| 1 | /* $Id: ClpSimplexDual.hpp 1665 2011-01-04 17:55:54Z lou $ */ | 
|---|
| 2 | // Copyright (C) 2002, International Business Machines | 
|---|
| 3 | // Corporation and others.  All Rights Reserved. | 
|---|
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). | 
|---|
| 5 | /* | 
|---|
| 6 | Authors | 
|---|
| 7 |  | 
|---|
| 8 | John Forrest | 
|---|
| 9 |  | 
|---|
| 10 | */ | 
|---|
| 11 | #ifndef ClpSimplexDual_H | 
|---|
| 12 | #define ClpSimplexDual_H | 
|---|
| 13 |  | 
|---|
| 14 | #include "ClpSimplex.hpp" | 
|---|
| 15 |  | 
|---|
| 16 | /** This solves LPs using the dual simplex method | 
|---|
| 17 |  | 
|---|
| 18 | It inherits from ClpSimplex.  It has no data of its own and | 
|---|
| 19 | is never created - only cast from a ClpSimplex object at algorithm time. | 
|---|
| 20 |  | 
|---|
| 21 | */ | 
|---|
| 22 |  | 
|---|
| 23 | class ClpSimplexDual : public ClpSimplex { | 
|---|
| 24 |  | 
|---|
| 25 | public: | 
|---|
| 26 |  | 
|---|
| 27 | /**@name Description of algorithm */ | 
|---|
| 28 | //@{ | 
|---|
| 29 | /** Dual algorithm | 
|---|
| 30 |  | 
|---|
| 31 | Method | 
|---|
| 32 |  | 
|---|
| 33 | It tries to be a single phase approach with a weight of 1.0 being | 
|---|
| 34 | given to getting optimal and a weight of updatedDualBound_ being | 
|---|
| 35 | given to getting dual feasible.  In this version I have used the | 
|---|
| 36 | idea that this weight can be thought of as a fake bound.  If the | 
|---|
| 37 | distance between the lower and upper bounds on a variable is less | 
|---|
| 38 | than the feasibility weight then we are always better off flipping | 
|---|
| 39 | to other bound to make dual feasible.  If the distance is greater | 
|---|
| 40 | then we make up a fake bound updatedDualBound_ away from one bound. | 
|---|
| 41 | If we end up optimal or primal infeasible, we check to see if | 
|---|
| 42 | bounds okay.  If so we have finished, if not we increase updatedDualBound_ | 
|---|
| 43 | and continue (after checking if unbounded). I am undecided about | 
|---|
| 44 | free variables - there is coding but I am not sure about it.  At | 
|---|
| 45 | present I put them in basis anyway. | 
|---|
| 46 |  | 
|---|
| 47 | The code is designed to take advantage of sparsity so arrays are | 
|---|
| 48 | seldom zeroed out from scratch or gone over in their entirety. | 
|---|
| 49 | The only exception is a full scan to find outgoing variable for | 
|---|
| 50 | Dantzig row choice.  For steepest edge we keep an updated list | 
|---|
| 51 | of infeasibilities (actually squares). | 
|---|
| 52 | On easy problems we don't need full scan - just | 
|---|
| 53 | pick first reasonable. | 
|---|
| 54 |  | 
|---|
| 55 | One problem is how to tackle degeneracy and accuracy.  At present | 
|---|
| 56 | I am using the modification of costs which I put in OSL and some | 
|---|
| 57 | of what I think is the dual analog of Gill et al. | 
|---|
| 58 | I am still not sure of the exact details. | 
|---|
| 59 |  | 
|---|
| 60 | The flow of dual is three while loops as follows: | 
|---|
| 61 |  | 
|---|
| 62 | while (not finished) { | 
|---|
| 63 |  | 
|---|
| 64 | while (not clean solution) { | 
|---|
| 65 |  | 
|---|
| 66 | Factorize and/or clean up solution by flipping variables so | 
|---|
| 67 | dual feasible.  If looks finished check fake dual bounds. | 
|---|
| 68 | Repeat until status is iterating (-1) or finished (0,1,2) | 
|---|
| 69 |  | 
|---|
| 70 | } | 
|---|
| 71 |  | 
|---|
| 72 | while (status==-1) { | 
|---|
| 73 |  | 
|---|
| 74 | Iterate until no pivot in or out or time to re-factorize. | 
|---|
| 75 |  | 
|---|
| 76 | Flow is: | 
|---|
| 77 |  | 
|---|
| 78 | choose pivot row (outgoing variable).  if none then | 
|---|
| 79 | we are primal feasible so looks as if done but we need to | 
|---|
| 80 | break and check bounds etc. | 
