1 | /* $Id: CoinPresolveMatrix.hpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #ifndef CoinPresolveMatrix_H |
7 | #define CoinPresolveMatrix_H |
8 | |
9 | #include "CoinPragma.hpp" |
10 | #include "CoinPackedMatrix.hpp" |
11 | #include "CoinMessage.hpp" |
12 | #include "CoinTime.hpp" |
13 | |
14 | #include <cmath> |
15 | #include <cassert> |
16 | #include <cfloat> |
17 | #include <cassert> |
18 | #include <cstdlib> |
19 | |
20 | /*! \file |
21 | |
22 | Declarations for CoinPresolveMatrix and CoinPostsolveMatrix and their |
23 | common base class CoinPrePostsolveMatrix. Also declarations for |
24 | CoinPresolveAction and a number of non-member utility functions. |
25 | */ |
26 | |
27 | |
28 | #if defined(_MSC_VER) |
29 | // Avoid MS Compiler problem in recognizing type to delete |
30 | // by casting to type. |
31 | #define deleteAction(array,type) delete [] ((type) array) |
32 | #else |
33 | #define deleteAction(array,type) delete [] array |
34 | #endif |
35 | |
36 | /*! \brief Zero tolerance |
37 | |
38 | OSL had a fixed zero tolerance; we still use that here. |
39 | */ |
40 | const double ZTOLDP = 1e-12; |
41 | // But use a different one if we are doing doubletons etc |
42 | const double ZTOLDP2 = 1e-10; |
43 | //#define PRESOLVE_DEBUG 1 |
44 | //#define PRESOLVE_CONSISTENCY 1 |
45 | // Debugging macros/functions |
46 | #ifndef PRESOLVE_DETAIL |
47 | #define PRESOLVE_DETAIL_PRINT(s) {} |
48 | #else |
49 | #define PRESOLVE_DETAIL_PRINT(s) s |
50 | #endif |
51 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
52 | #define PRESOLVE_STMT(s) s |
53 | #define PRESOLVEASSERT(x) \ |
54 | ((x) ? 1 : \ |
55 | ((std::cerr << "FAILED ASSERTION at line " \ |
56 | << __LINE__ << ": " #x "\n"), abort(), 0)) |
57 | |
58 | inline void DIE(const char *s) { std::cout<<s; abort(); } |
59 | |
60 | // This code is used in [cr]done for columns and rows that are present in |
61 | // the presolved system. |
62 | #define PRESENT_IN_REDUCED '\377' |
63 | |
64 | #else |
65 | |
66 | #define PRESOLVEASSERT(x) {} |
67 | #define PRESOLVE_STMT(s) {} |
68 | |
69 | inline void DIE(const char *) {} |
70 | |
71 | #endif |
72 | |
73 | inline int ALIGN(int n, int m) { return (((n + m - 1) / m) * m); } |
74 | inline int ALIGN_DOUBLE(int n) { return ALIGN(n,sizeof(double)); } |
75 | |
76 | #define PRESOLVE_INF COIN_DBL_MAX |
77 | |
78 | class CoinPostsolveMatrix; |
79 | |
80 | // Note 77 |
81 | // "Members and bases are constructed in order of declaration |
82 | // in the class and destroyed in the reverse order." C++PL 3d Ed. p. 307 |
83 | // |
84 | // That's why I put integer members (such as ncols) before the array members; |
85 | // I like to use those integer values during initialization. |
86 | // NOT ANYMORE |
87 | |
88 | /*! \class CoinPresolveAction |
89 | \brief Abstract base class of all presolve routines. |
90 | |
91 | The details will make more sense after a quick overview of the grand plan: |
92 | A presolve object is handed a problem object, which it is expected to |
93 | modify in some useful way. Assuming that it succeeds, the presolve object |
94 | should create a postsolve object, <i>i.e.</i>, an object that contains |
95 | instructions for backing out the presolve transform to recover the original |
96 | problem. These postsolve objects are accumulated in a linked list, with each |
97 | successive presolve action adding its postsolve action to the head of the |
98 | list. The end result of all this is a presolved problem object, and a list |
99 | of postsolve objects. The presolved problem object is then handed to a |
100 | solver for optimization, and the problem object augmented with the |
101 | results. The list of postsolve objects is then traversed. Each of them |
102 | (un)modifies the problem object, with the end result being the original |
103 | problem, augmented with solution information. |
104 | |
105 | The problem object representation is CoinPrePostsolveMatrix and subclasses. |
106 | Check there for details. The \c CoinPresolveAction class and subclasses |
107 | represent the presolve and postsolve objects. |
108 | |
109 | In spite of the name, the only information held in a \c CoinPresolveAction |
110 | object is the information needed to postsolve (<i>i.e.</i>, the information |
111 | needed to back out the presolve transformation). This information is not |
112 | expected to change, so the fields are all \c const. |
113 | |
114 | A subclass of \c CoinPresolveAction, implementing a specific pre/postsolve |
115 | action, is expected to declare a static function that attempts to perform a |
116 | presolve transformation. This function will be handed a CoinPresolveMatrix |
117 | to transform, and a pointer to the head of the list of postsolve objects. |
118 | If the transform is successful, the function will create a new |
119 | \c CoinPresolveAction object, link it at the head of the list of postsolve |
120 | objects, and return a pointer to the postsolve object it has just created. |
121 | Otherwise, it should return 0. It is expected that these static functions |
122 | will be the only things that can create new \c CoinPresolveAction objects; |
123 | this is expressed by making each subclass' constructor(s) private. |
124 | |
125 | Every subclass must also define a \c postsolve method. |
126 | This function will be handed a CoinPostsolveMatrix to transform. |
127 | |
128 | It is the client's responsibility to implement presolve and postsolve driver |
129 | routines. See OsiPresolve for examples. |
130 | |
131 | \note Since the only fields in a \c CoinPresolveAction are \c const, anything |
132 | one can do with a variable declared \c CoinPresolveAction* can also be |
133 | done with a variable declared \c const \c CoinPresolveAction* It is |
134 | expected that all derived subclasses of \c CoinPresolveAction also have |
135 | this property. |
136 | */ |
137 | class CoinPresolveAction |
138 | { |
139 | public: |
140 | /*! \brief Stub routine to throw exceptions. |
141 | |
142 | Exceptions are inefficient, particularly with g++. Even with xlC, the |
143 | use of exceptions adds a long prologue to a routine. Therefore, rather |
144 | than use throw directly in the routine, I use it in a stub routine. |
145 | */ |
146 | static void throwCoinError(const char *error, const char *ps_routine) |
147 | { throw CoinError(error, ps_routine, "CoinPresolve" ); } |
148 | |
149 | |
150 | /*! \brief The next presolve transformation |
151 | |
152 | Set at object construction. |
153 | */ |
154 | const CoinPresolveAction *next; |
155 | |
156 | /*! \brief Construct a postsolve object and add it to the transformation list. |
157 | |
158 | This is an `add to head' operation. This object will point to the |
159 | one passed as the parameter. |
160 | */ |
161 | CoinPresolveAction(const CoinPresolveAction *next) : next(next) {} |
162 | /// modify next (when building rather than passing) |
163 | inline void setNext(const CoinPresolveAction *nextAction) |
164 | { next = nextAction;} |
165 | |
166 | /*! \brief A name for debug printing. |
167 | |
168 | It is expected that the name is not stored in the transform itself. |
169 | */ |
170 | virtual const char *name() const = 0; |
171 | |
172 | /*! \brief Apply the postsolve transformation for this particular |
173 | presolve action. |
174 | */ |
175 | virtual void postsolve(CoinPostsolveMatrix *prob) const = 0; |
176 | |
177 | /*! \brief Virtual destructor. */ |
178 | virtual ~CoinPresolveAction() {} |
179 | }; |
180 | |
181 | /* |
182 | These are needed for OSI-aware constructors associated with |
183 | CoinPrePostsolveMatrix, CoinPresolveMatrix, and CoinPostsolveMatrix. |
184 | */ |
185 | class ClpSimplex; |
186 | class OsiSolverInterface; |
187 | |
188 | /* |
189 | CoinWarmStartBasis is required for methods in CoinPrePostsolveMatrix |
190 | that accept/return a CoinWarmStartBasis object. |
191 | */ |
192 | class CoinWarmStartBasis ; |
193 | |
194 | /*! \class CoinPrePostsolveMatrix |
195 | \brief Collects all the information about the problem that is needed |
196 | in both presolve and postsolve. |
197 | |
198 | In a bit more detail, a column-major representation of the constraint |
199 | matrix and upper and lower bounds on variables and constraints, plus row |
200 | and column solutions, reduced costs, and status. There's also a set of |
201 | arrays holding the original row and column numbers. |
202 | |
203 | As presolve and postsolve transform the matrix, it will occasionally be |
204 | necessary to expand the number of entries in a column. There are two |
205 | aspects: |
206 | <ul> |
