| 1 | /* $Id: CoinPackedVector.hpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2000, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #ifndef CoinPackedVector_H |
| 7 | #define CoinPackedVector_H |
| 8 | |
| 9 | #include <map> |
| 10 | |
| 11 | #include "CoinPragma.hpp" |
| 12 | #include "CoinPackedVectorBase.hpp" |
| 13 | #include "CoinSort.hpp" |
| 14 | |
| 15 | #ifdef COIN_FAST_CODE |
| 16 | #ifndef COIN_NOTEST_DUPLICATE |
| 17 | #define COIN_NOTEST_DUPLICATE |
| 18 | #endif |
| 19 | #endif |
| 20 | |
| 21 | #ifndef COIN_NOTEST_DUPLICATE |
| 22 | #define COIN_DEFAULT_VALUE_FOR_DUPLICATE true |
| 23 | #else |
| 24 | #define COIN_DEFAULT_VALUE_FOR_DUPLICATE false |
| 25 | #endif |
| 26 | /** Sparse Vector |
| 27 | |
| 28 | Stores vector of indices and associated element values. |
| 29 | Supports sorting of vector while maintaining the original indices. |
| 30 | |
| 31 | Here is a sample usage: |
| 32 | @verbatim |
| 33 | const int ne = 4; |
| 34 | int inx[ne] = { 1, 4, 0, 2 } |
| 35 | double el[ne] = { 10., 40., 1., 50. } |
| 36 | |
| 37 | // Create vector and set its value |
| 38 | CoinPackedVector r(ne,inx,el); |
| 39 | |
| 40 | // access each index and element |
| 41 | assert( r.indices ()[0]== 1 ); |
| 42 | assert( r.elements()[0]==10. ); |
| 43 | assert( r.indices ()[1]== 4 ); |
| 44 | assert( r.elements()[1]==40. ); |
| 45 | assert( r.indices ()[2]== 0 ); |
| 46 | assert( r.elements()[2]== 1. ); |
| 47 | assert( r.indices ()[3]== 2 ); |
| 48 | assert( r.elements()[3]==50. ); |
| 49 | |
| 50 | // access original position of index |
| 51 | assert( r.originalPosition()[0]==0 ); |
| 52 | assert( r.originalPosition()[1]==1 ); |
| 53 | assert( r.originalPosition()[2]==2 ); |
| 54 | assert( r.originalPosition()[3]==3 ); |
| 55 | |
| 56 | // access as a full storage vector |
| 57 | assert( r[ 0]==1. ); |
| 58 | assert( r[ 1]==10.); |
| 59 | assert( r[ 2]==50.); |
| 60 | assert( r[ 3]==0. ); |
| 61 | assert( r[ 4]==40.); |
| 62 | |
| 63 | // sort Elements in increasing order |
| 64 | r.sortIncrElement(); |
| 65 | |
| 66 | // access each index and element |
| 67 | assert( r.indices ()[0]== 0 ); |
| 68 | assert( r.elements()[0]== 1. ); |
| 69 | assert( r.indices ()[1]== 1 ); |
| 70 | assert( r.elements()[1]==10. ); |
| 71 | assert( r.indices ()[2]== 4 ); |
| 72 | assert( r.elements()[2]==40. ); |
| 73 | assert( r.indices ()[3]== 2 ); |
| 74 | assert( r.elements()[3]==50. ); |
| 75 | |
| 76 | // access original position of index |
| 77 | assert( r.originalPosition()[0]==2 ); |
| 78 | assert( r.originalPosition()[1]==0 ); |
| 79 | assert( r.originalPosition()[2]==1 ); |
| 80 | assert( r.originalPosition()[3]==3 ); |
| 81 | |
| 82 | // access as a full storage vector |
| 83 | assert( r[ 0]==1. ); |
| 84 | assert( r[ 1]==10.); |
| 85 | assert( r[ 2]==50.); |
| 86 | assert( r[ 3]==0. ); |
| 87 | assert( r[ 4]==40.); |
| 88 | |
| 89 | // Restore orignal sort order |
| 90 | r.sortOriginalOrder(); |
| 91 | |
| 92 | assert( r.indices ()[0]== 1 ); |
| 93 | assert( r.elements()[0]==10. ); |
| 94 | assert( r.indices ()[1]== 4 ); |
| 95 | assert( r.elements()[1]==40. ); |
| 96 | assert( r.indices ()[2]== 0 ); |
| 97 | assert( r.elements()[2]== 1. ); |
| 98 | assert( r.indices ()[3]== 2 ); |
| 99 | assert( r.elements()[3]==50. ); |
| 100 | |
| 101 | // Tests for equality and equivalence |
| 102 | CoinPackedVector r1; |
| 103 | r1=r; |
| 104 | assert( r==r1 ); |
| 105 | assert( r.equivalent(r1) ); |
| 106 | r.sortIncrElement(); |
| 107 | assert( r!=r1 ); |
| 108 | assert( r.equivalent(r1) ); |
| 109 | |
| 110 | // Add packed vectors. |
