| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 5 | // Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_JACOBISVD_H |
| 12 | #define EIGEN_JACOBISVD_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | // forward declaration (needed by ICC) |
| 18 | // the empty body is required by MSVC |
| 19 | template<typename MatrixType, int QRPreconditioner, |
| 20 | bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> |
| 21 | struct svd_precondition_2x2_block_to_be_real {}; |
| 22 | |
| 23 | /*** QR preconditioners (R-SVD) |
| 24 | *** |
| 25 | *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. |
| 26 | *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for |
| 27 | *** JacobiSVD which by itself is only able to work on square matrices. |
| 28 | ***/ |
| 29 | |
| 30 | enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; |
| 31 | |
| 32 | template<typename MatrixType, int QRPreconditioner, int Case> |
| 33 | struct qr_preconditioner_should_do_anything |
| 34 | { |
| 35 | enum { a = MatrixType::RowsAtCompileTime != Dynamic && |
| 36 | MatrixType::ColsAtCompileTime != Dynamic && |
| 37 | MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, |
| 38 | b = MatrixType::RowsAtCompileTime != Dynamic && |
| 39 | MatrixType::ColsAtCompileTime != Dynamic && |
| 40 | MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, |
| 41 | ret = !( (QRPreconditioner == NoQRPreconditioner) || |
| 42 | (Case == PreconditionIfMoreColsThanRows && bool(a)) || |
| 43 | (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) |
| 44 | }; |
| 45 | }; |
| 46 | |
| 47 | template<typename MatrixType, int QRPreconditioner, int Case, |
| 48 | bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret |
| 49 | > struct qr_preconditioner_impl {}; |
| 50 | |
| 51 | template<typename MatrixType, int QRPreconditioner, int Case> |
| 52 | class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> |
| 53 | { |
| 54 | public: |
| 55 | void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} |
| 56 | bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) |
| 57 | { |
| 58 | return false; |
| 59 | } |
| 60 | }; |
| 61 | |
| 62 | /*** preconditioner using FullPivHouseholderQR ***/ |
| 63 | |
| 64 | template<typename MatrixType> |
| 65 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
| 66 | { |
| 67 | public: |
| 68 | typedef typename MatrixType::Scalar Scalar; |
| 69 | enum |
| 70 | { |
| 71 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 72 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime |
| 73 | }; |
| 74 | typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; |
| 75 | |
| 76 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
| 77 | { |
| 78 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
| 79 | { |
| 80 | m_qr.~QRType(); |
| 81 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
| 82 | } |
| 83 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
| 84 | } |
| 85 | |
| 86 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 87 | { |
| 88 | if(matrix.rows() > matrix.cols()) |
| 89 | { |
| 90 | m_qr.compute(matrix); |
| 91 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
| 92 | if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); |
| 93 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
| 94 | return true; |
| 95 | } |
| 96 | return false; |
| 97 | } |
| 98 | private: |
| 99 | typedef FullPivHouseholderQR<MatrixType> QRType; |
| 100 | QRType m_qr; |
| 101 | WorkspaceType m_workspace; |
| 102 | }; |
| 103 | |
| 104 | template<typename MatrixType> |
| 105 | class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
| 106 | { |
| 107 | public: |
| 108 | typedef typename MatrixType::Scalar Scalar; |
| 109 | enum |
| 110 | { |
| 111 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 112 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 113 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 114 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 115 | TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) |
| 116 | : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) |
| 117 | : MatrixType::Options |
| 118 | }; |
| 119 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
| 120 | TransposeTypeWithSameStorageOrder; |
| 121 | |
| 122 | void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) |
| 123 | { |
| 124 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
| 125 | { |
| 126 | m_qr.~QRType(); |
| 127 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
| 128 | } |
| 129 | m_adjoint.resize(svd.cols(), svd.rows()); |
| 130 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
| 131 | } |
| 132 | |
| 133 | bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 134 | { |
| 135 | if(matrix.cols() > matrix.rows()) |
| 136 | { |
| 137 | m_adjoint = matrix.adjoint(); |
| 138 | m_qr.compute(m_adjoint); |
| 139 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
| 140 | if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); |
| 141 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
| 142 | return true; |
| 143 | } |
| 144 | else return false; |
| 145 | } |
| 146 | private: |