207 | <li> During postsolve, the constraint system is expected to grow as |
208 | the smaller presolved system is transformed back to the original |
209 | system. |
210 | <li> During both pre- and postsolve, transforms can increase the number |
211 | of coefficients in a row or column. (See the |
212 | variable substitution, doubleton, and tripleton transforms.) |
213 | </ul> |
214 | |
215 | The first is addressed by the members #ncols0_, #nrows0_, and #nelems0_. |
216 | These should be set (via constructor parameters) to values large enough |
217 | for the largest size taken on by the constraint system. Typically, this |
218 | will be the size of the original constraint system. |
219 | |
220 | The second is addressed by a generous allocation of extra (empty) space |
221 | for the arrays used to hold coefficients and row indices. When columns |
222 | must be expanded, they are moved into the empty space. When it is used up, |
223 | the arrays are compacted. When compaction fails to produce sufficient |
224 | space, presolve/postsolve will fail. |
225 | |
226 | CoinPrePostsolveMatrix isn't really intended to be used `bare' --- the |
227 | expectation is that it'll be used through CoinPresolveMatrix or |
228 | CoinPostsolveMatrix. Some of the functions needed to load a problem are |
229 | defined in the derived classes. |
230 | |
231 | When CoinPresolve is applied when reoptimising, we need to be prepared to |
232 | accept a basis and modify it in step with the presolve actions (otherwise |
233 | we throw away all the advantages of warm start for reoptimization). But |
234 | other solution components (#acts_, #rowduals_, #sol_, and #rcosts_) are |
235 | needed only for postsolve, where they're used in places to determine the |
236 | proper action(s) when restoring rows or columns. If presolve is provided |
237 | with a solution, it will modify it in step with the presolve actions. |
238 | Moving the solution components from CoinPrePostsolveMatrix to |
239 | CoinPostsolveMatrix would break a lot of code. It's not clear that it's |
240 | worth it, and it would preclude upgrades to the presolve side that might |
241 | make use of any of these. -- lh, 080501 -- |
242 | */ |
243 | |
244 | class CoinPrePostsolveMatrix |
245 | { |
246 | public: |
247 | |
248 | /*! \name Constructors & Destructors */ |
249 | |
250 | //@{ |
251 | /*! \brief `Native' constructor |
252 | |
253 | This constructor creates an empty object which must then be loaded. On |
254 | the other hand, it doesn't assume that the client is an |
255 | OsiSolverInterface. |
256 | */ |
257 | CoinPrePostsolveMatrix(int ncols_alloc, int nrows_alloc, |
258 | CoinBigIndex nelems_alloc) ; |
259 | |
260 | /*! \brief Generic OSI constructor |
261 | |
262 | See OSI code for the definition. |
263 | */ |
264 | CoinPrePostsolveMatrix(const OsiSolverInterface * si, |
265 | int ncols_, |
266 | int nrows_, |
267 | CoinBigIndex nelems_); |
268 | |
269 | /*! ClpOsi constructor |
270 | |
271 | See Clp code for the definition. |
272 | */ |
273 | CoinPrePostsolveMatrix(const ClpSimplex * si, |
274 | int ncols_, |
275 | int nrows_, |
276 | CoinBigIndex nelems_, |
277 | double bulkRatio); |
278 | |
279 | /// Destructor |
280 | ~CoinPrePostsolveMatrix(); |
281 | //@} |
282 | |
283 | /*! \brief Enum for status of various sorts |
284 | |
285 | Matches CoinWarmStartBasis::Status and adds superBasic. Most code that |
286 | converts between CoinPrePostsolveMatrix::Status and |
287 | CoinWarmStartBasis::Status will break if this correspondence is broken. |
288 | |
289 | superBasic is an unresolved problem: there's no analogue in |
290 | CoinWarmStartBasis::Status. |
291 | */ |
292 | enum Status { |
293 | isFree = 0x00, |
294 | basic = 0x01, |
295 | atUpperBound = 0x02, |
296 | atLowerBound = 0x03, |
297 | superBasic = 0x04 |
298 | }; |
299 | |
300 | /*! \name Functions to work with variable status |
301 | |
302 | Functions to work with the CoinPrePostsolveMatrix::Status enum and |
303 | related vectors. |
304 | */ |
305 | //@{ |
306 | |
307 | /// Set row status (<i>i.e.</i>, status of artificial for this row) |
308 | inline void setRowStatus(int sequence, Status status) |
309 | { |
310 | unsigned char & st_byte = rowstat_[sequence]; |
311 | st_byte = static_cast<unsigned char>(st_byte & (~7)) ; |
312 | st_byte = static_cast<unsigned char>(st_byte | status) ; |
313 | } |
314 | /// Get row status |
315 | inline Status getRowStatus(int sequence) const |
316 | {return static_cast<Status> (rowstat_[sequence]&7);} |
317 | /// Check if artificial for this row is basic |
318 | inline bool rowIsBasic(int sequence) const |
319 | {return (static_cast<Status> (rowstat_[sequence]&7)==basic);} |
320 | /// Set column status (<i>i.e.</i>, status of primal variable) |
321 | inline void setColumnStatus(int sequence, Status status) |
322 | { |
323 | unsigned char & st_byte = colstat_[sequence]; |
324 | st_byte = static_cast<unsigned char>(st_byte & (~7)) ; |
325 | st_byte = static_cast<unsigned char>(st_byte | status) ; |
326 | |
327 | # ifdef PRESOLVE_DEBUG |
328 | switch (status) |
329 | { case isFree: |
330 | { if (clo_[sequence] > -PRESOLVE_INF || cup_[sequence] < PRESOLVE_INF) |
331 | { std::cout << "Bad status: Var " << sequence |
332 | << " isFree, lb = " << clo_[sequence] |
333 | << ", ub = " << cup_[sequence] << std::endl ; } |
334 | break ; } |
335 | case basic: |
336 | { break ; } |
337 | case atUpperBound: |
338 | { if (cup_[sequence] >= PRESOLVE_INF) |
339 | { std::cout << "Bad status: Var " << sequence |
340 | << " atUpperBound, lb = " << clo_[sequence] |
341 | << ", ub = " << cup_[sequence] << std::endl ; } |
342 | break ; } |
343 | case atLowerBound: |
344 | { if (clo_[sequence] <= -PRESOLVE_INF) |
345 | { std::cout << "Bad status: Var " << sequence |
346 | << " atLowerBound, lb = " << clo_[sequence] |
347 | << ", ub = " << cup_[sequence] << std::endl ; } |
348 | break ; } |
349 | case superBasic: |
350 | { if (clo_[sequence] <= -PRESOLVE_INF && cup_[sequence] >= PRESOLVE_INF) |
351 | { std::cout << "Bad status: Var " << sequence |
352 | << " superBasic, lb = " << clo_[sequence] |
353 | << ", ub = " << cup_[sequence] << std::endl ; } |
354 | break ; } |
355 | default: |
356 | { assert(false) ; |
357 | break ; } } |
358 | # endif |
359 | } |
360 | /// Get column (structural variable) status |
361 | inline Status getColumnStatus(int sequence) const |
362 | {return static_cast<Status> (colstat_[sequence]&7);} |
363 | /// Check if column (structural variable) is basic |
364 | inline bool columnIsBasic(int sequence) const |
365 | {return (static_cast<Status> (colstat_[sequence]&7)==basic);} |
366 | /*! \brief Set status of row (artificial variable) to the correct nonbasic |
367 | status given bounds and current value |
368 | */ |
369 | void setRowStatusUsingValue(int iRow); |
370 | /*! \brief Set status of column (structural variable) to the correct |
371 | nonbasic status given bounds and current value |
372 | */ |
373 | void setColumnStatusUsingValue(int iColumn); |
374 | /*! \brief Set column (structural variable) status vector */ |
375 | void setStructuralStatus(const char *strucStatus, int lenParam) ; |
376 | /*! \brief Set row (artificial variable) status vector */ |
377 | void setArtificialStatus(const char *artifStatus, int lenParam) ; |
378 | /*! \brief Set the status of all variables from a basis */ |
379 | void setStatus(const CoinWarmStartBasis *basis) ; |
380 | /*! \brief Get status in the form of a CoinWarmStartBasis */ |
381 | CoinWarmStartBasis *getStatus() ; |
382 | /*! \brief Return a print string for status of a column (structural |
383 | variable) |
384 | */ |
385 | const char *columnStatusString(int j) const ; |
386 | /*! \brief Return a print string for status of a row (artificial |
387 | variable) |
388 | */ |
389 | const char *rowStatusString(int i) const ; |
390 | //@} |
391 | |
392 | /*! \name Functions to load problem and solution information |
393 | |
394 | These functions can be used to load portions of the problem definition |
395 | and solution. See also the CoinPresolveMatrix and CoinPostsolveMatrix |
396 | classes. |
397 | */ |
398 | //@{ |
399 | /// Set the objective function offset for the original system. |
400 | void setObjOffset(double offset) ; |
401 | /*! \brief Set the objective sense (max/min) |
402 | |
403 | Coded as 1.0 for min, -1.0 for max. |
404 | */ |
405 | void setObjSense(double objSense) ; |
406 | /// Set the primal feasibility tolerance |
407 | void setPrimalTolerance(double primTol) ; |
408 | /// Set the dual feasibility tolerance |
409 | void setDualTolerance(double dualTol) ; |
