| 1 | // This file is part of Eigen, a lightweight C++ template library | 
| 2 | // for linear algebra. | 
| 3 | // | 
| 4 | // Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com> | 
| 5 | // | 
| 6 | // This Source Code Form is subject to the terms of the Mozilla | 
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
| 9 |  | 
| 10 | #ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H | 
| 11 | #define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H | 
| 12 |  | 
| 13 | namespace Eigen { | 
| 14 |  | 
| 15 | namespace internal { | 
| 16 | template <typename _MatrixType> | 
| 17 | struct traits<CompleteOrthogonalDecomposition<_MatrixType> > | 
| 18 |     : traits<_MatrixType> { | 
| 19 |   enum { Flags = 0 }; | 
| 20 | }; | 
| 21 |  | 
| 22 | }  // end namespace internal | 
| 23 |  | 
| 24 | /** \ingroup QR_Module | 
| 25 |   * | 
| 26 |   * \class CompleteOrthogonalDecomposition | 
| 27 |   * | 
| 28 |   * \brief Complete orthogonal decomposition (COD) of a matrix. | 
| 29 |   * | 
| 30 |   * \param MatrixType the type of the matrix of which we are computing the COD. | 
| 31 |   * | 
| 32 |   * This class performs a rank-revealing complete orthogonal decomposition of a | 
| 33 |   * matrix  \b A into matrices \b P, \b Q, \b T, and \b Z such that | 
| 34 |   * \f[ | 
| 35 |   *  \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, | 
| 36 |   *                     \begin{bmatrix} \mathbf{T} &  \mathbf{0} \\ | 
| 37 |   *                                     \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z} | 
| 38 |   * \f] | 
| 39 |   * by using Householder transformations. Here, \b P is a permutation matrix, | 
| 40 |   * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of | 
| 41 |   * size rank-by-rank. \b A may be rank deficient. | 
| 42 |   * | 
| 43 |   * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. | 
| 44 |   *  | 
| 45 |   * \sa MatrixBase::completeOrthogonalDecomposition() | 
| 46 |   */ | 
| 47 | template <typename _MatrixType> | 
| 48 | class CompleteOrthogonalDecomposition { | 
| 49 |  public: | 
| 50 |   typedef _MatrixType MatrixType; | 
| 51 |   enum { | 
| 52 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
| 53 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
| 54 |     MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
| 55 |     MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
| 56 |   }; | 
| 57 |   typedef typename MatrixType::Scalar Scalar; | 
| 58 |   typedef typename MatrixType::RealScalar RealScalar; | 
| 59 |   typedef typename MatrixType::StorageIndex StorageIndex; | 
| 60 |   typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; | 
| 61 |   typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> | 
| 62 |       PermutationType; | 
| 63 |   typedef typename internal::plain_row_type<MatrixType, Index>::type | 
| 64 |       IntRowVectorType; | 
| 65 |   typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; | 
| 66 |   typedef typename internal::plain_row_type<MatrixType, RealScalar>::type | 
| 67 |       RealRowVectorType; | 
| 68 |   typedef HouseholderSequence< | 
| 69 |       MatrixType, typename internal::remove_all< | 
| 70 |                       typename HCoeffsType::ConjugateReturnType>::type> | 
| 71 |       HouseholderSequenceType; | 
| 72 |   typedef typename MatrixType::PlainObject PlainObject; | 
| 73 |  | 
| 74 |  private: | 
| 75 |   typedef typename PermutationType::Index PermIndexType; | 
| 76 |  | 
| 77 |  public: | 
| 78 |   /** | 
| 79 |    * \brief Default Constructor. | 
| 80 |    * | 
| 81 |    * The default constructor is useful in cases in which the user intends to | 
| 82 |    * perform decompositions via | 