| 147 | typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| 148 | QRType m_qr; |
| 149 | TransposeTypeWithSameStorageOrder m_adjoint; |
| 150 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
| 151 | }; |
| 152 | |
| 153 | /*** preconditioner using ColPivHouseholderQR ***/ |
| 154 | |
| 155 | template<typename MatrixType> |
| 156 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
| 157 | { |
| 158 | public: |
| 159 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
| 160 | { |
| 161 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
| 162 | { |
| 163 | m_qr.~QRType(); |
| 164 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
| 165 | } |
| 166 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
| 167 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
| 168 | } |
| 169 | |
| 170 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 171 | { |
| 172 | if(matrix.rows() > matrix.cols()) |
| 173 | { |
| 174 | m_qr.compute(matrix); |
| 175 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
| 176 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
| 177 | else if(svd.m_computeThinU) |
| 178 | { |
| 179 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
| 180 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
| 181 | } |
| 182 | if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); |
| 183 | return true; |
| 184 | } |
| 185 | return false; |
| 186 | } |
| 187 | |
| 188 | private: |
| 189 | typedef ColPivHouseholderQR<MatrixType> QRType; |
| 190 | QRType m_qr; |
| 191 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
| 192 | }; |
| 193 | |
| 194 | template<typename MatrixType> |
| 195 | class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
| 196 | { |
| 197 | public: |
| 198 | typedef typename MatrixType::Scalar Scalar; |
| 199 | enum |
| 200 | { |
| 201 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 202 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 203 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 204 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 205 | TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) |
| 206 | : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) |
| 207 | : MatrixType::Options |
| 208 | }; |
| 209 | |
| 210 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
| 211 | TransposeTypeWithSameStorageOrder; |
| 212 | |
| 213 | void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) |
| 214 | { |
| 215 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
| 216 | { |
| 217 | m_qr.~QRType(); |
| 218 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
| 219 | } |
| 220 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
| 221 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
| 222 | m_adjoint.resize(svd.cols(), svd.rows()); |
| 223 | } |
| 224 | |
| 225 | bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 226 | { |
| 227 | if(matrix.cols() > matrix.rows()) |
| 228 | { |
| 229 | m_adjoint = matrix.adjoint(); |
| 230 | m_qr.compute(m_adjoint); |
| 231 | |
| 232 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
| 233 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
| 234 | else if(svd.m_computeThinV) |
| 235 | { |
| 236 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
| 237 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
| 238 | } |
| 239 | if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); |
| 240 | return true; |
| 241 | } |
| 242 | else return false; |
| 243 | } |
| 244 | |
| 245 | private: |
| 246 | typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| 247 | QRType m_qr; |
| 248 | TransposeTypeWithSameStorageOrder m_adjoint; |
| 249 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
| 250 | }; |
| 251 | |
| 252 | /*** preconditioner using HouseholderQR ***/ |
| 253 | |
| 254 | template<typename MatrixType> |
| 255 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> |
| 256 | { |
| 257 | public: |
| 258 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
| 259 | { |
| 260 | if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) |
| 261 | { |
| 262 | m_qr.~QRType(); |
| 263 | ::new (&m_qr) QRType(svd.rows(), svd.cols()); |
| 264 | } |
| 265 | if (svd.m_computeFullU) m_workspace.resize(svd.rows()); |
| 266 | else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); |
| 267 | } |
| 268 | |
| 269 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 270 | { |
| 271 | if(matrix.rows() > matrix.cols()) |
| 272 | { |
| 273 | m_qr.compute(matrix); |
| 274 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); |
| 275 | if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); |
| 276 | else if(svd.m_computeThinU) |
| 277 | { |
| 278 | svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); |
| 279 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); |
| 280 | } |
| 281 | if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); |
| 282 | return true; |
| 283 | } |
| 284 | return false; |
| 285 | } |
| 286 | private: |
| 287 | typedef HouseholderQR<MatrixType> QRType; |
| 288 | QRType m_qr; |
| 289 | typename internal::plain_col_type<MatrixType>::type m_workspace; |
| 290 | }; |
| 291 | |
| 292 | template<typename MatrixType> |