410 | /// Set column lower bounds |
411 | void setColLower(const double *colLower, int lenParam) ; |
412 | /// Set column upper bounds |
413 | void setColUpper(const double *colUpper, int lenParam) ; |
414 | /// Set column solution |
415 | void setColSolution(const double *colSol, int lenParam) ; |
416 | /// Set objective coefficients |
417 | void setCost(const double *cost, int lenParam) ; |
418 | /// Set reduced costs |
419 | void setReducedCost(const double *redCost, int lenParam) ; |
420 | /// Set row lower bounds |
421 | void setRowLower(const double *rowLower, int lenParam) ; |
422 | /// Set row upper bounds |
423 | void setRowUpper(const double *rowUpper, int lenParam) ; |
424 | /// Set row solution |
425 | void setRowPrice(const double *rowSol, int lenParam) ; |
426 | /// Set row activity |
427 | void setRowActivity(const double *rowAct, int lenParam) ; |
428 | //@} |
429 | |
430 | /*! \name Functions to retrieve problem and solution information */ |
431 | //@{ |
432 | /// Get current number of columns |
433 | inline int getNumCols() |
434 | { return (ncols_) ; } |
435 | /// Get current number of rows |
436 | inline int getNumRows() |
437 | { return (nrows_) ; } |
438 | /// Get current number of non-zero coefficients |
439 | inline int getNumElems() |
440 | { return (nelems_) ; } |
441 | /// Get column start vector for column-major packed matrix |
442 | inline const CoinBigIndex *getColStarts() const |
443 | { return (mcstrt_) ; } |
444 | /// Get column length vector for column-major packed matrix |
445 | inline const int *getColLengths() const |
446 | { return (hincol_) ; } |
447 | /// Get vector of row indices for column-major packed matrix |
448 | inline const int *getRowIndicesByCol() const |
449 | { return (hrow_) ; } |
450 | /// Get vector of elements for column-major packed matrix |
451 | inline const double *getElementsByCol() const |
452 | { return (colels_) ; } |
453 | /// Get column lower bounds |
454 | inline const double *getColLower() const |
455 | { return (clo_) ; } |
456 | /// Get column upper bounds |
457 | inline const double *getColUpper() const |
458 | { return (cup_) ; } |
459 | /// Get objective coefficients |
460 | inline const double *getCost() const |
461 | { return (cost_) ; } |
462 | /// Get row lower bounds |
463 | inline const double *getRowLower() const |
464 | { return (rlo_) ; } |
465 | /// Get row upper bounds |
466 | inline const double *getRowUpper() const |
467 | { return (rup_) ; } |
468 | /// Get column solution (primal variable values) |
469 | inline const double *getColSolution() const |
470 | { return (sol_) ; } |
471 | /// Get row activity (constraint lhs values) |
472 | inline const double *getRowActivity() const |
473 | { return (acts_) ; } |
474 | /// Get row solution (dual variables) |
475 | inline const double *getRowPrice() const |
476 | { return (rowduals_) ; } |
477 | /// Get reduced costs |
478 | inline const double *getReducedCost() const |
479 | { return (rcosts_) ; } |
480 | /// Count empty columns |
481 | inline int countEmptyCols() |
482 | { int empty = 0 ; |
483 | for (int i = 0 ; i < ncols_ ; i++) if (hincol_[i] == 0) empty++ ; |
484 | return (empty) ; } |
485 | //@} |
486 | |
487 | |
488 | /*! \name Message handling */ |
489 | //@{ |
490 | /// Return message handler |
491 | inline CoinMessageHandler *messageHandler() const |
492 | { return handler_; } |
493 | /*! \brief Set message handler |
494 | |
495 | The client retains responsibility for the handler --- it will not be |
496 | destroyed with the \c CoinPrePostsolveMatrix object. |
497 | */ |
498 | inline void setMessageHandler(CoinMessageHandler *handler) |
499 | { if (defaultHandler_ == true) |
500 | { delete handler_ ; |
501 | defaultHandler_ = false ; } |
502 | handler_ = handler ; } |
503 | /// Return messages |
504 | inline CoinMessages messages() const |
505 | { return messages_; } |
506 | //@} |
507 | |
508 | /*! \name Current and Allocated Size |
509 | |
510 | During pre- and postsolve, the matrix will change in size. During presolve |
511 | it will shrink; during postsolve it will grow. Hence there are two sets of |
512 | size variables, one for the current size and one for the allocated size. |
513 | (See the general comments for the CoinPrePostsolveMatrix class for more |
514 | information.) |
515 | */ |
516 | //@{ |
517 | |
518 | /// current number of columns |
519 | int ncols_; |
520 | /// current number of rows |
521 | int nrows_; |
522 | /// current number of coefficients |
523 | CoinBigIndex nelems_; |
524 | |
525 | /// Allocated number of columns |
526 | int ncols0_; |
527 | /// Allocated number of rows |
528 | int nrows0_ ; |
529 | /// Allocated number of coefficients |
530 | CoinBigIndex nelems0_ ; |
531 | /*! \brief Allocated size of bulk storage for row indices and coefficients |
532 | |
533 | This is the space allocated for hrow_ and colels_. This must be large |
534 | enough to allow columns to be copied into empty space when they need to |
535 | be expanded. For efficiency (to minimize the number of times the |
536 | representation must be compressed) it's recommended that this be at least |
537 | 2*nelems0_. |
538 | */ |
539 | CoinBigIndex bulk0_ ; |
540 | /// Ratio of bulk0_ to nelems0_; default is 2. |
541 | double bulkRatio_; |
542 | //@} |
543 | |
544 | /*! \name Problem representation |
545 | |
546 | The matrix is the common column-major format: A pair of vectors with |
547 | positional correspondence to hold coefficients and row indices, and a |
548 | second pair of vectors giving the starting position and length of each |
549 | column in the first pair. |
550 | */ |
551 | //@{ |
552 | /// Vector of column start positions in #hrow_, #colels_ |
553 | CoinBigIndex *mcstrt_; |
554 | /// Vector of column lengths |
555 | int *hincol_; |
556 | /// Row indices (positional correspondence with #colels_) |
557 | int *hrow_; |
558 | /// Coefficients (positional correspondence with #hrow_) |
559 | double *colels_; |
560 | |
561 | /// Objective coefficients |
562 | double *cost_; |
563 | /// Original objective offset |
564 | double originalOffset_; |
565 | |
566 | /// Column (primal variable) lower bounds |
567 | double *clo_; |
568 | /// Column (primal variable) upper bounds |
569 | double *cup_; |
570 | |
571 | /// Row (constraint) lower bounds |
572 | double *rlo_; |
573 | /// Row (constraint) upper bounds |
574 | double *rup_; |
575 | |
576 | /*! \brief Original column numbers |
577 | |
578 | Over the current range of column numbers in the presolved problem, |
579 | the entry for column j will contain the index of the corresponding |
580 | column in the original problem. |
581 | */ |
582 | int * originalColumn_; |
583 | /*! \brief Original row numbers |
584 | |
585 | Over the current range of row numbers in the presolved problem, the |
586 | entry for row i will contain the index of the corresponding row in |
587 | the original problem. |
588 | */ |
589 | int * originalRow_; |
590 | |
591 | /// Primal feasibility tolerance |
592 | double ztolzb_; |
593 | /// Dual feasibility tolerance |
594 | double ztoldj_; |
595 | |
596 | /// Maximization/minimization |
597 | double maxmin_; |
598 | //@} |
599 | |
600 | /*! \name Problem solution information |
601 | |
602 | The presolve phase will work without any solution information |
603 | (appropriate for initial optimisation) or with solution information |
604 | (appropriate for reoptimisation). When solution information is supplied, |
605 | presolve will maintain it to the best of its ability. #colstat_ is |
606 | checked to determine the presence/absence of status information. #sol_ is |
607 | checked for primal solution information, and #rowduals_ for dual solution |
608 | information. |
609 | |
610 | The postsolve phase requires the complete solution information from the |
611 | presolved problem (status, primal and dual solutions). It will be |
612 | transformed into a correct solution for the original problem. |
613 | */ |
614 | //@{ |
615 | /*! \brief Vector of primal variable values |
616 | |
617 | If #sol_ exists, it is assumed that primal solution information should be |
618 | updated and that #acts_ also exists. |
619 | */ |
620 | double *sol_; |
621 | /*! \brief Vector of dual variable values |
622 | |
623 | If #rowduals_ exists, it is assumed that dual solution information should |
624 | be updated and that #rcosts_ also exists. |
625 | */ |
626 | double *rowduals_; |
627 | /*! \brief Vector of constraint left-hand-side values (row activity) |
628 | |
629 | Produced by evaluating constraints according to #sol_. Updated iff |
630 | #sol_ exists. |
