), |
147 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
148 | m_colsPermutation(PermIndexType(matrix.cols())), |
149 | m_colsTranspositions(matrix.cols()), |
150 | m_temp(matrix.cols()), |
151 | m_colNormsUpdated(matrix.cols()), |
152 | m_colNormsDirect(matrix.cols()), |
153 | m_isInitialized(false), |
154 | m_usePrescribedThreshold(false) |
155 | { |
156 | computeInPlace(); |
157 | } |
158 | |
159 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
160 | * *this is the QR decomposition, if any exists. |
161 | * |
162 | * \param b the right-hand-side of the equation to solve. |
163 | * |
164 | * \returns a solution. |
165 | * |
166 | * \note_about_checking_solutions |
167 | * |
168 | * \note_about_arbitrary_choice_of_solution |
169 | * |
170 | * Example: \include ColPivHouseholderQR_solve.cpp |
171 | * Output: \verbinclude ColPivHouseholderQR_solve.out |
172 | */ |
173 | template<typename Rhs> |
174 | inline const Solve<ColPivHouseholderQR, Rhs> |
175 | solve(const MatrixBase<Rhs>& b) const |
176 | { |
177 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
178 | return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived()); |
179 | } |
180 | |
181 | HouseholderSequenceType householderQ() const; |
182 | HouseholderSequenceType matrixQ() const |
183 | { |
184 | return householderQ(); |
185 | } |
186 | |
187 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
188 | */ |
189 | const MatrixType& matrixQR() const |
190 | { |
191 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
192 | return m_qr; |
193 | } |
194 | |
195 | /** \returns a reference to the matrix where the result Householder QR is stored |
196 | * \warning The strict lower part of this matrix contains internal values. |
197 | * Only the upper triangular part should be referenced. To get it, use |
198 | * \code matrixR().template triangularView<Upper>() \endcode |
199 | * For rank-deficient matrices, use |
200 | * \code |
201 | * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() |
202 | * \endcode |
203 | */ |
204 | const MatrixType& matrixR() const |
205 | { |
206 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
207 | return m_qr; |
208 | } |
209 | |
210 | template<typename InputType> |
211 | ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix); |
212 | |
213 | /** \returns a const reference to the column permutation matrix */ |
214 | const PermutationType& colsPermutation() const |
215 | { |
216 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
217 | return m_colsPermutation; |
218 | } |
219 | |
220 | /** \returns the absolute value of the determinant of the matrix of which |
221 | * *this is the QR decomposition. It has only linear complexity |
222 | * (that is, O(n) where n is the dimension of the square matrix) |
223 | * as the QR decomposition has already been computed. |
224 | * |
225 | * \note This is only for square matrices. |
226 | * |
227 | * \warning a determinant can be very big or small, so for matrices |
228 | * of large enough dimension, there is a risk of overflow/underflow. |
229 | * One way to work around that is to use logAbsDeterminant() instead. |
230 | * |
231 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
232 | */ |
233 | typename MatrixType::RealScalar absDeterminant() const; |
234 | |
235 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
236 | * *this is the QR decomposition. It has only linear complexity |
237 | * (that is, O(n) where n is the dimension of the square matrix) |
238 | * as the QR decomposition has already been computed. |
239 | * |
240 | * \note This is only for square matrices. |
241 | * |
242 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
243 | * to determinant computation. |
244 | * |
245 | * \sa absDeterminant(), MatrixBase::determinant() |
246 | */ |
247 | typename MatrixType::RealScalar logAbsDeterminant() const; |
248 | |
249 | /** \returns the rank of the matrix of which *this is the QR decomposition. |
250 | * |
251 | * \note This method has to determine which pivots should be considered nonzero. |
252 | * For that, it uses the threshold value that you can control by calling |
253 | * setThreshold(const RealScalar&). |
254 | */ |
255 | inline Index rank() const |
256 | { |
257 | using std::abs; |
258 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
259 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
260 | Index result = 0; |
261 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
262 | result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); |
263 | return result; |
264 | } |
265 | |
266 | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
267 | * |
268 | * \note This method has to determine which pivots should be considered nonzero. |
269 | * For that, it uses the threshold value that you can control by calling |