| 293 | class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> |
| 294 | { |
| 295 | public: |
| 296 | typedef typename MatrixType::Scalar Scalar; |
| 297 | enum |
| 298 | { |
| 299 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 300 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 301 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 302 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 303 | Options = MatrixType::Options |
| 304 | }; |
| 305 | |
| 306 | typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> |
| 307 | TransposeTypeWithSameStorageOrder; |
| 308 | |
| 309 | void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) |
| 310 | { |
| 311 | if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) |
| 312 | { |
| 313 | m_qr.~QRType(); |
| 314 | ::new (&m_qr) QRType(svd.cols(), svd.rows()); |
| 315 | } |
| 316 | if (svd.m_computeFullV) m_workspace.resize(svd.cols()); |
| 317 | else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); |
| 318 | m_adjoint.resize(svd.cols(), svd.rows()); |
| 319 | } |
| 320 | |
| 321 | bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) |
| 322 | { |
| 323 | if(matrix.cols() > matrix.rows()) |
| 324 | { |
| 325 | m_adjoint = matrix.adjoint(); |
| 326 | m_qr.compute(m_adjoint); |
| 327 | |
| 328 | svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); |
| 329 | if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); |
| 330 | else if(svd.m_computeThinV) |
| 331 | { |
| 332 | svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); |
| 333 | m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); |
| 334 | } |
| 335 | if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); |
| 336 | return true; |
| 337 | } |
| 338 | else return false; |
| 339 | } |
| 340 | |
| 341 | private: |
| 342 | typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; |
| 343 | QRType m_qr; |
| 344 | TransposeTypeWithSameStorageOrder m_adjoint; |
| 345 | typename internal::plain_row_type<MatrixType>::type m_workspace; |
| 346 | }; |
| 347 | |
| 348 | /*** 2x2 SVD implementation |
| 349 | *** |
| 350 | *** JacobiSVD consists in performing a series of 2x2 SVD subproblems |
| 351 | ***/ |
| 352 | |
| 353 | template<typename MatrixType, int QRPreconditioner> |
| 354 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> |
| 355 | { |
| 356 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
| 357 | typedef typename MatrixType::RealScalar RealScalar; |
| 358 | static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } |
| 359 | }; |
| 360 | |
| 361 | template<typename MatrixType, int QRPreconditioner> |
| 362 | struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> |
| 363 | { |
| 364 | typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; |
| 365 | typedef typename MatrixType::Scalar Scalar; |
| 366 | typedef typename MatrixType::RealScalar RealScalar; |
| 367 | static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) |
| 368 | { |
| 369 | using std::sqrt; |
| 370 | using std::abs; |
| 371 | Scalar z; |
| 372 | JacobiRotation<Scalar> rot; |
| 373 | RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); |
| 374 | |
| 375 | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| 376 | const RealScalar precision = NumTraits<Scalar>::epsilon(); |
| 377 | |
| 378 | if(n==0) |
| 379 | { |
| 380 | // make sure first column is zero |
| 381 | work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); |
| 382 | |
| 383 | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) |
| 384 | { |
| 385 | // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n |
| 386 | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
| 387 | work_matrix.row(p) *= z; |
| 388 | if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); |
| 389 | } |
| 390 | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) |
| 391 | { |
| 392 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
| 393 | work_matrix.row(q) *= z; |
| 394 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
| 395 | } |
| 396 | // otherwise the second row is already zero, so we have nothing to do. |
| 397 | } |
| 398 | else |
| 399 | { |
| 400 | rot.c() = conj(work_matrix.coeff(p,p)) / n; |
| 401 | rot.s() = work_matrix.coeff(q,p) / n; |
| 402 | work_matrix.applyOnTheLeft(p,q,rot); |
| 403 | if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); |
| 404 | if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) |
| 405 | { |
| 406 | z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); |
| 407 | work_matrix.col(q) *= z; |
| 408 | if(svd.computeV()) svd.m_matrixV.col(q) *= z; |
| 409 | } |
| 410 | if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) |
| 411 | { |
| 412 | z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); |
| 413 | work_matrix.row(q) *= z; |
| 414 | if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | // update largest diagonal entry |
| 419 | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); |
| 420 | // and check whether the 2x2 block is already diagonal |
| 421 | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
| 422 | return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; |
| 423 | } |
| 424 | }; |
| 425 | |
