1 | /* $Id: CoinPackedVector.hpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2000, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #ifndef CoinPackedVector_H |
7 | #define CoinPackedVector_H |
8 | |
9 | #include <map> |
10 | |
11 | #include "CoinPragma.hpp" |
12 | #include "CoinPackedVectorBase.hpp" |
13 | #include "CoinSort.hpp" |
14 | |
15 | #ifdef COIN_FAST_CODE |
16 | #ifndef COIN_NOTEST_DUPLICATE |
17 | #define COIN_NOTEST_DUPLICATE |
18 | #endif |
19 | #endif |
20 | |
21 | #ifndef COIN_NOTEST_DUPLICATE |
22 | #define COIN_DEFAULT_VALUE_FOR_DUPLICATE true |
23 | #else |
24 | #define COIN_DEFAULT_VALUE_FOR_DUPLICATE false |
25 | #endif |
26 | /** Sparse Vector |
27 | |
28 | Stores vector of indices and associated element values. |
29 | Supports sorting of vector while maintaining the original indices. |
30 | |
31 | Here is a sample usage: |
32 | @verbatim |
33 | const int ne = 4; |
34 | int inx[ne] = { 1, 4, 0, 2 } |
35 | double el[ne] = { 10., 40., 1., 50. } |
36 | |
37 | // Create vector and set its value |
38 | CoinPackedVector r(ne,inx,el); |
39 | |
40 | // access each index and element |
41 | assert( r.indices ()[0]== 1 ); |
42 | assert( r.elements()[0]==10. ); |
43 | assert( r.indices ()[1]== 4 ); |
44 | assert( r.elements()[1]==40. ); |
45 | assert( r.indices ()[2]== 0 ); |
46 | assert( r.elements()[2]== 1. ); |
47 | assert( r.indices ()[3]== 2 ); |
48 | assert( r.elements()[3]==50. ); |
49 | |
50 | // access original position of index |
51 | assert( r.originalPosition()[0]==0 ); |
52 | assert( r.originalPosition()[1]==1 ); |
53 | assert( r.originalPosition()[2]==2 ); |
54 | assert( r.originalPosition()[3]==3 ); |
55 | |
56 | // access as a full storage vector |
57 | assert( r[ 0]==1. ); |
58 | assert( r[ 1]==10.); |
59 | assert( r[ 2]==50.); |
60 | assert( r[ 3]==0. ); |
61 | assert( r[ 4]==40.); |
62 | |
63 | // sort Elements in increasing order |
64 | r.sortIncrElement(); |
65 | |
66 | // access each index and element |
67 | assert( r.indices ()[0]== 0 ); |
68 | assert( r.elements()[0]== 1. ); |
69 | assert( r.indices ()[1]== 1 ); |
70 | assert( r.elements()[1]==10. ); |
71 | assert( r.indices ()[2]== 4 ); |
72 | assert( r.elements()[2]==40. ); |
73 | assert( r.indices ()[3]== 2 ); |
74 | assert( r.elements()[3]==50. ); |
75 | |
76 | // access original position of index |
77 | assert( r.originalPosition()[0]==2 ); |
78 | assert( r.originalPosition()[1]==0 ); |
79 | assert( r.originalPosition()[2]==1 ); |
80 | assert( r.originalPosition()[3]==3 ); |
81 | |
82 | // access as a full storage vector |
83 | assert( r[ 0]==1. ); |
84 | assert( r[ 1]==10.); |
85 | assert( r[ 2]==50.); |
86 | assert( r[ 3]==0. ); |
87 | assert( r[ 4]==40.); |
88 | |
89 | // Restore orignal sort order |
90 | r.sortOriginalOrder(); |
91 | |
92 | assert( r.indices ()[0]== 1 ); |
93 | assert( r.elements()[0]==10. ); |
94 | assert( r.indices ()[1]== 4 ); |
95 | assert( r.elements()[1]==40. ); |
96 | assert( r.indices ()[2]== 0 ); |
97 | assert( r.elements()[2]== 1. ); |
98 | assert( r.indices ()[3]== 2 ); |
99 | assert( r.elements()[3]==50. ); |
100 | |
101 | // Tests for equality and equivalence |
102 | CoinPackedVector r1; |
103 | r1=r; |
104 | assert( r==r1 ); |
105 | assert( r.equivalent(r1) ); |
106 | r.sortIncrElement(); |
107 | assert( r!=r1 ); |
108 | assert( r.equivalent(r1) ); |
109 | |
110 | // Add packed vectors. |
111 | // Similarly for subtraction, multiplication, |
112 | // and division. |
113 | CoinPackedVector add = r + r1; |
114 | assert( add[0] == 1.+ 1. ); |
115 | assert( add[1] == 10.+10. ); |
116 | assert( add[2] == 50.+50. ); |
117 | assert( add[3] == 0.+ 0. ); |
118 | assert( add[4] == 40.+40. ); |
119 | |
120 | assert( r.sum() == 10.+40.+1.+50. ); |
121 | @endverbatim |
122 | */ |
123 | class CoinPackedVector : public CoinPackedVectorBase { |
124 | friend void CoinPackedVectorUnitTest(); |
125 | |
126 | public: |
127 | /**@name Get methods. */ |
128 | //@{ |
129 | /// Get the size |
