1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
5 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
6 | // |
7 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
8 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
9 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
10 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
11 | // |
12 | // This Source Code Form is subject to the terms of the Mozilla |
13 | // Public License v. 2.0. If a copy of the MPL was not distributed |
14 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
15 | |
16 | #ifndef EIGEN_SVDBASE_H |
17 | #define EIGEN_SVDBASE_H |
18 | |
19 | namespace Eigen { |
20 | /** \ingroup SVD_Module |
21 | * |
22 | * |
23 | * \class SVDBase |
24 | * |
25 | * \brief Base class of SVD algorithms |
26 | * |
27 | * \tparam Derived the type of the actual SVD decomposition |
28 | * |
29 | * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product |
30 | * \f[ A = U S V^* \f] |
31 | * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; |
32 | * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left |
33 | * and right \em singular \em vectors of \a A respectively. |
34 | * |
35 | * Singular values are always sorted in decreasing order. |
36 | * |
37 | * |
38 | * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the |
39 | * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual |
40 | * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, |
41 | * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. |
42 | * |
43 | * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to |
44 | * terminate in finite (and reasonable) time. |
45 | * \sa class BDCSVD, class JacobiSVD |
46 | */ |
47 | template<typename Derived> |
48 | class SVDBase |
49 | { |
50 | |
51 | public: |
52 | typedef typename internal::traits<Derived>::MatrixType MatrixType; |
53 | typedef typename MatrixType::Scalar Scalar; |
54 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
55 | typedef typename MatrixType::StorageIndex StorageIndex; |
56 | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 |
57 | enum { |
58 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
59 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
60 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), |
61 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
62 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
63 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), |
64 | MatrixOptions = MatrixType::Options |
65 | }; |
66 | |
67 | typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType; |
68 | typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType; |
69 | typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; |
70 | |
71 | Derived& derived() { return *static_cast<Derived*>(this); } |
72 | const Derived& derived() const { return *static_cast<const Derived*>(this); } |
73 | |
74 | /** \returns the \a U matrix. |
75 | * |
76 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
77 | * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink. |
78 | * |
79 | * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. |
80 | * |
81 | * This method asserts that you asked for \a U to be computed. |
82 | */ |
83 | const MatrixUType& matrixU() const |
84 | { |
85 | eigen_assert(m_isInitialized && "SVD is not initialized." ); |
86 | eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?" ); |
87 | return m_matrixU; |
88 | } |
89 | |
90 | /** \returns the \a V matrix. |
91 | * |
92 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, |
93 | * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink. |
94 | * |
95 | * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. |
96 | * |
97 | * This method asserts that you asked for \a V to be computed. |
98 | */ |
99 | const MatrixVType& matrixV() const |
100 | { |
101 | eigen_assert(m_isInitialized && "SVD is not initialized." ); |
102 | eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?" ); |
103 | return m_matrixV; |
104 | } |
105 | |
106 | /** \returns the vector of singular values. |
107 | * |
108 | * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the |
109 | * returned vector has size \a m. Singular values are always sorted in decreasing order. |
110 | */ |
111 | const SingularValuesType& singularValues() const |
112 | { |
113 | eigen_assert(m_isInitialized && "SVD is not initialized." ); |
114 | return m_singularValues; |
115 | } |
116 | |
117 | /** \returns the number of singular values that are not exactly 0 */ |
118 | Index nonzeroSingularValues() const |
119 | { |
120 | eigen_assert(m_isInitialized && "SVD is not initialized." ); |
121 | return m_nonzeroSingularValues; |
122 | } |
123 | |
124 | /** \returns the rank of the matrix of which \c *this is the SVD. |
125 | * |
126 | * \note This method has to determine which singular values should be considered nonzero. |
127 | * For that, it uses the threshold value that you can control by calling |
128 | * setThreshold(const RealScalar&). |
129 | */ |
130 | inline Index rank() const |
131 | { |
132 | using std::abs; |
133 | eigen_assert(m_isInitialized && "JacobiSVD is not initialized." ); |
134 | if(m_singularValues.size()==0) return 0; |
135 | RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)()); |
136 | Index i = m_nonzeroSingularValues-1; |
137 | while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; |
138 | return i+1; |
139 | } |
140 | |
141 | /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), |
142 | * which need to determine when singular values are to be considered nonzero. |
143 | * This is not used for the SVD decomposition itself. |
144 | * |
145 | * When it needs to get the threshold value, Eigen calls threshold(). |
146 | * The default is \c NumTraits<Scalar>::epsilon() |
147 | * |
148 | * \param threshold The new value to use as the threshold. |
149 | * |
150 | * A singular value will be considered nonzero if its value is strictly greater than |