| 83 |    * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&). | 
| 84 |    */ | 
| 85 |   CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {} | 
| 86 |  | 
| 87 |   /** \brief Default Constructor with memory preallocation | 
| 88 |    * | 
| 89 |    * Like the default constructor but with preallocation of the internal data | 
| 90 |    * according to the specified problem \a size. | 
| 91 |    * \sa CompleteOrthogonalDecomposition() | 
| 92 |    */ | 
| 93 |   CompleteOrthogonalDecomposition(Index rows, Index cols) | 
| 94 |       : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {} | 
| 95 |  | 
| 96 |   /** \brief Constructs a complete orthogonal decomposition from a given | 
| 97 |    * matrix. | 
| 98 |    * | 
| 99 |    * This constructor computes the complete orthogonal decomposition of the | 
| 100 |    * matrix \a matrix by calling the method compute(). The default | 
| 101 |    * threshold for rank determination will be used. It is a short cut for: | 
| 102 |    * | 
| 103 |    * \code | 
| 104 |    * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(), | 
| 105 |    *                                                 matrix.cols()); | 
| 106 |    * cod.setThreshold(Default); | 
| 107 |    * cod.compute(matrix); | 
| 108 |    * \endcode | 
| 109 |    * | 
| 110 |    * \sa compute() | 
| 111 |    */ | 
| 112 |   template <typename InputType> | 
| 113 |   explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix) | 
| 114 |       : m_cpqr(matrix.rows(), matrix.cols()), | 
| 115 |         m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
| 116 |         m_temp(matrix.cols()) | 
| 117 |   { | 
| 118 |     compute(matrix.derived()); | 
| 119 |   } | 
| 120 |  | 
| 121 |   /** \brief Constructs a complete orthogonal decomposition from a given matrix | 
| 122 |     * | 
| 123 |     * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. | 
| 124 |     * | 
| 125 |     * \sa CompleteOrthogonalDecomposition(const EigenBase&) | 
| 126 |     */ | 
| 127 |   template<typename InputType> | 
| 128 |   explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix) | 
| 129 |     : m_cpqr(matrix.derived()), | 
| 130 |       m_zCoeffs((std::min)(matrix.rows(), matrix.cols())), | 
| 131 |       m_temp(matrix.cols()) | 
| 132 |   { | 
| 133 |     computeInPlace(); | 
| 134 |   } | 
| 135 |  | 
| 136 |  | 
| 137 |   /** This method computes the minimum-norm solution X to a least squares | 
| 138 |    * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of | 
| 139 |    * which \c *this is the complete orthogonal decomposition. | 
| 140 |    * | 
| 141 |    * \param b the right-hand sides of the problem to solve. | 
| 142 |    * | 
| 143 |    * \returns a solution. | 
| 144 |    * | 
| 145 |    */ | 
| 146 |   template <typename Rhs> | 
| 147 |   inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve( | 
| 148 |       const MatrixBase<Rhs>& b) const { | 
| 149 |     eigen_assert(m_cpqr.m_isInitialized && | 
| 150 |                  "CompleteOrthogonalDecomposition is not initialized." ); | 
| 151 |     return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived()); | 
| 152 |   } | 
| 153 |  | 
| 154 |   HouseholderSequenceType householderQ(void) const; | 
| 155 |   HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); } | 
| 156 |  | 
| 157 |   /** \returns the matrix \b Z. | 
| 158 |    */ | 
| 159 |   MatrixType matrixZ() const { | 
| 160 |     MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols()); | 
| 161 |     applyZAdjointOnTheLeftInPlace(Z); | 
| 162 |     return Z.adjoint(); | 
| 163 |   } | 
| 164 |  | 
| 165 |   /** \returns a reference to the matrix where the complete orthogonal | 
| 166 |    * decomposition is stored | 
| 167 |    */ | 