| 111 | // Similarly for subtraction, multiplication, |
| 112 | // and division. |
| 113 | CoinPackedVector add = r + r1; |
| 114 | assert( add[0] == 1.+ 1. ); |
| 115 | assert( add[1] == 10.+10. ); |
| 116 | assert( add[2] == 50.+50. ); |
| 117 | assert( add[3] == 0.+ 0. ); |
| 118 | assert( add[4] == 40.+40. ); |
| 119 | |
| 120 | assert( r.sum() == 10.+40.+1.+50. ); |
| 121 | @endverbatim |
| 122 | */ |
| 123 | class CoinPackedVector : public CoinPackedVectorBase { |
| 124 | friend void CoinPackedVectorUnitTest(); |
| 125 | |
| 126 | public: |
| 127 | /**@name Get methods. */ |
| 128 | //@{ |
| 129 | /// Get the size |
| 130 | virtual int getNumElements() const override { return nElements_; } |
| 131 | /// Get indices of elements |
| 132 | virtual const int * getIndices() const override { return indices_; } |
| 133 | /// Get element values |
| 134 | virtual const double * getElements() const override { return elements_; } |
| 135 | /// Get indices of elements |
| 136 | int * getIndices() { return indices_; } |
| 137 | /// Get element values |
| 138 | double * getElements() { return elements_; } |
| 139 | /** Get pointer to int * vector of original postions. |
| 140 | If the packed vector has not been sorted then this |
| 141 | function returns the vector: 0, 1, 2, ..., size()-1. */ |
| 142 | const int * getOriginalPosition() const { return origIndices_; } |
| 143 | //@} |
| 144 | |
| 145 | //------------------------------------------------------------------- |
| 146 | // Set indices and elements |
| 147 | //------------------------------------------------------------------- |
| 148 | /**@name Set methods */ |
| 149 | //@{ |
| 150 | /// Reset the vector (as if were just created an empty vector) |
| 151 | void clear(); |
| 152 | /** Assignment operator. <br> |
| 153 | <strong>NOTE</strong>: This operator keeps the current |
| 154 | <code>testForDuplicateIndex</code> setting, and affter copying the data |
| 155 | it acts accordingly. */ |
| 156 | CoinPackedVector & operator=(const CoinPackedVector &); |
| 157 | /** Assignment operator from a CoinPackedVectorBase. <br> |
| 158 | <strong>NOTE</strong>: This operator keeps the current |
| 159 | <code>testForDuplicateIndex</code> setting, and affter copying the data |
| 160 | it acts accordingly. */ |
| 161 | CoinPackedVector & operator=(const CoinPackedVectorBase & rhs); |
| 162 | |
| 163 | /** Assign the ownership of the arguments to this vector. |
| 164 | Size is the length of both the indices and elements vectors. |
| 165 | The indices and elements vectors are copied into this class instance's |
| 166 | member data. The last argument indicates whether this vector will have |
| 167 | to be tested for duplicate indices. |
| 168 | */ |
| 169 | void assignVector(int size, int*& inds, double*& elems, |
| 170 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 171 | |
| 172 | /** Set vector size, indices, and elements. |
| 173 | Size is the length of both the indices and elements vectors. |
| 174 | The indices and elements vectors are copied into this class instance's |
| 175 | member data. The last argument specifies whether this vector will have |
| 176 | to be checked for duplicate indices whenever that can happen. */ |
| 177 | void setVector(int size, const int * inds, const double * elems, |
| 178 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 179 | |
| 180 | /** Elements set to have the same scalar value */ |
| 181 | void setConstant(int size, const int * inds, double elems, |
| 182 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 183 | |
| 184 | /** Indices are not specified and are taken to be 0,1,...,size-1 */ |
