| 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // Copyright (C) 2010 Daniel Lowengrub <lowdanie@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | #ifndef EIGEN_SPARSEVIEW_H |
| 12 | #define EIGEN_SPARSEVIEW_H |
| 13 | |
| 14 | namespace Eigen { |
| 15 | |
| 16 | namespace internal { |
| 17 | |
| 18 | template<typename MatrixType> |
| 19 | struct traits<SparseView<MatrixType> > : traits<MatrixType> |
| 20 | { |
| 21 | typedef typename MatrixType::StorageIndex StorageIndex; |
| 22 | typedef Sparse StorageKind; |
| 23 | enum { |
| 24 | Flags = int(traits<MatrixType>::Flags) & (RowMajorBit) |
| 25 | }; |
| 26 | }; |
| 27 | |
| 28 | } // end namespace internal |
| 29 | |
| 30 | /** \ingroup SparseCore_Module |
| 31 | * \class SparseView |
| 32 | * |
| 33 | * \brief Expression of a dense or sparse matrix with zero or too small values removed |
| 34 | * |
| 35 | * \tparam MatrixType the type of the object of which we are removing the small entries |
| 36 | * |
| 37 | * This class represents an expression of a given dense or sparse matrix with |
| 38 | * entries smaller than \c reference * \c epsilon are removed. |
| 39 | * It is the return type of MatrixBase::sparseView() and SparseMatrixBase::pruned() |
| 40 | * and most of the time this is the only way it is used. |
| 41 | * |
| 42 | * \sa MatrixBase::sparseView(), SparseMatrixBase::pruned() |
| 43 | */ |
| 44 | template<typename MatrixType> |
| 45 | class SparseView : public SparseMatrixBase<SparseView<MatrixType> > |
| 46 | { |
| 47 | typedef typename MatrixType::Nested MatrixTypeNested; |
| 48 | typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; |
| 49 | typedef SparseMatrixBase<SparseView > Base; |
| 50 | public: |
| 51 | EIGEN_SPARSE_PUBLIC_INTERFACE(SparseView) |
| 52 | typedef typename internal::remove_all<MatrixType>::type NestedExpression; |
| 53 | |
| 54 | explicit SparseView(const MatrixType& mat, const Scalar& reference = Scalar(0), |
| 55 | const RealScalar &epsilon = NumTraits<Scalar>::dummy_precision()) |
| 56 | : m_matrix(mat), m_reference(reference), m_epsilon(epsilon) {} |
| 57 | |
| 58 | inline Index rows() const { return m_matrix.rows(); } |
| 59 | inline Index cols() const { return m_matrix.cols(); } |
| 60 | |
| 61 | inline Index innerSize() const { return m_matrix.innerSize(); } |
| 62 | inline Index outerSize() const { return m_matrix.outerSize(); } |
| 63 | |
| 64 | /** \returns the nested expression */ |
| 65 | const typename internal::remove_all<MatrixTypeNested>::type& |
| 66 | nestedExpression() const { return m_matrix; } |
| 67 | |
| 68 | Scalar reference() const { return m_reference; } |
| 69 | RealScalar epsilon() const { return m_epsilon; } |
| 70 | |
| 71 | protected: |
| 72 | MatrixTypeNested m_matrix; |
| 73 | Scalar m_reference; |
| 74 | RealScalar m_epsilon; |
| 75 | }; |
| 76 | |
| 77 | namespace internal { |
| 78 | |
| 79 | // TODO find a way to unify the two following variants |
| 80 | // This is tricky because implementing an inner iterator on top of an IndexBased evaluator is |
| 81 | // not easy because the evaluators do not expose the sizes of the underlying expression. |
| 82 | |
| 83 | template<typename ArgType> |
| 84 | struct unary_evaluator<SparseView<ArgType>, IteratorBased> |
| 85 | : public evaluator_base<SparseView<ArgType> > |
| 86 | { |
| 87 | typedef typename evaluator<ArgType>::InnerIterator EvalIterator; |
| 88 | public: |
| 89 | typedef SparseView<ArgType> XprType; |
| 90 | |
| 91 | class InnerIterator : public EvalIterator |
| 92 | { |
| 93 | typedef typename XprType::Scalar Scalar; |
| 94 | public: |
| 95 | |
| 96 | EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) |
| 97 | : EvalIterator(sve.m_argImpl,outer), m_view(sve.m_view) |
| 98 | { |
| 99 | incrementToNonZero(); |
| 100 | } |
| 101 | |
| 102 | EIGEN_STRONG_INLINE InnerIterator& operator++() |
| 103 | { |
| 104 | EvalIterator::operator++(); |
| 105 | incrementToNonZero(); |
| 106 | return *this; |
| 107 | } |
| 108 | |
| 109 | using EvalIterator::value; |
| 110 | |
| 111 | protected: |
| 112 | const XprType &m_view; |
| 113 | |
| 114 | private: |
| 115 | void incrementToNonZero() |
| 116 | { |
| 117 | while((bool(*this)) && internal::isMuchSmallerThan(value(), m_view.reference(), m_view.epsilon())) |
| 118 | { |
| 119 | EvalIterator::operator++(); |
| 120 | } |
| 121 | } |
| 122 | }; |
| 123 | |
| 124 | enum { |
| 125 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| 126 | Flags = XprType::Flags |
| 127 | }; |
| 128 | |
| 129 | explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} |