270 | * setThreshold(const RealScalar&). |
271 | */ |
272 | inline Index dimensionOfKernel() const |
273 | { |
274 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
275 | return cols() - rank(); |
276 | } |
277 | |
278 | /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
279 | * linear map, i.e. has trivial kernel; false otherwise. |
280 | * |
281 | * \note This method has to determine which pivots should be considered nonzero. |
282 | * For that, it uses the threshold value that you can control by calling |
283 | * setThreshold(const RealScalar&). |
284 | */ |
285 | inline bool isInjective() const |
286 | { |
287 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
288 | return rank() == cols(); |
289 | } |
290 | |
291 | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
292 | * linear map; false otherwise. |
293 | * |
294 | * \note This method has to determine which pivots should be considered nonzero. |
295 | * For that, it uses the threshold value that you can control by calling |
296 | * setThreshold(const RealScalar&). |
297 | */ |
298 | inline bool isSurjective() const |
299 | { |
300 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
301 | return rank() == rows(); |
302 | } |
303 | |
304 | /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
305 | * |
306 | * \note This method has to determine which pivots should be considered nonzero. |
307 | * For that, it uses the threshold value that you can control by calling |
308 | * setThreshold(const RealScalar&). |
309 | */ |
310 | inline bool isInvertible() const |
311 | { |
312 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
313 | return isInjective() && isSurjective(); |
314 | } |
315 | |
316 | /** \returns the inverse of the matrix of which *this is the QR decomposition. |
317 | * |
318 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
319 | * Use isInvertible() to first determine whether this matrix is invertible. |
320 | */ |
321 | inline const Inverse<ColPivHouseholderQR> inverse() const |
322 | { |
323 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
324 | return Inverse<ColPivHouseholderQR>(*this); |
325 | } |
326 | |
327 | inline Index rows() const { return m_qr.rows(); } |
328 | inline Index cols() const { return m_qr.cols(); } |
329 | |
330 | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
331 | * |
332 | * For advanced uses only. |
333 | */ |
334 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
335 | |
336 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
337 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
338 | * QR decomposition itself. |
339 | * |
340 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
341 | * uses a formula to automatically determine a reasonable threshold. |
342 | * Once you have called the present method setThreshold(const RealScalar&), |
343 | * your value is used instead. |
344 | * |
345 | * \param threshold The new value to use as the threshold. |
346 | * |
347 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
348 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
349 | * where maxpivot is the biggest pivot. |
350 | * |
351 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
352 | */ |
353 | ColPivHouseholderQR& setThreshold(const RealScalar& threshold) |
354 | { |
355 | m_usePrescribedThreshold = true; |
356 | m_prescribedThreshold = threshold; |
357 | return *this; |
358 | } |
359 | |
360 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
361 | * determining the threshold. |
362 | * |
363 | * You should pass the special object Eigen::Default as parameter here. |
364 | * \code qr.setThreshold(Eigen::Default); \endcode |
365 | * |
366 | * See the documentation of setThreshold(const RealScalar&). |
367 | */ |
368 | ColPivHouseholderQR& setThreshold(Default_t) |
369 | { |
370 | m_usePrescribedThreshold = false; |
371 | return *this; |
372 | } |
373 | |
374 | /** Returns the threshold that will be used by certain methods such as rank(). |
375 | * |
376 | * See the documentation of setThreshold(const RealScalar&). |
377 | */ |
378 | RealScalar threshold() const |
379 | { |
380 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
381 | return m_usePrescribedThreshold ? m_prescribedThreshold |
382 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
383 | // and turns out to be identical to Higham's formula used already in LDLt. |
384 | : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); |
385 | } |
386 | |
387 | /** \returns the number of nonzero pivots in the QR decomposition. |
388 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
389 | * So that notion isn't really intrinsically interesting, but it is |
390 | * still useful when implementing algorithms. |
391 | * |
392 | * \sa rank() |
393 | */ |
394 | inline Index nonzeroPivots() const |
395 | { |