130 | virtual int getNumElements() const override { return nElements_; } |
131 | /// Get indices of elements |
132 | virtual const int * getIndices() const override { return indices_; } |
133 | /// Get element values |
134 | virtual const double * getElements() const override { return elements_; } |
135 | /// Get indices of elements |
136 | int * getIndices() { return indices_; } |
137 | /// Get element values |
138 | double * getElements() { return elements_; } |
139 | /** Get pointer to int * vector of original postions. |
140 | If the packed vector has not been sorted then this |
141 | function returns the vector: 0, 1, 2, ..., size()-1. */ |
142 | const int * getOriginalPosition() const { return origIndices_; } |
143 | //@} |
144 | |
145 | //------------------------------------------------------------------- |
146 | // Set indices and elements |
147 | //------------------------------------------------------------------- |
148 | /**@name Set methods */ |
149 | //@{ |
150 | /// Reset the vector (as if were just created an empty vector) |
151 | void clear(); |
152 | /** Assignment operator. <br> |
153 | <strong>NOTE</strong>: This operator keeps the current |
154 | <code>testForDuplicateIndex</code> setting, and affter copying the data |
155 | it acts accordingly. */ |
156 | CoinPackedVector & operator=(const CoinPackedVector &); |
157 | /** Assignment operator from a CoinPackedVectorBase. <br> |
158 | <strong>NOTE</strong>: This operator keeps the current |
159 | <code>testForDuplicateIndex</code> setting, and affter copying the data |
160 | it acts accordingly. */ |
161 | CoinPackedVector & operator=(const CoinPackedVectorBase & rhs); |
162 | |
163 | /** Assign the ownership of the arguments to this vector. |
164 | Size is the length of both the indices and elements vectors. |
165 | The indices and elements vectors are copied into this class instance's |
166 | member data. The last argument indicates whether this vector will have |
167 | to be tested for duplicate indices. |
168 | */ |
169 | void assignVector(int size, int*& inds, double*& elems, |
170 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
171 | |
172 | /** Set vector size, indices, and elements. |
173 | Size is the length of both the indices and elements vectors. |
174 | The indices and elements vectors are copied into this class instance's |
175 | member data. The last argument specifies whether this vector will have |
176 | to be checked for duplicate indices whenever that can happen. */ |
177 | void setVector(int size, const int * inds, const double * elems, |
178 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
179 | |
180 | /** Elements set to have the same scalar value */ |
181 | void setConstant(int size, const int * inds, double elems, |
182 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
183 | |
184 | /** Indices are not specified and are taken to be 0,1,...,size-1 */ |
185 | void setFull(int size, const double * elems, |
186 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
187 | |
188 | /** Indices are not specified and are taken to be 0,1,...,size-1, |
189 | but only where non zero*/ |
190 | void setFullNonZero(int size, const double * elems, |
191 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
192 | |
193 | /** Set an existing element in the packed vector |
194 | The first argument is the "index" into the elements() array |
195 | */ |
196 | void setElement(int index, double element); |
197 | |
198 | /// Insert an element into the vector |
199 | void insert(int index, double element); |
200 | /// Append a CoinPackedVector to the end |
201 | void append(const CoinPackedVectorBase & caboose); |
202 | |
203 | /// Swap values in positions i and j of indices and elements |
204 | void swap(int i, int j); |
205 | |
206 | /** Resize the packed vector to be the first newSize elements. |
207 | Problem with truncate: what happens with origIndices_ ??? */ |
208 | void truncate(int newSize); |
209 | //@} |
210 | |