631 | */ |
632 | double *acts_; |
633 | /*! \brief Vector of reduced costs |
634 | |
635 | Produced by evaluating dual constraints according to #rowduals_. Updated |
636 | iff #rowduals_ exists. |
637 | */ |
638 | double *rcosts_; |
639 | |
640 | /*! \brief Status of primal variables |
641 | |
642 | Coded with CoinPrePostSolveMatrix::Status, one code per char. colstat_ and |
643 | #rowstat_ <b>MUST</b> be allocated as a single vector. This is to maintain |
644 | compatibility with ClpPresolve and OsiPresolve, which do it this way. |
645 | */ |
646 | unsigned char *colstat_; |
647 | |
648 | /*! \brief Status of constraints |
649 | |
650 | More accurately, the status of the logical variable associated with the |
651 | constraint. Coded with CoinPrePostSolveMatrix::Status, one code per char. |
652 | Note that this must be allocated as a single vector with #colstat_. |
653 | */ |
654 | unsigned char *rowstat_; |
655 | //@} |
656 | |
657 | /*! \name Message handling |
658 | |
659 | Uses the standard COIN approach: a default handler is installed, and the |
660 | CoinPrePostsolveMatrix object takes responsibility for it. If the client |
661 | replaces the handler with one of their own, it becomes their |
662 | responsibility. |
663 | */ |
664 | //@{ |
665 | /// Message handler |
666 | CoinMessageHandler *handler_; |
667 | /// Indicates if the current #handler_ is default (true) or not (false). |
668 | bool defaultHandler_; |
669 | /// Standard COIN messages |
670 | CoinMessage messages_; |
671 | //@} |
672 | |
673 | }; |
674 | |
675 | |
676 | /*! \class presolvehlink |
677 | \brief Links to aid in packed matrix modification |
678 | |
679 | Currently, the matrices held by the CoinPrePostsolveMatrix and |
680 | CoinPresolveMatrix objects are represented in the same way as a |
681 | CoinPackedMatrix. In the course of presolve and postsolve transforms, it |
682 | will happen that a major-dimension vector needs to increase in size. In |
683 | order to check whether there is enough room to add another coefficient in |
684 | place, it helps to know the next vector (in memory order) in the bulk |
685 | storage area. To do that, a linked list of major-dimension vectors is |
686 | maintained; the "pre" and "suc" fields give the previous and next vector, |
687 | in memory order (that is, the vector whose mcstrt_ or mrstrt_ entry is |
688 | next smaller or larger). |
689 | |
690 | Consider a column-major matrix with ncols columns. By definition, |
691 | presolvehlink[ncols].pre points to the column in the last occupied |
692 | position of the bulk storage arrays. There is no easy way to find the |
693 | column which occupies the first position (there is no presolvehlink[-1] to |
694 | consult). If the column that initially occupies the first position is |
695 | moved for expansion, there is no way to reclaim the space until the bulk |
696 | storage is compacted. The same holds for the last and first rows of a |
697 | row-major matrix, of course. |
698 | */ |
699 | |
700 | class presolvehlink |
701 | { public: |
702 | int pre, suc; |
703 | } ; |
704 | |
705 | #define NO_LINK -66666666 |
706 | |
707 | /*! \relates presolvehlink |
708 | \brief unlink vector i |
709 | |
710 | Remove vector i from the ordering. |
711 | */ |
712 | inline void PRESOLVE_REMOVE_LINK(presolvehlink *link, int i) |
713 | { |
714 | int ipre = link[i].pre; |
715 | int isuc = link[i].suc; |
716 | if (ipre >= 0) { |
717 | link[ipre].suc = isuc; |
718 | } |
719 | if (isuc >= 0) { |
720 | link[isuc].pre = ipre; |
721 | } |
722 | link[i].pre = NO_LINK, link[i].suc = NO_LINK; |
723 | } |
724 | |
725 | /*! \relates presolvehlink |
726 | \brief insert vector i after vector j |
727 | |
728 | Insert vector i between j and j.suc. |
729 | */ |
730 | inline void PRESOLVE_INSERT_LINK(presolvehlink *link, int i, int j) |
731 | { |
732 | int isuc = link[j].suc; |
733 | link[j].suc = i; |
734 | link[i].pre = j; |
735 | if (isuc >= 0) { |
736 | link[isuc].pre = i; |
737 | } |
738 | link[i].suc = isuc; |
739 | } |
740 | |
741 | /*! \relates presolvehlink |
742 | \brief relink vector j in place of vector i |
743 | |
744 | Replace vector i in the ordering with vector j. This is equivalent to |
745 | <pre> |
746 | int pre = link[i].pre; |
747 | PRESOLVE_REMOVE_LINK(link,i); |
748 | PRESOLVE_INSERT_LINK(link,j,pre); |
749 | </pre> |
750 | But, this routine will work even if i happens to be first in the order. |
751 | */ |
752 | inline void PRESOLVE_MOVE_LINK(presolvehlink *link, int i, int j) |
753 | { |
754 | int ipre = link[i].pre; |
755 | int isuc = link[i].suc; |
756 | if (ipre >= 0) { |
757 | link[ipre].suc = j; |
758 | } |
759 | if (isuc >= 0) { |
760 | link[isuc].pre = j; |
761 | } |
762 | link[i].pre = NO_LINK, link[i].suc = NO_LINK; |
763 | } |
764 | |
765 | |
766 | /*! \class CoinPresolveMatrix |
767 | \brief Augments CoinPrePostsolveMatrix with information about the problem |
768 | that is only needed during presolve. |
769 | |
770 | For problem manipulation, this class adds a row-major matrix |
771 | representation, linked lists that allow for easy manipulation of the matrix |
772 | when applying presolve transforms, and vectors to track row and column |
773 | processing status (changed, needs further processing, change prohibited) |
774 | |
775 | For problem representation, this class adds information about variable type |
776 | (integer or continuous), an objective offset, and a feasibility tolerance. |
777 | |
778 | <b>NOTE</b> that the #anyInteger_ and #anyProhibited_ flags are independent |
779 | of the vectors used to track this information for individual variables |
780 | (#integerType_ and #rowChanged_ and #colChanged_, respectively). |
781 | |
782 | <b>NOTE</b> also that at the end of presolve the column-major and row-major |
783 | matrix representations are loosely packed (<i>i.e.</i>, there may be gaps |
784 | between columns in the bulk storage arrays). |
785 | */ |
786 | |
787 | class CoinPresolveMatrix : public CoinPrePostsolveMatrix |
788 | { |
789 | public: |
790 | |
791 | /*! \brief `Native' constructor |
792 | |
793 | This constructor creates an empty object which must then be loaded. |
794 | On the other hand, it doesn't assume that the client is an |
795 | OsiSolverInterface. |
796 | */ |
797 | CoinPresolveMatrix(int ncols_alloc, int nrows_alloc, |
798 | CoinBigIndex nelems_alloc) ; |
799 | |
800 | /*! \brief Clp OSI constructor |
801 | |
802 | See Clp code for the definition. |
803 | */ |
804 | CoinPresolveMatrix(int ncols0, |
805 | double maxmin, |
806 | // end prepost members |
807 | |
808 | ClpSimplex * si, |
809 | |
810 | // rowrep |
811 | int nrows, |
812 | CoinBigIndex nelems, |
813 | bool doStatus, |
814 | double nonLinearVariable, |
815 | double bulkRatio); |
816 | |
817 | /*! \brief Update the model held by a Clp OSI */ |
818 | void update_model(ClpSimplex * si, |
819 | int nrows0, |
820 | int ncols0, |
821 | CoinBigIndex nelems0); |
822 | /*! \brief Generic OSI constructor |
823 | |
824 | See OSI code for the definition. |
825 | */ |
826 | CoinPresolveMatrix(int ncols0, |
827 | double maxmin, |
828 | // end prepost members |
829 | OsiSolverInterface * si, |
830 | // rowrep |
831 | int nrows, |
832 | CoinBigIndex nelems, |
833 | bool doStatus, |
834 | double nonLinearVariable, |
835 | const char * prohibited, |
836 | const char * rowProhibited=nullptr); |
837 | |
838 | /*! \brief Update the model held by a generic OSI */ |
839 | void update_model(OsiSolverInterface * si, |
840 | int nrows0, |
841 | int ncols0, |
842 | CoinBigIndex nelems0); |
843 | |
844 | /// Destructor |
845 | ~CoinPresolveMatrix(); |
846 | |
847 | /*! \brief Initialize a CoinPostsolveMatrix object, destroying the |
848 | CoinPresolveMatrix object. |
849 | |
850 | See CoinPostsolveMatrix::assignPresolveToPostsolve. |
851 | */ |
852 | friend void assignPresolveToPostsolve (CoinPresolveMatrix *&preObj) ; |
853 | |
854 | /*! \name Functions to load the problem representation |
855 | */ |
856 | //@{ |
857 | /*! \brief Load the cofficient matrix. |
858 | |
859 | Load the coefficient matrix before loading the other vectors (bounds, |
860 | objective, variable type) required to define the problem. |
861 | */ |
862 | void setMatrix(const CoinPackedMatrix *mtx) ; |
863 | |
864 | /// Count number of empty rows |
865 | inline int countEmptyRows() |
866 | { int empty = 0 ; |
867 | for (int i = 0 ; i < nrows_ ; i++) if (hinrow_[i] == 0) empty++ ; |
868 | return (empty) ; } |
869 | |
870 | /*! \brief Set variable type information for a single variable |
871 | |
872 | Set \p variableType to 0 for continous, 1 for integer. |
