| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| 12 | #define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | |
| 18 | template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> > |
| 19 | : traits<_MatrixType> |
| 20 | { |
| 21 | enum { Flags = 0 }; |
| 22 | }; |
| 23 | |
| 24 | template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType; |
| 25 | |
| 26 | template<typename MatrixType> |
| 27 | struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> > |
| 28 | { |
| 29 | typedef typename MatrixType::PlainObject ReturnType; |
| 30 | }; |
| 31 | |
| 32 | } // end namespace internal |
| 33 | |
| 34 | /** \ingroup QR_Module |
| 35 | * |
| 36 | * \class FullPivHouseholderQR |
| 37 | * |
| 38 | * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting |
| 39 | * |
| 40 | * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition |
| 41 | * |
| 42 | * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R |
| 43 | * such that |
| 44 | * \f[ |
| 45 | * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R} |
| 46 | * \f] |
| 47 | * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix |
| 48 | * and \b R an upper triangular matrix. |
| 49 | * |
| 50 | * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal |
| 51 | * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR. |
| 52 | * |
| 53 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
| 54 | * |
| 55 | * \sa MatrixBase::fullPivHouseholderQr() |
| 56 | */ |
| 57 | template<typename _MatrixType> class FullPivHouseholderQR |
| 58 | { |
| 59 | public: |
| 60 | |
| 61 | typedef _MatrixType MatrixType; |
| 62 | enum { |
| 63 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 64 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 65 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 66 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
| 67 | }; |
| 68 | typedef typename MatrixType::Scalar Scalar; |
| 69 | typedef typename MatrixType::RealScalar RealScalar; |
| 70 | // FIXME should be int |
| 71 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 72 | typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType; |
| 73 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| 74 | typedef Matrix<StorageIndex, 1, |
| 75 | EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1, |
| 76 | EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType; |
| 77 | typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType; |
| 78 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
| 79 | typedef typename internal::plain_col_type<MatrixType>::type ColVectorType; |
| 80 | typedef typename MatrixType::PlainObject PlainObject; |
| 81 | |
| 82 | /** \brief Default Constructor. |
| 83 | * |
| 84 | * The default constructor is useful in cases in which the user intends to |
| 85 | * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&). |
| 86 | */ |
| 87 | FullPivHouseholderQR() |
| 88 | : m_qr(), |
| 89 | m_hCoeffs(), |
| 90 | m_rows_transpositions(), |
| 91 | m_cols_transpositions(), |
| 92 | m_cols_permutation(), |
| 93 | m_temp(), |
| 94 | m_isInitialized(false), |
| 95 | m_usePrescribedThreshold(false) {} |
| 96 | |
| 97 | /** \brief Default Constructor with memory preallocation |
| 98 | * |
| 99 | * Like the default constructor but with preallocation of the internal data |
| 100 | * according to the specified problem \a size. |
| 101 | * \sa FullPivHouseholderQR() |
| 102 | */ |
| 103 | FullPivHouseholderQR(Index rows, Index cols) |
| 104 | : m_qr(rows, cols), |
| 105 | m_hCoeffs((std::min)(rows,cols)), |
| 106 | m_rows_transpositions((std::min)(rows,cols)), |
| 107 | m_cols_transpositions((std::min)(rows,cols)), |
| 108 | m_cols_permutation(cols), |
| 109 | m_temp(cols), |
| 110 | m_isInitialized(false), |
| 111 | m_usePrescribedThreshold(false) {} |
| 112 | |
| 113 | /** \brief Constructs a QR factorization from a given matrix |
| 114 | * |
| 115 | * This constructor computes the QR factorization of the matrix \a matrix by calling |
| 116 | * the method compute(). It is a short cut for: |
| 117 | * |
| 118 | * \code |
| 119 | * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
| 120 | * qr.compute(matrix); |
| 121 | * \endcode |
| 122 | * |
| 123 | * \sa compute() |
| 124 | */ |
| 125 | template<typename InputType> |
| 126 | explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix) |
| 127 | : m_qr(matrix.rows(), matrix.cols()), |