211 | /**@name Arithmetic operators. */ |
212 | //@{ |
213 | /// add <code>value</code> to every entry |
214 | void operator+=(double value); |
215 | /// subtract <code>value</code> from every entry |
216 | void operator-=(double value); |
217 | /// multiply every entry by <code>value</code> |
218 | void operator*=(double value); |
219 | /// divide every entry by <code>value</code> |
220 | void operator/=(double value); |
221 | //@} |
222 | |
223 | /**@name Sorting */ |
224 | //@{ |
225 | /** Sort the packed storage vector. |
226 | Typcical usages: |
227 | <pre> |
228 | packedVector.sort(CoinIncrIndexOrdered()); //increasing indices |
229 | packedVector.sort(CoinIncrElementOrdered()); // increasing elements |
230 | </pre> |
231 | */ |
232 | template <class CoinCompare3> |
233 | void sort(const CoinCompare3 & tc) |
234 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
235 | tc); } |
236 | |
237 | void sortIncrIndex() |
238 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
239 | CoinFirstLess_3<int, int, double>()); } |
240 | |
241 | void sortDecrIndex() |
242 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
243 | CoinFirstGreater_3<int, int, double>()); } |
244 | |
245 | void sortIncrElement() |
246 | { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_, |
247 | CoinFirstLess_3<double, int, int>()); } |
248 | |
249 | void sortDecrElement() |
250 | { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_, |
251 | CoinFirstGreater_3<double, int, int>()); } |
252 | |
253 | |
254 | /** Sort in original order. |
255 | If the vector has been sorted, then this method restores |
256 | to its orignal sort order. |
257 | */ |
258 | void sortOriginalOrder(); |
259 | //@} |
260 | |
261 | /**@name Memory usage */ |
262 | //@{ |
263 | /** Reserve space. |
264 | If one knows the eventual size of the packed vector, |
265 | then it may be more efficient to reserve the space. |
266 | */ |
267 | void reserve(int n); |
268 | /** capacity returns the size which could be accomodated without |
269 | having to reallocate storage. |
270 | */ |
271 | int capacity() const { return capacity_; } |
272 | //@} |
273 | /**@name Constructors and destructors */ |
274 | //@{ |
275 | /** Default constructor */ |
276 | CoinPackedVector(bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
277 | /** \brief Alternate Constructors - set elements to vector of doubles |
278 | |
279 | This constructor copies the vectors provided as parameters. |
280 | */ |
281 | CoinPackedVector(int size, const int * inds, const double * elems, |
282 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
283 | /** \brief Alternate Constructors - set elements to vector of doubles |
284 | |
285 | This constructor takes ownership of the vectors passed as parameters. |
286 | \p inds and \p elems will be NULL on return. |
287 | */ |
288 | CoinPackedVector(int capacity, int size, int *&inds, double *&elems, |
289 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
290 | /** Alternate Constructors - set elements to same scalar value */ |
291 | CoinPackedVector(int size, const int * inds, double element, |
292 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
293 | /** Alternate Constructors - construct full storage with indices 0 through |
294 | size-1. */ |
295 | CoinPackedVector(int size, const double * elements, |
296 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
297 | /** Copy constructor. */ |
298 | CoinPackedVector(const CoinPackedVector &); |
299 | /** Copy constructor <em>from a PackedVectorBase</em>. */ |
300 | CoinPackedVector(const CoinPackedVectorBase & rhs); |
301 | /** Destructor */ |
302 | virtual ~CoinPackedVector (); |
303 | //@} |
304 | |
305 | private: |
306 | /**@name Private methods */ |
307 | //@{ |
308 | /// Copy internal date |
309 | void gutsOfSetVector(int size, |
310 | const int * inds, const double * elems, |
311 | bool testForDuplicateIndex, |
312 | const char * method); |
313 | /// |
314 | void gutsOfSetConstant(int size, |