| 185 | void setFull(int size, const double * elems, |
| 186 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 187 | |
| 188 | /** Indices are not specified and are taken to be 0,1,...,size-1, |
| 189 | but only where non zero*/ |
| 190 | void setFullNonZero(int size, const double * elems, |
| 191 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 192 | |
| 193 | /** Set an existing element in the packed vector |
| 194 | The first argument is the "index" into the elements() array |
| 195 | */ |
| 196 | void setElement(int index, double element); |
| 197 | |
| 198 | /// Insert an element into the vector |
| 199 | void insert(int index, double element); |
| 200 | /// Append a CoinPackedVector to the end |
| 201 | void append(const CoinPackedVectorBase & caboose); |
| 202 | |
| 203 | /// Swap values in positions i and j of indices and elements |
| 204 | void swap(int i, int j); |
| 205 | |
| 206 | /** Resize the packed vector to be the first newSize elements. |
| 207 | Problem with truncate: what happens with origIndices_ ??? */ |
| 208 | void truncate(int newSize); |
| 209 | //@} |
| 210 | |
| 211 | /**@name Arithmetic operators. */ |
| 212 | //@{ |
| 213 | /// add <code>value</code> to every entry |
| 214 | void operator+=(double value); |
| 215 | /// subtract <code>value</code> from every entry |
| 216 | void operator-=(double value); |
| 217 | /// multiply every entry by <code>value</code> |
| 218 | void operator*=(double value); |
| 219 | /// divide every entry by <code>value</code> |
| 220 | void operator/=(double value); |
| 221 | //@} |
| 222 | |
| 223 | /**@name Sorting */ |
| 224 | //@{ |
| 225 | /** Sort the packed storage vector. |
| 226 | Typcical usages: |
| 227 | <pre> |
| 228 | packedVector.sort(CoinIncrIndexOrdered()); //increasing indices |
| 229 | packedVector.sort(CoinIncrElementOrdered()); // increasing elements |
| 230 | </pre> |
| 231 | */ |
| 232 | template <class CoinCompare3> |
| 233 | void sort(const CoinCompare3 & tc) |
| 234 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
| 235 | tc); } |
| 236 | |
| 237 | void sortIncrIndex() |
| 238 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
| 239 | CoinFirstLess_3<int, int, double>()); } |
| 240 | |
| 241 | void sortDecrIndex() |
| 242 | { CoinSort_3(indices_, indices_ + nElements_, origIndices_, elements_, |
| 243 | CoinFirstGreater_3<int, int, double>()); } |
| 244 | |
| 245 | void sortIncrElement() |
| 246 | { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_, |
| 247 | CoinFirstLess_3<double, int, int>()); } |
| 248 | |
| 249 | void sortDecrElement() |
| 250 | { CoinSort_3(elements_, elements_ + nElements_, origIndices_, indices_, |
| 251 | CoinFirstGreater_3<double, int, int>()); } |
| 252 | |
| 253 | |
| 254 | /** Sort in original order. |
| 255 | If the vector has been sorted, then this method restores |
| 256 | to its orignal sort order. |
| 257 | */ |
| 258 | void sortOriginalOrder(); |
| 259 | //@} |
| 260 | |
| 261 | /**@name Memory usage */ |
| 262 | //@{ |
| 263 | /** Reserve space. |
| 264 | If one knows the eventual size of the packed vector, |
| 265 | then it may be more efficient to reserve the space. |
| 266 | */ |
| 267 | void reserve(int n); |
| 268 | /** capacity returns the size which could be accomodated without |
| 269 | having to reallocate storage. |
| 270 | */ |
| 271 | int capacity() const { return capacity_; } |
| 272 | //@} |
| 273 | /**@name Constructors and destructors */ |
| 274 | //@{ |
| 275 | /** Default constructor */ |