151 | * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. |
152 | * |
153 | * If you want to come back to the default behavior, call setThreshold(Default_t) |
154 | */ |
155 | Derived& setThreshold(const RealScalar& threshold) |
156 | { |
157 | m_usePrescribedThreshold = true; |
158 | m_prescribedThreshold = threshold; |
159 | return derived(); |
160 | } |
161 | |
162 | /** Allows to come back to the default behavior, letting Eigen use its default formula for |
163 | * determining the threshold. |
164 | * |
165 | * You should pass the special object Eigen::Default as parameter here. |
166 | * \code svd.setThreshold(Eigen::Default); \endcode |
167 | * |
168 | * See the documentation of setThreshold(const RealScalar&). |
169 | */ |
170 | Derived& setThreshold(Default_t) |
171 | { |
172 | m_usePrescribedThreshold = false; |
173 | return derived(); |
174 | } |
175 | |
176 | /** Returns the threshold that will be used by certain methods such as rank(). |
177 | * |
178 | * See the documentation of setThreshold(const RealScalar&). |
179 | */ |
180 | RealScalar threshold() const |
181 | { |
182 | eigen_assert(m_isInitialized || m_usePrescribedThreshold); |
183 | // this temporary is needed to workaround a MSVC issue |
184 | Index diagSize = (std::max<Index>)(1,m_diagSize); |
185 | return m_usePrescribedThreshold ? m_prescribedThreshold |
186 | : diagSize*NumTraits<Scalar>::epsilon(); |
187 | } |
188 | |
189 | /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ |
190 | inline bool computeU() const { return m_computeFullU || m_computeThinU; } |
191 | /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ |
192 | inline bool computeV() const { return m_computeFullV || m_computeThinV; } |
193 | |
194 | inline Index rows() const { return m_rows; } |
195 | inline Index cols() const { return m_cols; } |
196 | |
197 | /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. |
198 | * |
199 | * \param b the right-hand-side of the equation to solve. |
200 | * |
201 | * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. |
202 | * |
203 | * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. |
204 | * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. |
205 | */ |
206 | template<typename Rhs> |
207 | inline const Solve<Derived, Rhs> |
208 | solve(const MatrixBase<Rhs>& b) const |
209 | { |
210 | eigen_assert(m_isInitialized && "SVD is not initialized." ); |
211 | eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)." ); |
212 | return Solve<Derived, Rhs>(derived(), b.derived()); |
213 | } |
214 | |
215 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
216 | template<typename RhsType, typename DstType> |
217 | EIGEN_DEVICE_FUNC |
218 | void _solve_impl(const RhsType &rhs, DstType &dst) const; |
219 | #endif |
220 | |
221 | protected: |
222 | |
223 | static void check_template_parameters() |
224 | { |
225 | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); |
226 | } |
227 | |
228 | // return true if already allocated |
229 | bool allocate(Index rows, Index cols, unsigned int computationOptions) ; |
230 | |
231 | MatrixUType m_matrixU; |
232 | MatrixVType m_matrixV; |
233 | SingularValuesType m_singularValues; |
234 | bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; |
235 | bool m_computeFullU, m_computeThinU; |
236 | bool m_computeFullV, m_computeThinV; |
237 | unsigned int m_computationOptions; |
238 | Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; |
239 | RealScalar m_prescribedThreshold; |
240 | |
241 | /** \brief Default Constructor. |
242 | * |
243 | * Default constructor of SVDBase |
244 | */ |
245 | SVDBase() |
246 | : m_isInitialized(false), |
247 | m_isAllocated(false), |
248 | m_usePrescribedThreshold(false), |
249 | m_computationOptions(0), |
250 | m_rows(-1), m_cols(-1), m_diagSize(0) |
251 | { |
252 | check_template_parameters(); |
253 | } |
254 | |
255 | |
256 | }; |
257 | |
258 | #ifndef EIGEN_PARSED_BY_DOXYGEN |
259 | template<typename Derived> |
260 | template<typename RhsType, typename DstType> |
261 | void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const |
262 | { |
263 | eigen_assert(rhs.rows() == rows()); |
264 | |
265 | // A = U S V^* |
266 | // So A^{-1} = V S^{-1} U^* |
267 | |
268 | Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp; |
269 | Index l_rank = rank(); |
270 | tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs; |
271 | tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp; |
272 | dst = m_matrixV.leftCols(l_rank) * tmp; |
273 | } |
274 | #endif |
275 | |
276 | template<typename MatrixType> |
277 | bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
278 | { |
279 | eigen_assert(rows >= 0 && cols >= 0); |
280 | |
281 | if (m_isAllocated && |
282 | rows == m_rows && |
283 | cols == m_cols && |
284 | computationOptions == m_computationOptions) |
285 | { |
286 | return true; |
287 | } |
288 | |
289 | m_rows = rows; |
290 | m_cols = cols; |
291 | m_isInitialized = false; |
292 | m_isAllocated = true; |
293 | m_computationOptions = computationOptions; |
294 | m_computeFullU = (computationOptions & ComputeFullU) != 0; |
295 | m_computeThinU = (computationOptions & ComputeThinU) != 0; |
296 | m_computeFullV = (computationOptions & ComputeFullV) != 0; |
297 | m_computeThinV = (computationOptions & ComputeThinV) != 0; |
298 | eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U" ); |
299 | eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V" ); |
300 | eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && |
301 | "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns." ); |
302 | |
303 | m_diagSize = (std::min)(m_rows, m_cols); |
304 | m_singularValues.resize(m_diagSize); |
305 | if(RowsAtCompileTime==Dynamic) |
306 | m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); |
307 | if(ColsAtCompileTime==Dynamic) |
308 | m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); |
309 | |
310 | return false; |
311 | } |
312 | |
313 | }// end namespace |
314 | |
315 | #endif // EIGEN_SVDBASE_H |
316 | |