| 168 |   const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); } | 
| 169 |  | 
| 170 |   /** \returns a reference to the matrix where the complete orthogonal | 
| 171 |    * decomposition is stored. | 
| 172 |    * \warning The strict lower part and \code cols() - rank() \endcode right | 
| 173 |    * columns of this matrix contains internal values. | 
| 174 |    * Only the upper triangular part should be referenced. To get it, use | 
| 175 |    * \code matrixT().template triangularView<Upper>() \endcode | 
| 176 |    * For rank-deficient matrices, use | 
| 177 |    * \code | 
| 178 |    * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>() | 
| 179 |    * \endcode | 
| 180 |    */ | 
| 181 |   const MatrixType& matrixT() const { return m_cpqr.matrixQR(); } | 
| 182 |  | 
| 183 |   template <typename InputType> | 
| 184 |   CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) { | 
| 185 |     // Compute the column pivoted QR factorization A P = Q R. | 
| 186 |     m_cpqr.compute(matrix); | 
| 187 |     computeInPlace(); | 
| 188 |     return *this; | 
| 189 |   } | 
| 190 |  | 
| 191 |   /** \returns a const reference to the column permutation matrix */ | 
| 192 |   const PermutationType& colsPermutation() const { | 
| 193 |     return m_cpqr.colsPermutation(); | 
| 194 |   } | 
| 195 |  | 
| 196 |   /** \returns the absolute value of the determinant of the matrix of which | 
| 197 |    * *this is the complete orthogonal decomposition. It has only linear | 
| 198 |    * complexity (that is, O(n) where n is the dimension of the square matrix) | 
| 199 |    * as the complete orthogonal decomposition has already been computed. | 
| 200 |    * | 
| 201 |    * \note This is only for square matrices. | 
| 202 |    * | 
| 203 |    * \warning a determinant can be very big or small, so for matrices | 
| 204 |    * of large enough dimension, there is a risk of overflow/underflow. | 
| 205 |    * One way to work around that is to use logAbsDeterminant() instead. | 
| 206 |    * | 
| 207 |    * \sa logAbsDeterminant(), MatrixBase::determinant() | 
| 208 |    */ | 
| 209 |   typename MatrixType::RealScalar absDeterminant() const; | 
| 210 |  | 
| 211 |   /** \returns the natural log of the absolute value of the determinant of the | 
| 212 |    * matrix of which *this is the complete orthogonal decomposition. It has | 
| 213 |    * only linear complexity (that is, O(n) where n is the dimension of the | 
| 214 |    * square matrix) as the complete orthogonal decomposition has already been | 
| 215 |    * computed. | 
| 216 |    * | 
| 217 |    * \note This is only for square matrices. | 
| 218 |    * | 
| 219 |    * \note This method is useful to work around the risk of overflow/underflow | 
| 220 |    * that's inherent to determinant computation. | 
| 221 |    * | 
| 222 |    * \sa absDeterminant(), MatrixBase::determinant() | 
| 223 |    */ | 
| 224 |   typename MatrixType::RealScalar logAbsDeterminant() const; | 
| 225 |  | 
| 226 |   /** \returns the rank of the matrix of which *this is the complete orthogonal | 
| 227 |    * decomposition. | 
| 228 |    * | 
| 229 |    * \note This method has to determine which pivots should be considered | 
| 230 |    * nonzero. For that, it uses the threshold value that you can control by | 
| 231 |    * calling setThreshold(const RealScalar&). | 
| 232 |    */ | 
| 233 |   inline Index rank() const { return m_cpqr.rank(); } | 
| 234 |  | 
| 235 |   /** \returns the dimension of the kernel of the matrix of which *this is the | 
| 236 |    * complete orthogonal decomposition. | 
| 237 |    * | 
| 238 |    * \note This method has to determine which pivots should be considered | 