| 128 | m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), |
| 129 | m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| 130 | m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| 131 | m_cols_permutation(matrix.cols()), |
| 132 | m_temp(matrix.cols()), |
| 133 | m_isInitialized(false), |
| 134 | m_usePrescribedThreshold(false) |
| 135 | { |
| 136 | compute(matrix.derived()); |
| 137 | } |
| 138 | |
| 139 | /** \brief Constructs a QR factorization from a given matrix |
| 140 | * |
| 141 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. |
| 142 | * |
| 143 | * \sa FullPivHouseholderQR(const EigenBase&) |
| 144 | */ |
| 145 | template<typename InputType> |
| 146 | explicit FullPivHouseholderQR(EigenBase<InputType>& matrix) |
| 147 | : m_qr(matrix.derived()), |
| 148 | m_hCoeffs((std::min)(matrix.rows(), matrix.cols())), |
| 149 | m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| 150 | m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())), |
| 151 | m_cols_permutation(matrix.cols()), |
| 152 | m_temp(matrix.cols()), |
| 153 | m_isInitialized(false), |
| 154 | m_usePrescribedThreshold(false) |
| 155 | { |
| 156 | computeInPlace(); |
| 157 | } |
| 158 | |
| 159 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
| 160 | * \c *this is the QR decomposition. |
| 161 | * |
| 162 | * \param b the right-hand-side of the equation to solve. |
| 163 | * |
| 164 | * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A, |
| 165 | * and an arbitrary solution otherwise. |
| 166 | * |
| 167 | * \note_about_checking_solutions |
| 168 | * |
| 169 | * \note_about_arbitrary_choice_of_solution |
| 170 | * |
| 171 | * Example: \include FullPivHouseholderQR_solve.cpp |
| 172 | * Output: \verbinclude FullPivHouseholderQR_solve.out |
| 173 | */ |
| 174 | template<typename Rhs> |
| 175 | inline const Solve<FullPivHouseholderQR, Rhs> |
| 176 | solve(const MatrixBase<Rhs>& b) const |
| 177 | { |
| 178 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 179 | return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived()); |
| 180 | } |
| 181 | |
| 182 | /** \returns Expression object representing the matrix Q |
| 183 | */ |
| 184 | MatrixQReturnType matrixQ(void) const; |
| 185 | |
| 186 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
| 187 | */ |
| 188 | const MatrixType& matrixQR() const |
| 189 | { |
| 190 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 191 | return m_qr; |
| 192 | } |
| 193 | |
| 194 | template<typename InputType> |
| 195 | FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix); |
| 196 | |
| 197 | /** \returns a const reference to the column permutation matrix */ |
| 198 | const PermutationType& colsPermutation() const |
| 199 | { |
| 200 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 201 | return m_cols_permutation; |
| 202 | } |
| 203 | |
| 204 | /** \returns a const reference to the vector of indices representing the rows transpositions */ |
| 205 | const IntDiagSizeVectorType& rowsTranspositions() const |
| 206 | { |
| 207 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 208 | return m_rows_transpositions; |
| 209 | } |
| 210 | |
| 211 | /** \returns the absolute value of the determinant of the matrix of which |
| 212 | * *this is the QR decomposition. It has only linear complexity |
| 213 | * (that is, O(n) where n is the dimension of the square matrix) |
| 214 | * as the QR decomposition has already been computed. |
| 215 | * |
| 216 | * \note This is only for square matrices. |
| 217 | * |
| 218 | * \warning a determinant can be very big or small, so for matrices |
| 219 | * of large enough dimension, there is a risk of overflow/underflow. |
| 220 | * One way to work around that is to use logAbsDeterminant() instead. |
| 221 | * |
| 222 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
| 223 | */ |
| 224 | typename MatrixType::RealScalar absDeterminant() const; |
| 225 | |
| 226 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
| 227 | * *this is the QR decomposition. It has only linear complexity |
| 228 | * (that is, O(n) where n is the dimension of the square matrix) |
| 229 | * as the QR decomposition has already been computed. |
| 230 | * |
| 231 | * \note This is only for square matrices. |
| 232 | * |
| 233 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
| 234 | * to determinant computation. |