396 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
397 | return m_nonzero_pivots; |
398 | } |
399 | |
400 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
401 | * diagonal coefficient of R. |
402 | */ |
403 | RealScalar maxPivot() const { return m_maxpivot; } |
404 | |
405 | /** \brief Reports whether the QR factorization was succesful. |
406 | * |
407 | * \note This function always returns \c Success. It is provided for compatibility |
408 | * with other factorization routines. |
409 | * \returns \c Success |
410 | */ |
411 | ComputationInfo info() const |
412 | { |
413 | eigen_assert(m_isInitialized && "Decomposition is not initialized." ); |
414 | return Success; |
415 | } |
416 | |
417 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
418 | template<typename RhsType, typename DstType> |
419 | EIGEN_DEVICE_FUNC |
420 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
421 | #endif |
422 | |
423 | protected: |
424 | |
425 | friend class CompleteOrthogonalDecomposition<MatrixType>; |
426 | |
427 | static void check_template_parameters() |
428 | { |
429 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
430 | } |
431 | |
432 | void computeInPlace(); |
433 | |
434 | MatrixType m_qr; |
435 | HCoeffsType m_hCoeffs; |
436 | PermutationType m_colsPermutation; |
437 | IntRowVectorType m_colsTranspositions; |
438 | RowVectorType m_temp; |
439 | RealRowVectorType m_colNormsUpdated; |
440 | RealRowVectorType m_colNormsDirect; |
441 | bool m_isInitialized, m_usePrescribedThreshold; |
442 | RealScalar m_prescribedThreshold, m_maxpivot; |
443 | Index m_nonzero_pivots; |
444 | Index m_det_pq; |
445 | }; |
446 | |
447 | template<typename MatrixType> |
448 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const |
449 | { |
450 | using std::abs; |
451 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
452 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
453 | return abs(m_qr.diagonal().prod()); |
454 | } |
455 | |
456 | template<typename MatrixType> |
457 | typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const |
458 | { |
459 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
460 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
461 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
462 | } |
463 | |
464 | /** Performs the QR factorization of the given matrix \a matrix. The result of |
465 | * the factorization is stored into \c *this, and a reference to \c *this |
466 | * is returned. |
467 | * |
468 | * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&) |
469 | */ |
470 | template<typename MatrixType> |
471 | template<typename InputType> |
472 | ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) |
473 | { |
474 | m_qr = matrix.derived(); |
475 | computeInPlace(); |
476 | return *this; |
477 | } |
478 | |
479 | template<typename MatrixType> |
480 | void ColPivHouseholderQR<MatrixType>::computeInPlace() |
481 | { |
482 | check_template_parameters(); |
483 | |
484 | // the column permutation is stored as int indices, so just to be sure: |
485 | eigen_assert(m_qr.cols()<=NumTraits<int>::highest()); |
486 | |
487 | using std::abs; |
488 | |
489 | Index rows = m_qr.rows(); |
490 | Index cols = m_qr.cols(); |
491 | Index size = m_qr.diagonalSize(); |
492 | |
493 | m_hCoeffs.resize(size); |
494 | |
495 | m_temp.resize(cols); |
496 | |
497 | m_colsTranspositions.resize(m_qr.cols()); |
498 | Index number_of_transpositions = 0; |
499 | |
500 | m_colNormsUpdated.resize(cols); |
501 | m_colNormsDirect.resize(cols); |
502 | for (Index k = 0; k < cols; ++k) { |
503 | // colNormsDirect(k) caches the most recent directly computed norm of |
504 | // column k. |
505 | m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm(); |
506 | m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k); |
507 | } |
508 | |
509 | RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows); |
510 | RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon()); |
511 | |
512 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
513 | m_maxpivot = RealScalar(0); |
514 | |
515 | for(Index k = 0; k < size; ++k) |
516 | { |
517 | // first, we look up in our table m_colNormsUpdated which column has the biggest norm |
518 | Index biggest_col_index; |
519 | RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index)); |
520 | biggest_col_index += k; |
521 | |
522 | // Track the number of meaningful pivots but do not stop the decomposition to make |
523 | // sure that the initial matrix is properly reproduced. See bug 941. |
524 | if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) |
525 | m_nonzero_pivots = k; |
526 | |
527 | // apply the transposition to the columns |
528 | m_colsTranspositions.coeffRef(k) = biggest_col_index; |
529 | if(k != biggest_col_index) { |
530 | m_qr.col(k).swap(m_qr.col(biggest_col_index)); |
