1
2/** \returns an expression of the coefficient wise product of \c *this and \a other
3 *
4 * \sa MatrixBase::cwiseProduct
5 */
6template<typename OtherDerived>
7EIGEN_DEVICE_FUNC
8EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)
9operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
10{
11 return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived());
12}
13
14/** \returns an expression of the coefficient wise quotient of \c *this and \a other
15 *
16 * \sa MatrixBase::cwiseQuotient
17 */
18template<typename OtherDerived>
19EIGEN_DEVICE_FUNC
20EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_quotient_op<Scalar,typename OtherDerived::Scalar>, const Derived, const OtherDerived>
21operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
22{
23 return CwiseBinaryOp<internal::scalar_quotient_op<Scalar,typename OtherDerived::Scalar>, const Derived, const OtherDerived>(derived(), other.derived());
24}
25
26/** \returns an expression of the coefficient-wise min of \c *this and \a other
27 *
28 * Example: \include Cwise_min.cpp
29 * Output: \verbinclude Cwise_min.out
30 *
31 * \sa max()
32 */
33EIGEN_MAKE_CWISE_BINARY_OP(min,min)
34
35/** \returns an expression of the coefficient-wise min of \c *this and scalar \a other
36 *
37 * \sa max()
38 */
39EIGEN_DEVICE_FUNC
40EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_min_op<Scalar,Scalar>, const Derived,
41 const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
42#ifdef EIGEN_PARSED_BY_DOXYGEN
43min
44#else
45(min)
46#endif
47(const Scalar &other) const
48{
49 return (min)(Derived::PlainObject::Constant(rows(), cols(), other));
50}
51
52/** \returns an expression of the coefficient-wise max of \c *this and \a other
53 *
54 * Example: \include Cwise_max.cpp
55 * Output: \verbinclude Cwise_max.out
56 *
57 * \sa min()
58 */
59EIGEN_MAKE_CWISE_BINARY_OP(max,max)
60
61/** \returns an expression of the coefficient-wise max of \c *this and scalar \a other
62 *
63 * \sa min()
64 */
65EIGEN_DEVICE_FUNC
66EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_max_op<Scalar,Scalar>, const Derived,
67 const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> >
68#ifdef EIGEN_PARSED_BY_DOXYGEN
69max
70#else
71(max)
72#endif
73(const Scalar &other) const
74{
75 return (max)(Derived::PlainObject::Constant(rows(), cols(), other));
76}
77
78/** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents.
79 *
80 * This function computes the coefficient-wise power.
81 *
82 * Example: \include Cwise_array_power_array.cpp
83 * Output: \verbinclude Cwise_array_power_array.out
84 */
85EIGEN_MAKE_CWISE_BINARY_OP(pow,pow)
86
87#ifndef EIGEN_PARSED_BY_DOXYGEN
88EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(pow,pow)
89#else
90/** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent
91 *
92 * \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression.
93 *
94 * This function computes the coefficient-wise power. The function MatrixBase::pow() in the
95 * unsupported module MatrixFunctions computes the matrix power.
