| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_COMPRESSED_STORAGE_H |
| 11 | #define EIGEN_COMPRESSED_STORAGE_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | namespace internal { |
| 16 | |
| 17 | /** \internal |
| 18 | * Stores a sparse set of values as a list of values and a list of indices. |
| 19 | * |
| 20 | */ |
| 21 | template<typename _Scalar,typename _StorageIndex> |
| 22 | class CompressedStorage |
| 23 | { |
| 24 | public: |
| 25 | |
| 26 | typedef _Scalar Scalar; |
| 27 | typedef _StorageIndex StorageIndex; |
| 28 | |
| 29 | protected: |
| 30 | |
| 31 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 32 | |
| 33 | public: |
| 34 | |
| 35 | CompressedStorage() |
| 36 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| 37 | {} |
| 38 | |
| 39 | explicit CompressedStorage(Index size) |
| 40 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| 41 | { |
| 42 | resize(size); |
| 43 | } |
| 44 | |
| 45 | CompressedStorage(const CompressedStorage& other) |
| 46 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
| 47 | { |
| 48 | *this = other; |
| 49 | } |
| 50 | |
| 51 | CompressedStorage& operator=(const CompressedStorage& other) |
| 52 | { |
| 53 | resize(other.size()); |
| 54 | if(other.size()>0) |
| 55 | { |
| 56 | internal::smart_copy(other.m_values, other.m_values + m_size, m_values); |
| 57 | internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); |
| 58 | } |
| 59 | return *this; |
| 60 | } |
| 61 | |
| 62 | void swap(CompressedStorage& other) |
| 63 | { |
| 64 | std::swap(m_values, other.m_values); |
| 65 | std::swap(m_indices, other.m_indices); |
| 66 | std::swap(m_size, other.m_size); |
| 67 | std::swap(m_allocatedSize, other.m_allocatedSize); |
| 68 | } |
| 69 | |
| 70 | ~CompressedStorage() |
| 71 | { |
| 72 | delete[] m_values; |
| 73 | delete[] m_indices; |
| 74 | } |
| 75 | |
| 76 | void reserve(Index size) |
| 77 | { |
| 78 | Index newAllocatedSize = m_size + size; |
| 79 | if (newAllocatedSize > m_allocatedSize) |
| 80 | reallocate(newAllocatedSize); |
| 81 | } |
| 82 | |
| 83 | void squeeze() |
| 84 | { |
| 85 | if (m_allocatedSize>m_size) |
| 86 | reallocate(m_size); |
| 87 | } |
| 88 | |
| 89 | void resize(Index size, double reserveSizeFactor = 0) |
| 90 | { |
| 91 | if (m_allocatedSize<size) |
| 92 | { |
| 93 | Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(), size + Index(reserveSizeFactor*double(size))); |
| 94 | if(realloc_size<size) |
| 95 | internal::throw_std_bad_alloc(); |
| 96 | reallocate(realloc_size); |
| 97 | } |
| 98 | m_size = size; |
| 99 | } |
| 100 | |
| 101 | void append(const Scalar& v, Index i) |
| 102 | { |
| 103 | Index id = m_size; |
| 104 | resize(m_size+1, 1); |
| 105 | m_values[id] = v; |
| 106 | m_indices[id] = internal::convert_index<StorageIndex>(i); |
| 107 | } |
| 108 | |
| 109 | inline Index size() const { return m_size; } |
| 110 | inline Index allocatedSize() const { return m_allocatedSize; } |
| 111 | inline void clear() { m_size = 0; } |
| 112 | |
| 113 | const Scalar* valuePtr() const { return m_values; } |
| 114 | Scalar* valuePtr() { return m_values; } |
| 115 | const StorageIndex* indexPtr() const { return m_indices; } |
| 116 | StorageIndex* indexPtr() { return m_indices; } |
| 117 | |
| 118 | inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; } |
| 119 | inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; } |
| 120 | |
| 121 | inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; } |
| 122 | inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; } |
| 123 | |
| 124 | /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ |
| 125 | inline Index searchLowerIndex(Index key) const |
| 126 | { |
| 127 | return searchLowerIndex(0, m_size, key); |
| 128 | } |
| 129 | |
| 130 | /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ |
| 131 | inline Index searchLowerIndex(Index start, Index end, Index key) const |
| 132 | { |
| 133 | while(end>start) |
| 134 | { |
| 135 | Index mid = (end+start)>>1; |
| 136 | if (m_indices[mid]<key) |
| 137 | start = mid+1; |
| 138 | else |
| 139 | end = mid; |
| 140 | } |
| 141 | return start; |
| 142 | } |
| 143 | |
| 144 | /** \returns the stored value at index \a key |