| 235 | * |
| 236 | * \sa absDeterminant(), MatrixBase::determinant() |
| 237 | */ |
| 238 | typename MatrixType::RealScalar logAbsDeterminant() const; |
| 239 | |
| 240 | /** \returns the rank of the matrix of which *this is the QR decomposition. |
| 241 | * |
| 242 | * \note This method has to determine which pivots should be considered nonzero. |
| 243 | * For that, it uses the threshold value that you can control by calling |
| 244 | * setThreshold(const RealScalar&). |
| 245 | */ |
| 246 | inline Index rank() const |
| 247 | { |
| 248 | using std::abs; |
| 249 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 250 | RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); |
| 251 | Index result = 0; |
| 252 | for(Index i = 0; i < m_nonzero_pivots; ++i) |
| 253 | result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold); |
| 254 | return result; |
| 255 | } |
| 256 | |
| 257 | /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. |
| 258 | * |
| 259 | * \note This method has to determine which pivots should be considered nonzero. |
| 260 | * For that, it uses the threshold value that you can control by calling |
| 261 | * setThreshold(const RealScalar&). |
| 262 | */ |
| 263 | inline Index dimensionOfKernel() const |
| 264 | { |
| 265 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 266 | return cols() - rank(); |
| 267 | } |
| 268 | |
| 269 | /** \returns true if the matrix of which *this is the QR decomposition represents an injective |
| 270 | * linear map, i.e. has trivial kernel; false otherwise. |
| 271 | * |
| 272 | * \note This method has to determine which pivots should be considered nonzero. |
| 273 | * For that, it uses the threshold value that you can control by calling |
| 274 | * setThreshold(const RealScalar&). |
| 275 | */ |
| 276 | inline bool isInjective() const |
| 277 | { |
| 278 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 279 | return rank() == cols(); |
| 280 | } |
| 281 | |
| 282 | /** \returns true if the matrix of which *this is the QR decomposition represents a surjective |
| 283 | * linear map; false otherwise. |
| 284 | * |
| 285 | * \note This method has to determine which pivots should be considered nonzero. |
| 286 | * For that, it uses the threshold value that you can control by calling |
| 287 | * setThreshold(const RealScalar&). |
| 288 | */ |
| 289 | inline bool isSurjective() const |
| 290 | { |
| 291 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 292 | return rank() == rows(); |
| 293 | } |
| 294 | |
| 295 | /** \returns true if the matrix of which *this is the QR decomposition is invertible. |
| 296 | * |
| 297 | * \note This method has to determine which pivots should be considered nonzero. |
| 298 | * For that, it uses the threshold value that you can control by calling |
| 299 | * setThreshold(const RealScalar&). |
| 300 | */ |
| 301 | inline bool isInvertible() const |
| 302 | { |
| 303 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 304 | return isInjective() && isSurjective(); |
| 305 | } |
| 306 | |
| 307 | /** \returns the inverse of the matrix of which *this is the QR decomposition. |
| 308 | * |
| 309 | * \note If this matrix is not invertible, the returned matrix has undefined coefficients. |
| 310 | * Use isInvertible() to first determine whether this matrix is invertible. |
| 311 | */ |
| 312 | inline const Inverse<FullPivHouseholderQR> inverse() const |
| 313 | { |
| 314 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 315 | return Inverse<FullPivHouseholderQR>(*this); |
| 316 | } |
| 317 | |
| 318 | inline Index rows() const { return m_qr.rows(); } |
| 319 | inline Index cols() const { return m_qr.cols(); } |
| 320 | |
| 321 | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
| 322 | * |
| 323 | * For advanced uses only. |
| 324 | */ |
| 325 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
| 326 | |
| 327 | /** Allows to prescribe a threshold to be used by certain methods, such as rank(), |
| 328 | * who need to determine when pivots are to be considered nonzero. This is not used for the |
| 329 | * QR decomposition itself. |
| 330 | * |
| 331 | * When it needs to get the threshold value, Eigen calls threshold(). By default, this |
| 332 | * uses a formula to automatically determine a reasonable threshold. |
| 333 | * Once you have called the present method setThreshold(const RealScalar&), |