|---|
| 81 |  | 
|---|
| 82 | Get pivot row in tableau | 
|---|
| 83 |  | 
|---|
| 84 | Choose incoming column.  If we don't find one then we look | 
|---|
| 85 | primal infeasible so break and check bounds etc.  (Also the | 
|---|
| 86 | pivot tolerance is larger after any iterations so that may be | 
|---|
| 87 | reason) | 
|---|
| 88 |  | 
|---|
| 89 | If we do find incoming column, we may have to adjust costs to | 
|---|
| 90 | keep going forwards (anti-degeneracy).  Check pivot will be stable | 
|---|
| 91 | and if unstable throw away iteration and break to re-factorize. | 
|---|
| 92 | If minor error re-factorize after iteration. | 
|---|
| 93 |  | 
|---|
| 94 | Update everything (this may involve flipping variables to stay | 
|---|
| 95 | dual feasible. | 
|---|
| 96 |  | 
|---|
| 97 | } | 
|---|
| 98 |  | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | TODO's (or maybe not) | 
|---|
| 102 |  | 
|---|
| 103 | At present we never check we are going forwards.  I overdid that in | 
|---|
| 104 | OSL so will try and make a last resort. | 
|---|
| 105 |  | 
|---|
| 106 | Needs partial scan pivot out option. | 
|---|
| 107 |  | 
|---|
| 108 | May need other anti-degeneracy measures, especially if we try and use | 
|---|
| 109 | loose tolerances as a way to solve in fewer iterations. | 
|---|
| 110 |  | 
|---|
| 111 | I like idea of dynamic scaling.  This gives opportunity to decouple | 
|---|
| 112 | different implications of scaling for accuracy, iteration count and | 
|---|
| 113 | feasibility tolerance. | 
|---|
| 114 |  | 
|---|
| 115 | for use of exotic parameter startFinishoptions see Clpsimplex.hpp | 
|---|
| 116 | */ | 
|---|
| 117 |  | 
|---|
| 118 | int dual(int ifValuesPass, int startFinishOptions = 0); | 
|---|
| 119 | /** For strong branching.  On input lower and upper are new bounds | 
|---|
| 120 | while on output they are change in objective function values | 
|---|
| 121 | (>1.0e50 infeasible). | 
|---|
| 122 | Return code is 0 if nothing interesting, -1 if infeasible both | 
|---|
| 123 | ways and +1 if infeasible one way (check values to see which one(s)) | 
|---|
| 124 | Solutions are filled in as well - even down, odd up - also | 
|---|
| 125 | status and number of iterations | 
|---|
| 126 | */ | 
|---|
| 127 | int strongBranching(int numberVariables, const int * variables, | 
|---|
| 128 | double * newLower, double * newUpper, | 
|---|
| 129 | double ** outputSolution, | 
|---|
| 130 | int * outputStatus, int * outputIterations, | 
|---|
| 131 | bool stopOnFirstInfeasible = true, | 
|---|
| 132 | bool alwaysFinish = false, | 
|---|
| 133 | int startFinishOptions = 0); | 
|---|
| 134 | /// This does first part of StrongBranching | 
|---|
| 135 | ClpFactorization * setupForStrongBranching(char * arrays, int numberRows, | 
|---|
| 136 | int numberColumns, bool solveLp = false); | 
|---|
| 137 | /// This cleans up after strong branching | 
|---|
| 138 | void cleanupAfterStrongBranching(ClpFactorization * factorization); | 
|---|
| 139 | //@} | 
|---|
| 140 |  | 
|---|
| 141 | /**@name Functions used in dual */ | 
|---|
| 142 | //@{ | 
|---|
| 143 | /** This has the flow between re-factorizations | 
|---|
| 144 | Broken out for clarity and will be used by strong branching | 
|---|
| 145 |  | 
|---|
| 146 | Reasons to come out: | 
|---|
| 147 | -1 iterations etc | 
|---|
| 148 | -2 inaccuracy | 
|---|
| 149 | -3 slight inaccuracy (and done iterations) | 
|---|
| 150 | +0 looks optimal (might be unbounded - but we will investigate) | 
|---|
| 151 | +1 looks infeasible | 
|---|
| 152 | +3 max iterations | 
|---|
| 153 |  | 
|---|
| 154 | If givenPi not NULL then in values pass | 
|---|
| 155 | */ | 
|---|
| 156 | int whileIterating(double * & givenPi, int ifValuesPass); | 
|---|
| 157 | /** The duals are updated by the given arrays. | 
