1 | // This file is part of Eigen, a lightweight C++ template library |
2 | // for linear algebra. |
3 | // |
4 | // Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
5 | // |
6 | // This Source Code Form is subject to the terms of the Mozilla |
7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
9 | |
10 | #ifndef EIGEN_COMPRESSED_STORAGE_H |
11 | #define EIGEN_COMPRESSED_STORAGE_H |
12 | |
13 | namespace Eigen { |
14 | |
15 | namespace internal { |
16 | |
17 | /** \internal |
18 | * Stores a sparse set of values as a list of values and a list of indices. |
19 | * |
20 | */ |
21 | template<typename _Scalar,typename _StorageIndex> |
22 | class CompressedStorage |
23 | { |
24 | public: |
25 | |
26 | typedef _Scalar Scalar; |
27 | typedef _StorageIndex StorageIndex; |
28 | |
29 | protected: |
30 | |
31 | typedef typename NumTraits<Scalar>::Real RealScalar; |
32 | |
33 | public: |
34 | |
35 | CompressedStorage() |
36 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
37 | {} |
38 | |
39 | explicit CompressedStorage(Index size) |
40 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
41 | { |
42 | resize(size); |
43 | } |
44 | |
45 | CompressedStorage(const CompressedStorage& other) |
46 | : m_values(0), m_indices(0), m_size(0), m_allocatedSize(0) |
47 | { |
48 | *this = other; |
49 | } |
50 | |
51 | CompressedStorage& operator=(const CompressedStorage& other) |
52 | { |
53 | resize(other.size()); |
54 | if(other.size()>0) |
55 | { |
56 | internal::smart_copy(other.m_values, other.m_values + m_size, m_values); |
57 | internal::smart_copy(other.m_indices, other.m_indices + m_size, m_indices); |
58 | } |
59 | return *this; |
60 | } |
61 | |
62 | void swap(CompressedStorage& other) |
63 | { |
64 | std::swap(m_values, other.m_values); |
65 | std::swap(m_indices, other.m_indices); |
66 | std::swap(m_size, other.m_size); |
67 | std::swap(m_allocatedSize, other.m_allocatedSize); |
68 | } |
69 | |
70 | ~CompressedStorage() |
71 | { |
72 | delete[] m_values; |
73 | delete[] m_indices; |
74 | } |
75 | |
76 | void reserve(Index size) |
77 | { |
78 | Index newAllocatedSize = m_size + size; |
79 | if (newAllocatedSize > m_allocatedSize) |
80 | reallocate(newAllocatedSize); |
81 | } |
82 | |
83 | void squeeze() |
84 | { |
85 | if (m_allocatedSize>m_size) |
86 | reallocate(m_size); |
87 | } |
88 | |
89 | void resize(Index size, double reserveSizeFactor = 0) |
90 | { |
91 | if (m_allocatedSize<size) |
92 | { |
93 | Index realloc_size = (std::min<Index>)(NumTraits<StorageIndex>::highest(), size + Index(reserveSizeFactor*double(size))); |
94 | if(realloc_size<size) |
95 | internal::throw_std_bad_alloc(); |
96 | reallocate(realloc_size); |
97 | } |
98 | m_size = size; |
99 | } |
100 | |
101 | void append(const Scalar& v, Index i) |
102 | { |
103 | Index id = m_size; |
104 | resize(m_size+1, 1); |
105 | m_values[id] = v; |
106 | m_indices[id] = internal::convert_index<StorageIndex>(i); |
107 | } |
108 | |
109 | inline Index size() const { return m_size; } |
110 | inline Index allocatedSize() const { return m_allocatedSize; } |
111 | inline void clear() { m_size = 0; } |
112 | |
113 | const Scalar* valuePtr() const { return m_values; } |
114 | Scalar* valuePtr() { return m_values; } |
115 | const StorageIndex* indexPtr() const { return m_indices; } |
116 | StorageIndex* indexPtr() { return m_indices; } |
117 | |
118 | inline Scalar& value(Index i) { eigen_internal_assert(m_values!=0); return m_values[i]; } |
119 | inline const Scalar& value(Index i) const { eigen_internal_assert(m_values!=0); return m_values[i]; } |
120 | |
121 | inline StorageIndex& index(Index i) { eigen_internal_assert(m_indices!=0); return m_indices[i]; } |
122 | inline const StorageIndex& index(Index i) const { eigen_internal_assert(m_indices!=0); return m_indices[i]; } |
123 | |
124 | /** \returns the largest \c k such that for all \c j in [0,k) index[\c j]\<\a key */ |
125 | inline Index searchLowerIndex(Index key) const |
126 | { |
127 | return searchLowerIndex(0, m_size, key); |
128 | } |
129 | |
130 | /** \returns the largest \c k in [start,end) such that for all \c j in [start,k) index[\c j]\<\a key */ |
131 | inline Index searchLowerIndex(Index start, Index end, Index key) const |
132 | { |
133 | while(end>start) |
134 | { |
135 | Index mid = (end+start)>>1; |
136 | if (m_indices[mid]<key) |
137 | start = mid+1; |