| 334 | * your value is used instead. |
| 335 | * |
| 336 | * \param threshold The new value to use as the threshold. |
| 337 | * |
| 338 | * A pivot will be considered nonzero if its absolute value is strictly greater than |
| 339 | * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ |
| 340 | * where maxpivot is the biggest pivot. |
| 341 | * |
| 342 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
| 343 | */ |
| 344 | FullPivHouseholderQR& setThreshold(const RealScalar& threshold) |
| 345 | { |
| 346 | m_usePrescribedThreshold = true; |
| 347 | m_prescribedThreshold = threshold; |
| 348 | return *this; |
| 349 | } |
| 350 | |
| 351 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
| 352 | * determining the threshold. |
| 353 | * |
| 354 | * You should pass the special object Eigen::Default as parameter here. |
| 355 | * \code qr.setThreshold(Eigen::Default); \endcode |
| 356 | * |
| 357 | * See the documentation of setThreshold(const RealScalar&). |
| 358 | */ |
| 359 | FullPivHouseholderQR& setThreshold(Default_t) |
| 360 | { |
| 361 | m_usePrescribedThreshold = false; |
| 362 | return *this; |
| 363 | } |
| 364 | |
| 365 | /** Returns the threshold that will be used by certain methods such as rank(). |
| 366 | * |
| 367 | * See the documentation of setThreshold(const RealScalar&). |
| 368 | */ |
| 369 | RealScalar threshold() const |
| 370 | { |
| 371 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
| 372 | return m_usePrescribedThreshold ? m_prescribedThreshold |
| 373 | // this formula comes from experimenting (see "LU precision tuning" thread on the list) |
| 374 | // and turns out to be identical to Higham's formula used already in LDLt. |
| 375 | : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize()); |
| 376 | } |
| 377 | |
| 378 | /** \returns the number of nonzero pivots in the QR decomposition. |
| 379 | * Here nonzero is meant in the exact sense, not in a fuzzy sense. |
| 380 | * So that notion isn't really intrinsically interesting, but it is |
| 381 | * still useful when implementing algorithms. |
| 382 | * |
| 383 | * \sa rank() |
| 384 | */ |
| 385 | inline Index nonzeroPivots() const |
| 386 | { |
| 387 | eigen_assert(m_isInitialized && "LU is not initialized." ); |
| 388 | return m_nonzero_pivots; |
| 389 | } |
| 390 | |
| 391 | /** \returns the absolute value of the biggest pivot, i.e. the biggest |
| 392 | * diagonal coefficient of U. |
| 393 | */ |
| 394 | RealScalar maxPivot() const { return m_maxpivot; } |
| 395 | |
| 396 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 397 | template<typename RhsType, typename DstType> |
| 398 | EIGEN_DEVICE_FUNC |
| 399 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
| 400 | #endif |
| 401 | |
| 402 | protected: |
| 403 | |
| 404 | static void check_template_parameters() |
| 405 | { |
| 406 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
| 407 | } |
| 408 | |
| 409 | void computeInPlace(); |
| 410 | |
| 411 | MatrixType m_qr; |
| 412 | HCoeffsType m_hCoeffs; |
| 413 | IntDiagSizeVectorType m_rows_transpositions; |
| 414 | IntDiagSizeVectorType m_cols_transpositions; |
| 415 | PermutationType m_cols_permutation; |
| 416 | RowVectorType m_temp; |
| 417 | bool m_isInitialized, m_usePrescribedThreshold; |
| 418 | RealScalar m_prescribedThreshold, m_maxpivot; |
| 419 | Index m_nonzero_pivots; |
| 420 | RealScalar m_precision; |
| 421 | Index m_det_pq; |
| 422 | }; |
| 423 | |
| 424 | template<typename MatrixType> |
| 425 | typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const |
| 426 | { |
| 427 | using std::abs; |
| 428 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 429 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
| 430 | return abs(m_qr.diagonal().prod()); |
| 431 | } |
| 432 | |
| 433 | template<typename MatrixType> |
| 434 | typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const |
| 435 | { |
| 436 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 437 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
| 438 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
| 439 | } |
| 440 | |
| 441 | /** Performs the QR factorization of the given matrix \a matrix. The result of |
| 442 | * the factorization is stored into \c *this, and a reference to \c *this |
| 443 | * is returned. |
| 444 | * |
| 445 | * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&) |
