1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
6 | // Copyright (C) 2010 Vincent Lejeune |
7 | // |
8 | // This Source Code Form is subject to the terms of the Mozilla |
9 | // Public License v. 2.0. If a copy of the MPL was not distributed |
10 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
11 | |
12 | #ifndef EIGEN_QR_H |
13 | #define EIGEN_QR_H |
14 | |
15 | namespace Eigen { |
16 | |
17 | /** \ingroup QR_Module |
18 | * |
19 | * |
20 | * \class HouseholderQR |
21 | * |
22 | * \brief Householder QR decomposition of a matrix |
23 | * |
24 | * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition |
25 | * |
26 | * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R |
27 | * such that |
28 | * \f[ |
29 | * \mathbf{A} = \mathbf{Q} \, \mathbf{R} |
30 | * \f] |
31 | * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix. |
32 | * The result is stored in a compact way compatible with LAPACK. |
33 | * |
34 | * Note that no pivoting is performed. This is \b not a rank-revealing decomposition. |
35 | * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead. |
36 | * |
37 | * This Householder QR decomposition is faster, but less numerically stable and less feature-full than |
38 | * FullPivHouseholderQR or ColPivHouseholderQR. |
39 | * |
40 | * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. |
41 | * |
42 | * \sa MatrixBase::householderQr() |
43 | */ |
44 | template<typename _MatrixType> class HouseholderQR |
45 | { |
46 | public: |
47 | |
48 | typedef _MatrixType MatrixType; |
49 | enum { |
50 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
51 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
52 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
53 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime |
54 | }; |
55 | typedef typename MatrixType::Scalar Scalar; |
56 | typedef typename MatrixType::RealScalar RealScalar; |
57 | // FIXME should be int |
58 | typedef typename MatrixType::StorageIndex StorageIndex; |
59 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType; |
60 | typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType; |
61 | typedef typename internal::plain_row_type<MatrixType>::type RowVectorType; |
62 | typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType; |
63 | |
64 | /** |
65 | * \brief Default Constructor. |
66 | * |
67 | * The default constructor is useful in cases in which the user intends to |
68 | * perform decompositions via HouseholderQR::compute(const MatrixType&). |
69 | */ |
70 | HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {} |
71 | |
72 | /** \brief Default Constructor with memory preallocation |
73 | * |
74 | * Like the default constructor but with preallocation of the internal data |
75 | * according to the specified problem \a size. |
76 | * \sa HouseholderQR() |
77 | */ |
78 | HouseholderQR(Index rows, Index cols) |
79 | : m_qr(rows, cols), |
80 | m_hCoeffs((std::min)(rows,cols)), |
81 | m_temp(cols), |
82 | m_isInitialized(false) {} |
83 | |
84 | /** \brief Constructs a QR factorization from a given matrix |
85 | * |
86 | * This constructor computes the QR factorization of the matrix \a matrix by calling |
87 | * the method compute(). It is a short cut for: |
88 | * |
89 | * \code |
90 | * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols()); |
91 | * qr.compute(matrix); |
92 | * \endcode |
93 | * |
94 | * \sa compute() |
95 | */ |
96 | template<typename InputType> |
97 | explicit HouseholderQR(const EigenBase<InputType>& matrix) |
98 | : m_qr(matrix.rows(), matrix.cols()), |
99 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
100 | m_temp(matrix.cols()), |
101 | m_isInitialized(false) |
102 | { |
103 | compute(matrix.derived()); |
104 | } |
105 | |
106 | |
107 | /** \brief Constructs a QR factorization from a given matrix |
108 | * |
109 | * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when |
110 | * \c MatrixType is a Eigen::Ref. |
111 | * |
112 | * \sa HouseholderQR(const EigenBase&) |
113 | */ |
114 | template<typename InputType> |
115 | explicit HouseholderQR(EigenBase<InputType>& matrix) |
116 | : m_qr(matrix.derived()), |
117 | m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), |
118 | m_temp(matrix.cols()), |
119 | m_isInitialized(false) |
120 | { |
121 | computeInPlace(); |
122 | } |
123 | |
124 | /** This method finds a solution x to the equation Ax=b, where A is the matrix of which |
125 | * *this is the QR decomposition, if any exists. |
126 | * |
127 | * \param b the right-hand-side of the equation to solve. |
128 | * |
129 | * \returns a solution. |
130 | * |
131 | * \note_about_checking_solutions |
132 | * |
133 | * \note_about_arbitrary_choice_of_solution |
134 | * |
135 | * Example: \include HouseholderQR_solve.cpp |
136 | * Output: \verbinclude HouseholderQR_solve.out |