531 | std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index)); |
532 | std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index)); |
533 | ++number_of_transpositions; |
534 | } |
535 | |
536 | // generate the householder vector, store it below the diagonal |
537 | RealScalar beta; |
538 | m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
539 | |
540 | // apply the householder transformation to the diagonal coefficient |
541 | m_qr.coeffRef(k,k) = beta; |
542 | |
543 | // remember the maximum absolute value of diagonal coefficients |
544 | if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); |
545 | |
546 | // apply the householder transformation |
547 | m_qr.bottomRightCorner(rows-k, cols-k-1) |
548 | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); |
549 | |
550 | // update our table of norms of the columns |
551 | for (Index j = k + 1; j < cols; ++j) { |
552 | // The following implements the stable norm downgrade step discussed in |
553 | // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf |
554 | // and used in LAPACK routines xGEQPF and xGEQP3. |
555 | // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html |
556 | if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) { |
557 | RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j); |
558 | temp = (RealScalar(1) + temp) * (RealScalar(1) - temp); |
559 | temp = temp < RealScalar(0) ? RealScalar(0) : temp; |
560 | RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) / |
561 | m_colNormsDirect.coeffRef(j)); |
562 | if (temp2 <= norm_downdate_threshold) { |
563 | // The updated norm has become too inaccurate so re-compute the column |
564 | // norm directly. |
565 | m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm(); |
566 | m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j); |
567 | } else { |
568 | m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp); |
569 | } |
570 | } |
571 | } |
572 | } |
573 | |
574 | m_colsPermutation.setIdentity(PermIndexType(cols)); |
575 | for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k) |
576 | m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k))); |
577 | |
578 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
579 | m_isInitialized = true; |
580 | } |
581 | |
582 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
583 | template<typename _MatrixType> |
584 | template<typename RhsType, typename DstType> |
585 | void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
586 | { |
587 | eigen_assert(rhs.rows() == rows()); |
588 | |
589 | const Index nonzero_pivots = nonzeroPivots(); |
590 | |
591 | if(nonzero_pivots == 0) |
592 | { |
593 | dst.setZero(); |
594 | return; |
595 | } |
596 | |
597 | typename RhsType::PlainObject c(rhs); |
598 | |
599 | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
600 | c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs) |
601 | .setLength(nonzero_pivots) |
602 | .transpose() |
603 | ); |
604 | |
605 | m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots) |
606 | .template triangularView<Upper>() |
607 | .solveInPlace(c.topRows(nonzero_pivots)); |
608 | |
609 | for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i); |
610 | for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero(); |
611 | } |
612 | #endif |
613 | |
614 | namespace internal { |
615 | |
616 | template<typename DstXprType, typename MatrixType> |
617 | struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense> |
618 | { |
619 | typedef ColPivHouseholderQR<MatrixType> QrType; |
620 | typedef Inverse<QrType> SrcXprType; |
621 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &) |
622 | { |
623 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
624 | } |
625 | }; |
626 | |
627 | } // end namespace internal |
628 | |
629 | /** \returns the matrix Q as a sequence of householder transformations. |
630 | * You can extract the meaningful part only by using: |
631 | * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/ |
632 | template<typename MatrixType> |
633 | typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType> |
634 | ::householderQ() const |
635 | { |
636 | eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized." ); |
637 | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
638 | } |
639 | |
640 | /** \return the column-pivoting Householder QR decomposition of \c *this. |
641 | * |
642 | * \sa class ColPivHouseholderQR |
643 | */ |
644 | template<typename Derived> |
645 | const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> |
646 | MatrixBase<Derived>::colPivHouseholderQr() const |
647 | { |
648 | return ColPivHouseholderQR<PlainObject>(eval()); |
649 | } |
650 | |
651 | } // end namespace Eigen |
652 | |
653 | #endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H |
654 | |