| 446 | */ |
| 447 | template<typename MatrixType> |
| 448 | template<typename InputType> |
| 449 | FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix) |
| 450 | { |
| 451 | m_qr = matrix.derived(); |
| 452 | computeInPlace(); |
| 453 | return *this; |
| 454 | } |
| 455 | |
| 456 | template<typename MatrixType> |
| 457 | void FullPivHouseholderQR<MatrixType>::computeInPlace() |
| 458 | { |
| 459 | check_template_parameters(); |
| 460 | |
| 461 | using std::abs; |
| 462 | Index rows = m_qr.rows(); |
| 463 | Index cols = m_qr.cols(); |
| 464 | Index size = (std::min)(rows,cols); |
| 465 | |
| 466 | |
| 467 | m_hCoeffs.resize(size); |
| 468 | |
| 469 | m_temp.resize(cols); |
| 470 | |
| 471 | m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size); |
| 472 | |
| 473 | m_rows_transpositions.resize(size); |
| 474 | m_cols_transpositions.resize(size); |
| 475 | Index number_of_transpositions = 0; |
| 476 | |
| 477 | RealScalar biggest(0); |
| 478 | |
| 479 | m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) |
| 480 | m_maxpivot = RealScalar(0); |
| 481 | |
| 482 | for (Index k = 0; k < size; ++k) |
| 483 | { |
| 484 | Index row_of_biggest_in_corner, col_of_biggest_in_corner; |
| 485 | typedef internal::scalar_score_coeff_op<Scalar> Scoring; |
| 486 | typedef typename Scoring::result_type Score; |
| 487 | |
| 488 | Score score = m_qr.bottomRightCorner(rows-k, cols-k) |
| 489 | .unaryExpr(Scoring()) |
| 490 | .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner); |
| 491 | row_of_biggest_in_corner += k; |
| 492 | col_of_biggest_in_corner += k; |
| 493 | RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score); |
| 494 | if(k==0) biggest = biggest_in_corner; |
| 495 | |
| 496 | // if the corner is negligible, then we have less than full rank, and we can finish early |
| 497 | if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision)) |
| 498 | { |
| 499 | m_nonzero_pivots = k; |
| 500 | for(Index i = k; i < size; i++) |
| 501 | { |
| 502 | m_rows_transpositions.coeffRef(i) = i; |
| 503 | m_cols_transpositions.coeffRef(i) = i; |
| 504 | m_hCoeffs.coeffRef(i) = Scalar(0); |
| 505 | } |
| 506 | break; |
| 507 | } |
| 508 | |
| 509 | m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner; |
| 510 | m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner; |
| 511 | if(k != row_of_biggest_in_corner) { |
| 512 | m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k)); |
| 513 | ++number_of_transpositions; |
| 514 | } |
| 515 | if(k != col_of_biggest_in_corner) { |
| 516 | m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner)); |
| 517 | ++number_of_transpositions; |
| 518 | } |
| 519 | |
| 520 | RealScalar beta; |
| 521 | m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); |
| 522 | m_qr.coeffRef(k,k) = beta; |
| 523 | |
| 524 | // remember the maximum absolute value of diagonal coefficients |
| 525 | if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta); |
| 526 | |
| 527 | m_qr.bottomRightCorner(rows-k, cols-k-1) |
| 528 | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); |
| 529 | } |
| 530 | |
| 531 | m_cols_permutation.setIdentity(cols); |
| 532 | for(Index k = 0; k < size; ++k) |
| 533 | m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k)); |
| 534 | |
| 535 | m_det_pq = (number_of_transpositions%2) ? -1 : 1; |
| 536 | m_isInitialized = true; |
| 537 | } |
| 538 | |
| 539 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
| 540 | template<typename _MatrixType> |
| 541 | template<typename RhsType, typename DstType> |
| 542 | void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
| 543 | { |
| 544 | eigen_assert(rhs.rows() == rows()); |
| 545 | const Index l_rank = rank(); |
| 546 | |
| 547 | // FIXME introduce nonzeroPivots() and use it here. and more generally, |
| 548 | // make the same improvements in this dec as in FullPivLU. |
| 549 | if(l_rank==0) |
| 550 | { |
| 551 | dst.setZero(); |
| 552 | return; |
| 553 | } |
| 554 | |
| 555 | typename RhsType::PlainObject c(rhs); |
| 556 | |
| 557 | Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols()); |
| 558 | for (Index k = 0; k < l_rank; ++k) |
| 559 | { |
| 560 | Index remainingSize = rows()-k; |
| 561 | c.row(k).swap(c.row(m_rows_transpositions.coeff(k))); |
| 562 | c.bottomRightCorner(remainingSize, rhs.cols()) |
| 563 | .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1), |