| 239 |    * nonzero. For that, it uses the threshold value that you can control by | 
| 240 |    * calling setThreshold(const RealScalar&). | 
| 241 |    */ | 
| 242 |   inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); } | 
| 243 |  | 
| 244 |   /** \returns true if the matrix of which *this is the decomposition represents | 
| 245 |    * an injective linear map, i.e. has trivial kernel; false otherwise. | 
| 246 |    * | 
| 247 |    * \note This method has to determine which pivots should be considered | 
| 248 |    * nonzero. For that, it uses the threshold value that you can control by | 
| 249 |    * calling setThreshold(const RealScalar&). | 
| 250 |    */ | 
| 251 |   inline bool isInjective() const { return m_cpqr.isInjective(); } | 
| 252 |  | 
| 253 |   /** \returns true if the matrix of which *this is the decomposition represents | 
| 254 |    * a surjective linear map; false otherwise. | 
| 255 |    * | 
| 256 |    * \note This method has to determine which pivots should be considered | 
| 257 |    * nonzero. For that, it uses the threshold value that you can control by | 
| 258 |    * calling setThreshold(const RealScalar&). | 
| 259 |    */ | 
| 260 |   inline bool isSurjective() const { return m_cpqr.isSurjective(); } | 
| 261 |  | 
| 262 |   /** \returns true if the matrix of which *this is the complete orthogonal | 
| 263 |    * decomposition is invertible. | 
| 264 |    * | 
| 265 |    * \note This method has to determine which pivots should be considered | 
| 266 |    * nonzero. For that, it uses the threshold value that you can control by | 
| 267 |    * calling setThreshold(const RealScalar&). | 
| 268 |    */ | 
| 269 |   inline bool isInvertible() const { return m_cpqr.isInvertible(); } | 
| 270 |  | 
| 271 |   /** \returns the pseudo-inverse of the matrix of which *this is the complete | 
| 272 |    * orthogonal decomposition. | 
| 273 |    * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems. | 
| 274 |    * It is more efficient and numerically stable to call \c this->solve(rhs). | 
| 275 |    */ | 
| 276 |   inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const | 
| 277 |   { | 
| 278 |     return Inverse<CompleteOrthogonalDecomposition>(*this); | 
| 279 |   } | 
| 280 |  | 
| 281 |   inline Index rows() const { return m_cpqr.rows(); } | 
| 282 |   inline Index cols() const { return m_cpqr.cols(); } | 
| 283 |  | 
| 284 |   /** \returns a const reference to the vector of Householder coefficients used | 
| 285 |    * to represent the factor \c Q. | 
| 286 |    * | 
| 287 |    * For advanced uses only. | 
| 288 |    */ | 
| 289 |   inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); } | 
| 290 |  | 
| 291 |   /** \returns a const reference to the vector of Householder coefficients | 
| 292 |    * used to represent the factor \c Z. | 
| 293 |    * | 
| 294 |    * For advanced uses only. | 
| 295 |    */ | 
| 296 |   const HCoeffsType& zCoeffs() const { return m_zCoeffs; } | 
| 297 |  | 
| 298 |   /** Allows to prescribe a threshold to be used by certain methods, such as | 
| 299 |    * rank(), who need to determine when pivots are to be considered nonzero. | 
| 300 |    * Most be called before calling compute(). | 
| 301 |    * | 
| 302 |    * When it needs to get the threshold value, Eigen calls threshold(). By | 
| 303 |    * default, this uses a formula to automatically determine a reasonable | 
| 304 |    * threshold. Once you have called the present method | 
| 305 |    * setThreshold(const RealScalar&), your value is used instead. | 
| 306 |    * | 
| 307 |    * \param threshold The new value to use as the threshold. | 
| 308 |    * | 
| 309 |    * A pivot will be considered nonzero if its absolute value is strictly | 