| 426 | template<typename _MatrixType, int QRPreconditioner> |
| 427 | struct traits<JacobiSVD<_MatrixType,QRPreconditioner> > |
| 428 | { |
| 429 | typedef _MatrixType MatrixType; |
| 430 | }; |
| 431 | |
| 432 | } // end namespace internal |
| 433 | |
| 434 | /** \ingroup SVD_Module |
| 435 | * |
| 436 | * |
| 437 | * \class JacobiSVD |
| 438 | * |
| 439 | * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix |
| 440 | * |
| 441 | * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition |
| 442 | * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally |
| 443 | * for the R-SVD step for non-square matrices. See discussion of possible values below. |
| 444 | * |
| 445 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
| 446 | * \f[ A = U S V^* \f] |
| 447 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
| 448 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
| 449 | * and right \em singular \em vectors of \a A respectively. |
| 450 | * |
| 451 | * Singular values are always sorted in decreasing order. |
| 452 | * |
| 453 | * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. |
| 454 | * |
| 455 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
| 456 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
| 457 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
| 458 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
| 459 | * |
| 460 | * Here's an example demonstrating basic usage: |
| 461 | * \include JacobiSVD_basic.cpp |
| 462 | * Output: \verbinclude JacobiSVD_basic.out |
| 463 | * |
| 464 | * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than |
| 465 | * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and |
| 466 | * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. |
| 467 | * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. |
| 468 | * |
| 469 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
| 470 | * terminate in finite (and reasonable) time. |
| 471 | * |
| 472 | * The possible values for QRPreconditioner are: |
| 473 | * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. |
| 474 | * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. |
| 475 | * Contrary to other QRs, it doesn't allow computing thin unitaries. |
| 476 | * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. |
| 477 | * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization |
| 478 | * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive |
| 479 | * process is more reliable than the optimized bidiagonal SVD iterations. |
| 480 | * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing |
| 481 | * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in |
| 482 | * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking |
| 483 | * if QR preconditioning is needed before applying it anyway. |
| 484 | * |
| 485 | * \sa MatrixBase::jacobiSvd() |
| 486 | */ |
| 487 | template<typename _MatrixType, int QRPreconditioner> class JacobiSVD |
| 488 | : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> > |
| 489 | { |
| 490 | typedef SVDBase<JacobiSVD> Base; |
| 491 | public: |
| 492 | |
| 493 | typedef _MatrixType MatrixType; |
| 494 | typedef typename MatrixType::Scalar Scalar; |
| 495 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 496 | enum { |
| 497 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 498 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 499 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
| 500 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 501 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 502 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
| 503 | MatrixOptions = MatrixType::Options |
| 504 | }; |
| 505 | |
| 506 | typedef typename Base::MatrixUType MatrixUType; |
| 507 | typedef typename Base::MatrixVType MatrixVType; |
| 508 | typedef typename Base::SingularValuesType SingularValuesType; |
| 509 | |
| 510 | typedef typename internal::plain_row_type<MatrixType>::type RowType; |
| 511 | typedef typename internal::plain_col_type<MatrixType>::type ColType; |
| 512 | typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, |
| 513 | MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> |
| 514 | WorkMatrixType; |
| 515 | |
| 516 | /** \brief Default Constructor. |
| 517 | * |
| 518 | * The default constructor is useful in cases in which the user intends to |
| 519 | * perform decompositions via JacobiSVD::compute(const MatrixType&). |
| 520 | */ |
| 521 | JacobiSVD() |
| 522 | {} |
| 523 | |
| 524 | |
| 525 | /** \brief Default Constructor with memory preallocation |
| 526 | * |
| 527 | * Like the default constructor but with preallocation of the internal data |
| 528 | * according to the specified problem size. |
| 529 | * \sa JacobiSVD() |
| 530 | */ |
| 531 | JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
| 532 | { |
| 533 | allocate(rows, cols, computationOptions); |
| 534 | } |
| 535 | |
| 536 | /** \brief Constructor performing the decomposition of given matrix. |
| 537 | * |
| 538 | * \param matrix the matrix to decompose |
| 539 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 540 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 541 | * #ComputeFullV, #ComputeThinV. |