| 564 | m_hCoeffs.coeff(k), &temp.coeffRef(0)); |
| 565 | } |
| 566 | |
| 567 | m_qr.topLeftCorner(l_rank, l_rank) |
| 568 | .template triangularView<Upper>() |
| 569 | .solveInPlace(c.topRows(l_rank)); |
| 570 | |
| 571 | for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i); |
| 572 | for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero(); |
| 573 | } |
| 574 | #endif |
| 575 | |
| 576 | namespace internal { |
| 577 | |
| 578 | template<typename DstXprType, typename MatrixType> |
| 579 | struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense> |
| 580 | { |
| 581 | typedef FullPivHouseholderQR<MatrixType> QrType; |
| 582 | typedef Inverse<QrType> SrcXprType; |
| 583 | static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &) |
| 584 | { |
| 585 | dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols())); |
| 586 | } |
| 587 | }; |
| 588 | |
| 589 | /** \ingroup QR_Module |
| 590 | * |
| 591 | * \brief Expression type for return value of FullPivHouseholderQR::matrixQ() |
| 592 | * |
| 593 | * \tparam MatrixType type of underlying dense matrix |
| 594 | */ |
| 595 | template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType |
| 596 | : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > |
| 597 | { |
| 598 | public: |
| 599 | typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType; |
| 600 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
| 601 | typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1, |
| 602 | MatrixType::MaxRowsAtCompileTime> WorkVectorType; |
| 603 | |
| 604 | FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr, |
| 605 | const HCoeffsType& hCoeffs, |
| 606 | const IntDiagSizeVectorType& rowsTranspositions) |
| 607 | : m_qr(qr), |
| 608 | m_hCoeffs(hCoeffs), |
| 609 | m_rowsTranspositions(rowsTranspositions) |
| 610 | {} |
| 611 | |
| 612 | template <typename ResultType> |
| 613 | void evalTo(ResultType& result) const |
| 614 | { |
| 615 | const Index rows = m_qr.rows(); |
| 616 | WorkVectorType workspace(rows); |
| 617 | evalTo(result, workspace); |
| 618 | } |
| 619 | |
| 620 | template <typename ResultType> |
| 621 | void evalTo(ResultType& result, WorkVectorType& workspace) const |
| 622 | { |
| 623 | using numext::conj; |
| 624 | // compute the product H'_0 H'_1 ... H'_n-1, |
| 625 | // where H_k is the k-th Householder transformation I - h_k v_k v_k' |
| 626 | // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...] |
| 627 | const Index rows = m_qr.rows(); |
| 628 | const Index cols = m_qr.cols(); |
| 629 | const Index size = (std::min)(rows, cols); |
| 630 | workspace.resize(rows); |
| 631 | result.setIdentity(rows, rows); |
| 632 | for (Index k = size-1; k >= 0; k--) |
| 633 | { |
| 634 | result.block(k, k, rows-k, rows-k) |
| 635 | .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k)); |
| 636 | result.row(k).swap(result.row(m_rowsTranspositions.coeff(k))); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | Index rows() const { return m_qr.rows(); } |
| 641 | Index cols() const { return m_qr.rows(); } |
| 642 | |
| 643 | protected: |
| 644 | typename MatrixType::Nested m_qr; |
| 645 | typename HCoeffsType::Nested m_hCoeffs; |
| 646 | typename IntDiagSizeVectorType::Nested m_rowsTranspositions; |
| 647 | }; |
| 648 | |
| 649 | // template<typename MatrixType> |
| 650 | // struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> > |
| 651 | // : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > > |
| 652 | // {}; |
| 653 | |
| 654 | } // end namespace internal |
| 655 | |
| 656 | template<typename MatrixType> |
| 657 | inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const |
| 658 | { |
| 659 | eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized." ); |
| 660 | return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions); |
| 661 | } |
| 662 | |
| 663 | /** \return the full-pivoting Householder QR decomposition of \c *this. |
| 664 | * |
| 665 | * \sa class FullPivHouseholderQR |
| 666 | */ |
| 667 | template<typename Derived> |
| 668 | const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject> |
| 669 | MatrixBase<Derived>::fullPivHouseholderQr() const |
| 670 | { |
| 671 | return FullPivHouseholderQR<PlainObject>(eval()); |
| 672 | } |
| 673 | |
| 674 | } // end namespace Eigen |
| 675 | |
| 676 | #endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H |
| 677 | |