| 310 |    * greater than | 
| 311 |    *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ | 
| 312 |    * where maxpivot is the biggest pivot. | 
| 313 |    * | 
| 314 |    * If you want to come back to the default behavior, call | 
| 315 |    * setThreshold(Default_t) | 
| 316 |    */ | 
| 317 |   CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) { | 
| 318 |     m_cpqr.setThreshold(threshold); | 
| 319 |     return *this; | 
| 320 |   } | 
| 321 |  | 
| 322 |   /** Allows to come back to the default behavior, letting Eigen use its default | 
| 323 |    * formula for determining the threshold. | 
| 324 |    * | 
| 325 |    * You should pass the special object Eigen::Default as parameter here. | 
| 326 |    * \code qr.setThreshold(Eigen::Default); \endcode | 
| 327 |    * | 
| 328 |    * See the documentation of setThreshold(const RealScalar&). | 
| 329 |    */ | 
| 330 |   CompleteOrthogonalDecomposition& setThreshold(Default_t) { | 
| 331 |     m_cpqr.setThreshold(Default); | 
| 332 |     return *this; | 
| 333 |   } | 
| 334 |  | 
| 335 |   /** Returns the threshold that will be used by certain methods such as rank(). | 
| 336 |    * | 
| 337 |    * See the documentation of setThreshold(const RealScalar&). | 
| 338 |    */ | 
| 339 |   RealScalar threshold() const { return m_cpqr.threshold(); } | 
| 340 |  | 
| 341 |   /** \returns the number of nonzero pivots in the complete orthogonal | 
| 342 |    * decomposition. Here nonzero is meant in the exact sense, not in a | 
| 343 |    * fuzzy sense. So that notion isn't really intrinsically interesting, | 
| 344 |    * but it is still useful when implementing algorithms. | 
| 345 |    * | 
| 346 |    * \sa rank() | 
| 347 |    */ | 
| 348 |   inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); } | 
| 349 |  | 
| 350 |   /** \returns the absolute value of the biggest pivot, i.e. the biggest | 
| 351 |    *          diagonal coefficient of R. | 
| 352 |    */ | 
| 353 |   inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); } | 
| 354 |  | 
| 355 |   /** \brief Reports whether the complete orthogonal decomposition was | 
| 356 |    * succesful. | 
| 357 |    * | 
| 358 |    * \note This function always returns \c Success. It is provided for | 
| 359 |    * compatibility | 
| 360 |    * with other factorization routines. | 
| 361 |    * \returns \c Success | 
| 362 |    */ | 
| 363 |   ComputationInfo info() const { | 
| 364 |     eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized." ); | 
| 365 |     return Success; | 
| 366 |   } | 
| 367 |  | 
| 368 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
| 369 |   template <typename RhsType, typename DstType> | 
| 370 |   EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const; | 
| 371 | #endif | 
| 372 |  | 
| 373 |  protected: | 
| 374 |   static void check_template_parameters() { | 
| 375 |     EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
| 376 |   } | 
| 377 |  | 
| 378 |   void computeInPlace(); | 
| 379 |  | 
| 380 |   /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$. | 
| 381 |    */ | 
| 382 |   template <typename Rhs> | 
| 383 |   void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const; | 
| 384 |  | 
| 385 |   ColPivHouseholderQR<MatrixType> m_cpqr; | 
| 386 |   HCoeffsType m_zCoeffs; | 
| 387 |   RowVectorType m_temp; | 
| 388 | }; | 
| 389 |  | 
| 390 | template <typename MatrixType> | 
| 391 | typename MatrixType::RealScalar | 
| 392 | CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const { | 
| 393 |   return m_cpqr.absDeterminant(); | 
| 394 | } | 
| 395 |  | 
| 396 | template <typename MatrixType> | 
| 397 | typename MatrixType::RealScalar | 