315 | const int * inds, double value, |
316 | bool testForDuplicateIndex, |
317 | const char * method); |
318 | //@} |
319 | |
320 | private: |
321 | /**@name Private member data */ |
322 | //@{ |
323 | /// Vector indices |
324 | int * indices_; |
325 | ///Vector elements |
326 | double * elements_; |
327 | /// Size of indices and elements vectors |
328 | int nElements_; |
329 | /// original unsorted indices |
330 | int * origIndices_; |
331 | /// Amount of memory allocated for indices_, origIndices_, and elements_. |
332 | int capacity_; |
333 | //@} |
334 | }; |
335 | |
336 | //############################################################################# |
337 | |
338 | /**@name Arithmetic operators on packed vectors. |
339 | |
340 | <strong>NOTE</strong>: These methods operate on those positions where at |
341 | least one of the arguments has a value listed. At those positions the |
342 | appropriate operation is executed, Otherwise the result of the operation is |
343 | considered 0.<br> |
344 | <strong>NOTE 2</strong>: There are two kind of operators here. One is used |
345 | like "c = binaryOp(a, b)", the other is used like "binaryOp(c, a, b)", but |
346 | they are really the same. The first is much more natural to use, but it |
347 | involves the creation of a temporary object (the function *must* return an |
348 | object), while the second form puts the result directly into the argument |
349 | "c". Therefore, depending on the circumstances, the second form can be |
350 | significantly faster. |
351 | */ |
352 | //@{ |
353 | template <class BinaryFunction> void |
354 | binaryOp(CoinPackedVector& retVal, |
355 | const CoinPackedVectorBase& op1, double value, |
356 | BinaryFunction bf) |
357 | { |
358 | retVal.clear(); |
359 | const int s = op1.getNumElements(); |
360 | if (s > 0) { |
361 | retVal.reserve(s); |
362 | const int * inds = op1.getIndices(); |
363 | const double * elems = op1.getElements(); |
364 | for (int i=0; i<s; ++i ) { |
365 | retVal.insert(inds[i], bf(value, elems[i])); |
366 | } |
367 | } |
368 | } |
369 | |
370 | template <class BinaryFunction> inline void |
371 | binaryOp(CoinPackedVector& retVal, |
372 | double value, const CoinPackedVectorBase& op2, |
373 | BinaryFunction bf) |
374 | { |
375 | binaryOp(retVal, op2, value, bf); |
376 | } |
377 | |
378 | template <class BinaryFunction> void |
379 | binaryOp(CoinPackedVector& retVal, |
380 | const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2, |
381 | BinaryFunction bf) |
382 | { |
383 | retVal.clear(); |
384 | const int s1 = op1.getNumElements(); |
385 | const int s2 = op2.getNumElements(); |
386 | /* |
387 | Replaced || with &&, in response to complaint from Sven deVries, who |
388 | rightly points out || is not appropriate for additive operations. && |
389 | should be ok as long as binaryOp is understood not to create something |
390 | from nothing. -- lh, 04.06.11 |
391 | */ |
392 | if (s1 == 0 && s2 == 0) |
393 | return; |
394 | |
395 | retVal.reserve(s1+s2); |
396 | |
397 | const int * inds1 = op1.getIndices(); |
398 | const double * elems1 = op1.getElements(); |
399 | const int * inds2 = op2.getIndices(); |
400 | const double * elems2 = op2.getElements(); |
401 | |
402 | int i; |
403 | // loop once for each element in op1 |
404 | for ( i=0; i<s1; ++i ) { |
405 | const int index = inds1[i]; |
406 | const int pos2 = op2.findIndex(index); |
407 | const double val = bf(elems1[i], pos2 == -1 ? 0.0 : elems2[pos2]); |
408 | // if (val != 0.0) // *THINK* : should we put in only nonzeros? |
409 | retVal.insert(index, val); |
410 | } |
411 | // loop once for each element in operand2 |
412 | for ( i=0; i<s2; ++i ) { |
413 | const int index = inds2[i]; |
414 | // if index exists in op1, then element was processed in prior loop |
415 | if ( op1.isExistingIndex(index) ) |
416 | continue; |
417 | // Index does not exist in op1, so the element value must be zero |
418 | const double val = bf(0.0, elems2[i]); |