| 276 | CoinPackedVector(bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 277 | /** \brief Alternate Constructors - set elements to vector of doubles |
| 278 | |
| 279 | This constructor copies the vectors provided as parameters. |
| 280 | */ |
| 281 | CoinPackedVector(int size, const int * inds, const double * elems, |
| 282 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 283 | /** \brief Alternate Constructors - set elements to vector of doubles |
| 284 | |
| 285 | This constructor takes ownership of the vectors passed as parameters. |
| 286 | \p inds and \p elems will be NULL on return. |
| 287 | */ |
| 288 | CoinPackedVector(int capacity, int size, int *&inds, double *&elems, |
| 289 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 290 | /** Alternate Constructors - set elements to same scalar value */ |
| 291 | CoinPackedVector(int size, const int * inds, double element, |
| 292 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 293 | /** Alternate Constructors - construct full storage with indices 0 through |
| 294 | size-1. */ |
| 295 | CoinPackedVector(int size, const double * elements, |
| 296 | bool testForDuplicateIndex = COIN_DEFAULT_VALUE_FOR_DUPLICATE); |
| 297 | /** Copy constructor. */ |
| 298 | CoinPackedVector(const CoinPackedVector &); |
| 299 | /** Copy constructor <em>from a PackedVectorBase</em>. */ |
| 300 | CoinPackedVector(const CoinPackedVectorBase & rhs); |
| 301 | /** Destructor */ |
| 302 | virtual ~CoinPackedVector (); |
| 303 | //@} |
| 304 | |
| 305 | private: |
| 306 | /**@name Private methods */ |
| 307 | //@{ |
| 308 | /// Copy internal date |
| 309 | void gutsOfSetVector(int size, |
| 310 | const int * inds, const double * elems, |
| 311 | bool testForDuplicateIndex, |
| 312 | const char * method); |
| 313 | /// |
| 314 | void gutsOfSetConstant(int size, |
| 315 | const int * inds, double value, |
| 316 | bool testForDuplicateIndex, |
| 317 | const char * method); |
| 318 | //@} |
| 319 | |
| 320 | private: |
| 321 | /**@name Private member data */ |
| 322 | //@{ |
| 323 | /// Vector indices |
| 324 | int * indices_; |
| 325 | ///Vector elements |
| 326 | double * elements_; |
| 327 | /// Size of indices and elements vectors |
| 328 | int nElements_; |
| 329 | /// original unsorted indices |
| 330 | int * origIndices_; |
| 331 | /// Amount of memory allocated for indices_, origIndices_, and elements_. |
| 332 | int capacity_; |
| 333 | //@} |
| 334 | }; |
| 335 | |
| 336 | //############################################################################# |
| 337 | |
| 338 | /**@name Arithmetic operators on packed vectors. |
| 339 | |
| 340 | <strong>NOTE</strong>: These methods operate on those positions where at |
| 341 | least one of the arguments has a value listed. At those positions the |
| 342 | appropriate operation is executed, Otherwise the result of the operation is |
| 343 | considered 0.<br> |
| 344 | <strong>NOTE 2</strong>: There are two kind of operators here. One is used |
| 345 | like "c = binaryOp(a, b)", the other is used like "binaryOp(c, a, b)", but |
| 346 | they are really the same. The first is much more natural to use, but it |
| 347 | involves the creation of a temporary object (the function *must* return an |
| 348 | object), while the second form puts the result directly into the argument |
| 349 | "c". Therefore, depending on the circumstances, the second form can be |
| 350 | significantly faster. |
| 351 | */ |
| 352 | //@{ |
| 353 | template <class BinaryFunction> void |
| 354 | binaryOp(CoinPackedVector& retVal, |
| 355 | const CoinPackedVectorBase& op1, double value, |
| 356 | BinaryFunction bf) |
| 357 | { |