873 | Does not manipulate the #anyInteger_ flag. |
874 | */ |
875 | inline void setVariableType(int i, int variableType) |
876 | { if (integerType_ == nullptr) integerType_ = new unsigned char [ncols0_] ; |
877 | integerType_[i] = static_cast<unsigned char>(variableType) ; } |
878 | |
879 | /*! \brief Set variable type information for all variables |
880 | |
881 | Set \p variableType[i] to 0 for continuous, 1 for integer. |
882 | Does not manipulate the #anyInteger_ flag. |
883 | */ |
884 | void setVariableType(const unsigned char *variableType, int lenParam) ; |
885 | |
886 | /*! \brief Set the type of all variables |
887 | |
888 | allIntegers should be true to set the type to integer, false to set the |
889 | type to continuous. |
890 | */ |
891 | void setVariableType (bool allIntegers, int lenParam) ; |
892 | |
893 | /// Set a flag for presence (true) or absence (false) of integer variables |
894 | inline void setAnyInteger (bool anyInteger = true) |
895 | { anyInteger_ = anyInteger ; } |
896 | //@} |
897 | |
898 | /*! \name Functions to retrieve problem information |
899 | */ |
900 | //@{ |
901 | |
902 | /// Get row start vector for row-major packed matrix |
903 | inline const CoinBigIndex *getRowStarts() const |
904 | { return (mrstrt_) ; } |
905 | /// Get vector of column indices for row-major packed matrix |
906 | inline const int *getColIndicesByRow() const |
907 | { return (hcol_) ; } |
908 | /// Get vector of elements for row-major packed matrix |
909 | inline const double *getElementsByRow() const |
910 | { return (rowels_) ; } |
911 | |
912 | /*! \brief Check for integrality of the specified variable. |
913 | |
914 | Consults the #integerType_ vector if present; fallback is the |
915 | #anyInteger_ flag. |
916 | */ |
917 | inline bool isInteger (int i) const |
918 | { if (integerType_ == nullptr) |
919 | { return (anyInteger_) ; } |
920 | else |
921 | if (integerType_[i] == 1) |
922 | { return (true) ; } |
923 | else |
924 | { return (false) ; } } |
925 | |
926 | /*! \brief Check if there are any integer variables |
927 | |
928 | Consults the #anyInteger_ flag |
929 | */ |
930 | inline bool anyInteger () const |
931 | { return (anyInteger_) ; } |
932 | /// Picks up any special options |
933 | inline int presolveOptions() const |
934 | { return presolveOptions_;} |
935 | /// Sets any special options (see #presolveOptions_) |
936 | inline void setPresolveOptions(int value) |
937 | { presolveOptions_=value;} |
938 | //@} |
939 | |
940 | /*! \name Matrix storage management links |
941 | |
942 | Linked lists, modelled after the linked lists used in OSL |
943 | factorization. They are used for management of the bulk coefficient |
944 | and minor index storage areas. |
945 | */ |
946 | //@{ |
947 | /// Linked list for the column-major representation. |
948 | presolvehlink *clink_; |
949 | /// Linked list for the row-major representation. |
950 | presolvehlink *rlink_; |
951 | //@} |
952 | |
953 | /// Objective function offset introduced during presolve |
954 | double dobias_; |
955 | |
956 | /// Adjust objective function constant offset |
957 | inline void change_bias(double change_amount) |
958 | { |
959 | dobias_ += change_amount; |
960 | #if PRESOLVE_DEBUG |
961 | assert(fabs(change_amount)<1.0e50); |
962 | #endif |
963 | if (change_amount) |
964 | PRESOLVE_STMT(printf("changing bias by %g to %g\n" , |
965 | change_amount, dobias_)); |
966 | } |
967 | |
968 | /*! \name Row-major representation |
969 | |
970 | Common row-major format: A pair of vectors with positional |
971 | correspondence to hold coefficients and column indices, and a second pair |
972 | of vectors giving the starting position and length of each row in |
973 | the first pair. |
974 | */ |
975 | //@{ |
976 | /// Vector of row start positions in #hcol, #rowels_ |
977 | CoinBigIndex *mrstrt_; |
978 | /// Vector of row lengths |
979 | int *hinrow_; |
980 | /// Coefficients (positional correspondence with #hcol_) |
981 | double *rowels_; |
982 | /// Column indices (positional correspondence with #rowels_) |
983 | int *hcol_; |
984 | //@} |
985 | |
986 | /// Tracks integrality of columns (1 for integer, 0 for continuous) |
987 | unsigned char *integerType_; |
988 | /*! \brief Flag to say if any variables are integer |
989 | |
990 | Note that this flag is <i>not</i> manipulated by the various |
991 | \c setVariableType routines. |
992 | */ |
993 | bool anyInteger_ ; |
994 | /// Print statistics for tuning |
995 | bool tuning_; |
996 | /// Say we want statistics - also set time |
997 | void statistics(); |
998 | /// Start time of presolve |
999 | double startTime_; |
1000 | |
1001 | /// Bounds can be moved by this to retain feasibility |
1002 | double feasibilityTolerance_; |
1003 | /// Return feasibility tolerance |
1004 | inline double feasibilityTolerance() |
1005 | { return (feasibilityTolerance_) ; } |
1006 | /// Set feasibility tolerance |
1007 | inline void setFeasibilityTolerance (double val) |
1008 | { feasibilityTolerance_ = val ; } |
1009 | |
1010 | /*! \brief Output status: 0 = feasible, 1 = infeasible, 2 = unbounded |
1011 | |
1012 | Actually implemented as single bit flags: 1^0 = infeasible, 1^1 = |
1013 | unbounded. |
1014 | */ |
1015 | int status_; |
1016 | /// Returns problem status (0 = feasible, 1 = infeasible, 2 = unbounded) |
1017 | inline int status() |
1018 | { return (status_) ; } |
1019 | /// Set problem status |
1020 | inline void setStatus(int status) |
1021 | { status_ = (status&0x3) ; } |
1022 | |
1023 | /*! \brief Pass number |
1024 | |
1025 | Used to control the execution of testRedundant (evoked by the |
1026 | implied_free transform). |
1027 | */ |
1028 | int pass_; |
1029 | /// Set pass number |
1030 | inline void setPass (int pass = 0) |
1031 | { pass_ = pass ; } |
1032 | |
1033 | /*! \brief Maximum substitution level |
1034 | |
1035 | Used to control the execution of subst from implied_free |
1036 | */ |
1037 | int maxSubstLevel_; |
1038 | /// Set Maximum substitution level (normally 3) |
1039 | inline void setMaximumSubstitutionLevel (int level) |
1040 | { maxSubstLevel_ = level ; } |
1041 | |
1042 | |
1043 | /*! \name Row and column processing status |
1044 | |
1045 | Information used to determine if rows or columns can be changed and |
1046 | if they require further processing due to changes. |
1047 | |
1048 | There are four major lists: the [row,col]ToDo list, and the |
1049 | [row,col]NextToDo list. In general, a transform processes entries from |
1050 | the ToDo list and adds entries to the NextToDo list. |
1051 | |
1052 | There are two vectors, [row,col]Changed, which track the status of |
1053 | individual rows and columns. |
1054 | */ |
1055 | //@{ |
1056 | /*! \brief Column change status information |
1057 | |
1058 | Coded using the following bits: |
1059 | <ul> |
1060 | <li> 0x01: Column has changed |
1061 | <li> 0x02: preprocessing prohibited |
1062 | <li> 0x04: Column has been used |
1063 | <li> 0x08: Column originally had infinite ub |
1064 | </ul> |
1065 | */ |
1066 | unsigned char * colChanged_; |
1067 | /// Input list of columns to process |
1068 | int * colsToDo_; |
1069 | /// Length of #colsToDo_ |
1070 | int numberColsToDo_; |
1071 | /// Output list of columns to process next |
1072 | int * nextColsToDo_; |
1073 | /// Length of #nextColsToDo_ |
1074 | int numberNextColsToDo_; |
1075 | |
1076 | /*! \brief Row change status information |
1077 | |
1078 | Coded using the following bits: |
1079 | <ul> |
1080 | <li> 0x01: Row has changed |
1081 | <li> 0x02: preprocessing prohibited |
1082 | <li> 0x04: Row has been used |
1083 | </ul> |
1084 | */ |
1085 | unsigned char * rowChanged_; |
1086 | /// Input list of rows to process |
1087 | int * rowsToDo_; |
1088 | /// Length of #rowsToDo_ |
1089 | int numberRowsToDo_; |
1090 | /// Output list of rows to process next |
1091 | int * nextRowsToDo_; |
1092 | /// Length of #nextRowsToDo_ |
1093 | int numberNextRowsToDo_; |
1094 | /** Presolve options |
1095 | - 1 set if allow duplicate column tests for integer variables |
1096 | - 2 set to allow code to try and fix infeasibilities |
1097 | - 4 set to inhibit x+y+z=1 mods |
1098 | - 8 not used |
1099 | - 16 set to allow stuff which won't unroll easily |
1100 | - 0x80000000 set by presolve to say dupcol_action compressed columns |
1101 | */ |
1102 | int presolveOptions_; |
1103 | /*! Flag to say if any rows or columns are marked as prohibited |
1104 | |
1105 | Note that this flag is <i>not</i> manipulated by any of the |
1106 | various \c set*Prohibited routines. |
1107 | */ |
1108 | bool anyProhibited_; |