|---|
| 158 | Returns number of infeasibilities. | 
|---|
| 159 | After rowArray and columnArray will just have those which | 
|---|
| 160 | have been flipped. | 
|---|
| 161 | Variables may be flipped between bounds to stay dual feasible. | 
|---|
| 162 | The output vector has movement of primal | 
|---|
| 163 | solution (row length array) */ | 
|---|
| 164 | int updateDualsInDual(CoinIndexedVector * rowArray, | 
|---|
| 165 | CoinIndexedVector * columnArray, | 
|---|
| 166 | CoinIndexedVector * outputArray, | 
|---|
| 167 | double theta, | 
|---|
| 168 | double & objectiveChange, | 
|---|
| 169 | bool fullRecompute); | 
|---|
| 170 | /** The duals are updated by the given arrays. | 
|---|
| 171 | This is in values pass - so no changes to primal is made | 
|---|
| 172 | */ | 
|---|
| 173 | void updateDualsInValuesPass(CoinIndexedVector * rowArray, | 
|---|
| 174 | CoinIndexedVector * columnArray, | 
|---|
| 175 | double theta); | 
|---|
| 176 | /** While updateDualsInDual sees what effect is of flip | 
|---|
| 177 | this does actual flipping. | 
|---|
| 178 | */ | 
|---|
| 179 | void flipBounds(CoinIndexedVector * rowArray, | 
|---|
| 180 | CoinIndexedVector * columnArray); | 
|---|
| 181 | /** | 
|---|
| 182 | Row array has row part of pivot row | 
|---|
| 183 | Column array has column part. | 
|---|
| 184 | This chooses pivot column. | 
|---|
| 185 | Spare arrays are used to save pivots which will go infeasible | 
|---|
| 186 | We will check for basic so spare array will never overflow. | 
|---|
| 187 | If necessary will modify costs | 
|---|
| 188 | For speed, we may need to go to a bucket approach when many | 
|---|
| 189 | variables are being flipped. | 
|---|
| 190 | Returns best possible pivot value | 
|---|
| 191 | */ | 
|---|
| 192 | double dualColumn(CoinIndexedVector * rowArray, | 
|---|
| 193 | CoinIndexedVector * columnArray, | 
|---|
| 194 | CoinIndexedVector * spareArray, | 
|---|
| 195 | CoinIndexedVector * spareArray2, | 
|---|
| 196 | double accpetablePivot, | 
|---|
| 197 | CoinBigIndex * dubiousWeights); | 
|---|
| 198 | /// Does first bit of dualColumn | 
|---|
| 199 | int dualColumn0(const CoinIndexedVector * rowArray, | 
|---|
| 200 | const CoinIndexedVector * columnArray, | 
|---|
| 201 | CoinIndexedVector * spareArray, | 
|---|
| 202 | double acceptablePivot, | 
|---|
| 203 | double & upperReturn, double &bestReturn, double & badFree); | 
|---|
| 204 | /** | 
|---|
| 205 | Row array has row part of pivot row | 
|---|
| 206 | Column array has column part. | 
|---|
| 207 | This sees what is best thing to do in dual values pass | 
|---|
| 208 | if sequenceIn==sequenceOut can change dual on chosen row and leave variable in basis | 
|---|
| 209 | */ | 
|---|
| 210 | void checkPossibleValuesMove(CoinIndexedVector * rowArray, | 
|---|
| 211 | CoinIndexedVector * columnArray, | 
|---|
| 212 | double acceptablePivot); | 
|---|
| 213 | /** | 
|---|
| 214 | Row array has row part of pivot row | 
|---|
| 215 | Column array has column part. | 
|---|
| 216 | This sees what is best thing to do in branch and bound cleanup | 
|---|
| 217 | If sequenceIn_ < 0 then can't do anything | 
|---|
| 218 | */ | 
|---|
| 219 | void checkPossibleCleanup(CoinIndexedVector * rowArray, | 
|---|
| 220 | CoinIndexedVector * columnArray, | 
|---|
| 221 | double acceptablePivot); | 
|---|
| 222 | /** | 
|---|
| 223 | This sees if we can move duals in dual values pass. | 
|---|
| 224 | This is done before any pivoting | 
|---|
| 225 | */ | 
|---|
| 226 | void doEasyOnesInValuesPass(double * givenReducedCosts); | 
|---|
| 227 | /** | 
|---|
| 228 | Chooses dual pivot row | 
|---|
| 229 | Would be faster with separate region to scan | 
|---|
| 230 | and will have this (with square of infeasibility) when steepest | 
|---|
| 231 | For easy problems we can just choose one of the first rows we look at | 