138 | else |
139 | end = mid; |
140 | } |
141 | return start; |
142 | } |
143 | |
144 | /** \returns the stored value at index \a key |
145 | * If the value does not exist, then the value \a defaultValue is returned without any insertion. */ |
146 | inline Scalar at(Index key, const Scalar& defaultValue = Scalar(0)) const |
147 | { |
148 | if (m_size==0) |
149 | return defaultValue; |
150 | else if (key==m_indices[m_size-1]) |
151 | return m_values[m_size-1]; |
152 | // ^^ optimization: let's first check if it is the last coefficient |
153 | // (very common in high level algorithms) |
154 | const Index id = searchLowerIndex(0,m_size-1,key); |
155 | return ((id<m_size) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
156 | } |
157 | |
158 | /** Like at(), but the search is performed in the range [start,end) */ |
159 | inline Scalar atInRange(Index start, Index end, Index key, const Scalar &defaultValue = Scalar(0)) const |
160 | { |
161 | if (start>=end) |
162 | return defaultValue; |
163 | else if (end>start && key==m_indices[end-1]) |
164 | return m_values[end-1]; |
165 | // ^^ optimization: let's first check if it is the last coefficient |
166 | // (very common in high level algorithms) |
167 | const Index id = searchLowerIndex(start,end-1,key); |
168 | return ((id<end) && (m_indices[id]==key)) ? m_values[id] : defaultValue; |
169 | } |
170 | |
171 | /** \returns a reference to the value at index \a key |
172 | * If the value does not exist, then the value \a defaultValue is inserted |
173 | * such that the keys are sorted. */ |
174 | inline Scalar& atWithInsertion(Index key, const Scalar& defaultValue = Scalar(0)) |
175 | { |
176 | Index id = searchLowerIndex(0,m_size,key); |
177 | if (id>=m_size || m_indices[id]!=key) |
178 | { |
179 | if (m_allocatedSize<m_size+1) |
180 | { |
181 | m_allocatedSize = 2*(m_size+1); |
182 | internal::scoped_array<Scalar> newValues(m_allocatedSize); |
183 | internal::scoped_array<StorageIndex> newIndices(m_allocatedSize); |
184 | |
185 | // copy first chunk |
186 | internal::smart_copy(m_values, m_values +id, newValues.ptr()); |
187 | internal::smart_copy(m_indices, m_indices+id, newIndices.ptr()); |
188 | |
189 | // copy the rest |
190 | if(m_size>id) |
191 | { |
192 | internal::smart_copy(m_values +id, m_values +m_size, newValues.ptr() +id+1); |
193 | internal::smart_copy(m_indices+id, m_indices+m_size, newIndices.ptr()+id+1); |
194 | } |
195 | std::swap(m_values,newValues.ptr()); |
196 | std::swap(m_indices,newIndices.ptr()); |
197 | } |
198 | else if(m_size>id) |
199 | { |
200 | internal::smart_memmove(m_values +id, m_values +m_size, m_values +id+1); |
201 | internal::smart_memmove(m_indices+id, m_indices+m_size, m_indices+id+1); |
202 | } |
203 | m_size++; |
204 | m_indices[id] = internal::convert_index<StorageIndex>(key); |
205 | m_values[id] = defaultValue; |
206 | } |
207 | return m_values[id]; |
208 | } |
209 | |
210 | void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) |
211 | { |
212 | Index k = 0; |
213 | Index n = size(); |
214 | for (Index i=0; i<n; ++i) |
215 | { |
216 | if (!internal::isMuchSmallerThan(value(i), reference, epsilon)) |
217 | { |
218 | value(k) = value(i); |
219 | index(k) = index(i); |
220 | ++k; |
221 | } |
222 | } |
223 | resize(k,0); |
224 | } |
225 | |
226 | protected: |
227 | |
228 | inline void reallocate(Index size) |
229 | { |
230 | #ifdef EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
231 | EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN |
232 | #endif |
233 | eigen_internal_assert(size!=m_allocatedSize); |
234 | internal::scoped_array<Scalar> newValues(size); |
235 | internal::scoped_array<StorageIndex> newIndices(size); |
236 | Index copySize = (std::min)(size, m_size); |
237 | if (copySize>0) { |
238 | internal::smart_copy(m_values, m_values+copySize, newValues.ptr()); |
239 | internal::smart_copy(m_indices, m_indices+copySize, newIndices.ptr()); |
240 | } |
241 | std::swap(m_values,newValues.ptr()); |
242 | std::swap(m_indices,newIndices.ptr()); |
243 | m_allocatedSize = size; |
244 | } |
245 | |
246 | protected: |
247 | Scalar* m_values; |
248 | StorageIndex* m_indices; |
249 | Index m_size; |
250 | Index m_allocatedSize; |
251 | |
252 | }; |
253 | |
254 | } // end namespace internal |
255 | |
256 | } // end namespace Eigen |
257 | |
258 | #endif // EIGEN_COMPRESSED_STORAGE_H |
259 | |