| 358 | retVal.clear(); |
| 359 | const int s = op1.getNumElements(); |
| 360 | if (s > 0) { |
| 361 | retVal.reserve(s); |
| 362 | const int * inds = op1.getIndices(); |
| 363 | const double * elems = op1.getElements(); |
| 364 | for (int i=0; i<s; ++i ) { |
| 365 | retVal.insert(inds[i], bf(value, elems[i])); |
| 366 | } |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | template <class BinaryFunction> inline void |
| 371 | binaryOp(CoinPackedVector& retVal, |
| 372 | double value, const CoinPackedVectorBase& op2, |
| 373 | BinaryFunction bf) |
| 374 | { |
| 375 | binaryOp(retVal, op2, value, bf); |
| 376 | } |
| 377 | |
| 378 | template <class BinaryFunction> void |
| 379 | binaryOp(CoinPackedVector& retVal, |
| 380 | const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2, |
| 381 | BinaryFunction bf) |
| 382 | { |
| 383 | retVal.clear(); |
| 384 | const int s1 = op1.getNumElements(); |
| 385 | const int s2 = op2.getNumElements(); |
| 386 | /* |
| 387 | Replaced || with &&, in response to complaint from Sven deVries, who |
| 388 | rightly points out || is not appropriate for additive operations. && |
| 389 | should be ok as long as binaryOp is understood not to create something |
| 390 | from nothing. -- lh, 04.06.11 |
| 391 | */ |
| 392 | if (s1 == 0 && s2 == 0) |
| 393 | return; |
| 394 | |
| 395 | retVal.reserve(s1+s2); |
| 396 | |
| 397 | const int * inds1 = op1.getIndices(); |
| 398 | const double * elems1 = op1.getElements(); |
| 399 | const int * inds2 = op2.getIndices(); |
| 400 | const double * elems2 = op2.getElements(); |
| 401 | |
| 402 | int i; |
| 403 | // loop once for each element in op1 |
| 404 | for ( i=0; i<s1; ++i ) { |
| 405 | const int index = inds1[i]; |
| 406 | const int pos2 = op2.findIndex(index); |
| 407 | const double val = bf(elems1[i], pos2 == -1 ? 0.0 : elems2[pos2]); |
| 408 | // if (val != 0.0) // *THINK* : should we put in only nonzeros? |
| 409 | retVal.insert(index, val); |
| 410 | } |
| 411 | // loop once for each element in operand2 |
| 412 | for ( i=0; i<s2; ++i ) { |
| 413 | const int index = inds2[i]; |
| 414 | // if index exists in op1, then element was processed in prior loop |
| 415 | if ( op1.isExistingIndex(index) ) |
| 416 | continue; |
| 417 | // Index does not exist in op1, so the element value must be zero |
| 418 | const double val = bf(0.0, elems2[i]); |
| 419 | // if (val != 0.0) // *THINK* : should we put in only nonzeros? |
| 420 | retVal.insert(index, val); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | //----------------------------------------------------------------------------- |
| 425 | |
| 426 | template <class BinaryFunction> CoinPackedVector |
| 427 | binaryOp(const CoinPackedVectorBase& op1, double value, |
| 428 | BinaryFunction bf) |
| 429 | { |
| 430 | CoinPackedVector retVal; |
| 431 | retVal.setTestForDuplicateIndex(true); |
| 432 | binaryOp(retVal, op1, value, bf); |
| 433 | return retVal; |
| 434 | } |
| 435 | |
| 436 | template <class BinaryFunction> CoinPackedVector |
| 437 | binaryOp(double value, const CoinPackedVectorBase& op2, |
| 438 | BinaryFunction bf) |
| 439 | { |
| 440 | CoinPackedVector retVal; |
| 441 | retVal.setTestForDuplicateIndex(true); |
| 442 | binaryOp(retVal, op2, value, bf); |
| 443 | return retVal; |
| 444 | } |
| 445 | |
| 446 | template <class BinaryFunction> CoinPackedVector |
| 447 | binaryOp(const CoinPackedVectorBase& op1, const CoinPackedVectorBase& op2, |
| 448 | BinaryFunction bf) |
| 449 | { |
| 450 | CoinPackedVector retVal; |
| 451 | retVal.setTestForDuplicateIndex(true); |
| 452 | binaryOp(retVal, op1, op2, bf); |