| 145 | * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ |
| 146 | inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const |
| 147 | { |
| 148 | if (m_size==0) |
| 149 | return defaultValue; |
| 150 | else if (key==m_indices[m_size-1]) |
| 151 | return m_values[m_size-1]; |
| 152 | // ^^ optimization: let's first check if it is the last coefficient |
| 153 | // (very common in high level algorithms) |
| 154 | const Index id = searchLowerIndex(0,m_size-1,key); |
| 155 | return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
| 156 | } |
| 157 | |
| 158 | /** Like at(), but the search is performed in the range [start,end) */ |
| 159 | inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const |
| 160 | { |
| 161 | if (start>=end) |
| 162 | return defaultValue; |
| 163 | else if (end>start && key==m_indices[end-1]) |
| 164 | return m_values[end-1]; |
| 165 | // ^^ optimization: let's first check if it is the last coefficient |
| 166 | // (very common in high level algorithms) |
| 167 | const Index id = searchLowerIndex(start,end-1,key); |
| 168 | return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
| 169 | } |
| 170 | |
| 171 | /** \returns a reference to the value at index \a key |
| 172 | * If the value does not exist, then the value \a defaultValue is inserted |
| 173 | * such that the keys are sorted. */ |
| 174 | inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) |
| 175 | { |
| 176 | Index id = searchLowerIndex(0,m_size,key); |
| 177 | if (id>=m_size || m_indices[id]!=key) |
| 178 | { |
| 179 | if (m_allocatedSize<m_size+1) |
| 180 | { |
| 181 | m_allocatedSize = 2*(m_size+1); |
| 182 | internal::scoped_array<Scalar> newValues(m_allocatedSize); |
| 183 | internal::scoped_array<StorageIndex> newIndices(m_allocatedSize); |
| 184 | |
| 185 | // copy first chunk |
| 186 | internal::smart_copy(m_values, m_values +id, newValues.ptr()); |
| 187 | internal::smart_copy(m_indices, m_indices+id, newIndices.ptr()); |
| 188 | |
| 189 | // copy the rest |
| 190 | if(m_size>id) |
| 191 | { |
| 192 | internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1); |
| 193 | internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1); |
| 194 | } |
| 195 | std::swap(m_values,newValues.ptr()); |
| 196 | std::swap(m_indices,newIndices.ptr()); |
| 197 | } |
| 198 | else if(m_size>id) |
| 199 | { |
| 200 | internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1); |
| 201 | internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1); |
| 202 | } |
| 203 | m_size++; |
| 204 | m_indices[id] = internal::convert_index<StorageIndex>(key); |
| 205 | m_values[id] = defaultValue; |
| 206 | } |
| 207 | return m_values[id]; |
| 208 | } |
| 209 | |
| 210 | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
| 211 | { |
| 212 | Index k = 0; |
| 213 | Index n = size(); |
| 214 | for (Index i=0; i<n; ++i) |
| 215 | { |
| 216 | if (!internal::isMuchSmallerThan(value(i), reference, epsilon)) |
| 217 | { |
| 218 | value(k) = value(i); |
| 219 | index(k) = index(i); |
| 220 | ++k; |
| 221 | } |
| 222 | } |
| 223 | resize(k,0); |
| 224 | } |
| 225 | |
| 226 | protected: |
| 227 | |
| 228 | inline void reallocate(Index size) |
| 229 | { |
| 230 | #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
| 231 | EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
| 232 | #endif |
| 233 | eigen_internal_assert(size!=m_allocatedSize); |
| 234 | internal::scoped_array<Scalar> newValues(size); |
| 235 | internal::scoped_array<StorageIndex> newIndices(size); |
| 236 | Index copySize = (std::min)(size, m_size); |
| 237 | if (copySize>0) { |
| 238 | internal::smart_copy(m_values, m_values+copySize, newValues.ptr()); |
| 239 | internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr()); |
| 240 | } |
| 241 | std::swap(m_values,newValues.ptr()); |
| 242 | std::swap(m_indices,newIndices.ptr()); |
| 243 | m_allocatedSize = size; |
| 244 | } |
| 245 | |
| 246 | protected: |
| 247 | Scalar* m_values; |
| 248 | StorageIndex* m_indices; |
| 249 | Index m_size; |
| 250 | Index m_allocatedSize; |
| 251 | |
| 252 | }; |
| 253 | |
| 254 | } // end namespace internal |
| 255 | |
| 256 | } // end namespace Eigen |
| 257 | |
| 258 | #endif // EIGEN_COMPRESSED_STORAGE_H |
| 259 | |