|---|
| 232 |  | 
|---|
| 233 | If alreadyChosen >=0 then in values pass and that row has been | 
|---|
| 234 | selected | 
|---|
| 235 | */ | 
|---|
| 236 | void dualRow(int alreadyChosen); | 
|---|
| 237 | /** Checks if any fake bounds active - if so returns number and modifies | 
|---|
| 238 | updatedDualBound_ and everything. | 
|---|
| 239 | Free variables will be left as free | 
|---|
| 240 | Returns number of bounds changed if >=0 | 
|---|
| 241 | Returns -1 if not initialize and no effect | 
|---|
| 242 | Fills in changeVector which can be used to see if unbounded | 
|---|
| 243 | and cost of change vector | 
|---|
| 244 | If 2 sets to original (just changed) | 
|---|
| 245 | */ | 
|---|
| 246 | int changeBounds(int initialize, CoinIndexedVector * outputArray, | 
|---|
| 247 | double & changeCost); | 
|---|
| 248 | /** As changeBounds but just changes new bounds for a single variable. | 
|---|
| 249 | Returns true if change */ | 
|---|
| 250 | bool changeBound( int iSequence); | 
|---|
| 251 | /// Restores bound to original bound | 
|---|
| 252 | void originalBound(int iSequence); | 
|---|
| 253 | /** Checks if tentative optimal actually means unbounded in dual | 
|---|
| 254 | Returns -3 if not, 2 if is unbounded */ | 
|---|
| 255 | int checkUnbounded(CoinIndexedVector * ray, CoinIndexedVector * spare, | 
|---|
| 256 | double changeCost); | 
|---|
| 257 | /**  Refactorizes if necessary | 
|---|
| 258 | Checks if finished.  Updates status. | 
|---|
| 259 | lastCleaned refers to iteration at which some objective/feasibility | 
|---|
| 260 | cleaning too place. | 
|---|
| 261 |  | 
|---|
| 262 | type - 0 initial so set up save arrays etc | 
|---|
| 263 | - 1 normal -if good update save | 
|---|
| 264 | - 2 restoring from saved | 
|---|
| 265 | */ | 
|---|
| 266 | void statusOfProblemInDual(int & lastCleaned, int type, | 
|---|
| 267 | double * givenDjs, ClpDataSave & saveData, | 
|---|
| 268 | int ifValuesPass); | 
|---|
| 269 | /** Perturbs problem (method depends on perturbation()) | 
|---|
| 270 | returns nonzero if should go to dual */ | 
|---|
| 271 | int perturb(); | 
|---|
| 272 | /** Fast iterations.  Misses out a lot of initialization. | 
|---|
| 273 | Normally stops on maximum iterations, first re-factorization | 
|---|
| 274 | or tentative optimum.  If looks interesting then continues as | 
|---|
| 275 | normal.  Returns 0 if finished properly, 1 otherwise. | 
|---|
| 276 | */ | 
|---|
| 277 | int fastDual(bool alwaysFinish = false); | 
|---|
| 278 | /** Checks number of variables at fake bounds.  This is used by fastDual | 
|---|
| 279 | so can exit gracefully before end */ | 
|---|
| 280 | int numberAtFakeBound(); | 
|---|
| 281 |  | 
|---|
| 282 | /** Pivot in a variable and choose an outgoing one.  Assumes dual | 
|---|
| 283 | feasible - will not go through a reduced cost.  Returns step length in theta | 
|---|
| 284 | Returns ray in ray_ (or NULL if no pivot) | 
|---|
| 285 | Return codes as before but -1 means no acceptable pivot | 
|---|
| 286 | */ | 
|---|
| 287 | int pivotResult(); | 
|---|
| 288 | /** Get next free , -1 if none */ | 
|---|
| 289 | int nextSuperBasic(); | 
|---|
| 290 | /** Startup part of dual (may be extended to other algorithms) | 
|---|
| 291 | returns 0 if good, 1 if bad */ | 
|---|
| 292 | int startupSolve(int ifValuesPass, double * saveDuals, int startFinishOptions); | 
|---|
| 293 | void finishSolve(int startFinishOptions); | 
|---|
| 294 | void gutsOfDual(int ifValuesPass, double * & saveDuals, int initialStatus, | 
|---|
| 295 | ClpDataSave & saveData); | 
|---|
| 296 | //int dual2(int ifValuesPass,int startFinishOptions=0); | 
|---|
| 297 | void resetFakeBounds(int type); | 
|---|
| 298 |  | 
|---|
| 299 | //@} | 
|---|
| 300 | }; | 
|---|
| 301 | #endif | 
|---|
| 302 |  | 
|---|