137 | */ |
138 | template<typename Rhs> |
139 | inline const Solve<HouseholderQR, Rhs> |
140 | solve(const MatrixBase<Rhs>& b) const |
141 | { |
142 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized." ); |
143 | return Solve<HouseholderQR, Rhs>(*this, b.derived()); |
144 | } |
145 | |
146 | /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations. |
147 | * |
148 | * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object. |
149 | * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*: |
150 | * |
151 | * Example: \include HouseholderQR_householderQ.cpp |
152 | * Output: \verbinclude HouseholderQR_householderQ.out |
153 | */ |
154 | HouseholderSequenceType householderQ() const |
155 | { |
156 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized." ); |
157 | return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()); |
158 | } |
159 | |
160 | /** \returns a reference to the matrix where the Householder QR decomposition is stored |
161 | * in a LAPACK-compatible way. |
162 | */ |
163 | const MatrixType& matrixQR() const |
164 | { |
165 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized." ); |
166 | return m_qr; |
167 | } |
168 | |
169 | template<typename InputType> |
170 | HouseholderQR& compute(const EigenBase<InputType>& matrix) { |
171 | m_qr = matrix.derived(); |
172 | computeInPlace(); |
173 | return *this; |
174 | } |
175 | |
176 | /** \returns the absolute value of the determinant of the matrix of which |
177 | * *this is the QR decomposition. It has only linear complexity |
178 | * (that is, O(n) where n is the dimension of the square matrix) |
179 | * as the QR decomposition has already been computed. |
180 | * |
181 | * \note This is only for square matrices. |
182 | * |
183 | * \warning a determinant can be very big or small, so for matrices |
184 | * of large enough dimension, there is a risk of overflow/underflow. |
185 | * One way to work around that is to use logAbsDeterminant() instead. |
186 | * |
187 | * \sa logAbsDeterminant(), MatrixBase::determinant() |
188 | */ |
189 | typename MatrixType::RealScalar absDeterminant() const; |
190 | |
191 | /** \returns the natural log of the absolute value of the determinant of the matrix of which |
192 | * *this is the QR decomposition. It has only linear complexity |
193 | * (that is, O(n) where n is the dimension of the square matrix) |
194 | * as the QR decomposition has already been computed. |
195 | * |
196 | * \note This is only for square matrices. |
197 | * |
198 | * \note This method is useful to work around the risk of overflow/underflow that's inherent |
199 | * to determinant computation. |
200 | * |
201 | * \sa absDeterminant(), MatrixBase::determinant() |
202 | */ |
203 | typename MatrixType::RealScalar logAbsDeterminant() const; |
204 | |
205 | inline Index rows() const { return m_qr.rows(); } |
206 | inline Index cols() const { return m_qr.cols(); } |
207 | |
208 | /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q. |
209 | * |
210 | * For advanced uses only. |
211 | */ |
212 | const HCoeffsType& hCoeffs() const { return m_hCoeffs; } |
213 | |
214 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
215 | template<typename RhsType, typename DstType> |
216 | EIGEN_DEVICE_FUNC |
217 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
218 | #endif |
219 | |
220 | protected: |
221 | |
222 | static void check_template_parameters() |
223 | { |
224 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
225 | } |
226 | |
227 | void computeInPlace(); |
228 | |
229 | MatrixType m_qr; |
230 | HCoeffsType m_hCoeffs; |
231 | RowVectorType m_temp; |
232 | bool m_isInitialized; |
233 | }; |
234 | |
235 | template<typename MatrixType> |
236 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const |
237 | { |
238 | using std::abs; |
239 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized." ); |
240 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
241 | return abs(m_qr.diagonal().prod()); |
242 | } |
243 | |
244 | template<typename MatrixType> |
245 | typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const |
246 | { |
247 | eigen_assert(m_isInitialized && "HouseholderQR is not initialized." ); |
248 | eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!" ); |
249 | return m_qr.diagonal().cwiseAbs().array().log().sum(); |
250 | } |
251 | |
252 | namespace internal { |
253 | |
254 | /** \internal */ |
255 | template<typename MatrixQR, typename HCoeffs> |
256 | void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0) |
257 | { |
258 | typedef typename MatrixQR::Scalar Scalar; |
259 | typedef typename MatrixQR::RealScalar RealScalar; |
260 | Index rows = mat.rows(); |
261 | Index cols = mat.cols(); |
262 | Index size = (std::min)(rows,cols); |
263 | |