| 542 | * |
| 543 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 544 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
| 545 | */ |
| 546 | explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
| 547 | { |
| 548 | compute(matrix, computationOptions); |
| 549 | } |
| 550 | |
| 551 | /** \brief Method performing the decomposition of given matrix using custom options. |
| 552 | * |
| 553 | * \param matrix the matrix to decompose |
| 554 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 555 | * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 556 | * #ComputeFullV, #ComputeThinV. |
| 557 | * |
| 558 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 559 | * available with the (non-default) FullPivHouseholderQR preconditioner. |
| 560 | */ |
| 561 | JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); |
| 562 | |
| 563 | /** \brief Method performing the decomposition of given matrix using current options. |
| 564 | * |
| 565 | * \param matrix the matrix to decompose |
| 566 | * |
| 567 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
| 568 | */ |
| 569 | JacobiSVD& compute(const MatrixType& matrix) |
| 570 | { |
| 571 | return compute(matrix, m_computationOptions); |
| 572 | } |
| 573 | |
| 574 | using Base::computeU; |
| 575 | using Base::computeV; |
| 576 | using Base::rows; |
| 577 | using Base::cols; |
| 578 | using Base::rank; |
| 579 | |
| 580 | private: |
| 581 | void allocate(Index rows, Index cols, unsigned int computationOptions); |
| 582 | |
| 583 | protected: |
| 584 | using Base::m_matrixU; |
| 585 | using Base::m_matrixV; |
| 586 | using Base::m_singularValues; |
| 587 | using Base::m_isInitialized; |
| 588 | using Base::m_isAllocated; |
| 589 | using Base::m_usePrescribedThreshold; |
| 590 | using Base::m_computeFullU; |
| 591 | using Base::m_computeThinU; |
| 592 | using Base::m_computeFullV; |
| 593 | using Base::m_computeThinV; |
| 594 | using Base::m_computationOptions; |
| 595 | using Base::m_nonzeroSingularValues; |
| 596 | using Base::m_rows; |
| 597 | using Base::m_cols; |
| 598 | using Base::m_diagSize; |
| 599 | using Base::m_prescribedThreshold; |
| 600 | WorkMatrixType m_workMatrix; |
| 601 | |
| 602 | template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> |
| 603 | friend struct internal::svd_precondition_2x2_block_to_be_real; |
| 604 | template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> |
| 605 | friend struct internal::qr_preconditioner_impl; |
| 606 | |
| 607 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; |
| 608 | internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; |
| 609 | MatrixType m_scaledMatrix; |
| 610 | }; |
| 611 | |
| 612 | template<typename MatrixType, int QRPreconditioner> |
| 613 | void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| 614 | { |
| 615 | eigen_assert(rows >= 0 && cols >= 0); |
| 616 | |
| 617 | if (m_isAllocated && |
| 618 | rows == m_rows && |
| 619 | cols == m_cols && |
| 620 | computationOptions == m_computationOptions) |
| 621 | { |
| 622 | return; |
| 623 | } |
| 624 | |
| 625 | m_rows = rows; |
| 626 | m_cols = cols; |
| 627 | m_isInitialized = false; |
| 628 | m_isAllocated = true; |
| 629 | m_computationOptions = computationOptions; |
| 630 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
| 631 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
| 632 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
| 633 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
| 634 | eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U" ); |
| 635 | eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V" ); |
| 636 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
| 637 | "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns." ); |
| 638 | if (QRPreconditioner == FullPivHouseholderQRPreconditioner) |
| 639 | { |
| 640 | eigen_assert(!(m_computeThinU || m_computeThinV) && |
| 641 | "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " |
| 642 | "Use the ColPivHouseholderQR preconditioner instead." ); |
| 643 | } |
| 644 | m_diagSize = (std::min)(m_rows, m_cols); |
| 645 | m_singularValues.resize(m_diagSize); |
| 646 | if(RowsAtCompileTime==Dynamic) |
| 647 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows |
| 648 | : m_computeThinU ? m_diagSize |
| 649 | : 0); |
| 650 | if(ColsAtCompileTime==Dynamic) |
| 651 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols |
| 652 | : m_computeThinV ? m_diagSize |
| 653 | : 0); |
| 654 | m_workMatrix.resize(m_diagSize, m_diagSize); |
| 655 | |
| 656 | if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); |
| 657 | if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); |
| 658 | if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); |
| 659 | } |
| 660 | |
| 661 | template<typename MatrixType, int QRPreconditioner> |
| 662 | JacobiSVD<MatrixType, QRPreconditioner>& |
| 663 | JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) |
| 664 | { |
| 665 | using std::abs; |
| 666 | allocate(matrix.rows(), matrix.cols(), computationOptions); |
| 667 | |
| 668 | // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, |