| 453 | return retVal; |
| 454 | } |
| 455 | |
| 456 | //----------------------------------------------------------------------------- |
| 457 | /// Return the sum of two packed vectors |
| 458 | inline CoinPackedVector operator+(const CoinPackedVectorBase& op1, |
| 459 | const CoinPackedVectorBase& op2) |
| 460 | { |
| 461 | CoinPackedVector retVal; |
| 462 | retVal.setTestForDuplicateIndex(true); |
| 463 | binaryOp(retVal, op1, op2, std::plus<double>()); |
| 464 | return retVal; |
| 465 | } |
| 466 | |
| 467 | /// Return the difference of two packed vectors |
| 468 | inline CoinPackedVector operator-(const CoinPackedVectorBase& op1, |
| 469 | const CoinPackedVectorBase& op2) |
| 470 | { |
| 471 | CoinPackedVector retVal; |
| 472 | retVal.setTestForDuplicateIndex(true); |
| 473 | binaryOp(retVal, op1, op2, std::minus<double>()); |
| 474 | return retVal; |
| 475 | } |
| 476 | |
| 477 | /// Return the element-wise product of two packed vectors |
| 478 | inline CoinPackedVector operator*(const CoinPackedVectorBase& op1, |
| 479 | const CoinPackedVectorBase& op2) |
| 480 | { |
| 481 | CoinPackedVector retVal; |
| 482 | retVal.setTestForDuplicateIndex(true); |
| 483 | binaryOp(retVal, op1, op2, std::multiplies<double>()); |
| 484 | return retVal; |
| 485 | } |
| 486 | |
| 487 | /// Return the element-wise ratio of two packed vectors |
| 488 | inline CoinPackedVector operator/(const CoinPackedVectorBase& op1, |
| 489 | const CoinPackedVectorBase& op2) |
| 490 | { |
| 491 | CoinPackedVector retVal; |
| 492 | retVal.setTestForDuplicateIndex(true); |
| 493 | binaryOp(retVal, op1, op2, std::divides<double>()); |
| 494 | return retVal; |
| 495 | } |
| 496 | //@} |
| 497 | |
| 498 | /// Returns the dot product of two CoinPackedVector objects whose elements are |
| 499 | /// doubles. Use this version if the vectors are *not* guaranteed to be sorted. |
| 500 | inline double sparseDotProduct(const CoinPackedVectorBase& op1, |
| 501 | const CoinPackedVectorBase& op2){ |
| 502 | int len, i; |
| 503 | double acc = 0.0; |
| 504 | CoinPackedVector retVal; |
| 505 | |
| 506 | CoinPackedVector retval = op1*op2; |
| 507 | len = retval.getNumElements(); |
| 508 | double * CParray = retval.getElements(); |
| 509 | |
| 510 | for(i = 0; i < len; i++){ |
| 511 | acc += CParray[i]; |
| 512 | } |
| 513 | return acc; |
| 514 | } |
| 515 | |
| 516 | |
| 517 | /// Returns the dot product of two sorted CoinPackedVector objects. |
| 518 | /// The vectors should be sorted in ascending order of indices. |
| 519 | inline double sortedSparseDotProduct(const CoinPackedVectorBase& op1, |
| 520 | const CoinPackedVectorBase& op2){ |
| 521 | int i, j, len1, len2; |
| 522 | double acc = 0.0; |
| 523 | |
| 524 | const double* v1val = op1.getElements(); |
| 525 | const double* v2val = op2.getElements(); |
| 526 | const int* v1ind = op1.getIndices(); |
| 527 | const int* v2ind = op2.getIndices(); |
| 528 | |
| 529 | len1 = op1.getNumElements(); |
| 530 | len2 = op2.getNumElements(); |
| 531 | |
| 532 | i = 0; |
| 533 | j = 0; |
| 534 | |
| 535 | while(i < len1 && j < len2){ |
| 536 | if(v1ind[i] == v2ind[j]){ |
| 537 | acc += v1val[i] * v2val[j]; |
| 538 | i++; |
| 539 | j++; |
| 540 | } |
| 541 | else if(v2ind[j] < v1ind[i]){ |
| 542 | j++; |
| 543 | } |
| 544 | else{ |
| 545 | i++; |
| 546 | } // end if-else-elseif |
| 547 | } // end while |
| 548 | return acc; |
| 549 | } |
| 550 | |
| 551 | |
| 552 | //----------------------------------------------------------------------------- |
| 553 | |
| 554 | /**@name Arithmetic operators on packed vector and a constant. <br> |