1109 | /// Useful int array 3* number rows |
1110 | int * usefulRowInt_; |
1111 | /// Useful double array number rows |
1112 | double * usefulRowDouble_; |
1113 | /// Useful int array 2* number columns |
1114 | int * usefulColumnInt_; |
1115 | /// Useful double array number columns |
1116 | double * usefulColumnDouble_; |
1117 | /// Array of random numbers (max row,column) |
1118 | double * randomNumber_; |
1119 | /// Array giving number of infinite ups on a row |
1120 | int * infiniteUp_; |
1121 | /// Array giving sum of non-infinite ups on a row |
1122 | double * sumUp_; |
1123 | /// Array giving number of infinite downs on a row |
1124 | int * infiniteDown_; |
1125 | /// Array giving sum of non-infinite downs on a row |
1126 | double * sumDown_; |
1127 | //@} |
1128 | |
1129 | /*! \name Functions to manipulate row and column processing status */ |
1130 | //@{ |
1131 | |
1132 | /*! \brief Initialise the column ToDo lists |
1133 | |
1134 | Places all columns in the #colsToDo_ list except for columns marked |
1135 | as prohibited (<i>viz.</i> #colChanged_). |
1136 | */ |
1137 | void initColsToDo () ; |
1138 | |
1139 | /*! \brief Step column ToDo lists |
1140 | |
1141 | Moves columns on the #nextColsToDo_ list to the #colsToDo_ list, emptying |
1142 | #nextColsToDo_. Returns the number of columns transferred. |
1143 | */ |
1144 | int stepColsToDo () ; |
1145 | |
1146 | /// Return the number of columns on the #colsToDo_ list |
1147 | inline int numberColsToDo() |
1148 | { return (numberColsToDo_) ; } |
1149 | |
1150 | /// Has column been changed? |
1151 | inline bool colChanged(int i) const { |
1152 | return (colChanged_[i]&1)!=0; |
1153 | } |
1154 | /// Mark column as not changed |
1155 | inline void unsetColChanged(int i) { |
1156 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] & (~1)) ; |
1157 | } |
1158 | /// Mark column as changed. |
1159 | inline void setColChanged(int i) { |
1160 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] | (1)) ; |
1161 | } |
1162 | /// Mark column as changed and add to list of columns to process next |
1163 | inline void addCol(int i) { |
1164 | if ((colChanged_[i]&1)==0) { |
1165 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] | (1)) ; |
1166 | nextColsToDo_[numberNextColsToDo_++] = i; |
1167 | } |
1168 | } |
1169 | /// Test if column is eligible for preprocessing |
1170 | inline bool colProhibited(int i) const { |
1171 | return (colChanged_[i]&2)!=0; |
1172 | } |
1173 | /*! \brief Test if column is eligible for preprocessing |
1174 | |
1175 | The difference between this method and #colProhibited() is that this |
1176 | method first tests #anyProhibited_ before examining the specific entry |
1177 | for the specified column. |
1178 | */ |
1179 | inline bool colProhibited2(int i) const { |
1180 | if (!anyProhibited_) |
1181 | return false; |
1182 | else |
1183 | return (colChanged_[i]&2)!=0; |
1184 | } |
1185 | /// Mark column as ineligible for preprocessing |
1186 | inline void setColProhibited(int i) { |
1187 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] | (2)) ; |
1188 | } |
1189 | /*! \brief Test if column is marked as used |
1190 | |
1191 | This is for doing faster lookups to see where two columns have entries |
1192 | in common. |
1193 | */ |
1194 | inline bool colUsed(int i) const { |
1195 | return (colChanged_[i]&4)!=0; |
1196 | } |
1197 | /// Mark column as used |
1198 | inline void setColUsed(int i) { |
1199 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] | (4)) ; |
1200 | } |
1201 | /// Mark column as unused |
1202 | inline void unsetColUsed(int i) { |
1203 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] & (~4)) ; |
1204 | } |
1205 | /// Has column infinite ub (originally) |
1206 | inline bool colInfinite(int i) const { |
1207 | return (colChanged_[i]&8)!=0; |
1208 | } |
1209 | /// Mark column as not infinite ub (originally) |
1210 | inline void unsetColInfinite(int i) { |
1211 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] & (~8)) ; |
1212 | } |
1213 | /// Mark column as infinite ub (originally) |
1214 | inline void setColInfinite(int i) { |
1215 | colChanged_[i] = static_cast<unsigned char>(colChanged_[i] | (8)) ; |
1216 | } |
1217 | |
1218 | /*! \brief Initialise the row ToDo lists |
1219 | |
1220 | Places all rows in the #rowsToDo_ list except for rows marked |
1221 | as prohibited (<i>viz.</i> #rowChanged_). |
1222 | */ |
1223 | void initRowsToDo () ; |
1224 | |
1225 | /*! \brief Step row ToDo lists |
1226 | |
1227 | Moves rows on the #nextRowsToDo_ list to the #rowsToDo_ list, emptying |
1228 | #nextRowsToDo_. Returns the number of rows transferred. |
1229 | */ |
1230 | int stepRowsToDo () ; |
1231 | |
1232 | /// Return the number of rows on the #rowsToDo_ list |
1233 | inline int numberRowsToDo() |
1234 | { return (numberRowsToDo_) ; } |
1235 | |
1236 | /// Has row been changed? |
1237 | inline bool rowChanged(int i) const { |
1238 | return (rowChanged_[i]&1)!=0; |
1239 | } |
1240 | /// Mark row as not changed |
1241 | inline void unsetRowChanged(int i) { |
1242 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] & (~1)) ; |
1243 | } |
1244 | /// Mark row as changed |
1245 | inline void setRowChanged(int i) { |
1246 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] | (1)) ; |
1247 | } |
1248 | /// Mark row as changed and add to list of rows to process next |
1249 | inline void addRow(int i) { |
1250 | if ((rowChanged_[i]&1)==0) { |
1251 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] | (1)) ; |
1252 | nextRowsToDo_[numberNextRowsToDo_++] = i; |
1253 | } |
1254 | } |
1255 | /// Test if row is eligible for preprocessing |
1256 | inline bool rowProhibited(int i) const { |
1257 | return (rowChanged_[i]&2)!=0; |
1258 | } |
1259 | /*! \brief Test if row is eligible for preprocessing |
1260 | |
1261 | The difference between this method and #rowProhibited() is that this |
1262 | method first tests #anyProhibited_ before examining the specific entry |
1263 | for the specified row. |
1264 | */ |
1265 | inline bool rowProhibited2(int i) const { |
1266 | if (!anyProhibited_) |
1267 | return false; |
1268 | else |
1269 | return (rowChanged_[i]&2)!=0; |
1270 | } |
1271 | /// Mark row as ineligible for preprocessing |
1272 | inline void setRowProhibited(int i) { |
1273 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] | (2)) ; |
1274 | } |
1275 | /*! \brief Test if row is marked as used |
1276 | |
1277 | This is for doing faster lookups to see where two rows have entries |
1278 | in common. It can be used anywhere as long as it ends up zeroed out. |
1279 | */ |
1280 | inline bool rowUsed(int i) const { |
1281 | return (rowChanged_[i]&4)!=0; |
1282 | } |
1283 | /// Mark row as used |
1284 | inline void setRowUsed(int i) { |
1285 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] | (4)) ; |
1286 | } |
1287 | /// Mark row as unused |
1288 | inline void unsetRowUsed(int i) { |
1289 | rowChanged_[i] = static_cast<unsigned char>(rowChanged_[i] & (~4)) ; |
1290 | } |
1291 | |
1292 | |
1293 | /// Check if there are any prohibited rows or columns |
1294 | inline bool anyProhibited() const |
1295 | { return anyProhibited_;} |
1296 | /// Set a flag for presence of prohibited rows or columns |
1297 | inline void setAnyProhibited(bool val = true) |
1298 | { anyProhibited_ = val ; } |
1299 | /** Recompute ups and downs for a row (nonzero if infeasible). |
1300 | If iRow -1 then recompute all */ |
1301 | int recomputeSums(int iRow); |
1302 | /// Initialize random numbers etc (nonzero if infeasible) |
1303 | int initializeStuff(); |
1304 | /// Delete useful arrays |
1305 | void deleteStuff(); |
1306 | //@} |
1307 | |
1308 | }; |
1309 | |
1310 | /*! \class CoinPostsolveMatrix |
1311 | \brief Augments CoinPrePostsolveMatrix with information about the problem |
1312 | that is only needed during postsolve. |
1313 | |
1314 | The notable point is that the matrix representation is threaded. The |
1315 | representation is column-major and starts with the standard two pairs of |
1316 | arrays: one pair to hold the row indices and coefficients, the second pair |
1317 | to hold the column starting positions and lengths. But the row indices and |
1318 | coefficients for a column do not necessarily occupy a contiguous block in |
1319 | their respective arrays. Instead, a link array gives the position of the |
1320 | next (row index,coefficient) pair. If the row index and value of a |
1321 | coefficient a<p,j> occupy position kp in their arrays, then the position of |
1322 | the next coefficient a<q,j> is found as kq = link[kp]. |
1323 | |