| 669 | // only worsening the precision of U and V as we accumulate more rotations |
| 670 | const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); |
| 671 | |
| 672 | // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) |
| 673 | const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); |
| 674 | |
| 675 | // Scaling factor to reduce over/under-flows |
| 676 | RealScalar scale = matrix.cwiseAbs().maxCoeff(); |
| 677 | if(scale==RealScalar(0)) scale = RealScalar(1); |
| 678 | |
| 679 | /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ |
| 680 | |
| 681 | if(m_rows!=m_cols) |
| 682 | { |
| 683 | m_scaledMatrix = matrix / scale; |
| 684 | m_qr_precond_morecols.run(*this, m_scaledMatrix); |
| 685 | m_qr_precond_morerows.run(*this, m_scaledMatrix); |
| 686 | } |
| 687 | else |
| 688 | { |
| 689 | m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; |
| 690 | if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); |
| 691 | if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); |
| 692 | if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); |
| 693 | if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); |
| 694 | } |
| 695 | |
| 696 | /*** step 2. The main Jacobi SVD iteration. ***/ |
| 697 | RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); |
| 698 | |
| 699 | bool finished = false; |
| 700 | while(!finished) |
| 701 | { |
| 702 | finished = true; |
| 703 | |
| 704 | // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix |
| 705 | |
| 706 | for(Index p = 1; p < m_diagSize; ++p) |
| 707 | { |
| 708 | for(Index q = 0; q < p; ++q) |
| 709 | { |
| 710 | // if this 2x2 sub-matrix is not diagonal already... |
| 711 | // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't |
| 712 | // keep us iterating forever. Similarly, small denormal numbers are considered zero. |
| 713 | RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); |
| 714 | if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) |
| 715 | { |
| 716 | finished = false; |
| 717 | // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal |
| 718 | // the complex to real operation returns true if the updated 2x2 block is not already diagonal |
| 719 | if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry)) |
| 720 | { |
| 721 | JacobiRotation<RealScalar> j_left, j_right; |
| 722 | internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); |
| 723 | |
| 724 | // accumulate resulting Jacobi rotations |
| 725 | m_workMatrix.applyOnTheLeft(p,q,j_left); |
| 726 | if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); |
| 727 | |
| 728 | m_workMatrix.applyOnTheRight(p,q,j_right); |
| 729 | if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); |
| 730 | |
| 731 | // keep track of the largest diagonal coefficient |
| 732 | maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); |
| 733 | } |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ |
| 740 | |
| 741 | for(Index i = 0; i < m_diagSize; ++i) |
| 742 | { |
| 743 | // For a complex matrix, some diagonal coefficients might note have been |
| 744 | // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part |
| 745 | // of some diagonal entry might not be null. |
| 746 | if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) |
| 747 | { |
| 748 | RealScalar a = abs(m_workMatrix.coeff(i,i)); |
| 749 | m_singularValues.coeffRef(i) = abs(a); |
| 750 | if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; |
| 751 | } |
| 752 | else |
| 753 | { |
| 754 | // m_workMatrix.coeff(i,i) is already real, no difficulty: |
| 755 | RealScalar a = numext::real(m_workMatrix.coeff(i,i)); |
| 756 | m_singularValues.coeffRef(i) = abs(a); |
| 757 | if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); |
| 758 | } |
| 759 | } |
| 760 | |
| 761 | m_singularValues *= scale; |
| 762 | |
| 763 | /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ |
| 764 | |
| 765 | m_nonzeroSingularValues = m_diagSize; |
| 766 | for(Index i = 0; i < m_diagSize; i++) |
| 767 | { |
| 768 | Index pos; |
| 769 | RealScalar maxRemainingSingularValue = m_singularValues.tail(m_diagSize-i).maxCoeff(&pos); |
| 770 | if(maxRemainingSingularValue == RealScalar(0)) |
| 771 | { |
| 772 | m_nonzeroSingularValues = i; |
| 773 | break; |
| 774 | } |
| 775 | if(pos) |
| 776 | { |
| 777 | pos += i; |
| 778 | std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos)); |
| 779 | if(computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i)); |
| 780 | if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | m_isInitialized = true; |
| 785 | return *this; |
| 786 | } |
| 787 | |
| 788 | /** \svd_module |
| 789 | * |
| 790 | * \return the singular value decomposition of \c *this computed by two-sided |
| 791 | * Jacobi transformations. |
| 792 | * |
| 793 | * \sa class JacobiSVD |
| 794 | */ |
| 795 | template<typename Derived> |
| 796 | JacobiSVD<typename MatrixBase<Derived>::PlainObject> |
| 797 | MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const |
| 798 | { |
| 799 | return JacobiSVD<PlainObject>(*this, computationOptions); |
| 800 | } |
| 801 | |
| 802 | } // end namespace Eigen |
| 803 | |
| 804 | #endif // EIGEN_JACOBISVD_H |
| 805 | |