| 130 | |
| 131 | protected: |
| 132 | evaluator<ArgType> m_argImpl; |
| 133 | const XprType &m_view; |
| 134 | }; |
| 135 | |
| 136 | template<typename ArgType> |
| 137 | struct unary_evaluator<SparseView<ArgType>, IndexBased> |
| 138 | : public evaluator_base<SparseView<ArgType> > |
| 139 | { |
| 140 | public: |
| 141 | typedef SparseView<ArgType> XprType; |
| 142 | protected: |
| 143 | enum { IsRowMajor = (XprType::Flags&RowMajorBit)==RowMajorBit }; |
| 144 | typedef typename XprType::Scalar Scalar; |
| 145 | typedef typename XprType::StorageIndex StorageIndex; |
| 146 | public: |
| 147 | |
| 148 | class InnerIterator |
| 149 | { |
| 150 | public: |
| 151 | |
| 152 | EIGEN_STRONG_INLINE InnerIterator(const unary_evaluator& sve, Index outer) |
| 153 | : m_sve(sve), m_inner(0), m_outer(outer), m_end(sve.m_view.innerSize()) |
| 154 | { |
| 155 | incrementToNonZero(); |
| 156 | } |
| 157 | |
| 158 | EIGEN_STRONG_INLINE InnerIterator& operator++() |
| 159 | { |
| 160 | m_inner++; |
| 161 | incrementToNonZero(); |
| 162 | return *this; |
| 163 | } |
| 164 | |
| 165 | EIGEN_STRONG_INLINE Scalar value() const |
| 166 | { |
| 167 | return (IsRowMajor) ? m_sve.m_argImpl.coeff(m_outer, m_inner) |
| 168 | : m_sve.m_argImpl.coeff(m_inner, m_outer); |
| 169 | } |
| 170 | |
| 171 | EIGEN_STRONG_INLINE StorageIndex index() const { return m_inner; } |
| 172 | inline Index row() const { return IsRowMajor ? m_outer : index(); } |
| 173 | inline Index col() const { return IsRowMajor ? index() : m_outer; } |
| 174 | |
| 175 | EIGEN_STRONG_INLINE operator bool() const { return m_inner < m_end && m_inner>=0; } |
| 176 | |
| 177 | protected: |
| 178 | const unary_evaluator &m_sve; |
| 179 | Index m_inner; |
| 180 | const Index m_outer; |
| 181 | const Index m_end; |
| 182 | |
| 183 | private: |
| 184 | void incrementToNonZero() |
| 185 | { |
| 186 | while((bool(*this)) && internal::isMuchSmallerThan(value(), m_sve.m_view.reference(), m_sve.m_view.epsilon())) |
| 187 | { |
| 188 | m_inner++; |
| 189 | } |
| 190 | } |
| 191 | }; |
| 192 | |
| 193 | enum { |
| 194 | CoeffReadCost = evaluator<ArgType>::CoeffReadCost, |
| 195 | Flags = XprType::Flags |
| 196 | }; |
| 197 | |
| 198 | explicit unary_evaluator(const XprType& xpr) : m_argImpl(xpr.nestedExpression()), m_view(xpr) {} |
| 199 | |
| 200 | protected: |
| 201 | evaluator<ArgType> m_argImpl; |
| 202 | const XprType &m_view; |
| 203 | }; |
| 204 | |
| 205 | } // end namespace internal |
| 206 | |
| 207 | /** \ingroup SparseCore_Module |
| 208 | * |
| 209 | * \returns a sparse expression of the dense expression \c *this with values smaller than |
| 210 | * \a reference * \a epsilon removed. |
| 211 | * |
| 212 | * This method is typically used when prototyping to convert a quickly assembled dense Matrix \c D to a SparseMatrix \c S: |
| 213 | * \code |
| 214 | * MatrixXd D(n,m); |
| 215 | * SparseMatrix<double> S; |
| 216 | * S = D.sparseView(); // suppress numerical zeros (exact) |
| 217 | * S = D.sparseView(reference); |
| 218 | * S = D.sparseView(reference,epsilon); |
| 219 | * \endcode |
| 220 | * where \a reference is a meaningful non zero reference value, |
| 221 | * and \a epsilon is a tolerance factor defaulting to NumTraits<Scalar>::dummy_precision(). |
| 222 | * |
| 223 | * \sa SparseMatrixBase::pruned(), class SparseView */ |
| 224 | template<typename Derived> |
| 225 | const SparseView<Derived> MatrixBase<Derived>::sparseView(const Scalar& reference, |
| 226 | const typename NumTraits<Scalar>::Real& epsilon) const |
| 227 | { |
| 228 | return SparseView<Derived>(derived(), reference, epsilon); |
| 229 | } |
| 230 | |
| 231 | /** \returns an expression of \c *this with values smaller than |
| 232 | * \a reference * \a epsilon removed. |
| 233 | * |
| 234 | * This method is typically used in conjunction with the product of two sparse matrices |
| 235 | * to automatically prune the smallest values as follows: |
| 236 | * \code |
| 237 | * C = (A*B).pruned(); // suppress numerical zeros (exact) |
| 238 | * C = (A*B).pruned(ref); |
| 239 | * C = (A*B).pruned(ref,epsilon); |
| 240 | * \endcode |
| 241 | * where \c ref is a meaningful non zero reference value. |
| 242 | * */ |
| 243 | template<typename Derived> |
| 244 | const SparseView<Derived> |
| 245 | SparseMatrixBase<Derived>::pruned(const Scalar& reference, |
| 246 | const RealScalar& epsilon) const |
| 247 | { |
| 248 | return SparseView<Derived>(derived(), reference, epsilon); |
| 249 | } |
| 250 | |
| 251 | } // end namespace Eigen |
| 252 | |
| 253 | #endif |
| 254 | |