| 398 | CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const { | 
| 399 |   return m_cpqr.logAbsDeterminant(); | 
| 400 | } | 
| 401 |  | 
| 402 | /** Performs the complete orthogonal decomposition of the given matrix \a | 
| 403 |  * matrix. The result of the factorization is stored into \c *this, and a | 
| 404 |  * reference to \c *this is returned. | 
| 405 |  * | 
| 406 |  * \sa class CompleteOrthogonalDecomposition, | 
| 407 |  * CompleteOrthogonalDecomposition(const MatrixType&) | 
| 408 |  */ | 
| 409 | template <typename MatrixType> | 
| 410 | void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace() | 
| 411 | { | 
| 412 |   check_template_parameters(); | 
| 413 |  | 
| 414 |   // the column permutation is stored as int indices, so just to be sure: | 
| 415 |   eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest()); | 
| 416 |  | 
| 417 |   const Index rank = m_cpqr.rank(); | 
| 418 |   const Index cols = m_cpqr.cols(); | 
| 419 |   const Index rows = m_cpqr.rows(); | 
| 420 |   m_zCoeffs.resize((std::min)(rows, cols)); | 
| 421 |   m_temp.resize(cols); | 
| 422 |  | 
| 423 |   if (rank < cols) { | 
| 424 |     // We have reduced the (permuted) matrix to the form | 
| 425 |     //   [R11 R12] | 
| 426 |     //   [ 0  R22] | 
| 427 |     // where R11 is r-by-r (r = rank) upper triangular, R12 is | 
| 428 |     // r-by-(n-r), and R22 is empty or the norm of R22 is negligible. | 
| 429 |     // We now compute the complete orthogonal decomposition by applying | 
| 430 |     // Householder transformations from the right to the upper trapezoidal | 
| 431 |     // matrix X = [R11 R12] to zero out R12 and obtain the factorization | 
| 432 |     // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and | 
| 433 |     // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix. | 
| 434 |     // We store the data representing Z in R12 and m_zCoeffs. | 
| 435 |     for (Index k = rank - 1; k >= 0; --k) { | 
| 436 |       if (k != rank - 1) { | 
| 437 |         // Given the API for Householder reflectors, it is more convenient if | 
| 438 |         // we swap the leading parts of columns k and r-1 (zero-based) to form | 
| 439 |         // the matrix X_k = [X(0:k, k), X(0:k, r:n)] | 
| 440 |         m_cpqr.m_qr.col(k).head(k + 1).swap( | 
| 441 |             m_cpqr.m_qr.col(rank - 1).head(k + 1)); | 
| 442 |       } | 
| 443 |       // Construct Householder reflector Z(k) to zero out the last row of X_k, | 
| 444 |       // i.e. choose Z(k) such that | 
| 445 |       // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0]. | 
| 446 |       RealScalar beta; | 
| 447 |       m_cpqr.m_qr.row(k) | 
| 448 |           .tail(cols - rank + 1) | 
| 449 |           .makeHouseholderInPlace(m_zCoeffs(k), beta); | 
| 450 |       m_cpqr.m_qr(k, rank - 1) = beta; | 
| 451 |       if (k > 0) { | 
| 452 |         // Apply Z(k) to the first k rows of X_k | 
| 453 |         m_cpqr.m_qr.topRightCorner(k, cols - rank + 1) | 
| 454 |             .applyHouseholderOnTheRight( | 
| 455 |                 m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k), | 
| 456 |                 &m_temp(0)); | 
| 457 |       } | 
| 458 |       if (k != rank - 1) { | 
| 459 |         // Swap X(0:k,k) back to its proper location. | 
| 460 |         m_cpqr.m_qr.col(k).head(k + 1).swap( | 
| 461 |             m_cpqr.m_qr.col(rank - 1).head(k + 1)); | 
| 462 |       } | 
| 463 |     } | 
| 464 |   } | 
| 465 | } | 
| 466 |  | 
| 467 | template <typename MatrixType> | 
| 468 | template <typename Rhs> | 
| 469 | void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace( | 
| 470 |     Rhs& rhs) const { | 
| 471 |   const Index cols = this->cols(); | 
| 472 |   const Index nrhs = rhs.cols(); | 