1324 | This threaded representation allows for efficient expansion of columns as |
1325 | rows are reintroduced during postsolve transformations. The basic packed |
1326 | structures are allocated to the expected size of the postsolved matrix, |
1327 | and as new coefficients are added, their location is simply added to the |
1328 | thread for the column. |
1329 | |
1330 | There is no provision to convert the threaded representation to a packed |
1331 | representation. In the context of postsolve, it's not required. (You did |
1332 | keep a copy of the original matrix, eh?) |
1333 | */ |
1334 | class CoinPostsolveMatrix : public CoinPrePostsolveMatrix |
1335 | { |
1336 | public: |
1337 | |
1338 | /*! \brief `Native' constructor |
1339 | |
1340 | This constructor creates an empty object which must then be loaded. |
1341 | On the other hand, it doesn't assume that the client is an |
1342 | OsiSolverInterface. |
1343 | */ |
1344 | CoinPostsolveMatrix(int ncols_alloc, int nrows_alloc, |
1345 | CoinBigIndex nelems_alloc) ; |
1346 | |
1347 | |
1348 | /*! \brief Clp OSI constructor |
1349 | |
1350 | See Clp code for the definition. |
1351 | */ |
1352 | CoinPostsolveMatrix(ClpSimplex * si, |
1353 | |
1354 | int ncols0, |
1355 | int nrows0, |
1356 | CoinBigIndex nelems0, |
1357 | |
1358 | double maxmin_, |
1359 | // end prepost members |
1360 | |
1361 | double *sol, |
1362 | double *acts, |
1363 | |
1364 | unsigned char *colstat, |
1365 | unsigned char *rowstat); |
1366 | |
1367 | /*! \brief Generic OSI constructor |
1368 | |
1369 | See OSI code for the definition. |
1370 | */ |
1371 | CoinPostsolveMatrix(OsiSolverInterface * si, |
1372 | |
1373 | int ncols0, |
1374 | int nrows0, |
1375 | CoinBigIndex nelems0, |
1376 | |
1377 | double maxmin_, |
1378 | // end prepost members |
1379 | |
1380 | double *sol, |
1381 | double *acts, |
1382 | |
1383 | unsigned char *colstat, |
1384 | unsigned char *rowstat); |
1385 | |
1386 | /*! \brief Load an empty CoinPostsolveMatrix from a CoinPresolveMatrix |
1387 | |
1388 | This routine transfers the contents of the CoinPrePostsolveMatrix |
1389 | object from the CoinPresolveMatrix object to the CoinPostsolveMatrix |
1390 | object and completes initialisation of the CoinPostsolveMatrix object. |
1391 | The empty shell of the CoinPresolveMatrix object is destroyed. |
1392 | |
1393 | The routine expects an empty CoinPostsolveMatrix object. If handed a loaded |
1394 | object, a lot of memory will leak. |
1395 | */ |
1396 | void assignPresolveToPostsolve (CoinPresolveMatrix *&preObj) ; |
1397 | |
1398 | /// Destructor |
1399 | ~CoinPostsolveMatrix(); |
1400 | |
1401 | /*! \name Column thread structures |
1402 | |
1403 | As mentioned in the class documentation, the entries for a given column |
1404 | do not necessarily occupy a contiguous block of space. The #link_ array |
1405 | is used to maintain the threading. There is one thread for each column, |
1406 | and a single thread for all free entries in #hrow_ and #colels_. |
1407 | |
1408 | The allocated size of #link_ must be at least as large as the allocated |
1409 | size of #hrow_ and #colels_. |
1410 | */ |
1411 | //@{ |
1412 | |
1413 | /*! \brief First entry in free entries thread */ |
1414 | CoinBigIndex free_list_; |
1415 | /// Allocated size of #link_ |
1416 | int maxlink_; |
1417 | /*! \brief Thread array |
1418 | |
1419 | Within a thread, link_[k] points to the next entry in the thread. |
1420 | */ |
1421 | CoinBigIndex *link_; |
1422 | |
1423 | //@} |
1424 | |
1425 | /*! \name Debugging aids |
1426 | |
1427 | These arrays are allocated only when CoinPresolve is compiled with |
1428 | PRESOLVE_DEBUG defined. They hold codes which track the reason that |
1429 | a column or row is added to the problem during postsolve. |
1430 | */ |
1431 | //@{ |
1432 | char *cdone_; |
1433 | char *rdone_; |
1434 | //@} |
1435 | |
1436 | /// debug |
1437 | void check_nbasic(); |
1438 | |
1439 | }; |
1440 | |
1441 | |
1442 | #define PRESOLVEFINITE(n) (-PRESOLVE_INF < (n) && (n) < PRESOLVE_INF) |
1443 | |
1444 | /*! \defgroup MtxManip Presolve Matrix Manipulation Functions |
1445 | |
1446 | Functions to work with the loosely packed and threaded packed matrix |
1447 | structures used during presolve and postsolve. |
1448 | */ |
1449 | //@{ |
1450 | |
1451 | /*! \relates CoinPrePostsolveMatrix |
1452 | \brief Initialise linked list for major vector order in bulk storage |
1453 | */ |
1454 | |
1455 | void presolve_make_memlists(/*CoinBigIndex *starts,*/ int *lengths, |
1456 | presolvehlink *link, int n); |
1457 | |
1458 | /*! \relates CoinPrePostsolveMatrix |
1459 | \brief Make sure a major-dimension vector k has room for one more |
1460 | coefficient. |
1461 | |
1462 | You can use this directly, or use the inline wrappers presolve_expand_col |
1463 | and presolve_expand_row |
1464 | */ |
1465 | bool presolve_expand_major(CoinBigIndex *majstrts, double *majels, |
1466 | int *minndxs, int *majlens, |
1467 | presolvehlink *majlinks, int nmaj, int k) ; |
1468 | |
1469 | /*! \relates CoinPrePostsolveMatrix |
1470 | \brief Make sure a column (colx) in a column-major matrix has room for |
1471 | one more coefficient |
1472 | */ |
1473 | |
1474 | inline bool presolve_expand_col(CoinBigIndex *mcstrt, double *colels, |
1475 | int *hrow, int *hincol, |
1476 | presolvehlink *clink, int ncols, int colx) |
1477 | { return presolve_expand_major(mcstrt,colels, |
1478 | hrow,hincol,clink,ncols,colx) ; } |
1479 | |
1480 | /*! \relates CoinPrePostsolveMatrix |
1481 | \brief Make sure a row (rowx) in a row-major matrix has room for one |
1482 | more coefficient |
1483 | */ |
1484 | |
1485 | inline bool presolve_expand_row(CoinBigIndex *mrstrt, double *rowels, |
1486 | int *hcol, int *hinrow, |
1487 | presolvehlink *rlink, int nrows, int rowx) |
1488 | { return presolve_expand_major(mrstrt,rowels, |
1489 | hcol,hinrow,rlink,nrows,rowx) ; } |
1490 | |
1491 | |
1492 | /*! \relates CoinPrePostsolveMatrix |
1493 | \brief Find position of a minor index in a major vector. |
1494 | |
1495 | The routine returns the position \c k in \p minndxs for the specified |
1496 | minor index \p tgt. It will abort if the entry does not exist. Can be |
1497 | used directly or via the inline wrappers presolve_find_row and |
1498 | presolve_find_col. |
1499 | */ |
1500 | inline CoinBigIndex presolve_find_minor(int tgt, CoinBigIndex ks, CoinBigIndex ke, |
1501 | const int *minndxs) |
1502 | { CoinBigIndex k ; |
1503 | for (k = ks ; k < ke ; k++) |
1504 | #ifndef NDEBUG |
1505 | { if (minndxs[k] == tgt) |
1506 | return (k) ; } |
1507 | DIE("FIND_MINOR" ) ; |
1508 | |
1509 | abort () ; return -1; |
1510 | #else |
1511 | { if (minndxs[k] == tgt) |
1512 | break ; } |
1513 | return (k) ; |
1514 | #endif |
1515 | } |
1516 | |
1517 | /*! \relates CoinPrePostsolveMatrix |
1518 | \brief Find position of a row in a column in a column-major matrix. |
1519 | |
1520 | The routine returns the position \c k in \p hrow for the specified \p row. |
1521 | It will abort if the entry does not exist. |
1522 | */ |
1523 | inline CoinBigIndex presolve_find_row(int row, CoinBigIndex kcs, |
1524 | CoinBigIndex kce, const int *hrow) |
1525 | { return presolve_find_minor(row,kcs,kce,hrow) ; } |
1526 | |
1527 | /*! \relates CoinPostsolveMatrix |
1528 | \brief Find position of a column in a row in a row-major matrix. |
1529 | |
1530 | The routine returns the position \c k in \p hcol for the specified \p col. |
1531 | It will abort if the entry does not exist. |
1532 | */ |
1533 | inline CoinBigIndex presolve_find_col(int col, CoinBigIndex krs, |
1534 | CoinBigIndex kre, const int *hcol) |
1535 | { return presolve_find_minor(col,krs,kre,hcol) ; } |
1536 | |
1537 | |
1538 | /*! \relates CoinPrePostsolveMatrix |
1539 | \brief Find position of a minor index in a major vector. |
1540 | |
1541 | The routine returns the position \c k in \p minndxs for the specified |
1542 | minor index \p tgt. A return value of \p ke means the entry does not |
1543 | exist. Can be used directly or via the inline wrappers |
1544 | presolve_find_row1 and presolve_find_col1. |
1545 | */ |
1546 | CoinBigIndex presolve_find_minor1(int tgt, CoinBigIndex ks, CoinBigIndex ke, |
1547 | const int *minndxs); |
1548 | |
1549 | /*! \relates CoinPrePostsolveMatrix |
1550 | \brief Find position of a row in a column in a column-major matrix. |
1551 | |
1552 | The routine returns the position \c k in \p hrow for the specified \p row. |
1553 | A return value of \p kce means the entry does not exist. |
1554 | */ |
1555 | inline CoinBigIndex presolve_find_row1(int row, CoinBigIndex kcs, |
1556 | CoinBigIndex kce, const int *hrow) |