419 | // if (val != 0.0) // *THINK* : should we put in only nonzeros? |
420 | retVal.insert(index, val); |
421 | } |
422 | } |
423 | |
424 | //----------------------------------------------------------------------------- |
425 | |
426 | template <class BinaryFunction> CoinPackedVector |
427 | binaryOp(const CoinPackedVectorBase& op1, double value, |
428 | BinaryFunction bf) |
429 | { |
430 | CoinPackedVector retVal; |
431 | retVal.setTestForDuplicateIndex(true); |
432 | binaryOp(retVal, op1, value, bf); |
433 | return retVal; |
434 | } |
435 | |
436 | template <class BinaryFunction> CoinPackedVector |
437 | binaryOp(double value, const CoinPackedVectorBase& op2, |
438 | BinaryFunction bf) |
439 | { |
440 | CoinPackedVector retVal; |
441 | retVal.setTestForDuplicateIndex(true); |
442 | binaryOp(retVal, op2, value, bf); |
443 | return retVal; |
444 | } |
445 | |
446 | template <class BinaryFunction> CoinPackedVector |
447 | binaryOp(const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2, |
448 | BinaryFunction bf) |
449 | { |
450 | CoinPackedVector retVal; |
451 | retVal.setTestForDuplicateIndex(true); |
452 | binaryOp(retVal, op1, op2, bf); |
453 | return retVal; |
454 | } |
455 | |
456 | //----------------------------------------------------------------------------- |
457 | /// Return the sum of two packed vectors |
458 | inline CoinPackedVector operator+(const CoinPackedVectorBase& op1, |
459 | const CoinPackedVectorBase& op2) |
460 | { |
461 | CoinPackedVector retVal; |
462 | retVal.setTestForDuplicateIndex(true); |
463 | binaryOp(retVal, op1, op2, std::plus<double>()); |
464 | return retVal; |
465 | } |
466 | |
467 | /// Return the difference of two packed vectors |
468 | inline CoinPackedVector operator-(const CoinPackedVectorBase& op1, |
469 | const CoinPackedVectorBase& op2) |
470 | { |
471 | CoinPackedVector retVal; |
472 | retVal.setTestForDuplicateIndex(true); |
473 | binaryOp(retVal, op1, op2, std::minus<double>()); |
474 | return retVal; |
475 | } |
476 | |
477 | /// Return the element-wise product of two packed vectors |
478 | inline CoinPackedVector operator*(const CoinPackedVectorBase& op1, |
479 | const CoinPackedVectorBase& op2) |
480 | { |
481 | CoinPackedVector retVal; |
482 | retVal.setTestForDuplicateIndex(true); |
483 | binaryOp(retVal, op1, op2, std::multiplies<double>()); |
484 | return retVal; |
485 | } |
486 | |
487 | /// Return the element-wise ratio of two packed vectors |
488 | inline CoinPackedVector operator/(const CoinPackedVectorBase& op1, |
489 | const CoinPackedVectorBase& op2) |
490 | { |
491 | CoinPackedVector retVal; |
492 | retVal.setTestForDuplicateIndex(true); |
493 | binaryOp(retVal, op1, op2, std::divides<double>()); |
494 | return retVal; |
495 | } |
496 | //@} |
497 | |
498 | /// Returns the dot product of two CoinPackedVector objects whose elements are |
499 | /// doubles. Use this version if the vectors are *not* guaranteed to be sorted. |
500 | inline double sparseDotProduct(const CoinPackedVectorBase& op1, |
501 | const CoinPackedVectorBase& op2){ |
502 | int len, i; |
503 | double acc = 0.0; |
504 | CoinPackedVector retVal; |
505 | |
506 | CoinPackedVector retval = op1*op2; |
507 | len = retval.getNumElements(); |
508 | double * CParray = retval.getElements(); |
509 | |
510 | for(i = 0; i < len; i++){ |
511 | acc += CParray[i]; |
512 | } |
513 | return acc; |
514 | } |
515 | |
516 | |
517 | /// Returns the dot product of two sorted CoinPackedVector objects. |
518 | /// The vectors should be sorted in ascending order of indices. |
519 | inline double sortedSparseDotProduct(const CoinPackedVectorBase& op1, |
520 | const CoinPackedVectorBase& op2){ |
521 | int i, j, len1, len2; |
522 | double acc = 0.0; |
523 | |
524 | const double* v1val = op1.getElements(); |
525 | const double* v2val = op2.getElements(); |
526 | const int* v1ind = op1.getIndices(); |
527 | const int* v2ind = op2.getIndices(); |
528 | |
529 | len1 = op1.getNumElements(); |
530 | len2 = op2.getNumElements(); |