264 | eigen_assert(hCoeffs.size() == size); |
265 | |
266 | typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType; |
267 | TempType tempVector; |
268 | if(tempData==0) |
269 | { |
270 | tempVector.resize(cols); |
271 | tempData = tempVector.data(); |
272 | } |
273 | |
274 | for(Index k = 0; k < size; ++k) |
275 | { |
276 | Index remainingRows = rows - k; |
277 | Index remainingCols = cols - k - 1; |
278 | |
279 | RealScalar beta; |
280 | mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta); |
281 | mat.coeffRef(k,k) = beta; |
282 | |
283 | // apply H to remaining part of m_qr from the left |
284 | mat.bottomRightCorner(remainingRows, remainingCols) |
285 | .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1); |
286 | } |
287 | } |
288 | |
289 | /** \internal */ |
290 | template<typename MatrixQR, typename HCoeffs, |
291 | typename MatrixQRScalar = typename MatrixQR::Scalar, |
292 | bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)> |
293 | struct householder_qr_inplace_blocked |
294 | { |
295 | // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h |
296 | static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32, |
297 | typename MatrixQR::Scalar* tempData = 0) |
298 | { |
299 | typedef typename MatrixQR::Scalar Scalar; |
300 | typedef Block<MatrixQR,Dynamic,Dynamic> BlockType; |
301 | |
302 | Index rows = mat.rows(); |
303 | Index cols = mat.cols(); |
304 | Index size = (std::min)(rows, cols); |
305 | |
306 | typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType; |
307 | TempType tempVector; |
308 | if(tempData==0) |
309 | { |
310 | tempVector.resize(cols); |
311 | tempData = tempVector.data(); |
312 | } |
313 | |
314 | Index blockSize = (std::min)(maxBlockSize,size); |
315 | |
316 | Index k = 0; |
317 | for (k = 0; k < size; k += blockSize) |
318 | { |
319 | Index bs = (std::min)(size-k,blockSize); // actual size of the block |
320 | Index tcols = cols - k - bs; // trailing columns |
321 | Index brows = rows-k; // rows of the block |
322 | |
323 | // partition the matrix: |
324 | // A00 | A01 | A02 |
325 | // mat = A10 | A11 | A12 |
326 | // A20 | A21 | A22 |
327 | // and performs the qr dec of [A11^T A12^T]^T |
328 | // and update [A21^T A22^T]^T using level 3 operations. |
329 | // Finally, the algorithm continue on A22 |
330 | |
331 | BlockType A11_21 = mat.block(k,k,brows,bs); |
332 | Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs); |
333 | |
334 | householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData); |
335 | |
336 | if(tcols) |
337 | { |
338 | BlockType A21_22 = mat.block(k,k+bs,brows,tcols); |
339 | apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward |
340 | } |
341 | } |
342 | } |
343 | }; |
344 | |
345 | } // end namespace internal |
346 | |
347 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
348 | template<typename _MatrixType> |
349 | template<typename RhsType, typename DstType> |
350 | void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const |
351 | { |
352 | const Index rank = (std::min)(rows(), cols()); |
353 | eigen_assert(rhs.rows() == rows()); |
354 | |
355 | typename RhsType::PlainObject c(rhs); |
356 | |
357 | // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T |
358 | c.applyOnTheLeft(householderSequence( |
359 | m_qr.leftCols(rank), |
360 | m_hCoeffs.head(rank)).transpose() |
361 | ); |
362 | |
363 | m_qr.topLeftCorner(rank, rank) |
364 | .template triangularView<Upper>() |
365 | .solveInPlace(c.topRows(rank)); |
366 | |
367 | dst.topRows(rank) = c.topRows(rank); |
368 | dst.bottomRows(cols()-rank).setZero(); |
369 | } |
370 | #endif |
371 | |
372 | /** Performs the QR factorization of the given matrix \a matrix. The result of |
373 | * the factorization is stored into \c *this, and a reference to \c *this |
374 | * is returned. |
375 | * |
376 | * \sa class HouseholderQR, HouseholderQR(const MatrixType&) |
377 | */ |
378 | template<typename MatrixType> |
379 | void HouseholderQR<MatrixType>::computeInPlace() |
380 | { |
381 | check_template_parameters(); |
382 | |
383 | Index rows = m_qr.rows(); |
384 | Index cols = m_qr.cols(); |
385 | Index size = (std::min)(rows,cols); |
386 | |
387 | m_hCoeffs.resize(size); |
388 | |
389 | m_temp.resize(cols); |
390 | |
391 | internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data()); |
392 | |
393 | m_isInitialized = true; |
394 | } |
395 | |
396 | /** \return the Householder QR decomposition of \c *this. |
397 | * |
398 | * \sa class HouseholderQR |
399 | */ |
400 | template<typename Derived> |
401 | const HouseholderQR<typename MatrixBase<Derived>::PlainObject> |
402 | MatrixBase<Derived>::householderQr() const |
403 | { |
404 | return HouseholderQR<PlainObject>(eval()); |
405 | } |
406 | |
407 | } // end namespace Eigen |
408 | |
409 | #endif // EIGEN_QR_H |
410 | |