| 473 |   const Index rank = this->rank(); | 
| 474 |   Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs)); | 
| 475 |   for (Index k = 0; k < rank; ++k) { | 
| 476 |     if (k != rank - 1) { | 
| 477 |       rhs.row(k).swap(rhs.row(rank - 1)); | 
| 478 |     } | 
| 479 |     rhs.middleRows(rank - 1, cols - rank + 1) | 
| 480 |         .applyHouseholderOnTheLeft( | 
| 481 |             matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k), | 
| 482 |             &temp(0)); | 
| 483 |     if (k != rank - 1) { | 
| 484 |       rhs.row(k).swap(rhs.row(rank - 1)); | 
| 485 |     } | 
| 486 |   } | 
| 487 | } | 
| 488 |  | 
| 489 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
| 490 | template <typename _MatrixType> | 
| 491 | template <typename RhsType, typename DstType> | 
| 492 | void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl( | 
| 493 |     const RhsType& rhs, DstType& dst) const { | 
| 494 |   eigen_assert(rhs.rows() == this->rows()); | 
| 495 |  | 
| 496 |   const Index rank = this->rank(); | 
| 497 |   if (rank == 0) { | 
| 498 |     dst.setZero(); | 
| 499 |     return; | 
| 500 |   } | 
| 501 |  | 
| 502 |   // Compute c = Q^* * rhs | 
| 503 |   // Note that the matrix Q = H_0^* H_1^*... so its inverse is | 
| 504 |   // Q^* = (H_0 H_1 ...)^T | 
| 505 |   typename RhsType::PlainObject c(rhs); | 
| 506 |   c.applyOnTheLeft( | 
| 507 |       householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose()); | 
| 508 |  | 
| 509 |   // Solve T z = c(1:rank, :) | 
| 510 |   dst.topRows(rank) = matrixT() | 
| 511 |                           .topLeftCorner(rank, rank) | 
| 512 |                           .template triangularView<Upper>() | 
| 513 |                           .solve(c.topRows(rank)); | 
| 514 |  | 
| 515 |   const Index cols = this->cols(); | 
| 516 |   if (rank < cols) { | 
| 517 |     // Compute y = Z^* * [ z ] | 
| 518 |     //                   [ 0 ] | 
| 519 |     dst.bottomRows(cols - rank).setZero(); | 
| 520 |     applyZAdjointOnTheLeftInPlace(dst); | 
| 521 |   } | 
| 522 |  | 
| 523 |   // Undo permutation to get x = P^{-1} * y. | 
| 524 |   dst = colsPermutation() * dst; | 
| 525 | } | 
| 526 | #endif | 
| 527 |  | 
| 528 | namespace internal { | 
| 529 |  | 
| 530 | template<typename DstXprType, typename MatrixType> | 
| 531 | struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense> | 
| 532 | { | 
| 533 |   typedef CompleteOrthogonalDecomposition<MatrixType> CodType; | 
| 534 |   typedef Inverse<CodType> SrcXprType; | 
| 535 |   static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &) | 
| 536 |   { | 
| 537 |     dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows())); | 
| 538 |   } | 
| 539 | }; | 
| 540 |  | 
| 541 | } // end namespace internal | 
| 542 |  | 
| 543 | /** \returns the matrix Q as a sequence of householder transformations */ | 
| 544 | template <typename MatrixType> | 
| 545 | typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType | 
| 546 | CompleteOrthogonalDecomposition<MatrixType>::householderQ() const { | 
| 547 |   return m_cpqr.householderQ(); | 
| 548 | } | 
| 549 |  | 
| 550 | /** \return the complete orthogonal decomposition of \c *this. | 
| 551 |   * | 
| 552 |   * \sa class CompleteOrthogonalDecomposition | 
| 553 |   */ | 
| 554 | template <typename Derived> | 
| 555 | const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject> | 
| 556 | MatrixBase<Derived>::completeOrthogonalDecomposition() const { | 
| 557 |   return CompleteOrthogonalDecomposition<PlainObject>(eval()); | 
| 558 | } | 
| 559 |  | 
| 560 | }  // end namespace Eigen | 
| 561 |  | 
| 562 | #endif  // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H | 
| 563 |  |