| 555 | These functions create a packed vector as a result. That packed vector will |
| 556 | have the same indices as <code>op1</code> and the specified operation is |
| 557 | done entry-wise with the given value. */ |
| 558 | //@{ |
| 559 | /// Return the sum of a packed vector and a constant |
| 560 | inline CoinPackedVector |
| 561 | operator+(const CoinPackedVectorBase& op1, double value) |
| 562 | { |
| 563 | CoinPackedVector retVal(op1); |
| 564 | retVal += value; |
| 565 | return retVal; |
| 566 | } |
| 567 | |
| 568 | /// Return the difference of a packed vector and a constant |
| 569 | inline CoinPackedVector |
| 570 | operator-(const CoinPackedVectorBase& op1, double value) |
| 571 | { |
| 572 | CoinPackedVector retVal(op1); |
| 573 | retVal -= value; |
| 574 | return retVal; |
| 575 | } |
| 576 | |
| 577 | /// Return the element-wise product of a packed vector and a constant |
| 578 | inline CoinPackedVector |
| 579 | operator*(const CoinPackedVectorBase& op1, double value) |
| 580 | { |
| 581 | CoinPackedVector retVal(op1); |
| 582 | retVal *= value; |
| 583 | return retVal; |
| 584 | } |
| 585 | |
| 586 | /// Return the element-wise ratio of a packed vector and a constant |
| 587 | inline CoinPackedVector |
| 588 | operator/(const CoinPackedVectorBase& op1, double value) |
| 589 | { |
| 590 | CoinPackedVector retVal(op1); |
| 591 | retVal /= value; |
| 592 | return retVal; |
| 593 | } |
| 594 | |
| 595 | //----------------------------------------------------------------------------- |
| 596 | |
| 597 | /// Return the sum of a constant and a packed vector |
| 598 | inline CoinPackedVector |
| 599 | operator+(double value, const CoinPackedVectorBase& op1) |
| 600 | { |
| 601 | CoinPackedVector retVal(op1); |
| 602 | retVal += value; |
| 603 | return retVal; |
| 604 | } |
| 605 | |
| 606 | /// Return the difference of a constant and a packed vector |
| 607 | inline CoinPackedVector |
| 608 | operator-(double value, const CoinPackedVectorBase& op1) |
| 609 | { |
| 610 | CoinPackedVector retVal(op1); |
| 611 | const int size = retVal.getNumElements(); |
| 612 | double* elems = retVal.getElements(); |
| 613 | for (int i = 0; i < size; ++i) { |
| 614 | elems[i] = value - elems[i]; |
| 615 | } |
| 616 | return retVal; |
| 617 | } |
| 618 | |
| 619 | /// Return the element-wise product of a constant and a packed vector |
| 620 | inline CoinPackedVector |
| 621 | operator*(double value, const CoinPackedVectorBase& op1) |
| 622 | { |
| 623 | CoinPackedVector retVal(op1); |
| 624 | retVal *= value; |
| 625 | return retVal; |
| 626 | } |
| 627 | |
| 628 | /// Return the element-wise ratio of a a constant and packed vector |
| 629 | inline CoinPackedVector |
| 630 | operator/(double value, const CoinPackedVectorBase& op1) |
| 631 | { |
| 632 | CoinPackedVector retVal(op1); |
| 633 | const int size = retVal.getNumElements(); |
| 634 | double* elems = retVal.getElements(); |
| 635 | for (int i = 0; i < size; ++i) { |
| 636 | elems[i] = value / elems[i]; |
| 637 | } |
| 638 | return retVal; |
| 639 | } |
| 640 | //@} |
| 641 | |
| 642 | //############################################################################# |
| 643 | /** A function that tests the methods in the CoinPackedVector class. The |
| 644 | only reason for it not to be a member method is that this way it doesn't |
| 645 | have to be compiled into the library. And that's a gain, because the |
| 646 | library should be compiled with optimization on, but this method should be |
| 647 | compiled with debugging. */ |
| 648 | void |
| 649 | CoinPackedVectorUnitTest(); |
| 650 | |
| 651 | #endif |
| 652 | |