1557 | { return presolve_find_minor1(row,kcs,kce,hrow) ; } |
1558 | |
1559 | /*! \relates CoinPrePostsolveMatrix |
1560 | \brief Find position of a column in a row in a row-major matrix. |
1561 | |
1562 | The routine returns the position \c k in \p hcol for the specified \p col. |
1563 | A return value of \p kre means the entry does not exist. |
1564 | */ |
1565 | inline CoinBigIndex presolve_find_col1(int col, CoinBigIndex krs, |
1566 | CoinBigIndex kre, const int *hcol) |
1567 | { return presolve_find_minor1(col,krs,kre,hcol) ; } |
1568 | |
1569 | /*! \relates CoinPostsolveMatrix |
1570 | \brief Find position of a minor index in a major vector in a threaded |
1571 | matrix. |
1572 | |
1573 | The routine returns the position \c k in \p minndxs for the specified |
1574 | minor index \p tgt. It will abort if the entry does not exist. Can be |
1575 | used directly or via the inline wrapper presolve_find_row2. |
1576 | */ |
1577 | CoinBigIndex presolve_find_minor2(int tgt, CoinBigIndex ks, int majlen, |
1578 | const int *minndxs, |
1579 | const CoinBigIndex *majlinks) ; |
1580 | |
1581 | /*! \relates CoinPostsolveMatrix |
1582 | \brief Find position of a row in a column in a column-major threaded |
1583 | matrix. |
1584 | |
1585 | The routine returns the position \c k in \p hrow for the specified \p row. |
1586 | It will abort if the entry does not exist. |
1587 | */ |
1588 | inline CoinBigIndex presolve_find_row2(int row, CoinBigIndex kcs, int collen, |
1589 | const int *hrow, |
1590 | const CoinBigIndex *clinks) |
1591 | { return presolve_find_minor2(row,kcs,collen,hrow,clinks) ; } |
1592 | |
1593 | /*! \relates CoinPostsolveMatrix |
1594 | \brief Find position of a minor index in a major vector in a threaded |
1595 | matrix. |
1596 | |
1597 | The routine returns the position \c k in \p minndxs for the specified |
1598 | minor index \p tgt. It will return -1 if the entry does not exist. |
1599 | Can be used directly or via the inline wrappers presolve_find_row3. |
1600 | */ |
1601 | CoinBigIndex presolve_find_minor3(int tgt, CoinBigIndex ks, int majlen, |
1602 | const int *minndxs, |
1603 | const CoinBigIndex *majlinks) ; |
1604 | |
1605 | /*! \relates CoinPostsolveMatrix |
1606 | \brief Find position of a row in a column in a column-major threaded |
1607 | matrix. |
1608 | |
1609 | The routine returns the position \c k in \p hrow for the specified \p row. |
1610 | It will return -1 if the entry does not exist. |
1611 | */ |
1612 | inline CoinBigIndex presolve_find_row3(int row, CoinBigIndex kcs, int collen, |
1613 | const int *hrow, |
1614 | const CoinBigIndex *clinks) |
1615 | { return presolve_find_minor3(row,kcs,collen,hrow,clinks) ; } |
1616 | |
1617 | /*! \relates CoinPrePostsolveMatrix |
1618 | \brief Delete the entry for a minor index from a major vector. |
1619 | |
1620 | Deletes the entry for \p minndx from the major vector \p majndx. |
1621 | Specifically, the relevant entries are removed from the minor index (\p |
1622 | minndxs) and coefficient (\p els) arrays and the vector length (\p |
1623 | majlens) is decremented. Loose packing is maintained by swapping the last |
1624 | entry in the row into the position occupied by the deleted entry. |
1625 | */ |
1626 | inline void presolve_delete_from_major(int majndx, int minndx, |
1627 | const CoinBigIndex *majstrts, |
1628 | int *majlens, int *minndxs, double *els) |
1629 | { CoinBigIndex ks = majstrts[majndx] ; |
1630 | CoinBigIndex ke = ks + majlens[majndx] ; |
1631 | |
1632 | CoinBigIndex kmi = presolve_find_minor(minndx,ks,ke,minndxs) ; |
1633 | |
1634 | minndxs[kmi] = minndxs[ke-1] ; |
1635 | els[kmi] = els[ke-1] ; |
1636 | majlens[majndx]-- ; |
1637 | |
1638 | return ; } |
1639 | // Delete all marked from major (and zero marked) |
1640 | inline void presolve_delete_many_from_major(int majndx, char * marked, |
1641 | const CoinBigIndex *majstrts, |
1642 | int *majlens, int *minndxs, double *els) |
1643 | { |
1644 | CoinBigIndex ks = majstrts[majndx] ; |
1645 | CoinBigIndex ke = ks + majlens[majndx] ; |
1646 | CoinBigIndex put=ks; |
1647 | for (CoinBigIndex k=ks;k<ke;k++) { |
1648 | int iMinor = minndxs[k]; |
1649 | if (!marked[iMinor]) { |
1650 | minndxs[put]=iMinor; |
1651 | els[put++]=els[k]; |
1652 | } else { |
1653 | marked[iMinor]=0; |
1654 | } |
1655 | } |
1656 | majlens[majndx] = put-ks ; |
1657 | return ; |
1658 | } |
1659 | |
1660 | /*! \relates CoinPrePostsolveMatrix |
1661 | \brief Delete the entry for row \p row from column \p col in a |
1662 | column-major matrix |
1663 | |
1664 | Deletes the entry for \p row from the major vector for \p col. |
1665 | Specifically, the relevant entries are removed from the row index (\p |
1666 | hrow) and coefficient (\p colels) arrays and the vector length (\p |
1667 | hincol) is decremented. Loose packing is maintained by swapping the last |
1668 | entry in the row into the position occupied by the deleted entry. |
1669 | */ |
1670 | inline void presolve_delete_from_col(int row, int col, |
1671 | const CoinBigIndex *mcstrt, |
1672 | int *hincol, int *hrow, double *colels) |
1673 | { presolve_delete_from_major(col,row,mcstrt,hincol,hrow,colels) ; } |
1674 | |
1675 | /*! \relates CoinPrePostsolveMatrix |
1676 | \brief Delete the entry for column \p col from row \p row in a |
1677 | row-major matrix |
1678 | |
1679 | Deletes the entry for \p col from the major vector for \p row. |
1680 | Specifically, the relevant entries are removed from the column index (\p |
1681 | hcol) and coefficient (\p rowels) arrays and the vector length (\p |
1682 | hinrow) is decremented. Loose packing is maintained by swapping the last |
1683 | entry in the column into the position occupied by the deleted entry. |
1684 | */ |
1685 | inline void presolve_delete_from_row(int row, int col, |
1686 | const CoinBigIndex *mrstrt, |
1687 | int *hinrow, int *hcol, double *rowels) |
1688 | { presolve_delete_from_major(row,col,mrstrt,hinrow,hcol,rowels) ; } |
1689 | |
1690 | /*! \relates CoinPostsolveMatrix |
1691 | \brief Delete the entry for a minor index from a major vector in a |
1692 | threaded matrix. |
1693 | |
1694 | Deletes the entry for \p minndx from the major vector \p majndx. |
1695 | Specifically, the relevant entries are removed from the minor index (\p |
1696 | minndxs) and coefficient (\p els) arrays and the vector length (\p |
1697 | majlens) is decremented. The thread for the major vector is relinked |
1698 | around the deleted entry and the space is returned to the free list. |
1699 | */ |
1700 | void presolve_delete_from_major2 (int majndx, int minndx, |
1701 | CoinBigIndex *majstrts, int *majlens, |
1702 | int *minndxs, /*double *els,*/ int *majlinks, |
1703 | CoinBigIndex *free_listp) ; |
1704 | |
1705 | /*! \relates CoinPostsolveMatrix |
1706 | \brief Delete the entry for row \p row from column \p col in a |
1707 | column-major threaded matrix |
1708 | |
1709 | Deletes the entry for \p row from the major vector for \p col. |
1710 | Specifically, the relevant entries are removed from the row index (\p |
1711 | hrow) and coefficient (\p colels) arrays and the vector length (\p |
1712 | hincol) is decremented. The thread for the major vector is relinked |
1713 | around the deleted entry and the space is returned to the free list. |
1714 | */ |
1715 | inline void presolve_delete_from_col2(int row, int col, CoinBigIndex *mcstrt, |
1716 | int *hincol, int *hrow, |
1717 | /*double *colels,*/ int *clinks, |
1718 | CoinBigIndex *free_listp) |
1719 | { presolve_delete_from_major2(col,row,mcstrt,hincol,hrow,/*colels,*/clinks, |
1720 | free_listp) ; } |
1721 | |
1722 | //@} |
1723 | |
1724 | /*! \defgroup PresolveUtilities Presolve Utility Functions |
1725 | |
1726 | Utilities used by multiple presolve transform objects. |
1727 | */ |
1728 | //@{ |
1729 | |
1730 | /*! \brief Duplicate a major-dimension vector; optionally omit the entry |
1731 | with minor index \p tgt. |
1732 | |
1733 | Designed to copy a major-dimension vector from the paired coefficient |
1734 | (\p elems) and minor index (\p indices) arrays used in the standard |
1735 | packed matrix representation. Copies \p length entries starting at |
1736 | \p offset. |
1737 | |
1738 | If \p tgt is specified, the entry with minor index == \p tgt is |
1739 | omitted from the copy. |
1740 | */ |
1741 | double *presolve_dupmajor(const double *elems, const int *indices, |
1742 | int length, CoinBigIndex offset, int tgt = -1); |
1743 | /// Initialize an array with random numbers |
1744 | void coin_init_random_vec(double *work, int n); |
1745 | //@} |
1746 | |
1747 | |
1748 | #endif |
1749 | |