96 *
97 * Example: \include Cwise_pow.cpp
98 * Output: \verbinclude Cwise_pow.out
99 *
100 * \sa ArrayBase::pow(ArrayBase), square(), cube(), exp(), log()
101 */
102template<typename T>
103const CwiseBinaryOp<internal::scalar_pow_op<Scalar,T>,Derived,Constant<T> > pow(const T& exponent) const;
104#endif
105
106
107// TODO code generating macros could be moved to Macros.h and could include generation of documentation
108#define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \
109template<typename OtherDerived> \
110EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_cmp_op<Scalar, typename OtherDerived::Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const OtherDerived> \
111OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
112{ \
113 return CwiseBinaryOp<internal::scalar_cmp_op<Scalar, typename OtherDerived::Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const OtherDerived>(derived(), other.derived()); \
114}\
115typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,Scalar, internal::cmp_ ## COMPARATOR>, const Derived, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \
116typedef CwiseBinaryOp<internal::scalar_cmp_op<Scalar,Scalar, internal::cmp_ ## COMPARATOR>, const CwiseNullaryOp<internal::scalar_constant_op<Scalar>, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \
117EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \
118OP(const Scalar& s) const { \
119 return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \
120} \
121EIGEN_DEVICE_FUNC friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \
122OP(const Scalar& s, const Derived& d) { \
123 return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \
124}
125
126#define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \
127template<typename OtherDerived> \
128EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp<internal::scalar_cmp_op<typename OtherDerived::Scalar, Scalar, internal::cmp_##RCOMPARATOR>, const OtherDerived, const Derived> \
129OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const \
130{ \
131 return CwiseBinaryOp<internal::scalar_cmp_op<typename OtherDerived::Scalar, Scalar, internal::cmp_##RCOMPARATOR>, const OtherDerived, const Derived>(other.derived(), derived()); \
132} \
133EIGEN_DEVICE_FUNC \
134inline const RCmp ## RCOMPARATOR ## ReturnType \
135OP(const Scalar& s) const { \
136 return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \
137} \
138friend inline const Cmp ## RCOMPARATOR ## ReturnType \
139OP(const Scalar& s, const Derived& d) { \
140 return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \
141}
142
143
144
145/** \returns an expression of the coefficient-wise \< operator of *this and \a other
146 *
147 * Example: \include Cwise_less.cpp
148 * Output: \verbinclude Cwise_less.out
149 *
150 * \sa all(), any(), operator>(), operator<=()
151 */
152EIGEN_MAKE_CWISE_COMP_OP(operator<, LT)
153
154/** \returns an expression of the coefficient-wise \<= operator of *this and \a other
155 *
156 * Example: \include Cwise_less_equal.cpp
157 * Output: \verbinclude Cwise_less_equal.out
158 *
159 * \sa all(), any(), operator>=(), operator<()
160 */
161EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE)
162
163/** \returns an expression of the coefficient-wise \> operator of *this and \a other
164 *
165 * Example: \include Cwise_greater.cpp
166 * Output: \verbinclude Cwise_greater.out
167 *
168 * \sa all(), any(), operator>=(), operator<()
169 */
170EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT)
171
172/** \returns an expression of the coefficient-wise \>= operator of *this and \a other
173 *
174 * Example: \include Cwise_greater_equal.cpp
175 * Output: \verbinclude Cwise_greater_equal.out
176 *
177 * \sa all(), any(), operator>(), operator<=()
178 */
179EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE)
180
181/** \returns an expression of the coefficient-wise == operator of *this and \a other
182 *
183 * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
184 * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
185 * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
186 * isMuchSmallerThan().
187 *
188 * Example: \include Cwise_equal_equal.cpp
189 * Output: \verbinclude Cwise_equal_equal.out
190 *
191 * \sa all(), any(), isApprox(), isMuchSmallerThan()
192 */
193EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ)
194
195/** \returns an expression of the coefficient-wise != operator of *this and \a other
196 *
197 * \warning this performs an exact comparison, which is generally a bad idea with floating-point types.
198 * In order to check for equality between two vectors or matrices with floating-point coefficients, it is
199 * generally a far better idea to use a fuzzy comparison as provided by isApprox() and
200 * isMuchSmallerThan().
201 *
202 * Example: \include Cwise_not_equal.cpp
203 * Output: \verbinclude Cwise_not_equal.out
204 *
205 * \sa all(), any(), isApprox(), isMuchSmallerThan()
206 */
207EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ)
208
209
210#undef EIGEN_MAKE_CWISE_COMP_OP
211#undef EIGEN_MAKE_CWISE_COMP_R_OP
212
213// scalar addition
214#ifndef EIGEN_PARSED_BY_DOXYGEN
215EIGEN_MAKE_SCALAR_BINARY_OP(operator+,sum)
216#else
217/** \returns an expression of \c *this with each coeff incremented by the constant \a scalar
218 *
219 * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression.
220 *
221 * Example: \include Cwise_plus.cpp
222 * Output: \verbinclude Cwise_plus.out
223 *
224 * \sa operator+=(), operator-()
225 */
226template<typename T>
227const CwiseBinaryOp<internal::scalar_sum_op<Scalar,T>,Derived,Constant<T> > operator+(const T& scalar) const;
228/** \returns an expression of \a expr with each coeff incremented by the constant \a scalar
229 *
230 * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression.