531 | |
532 | i = 0; |
533 | j = 0; |
534 | |
535 | while(i < len1 && j < len2){ |
536 | if(v1ind[i] == v2ind[j]){ |
537 | acc += v1val[i] * v2val[j]; |
538 | i++; |
539 | j++; |
540 | } |
541 | else if(v2ind[j] < v1ind[i]){ |
542 | j++; |
543 | } |
544 | else{ |
545 | i++; |
546 | } // end if-else-elseif |
547 | } // end while |
548 | return acc; |
549 | } |
550 | |
551 | |
552 | //----------------------------------------------------------------------------- |
553 | |
554 | /**@name Arithmetic operators on packed vector and a constant. <br> |
555 | These functions create a packed vector as a result. That packed vector will |
556 | have the same indices as <code>op1</code> and the specified operation is |
557 | done entry-wise with the given value. */ |
558 | //@{ |
559 | /// Return the sum of a packed vector and a constant |
560 | inline CoinPackedVector |
561 | operator+(const CoinPackedVectorBase& op1, double value) |
562 | { |
563 | CoinPackedVector retVal(op1); |
564 | retVal += value; |
565 | return retVal; |
566 | } |
567 | |
568 | /// Return the difference of a packed vector and a constant |
569 | inline CoinPackedVector |
570 | operator-(const CoinPackedVectorBase& op1, double value) |
571 | { |
572 | CoinPackedVector retVal(op1); |
573 | retVal -= value; |
574 | return retVal; |
575 | } |
576 | |
577 | /// Return the element-wise product of a packed vector and a constant |
578 | inline CoinPackedVector |
579 | operator*(const CoinPackedVectorBase& op1, double value) |
580 | { |
581 | CoinPackedVector retVal(op1); |
582 | retVal *= value; |
583 | return retVal; |
584 | } |
585 | |
586 | /// Return the element-wise ratio of a packed vector and a constant |
587 | inline CoinPackedVector |
588 | operator/(const CoinPackedVectorBase& op1, double value) |
589 | { |
590 | CoinPackedVector retVal(op1); |
591 | retVal /= value; |
592 | return retVal; |
593 | } |
594 | |
595 | //----------------------------------------------------------------------------- |
596 | |
597 | /// Return the sum of a constant and a packed vector |
598 | inline CoinPackedVector |
599 | operator+(double value, const CoinPackedVectorBase& op1) |
600 | { |
601 | CoinPackedVector retVal(op1); |
602 | retVal += value; |
603 | return retVal; |
604 | } |
605 | |
606 | /// Return the difference of a constant and a packed vector |
607 | inline CoinPackedVector |
608 | operator-(double value, const CoinPackedVectorBase& op1) |
609 | { |
610 | CoinPackedVector retVal(op1); |
611 | const int size = retVal.getNumElements(); |
612 | double* elems = retVal.getElements(); |
613 | for (int i = 0; i < size; ++i) { |
614 | elems[i] = value - elems[i]; |
615 | } |
616 | return retVal; |
617 | } |
618 | |
619 | /// Return the element-wise product of a constant and a packed vector |
620 | inline CoinPackedVector |
621 | operator*(double value, const CoinPackedVectorBase& op1) |
622 | { |
623 | CoinPackedVector retVal(op1); |
624 | retVal *= value; |
625 | return retVal; |
626 | } |
627 | |
628 | /// Return the element-wise ratio of a a constant and packed vector |
629 | inline CoinPackedVector |
630 | operator/(double value, const CoinPackedVectorBase& op1) |
631 | { |
632 | CoinPackedVector retVal(op1); |
633 | const int size = retVal.getNumElements(); |
634 | double* elems = retVal.getElements(); |
635 | for (int i = 0; i < size; ++i) { |
636 | elems[i] = value / elems[i]; |
637 | } |
638 | return retVal; |
639 | } |
640 | //@} |
641 | |
642 | //############################################################################# |
643 | /** A function that tests the methods in the CoinPackedVector class. The |
644 | only reason for it not to be a member method is that this way it doesn't |
645 | have to be compiled into the library. And that's a gain, because the |
646 | library should be compiled with optimization on, but this method should be |
647 | compiled with debugging. */ |
648 | void |
649 | CoinPackedVectorUnitTest(); |
650 | |
651 | #endif |
652 | |