231 */
232template<typename T> friend
233const CwiseBinaryOp<internal::scalar_sum_op<T,Scalar>,Constant<T>,Derived> operator+(const T& scalar, const StorageBaseType& expr);
234#endif
235
236#ifndef EIGEN_PARSED_BY_DOXYGEN
237EIGEN_MAKE_SCALAR_BINARY_OP(operator-,difference)
238#else
239/** \returns an expression of \c *this with each coeff decremented by the constant \a scalar
240 *
241 * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression.
242 *
243 * Example: \include Cwise_minus.cpp
244 * Output: \verbinclude Cwise_minus.out
245 *
246 * \sa operator+=(), operator-()
247 */
248template<typename T>
249const CwiseBinaryOp<internal::scalar_difference_op<Scalar,T>,Derived,Constant<T> > operator-(const T& scalar) const;
250/** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr
251 *
252 * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression.
253 */
254template<typename T> friend
255const CwiseBinaryOp<internal::scalar_difference_op<T,Scalar>,Constant<T>,Derived> operator-(const T& scalar, const StorageBaseType& expr);
256#endif
257
258
259#ifndef EIGEN_PARSED_BY_DOXYGEN
260 EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/,quotient)
261#else
262 /**
263 * \brief Component-wise division of the scalar \a s by array elements of \a a.
264 *
265 * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar).
266 */
267 template<typename T> friend
268 inline const CwiseBinaryOp<internal::scalar_quotient_op<T,Scalar>,Constant<T>,Derived>
269 operator/(const T& s,const StorageBaseType& a);
270#endif
271
272/** \returns an expression of the coefficient-wise ^ operator of *this and \a other
273 *
274 * \warning this operator is for expression of bool only.
275 *
276 * Example: \include Cwise_boolean_xor.cpp
277 * Output: \verbinclude Cwise_boolean_xor.out
278 *
279 * \sa operator&&(), select()
280 */
281template<typename OtherDerived>
282EIGEN_DEVICE_FUNC
283inline const CwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived>
284operator^(const EIGEN_CURRENT_STORAGE_BASE_CLASS<OtherDerived> &other) const
285{
286 EIGEN_STATIC_ASSERT((internal::is_same<bool,Scalar>::value && internal::is_same<bool,typename OtherDerived::Scalar>::value),
287 THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL);
288 return CwiseBinaryOp<internal::scalar_boolean_xor_op, const Derived, const OtherDerived>(derived(),other.derived());
289}
290
291// NOTE disabled until we agree on argument order
292#if 0
293/** \cpp11 \returns an expression of the coefficient-wise polygamma function.
294 *
295 * \specialfunctions_module
296 *
297 * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this.
298 *
299 * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x)
300 *
301 * \sa Eigen::polygamma()
302 */
303template<typename DerivedN>
304inline const CwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const DerivedN, const Derived>
305polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS<DerivedN> &n) const
306{
307 return CwiseBinaryOp<internal::scalar_polygamma_op<Scalar>, const DerivedN, const Derived>(n.derived(), this->derived());
308}
309#endif
310
311/** \returns an expression of the coefficient-wise zeta function.
312 *
313 * \specialfunctions_module
314 *
315 * It returns the Riemann zeta function of two arguments \c *this and \a q:
316 *
317 * \param *this is the exposent, it must be > 1
318 * \param q is the shift, it must be > 0
319 *
320 * \note This function supports only float and double scalar types. To support other scalar types, the user has
321 * to provide implementations of zeta(T,T) for any scalar type T to be supported.
322 *
323 * This method is an alias for zeta(*this,q);
324 *
325 * \sa Eigen::zeta()
326 */
327template<typename DerivedQ>
328inline const CwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const DerivedQ>
329zeta(const EIGEN_CURRENT_STORAGE_BASE_CLASS<DerivedQ> &q) const
330{
331 return CwiseBinaryOp<internal::scalar_zeta_op<Scalar>, const Derived, const DerivedQ>(this->derived(), q.derived());
332}
333