| 1 | /** \file |
| 2 | * \brief Implementation of the 2(1-1/l)-approximation algorithm for |
| 3 | * the minimum Steiner tree problem by Matsuyama and Takahashi |
| 4 | * |
| 5 | * \author Matthias Woste |
| 6 | * |
| 7 | * \par License: |
| 8 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 9 | * |
| 10 | * \par |
| 11 | * Copyright (C)<br> |
| 12 | * See README.md in the OGDF root directory for details. |
| 13 | * |
| 14 | * \par |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License |
| 17 | * Version 2 or 3 as published by the Free Software Foundation; |
| 18 | * see the file LICENSE.txt included in the packaging of this file |
| 19 | * for details. |
| 20 | * |
| 21 | * \par |
| 22 | * This program is distributed in the hope that it will be useful, |
| 23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 25 | * GNU General Public License for more details. |
| 26 | * |
| 27 | * \par |
| 28 | * You should have received a copy of the GNU General Public |
| 29 | * License along with this program; if not, see |
| 30 | * http://www.gnu.org/copyleft/gpl.html |
| 31 | */ |
| 32 | |
| 33 | #pragma once |
| 34 | |
| 35 | #include <ogdf/basic/List.h> |
| 36 | #include <ogdf/graphalg/steiner_tree/EdgeWeightedGraphCopy.h> |
| 37 | #include <ogdf/module/MinSteinerTreeModule.h> |
| 38 | #include <ogdf/basic/extended_graph_alg.h> |
| 39 | |
| 40 | namespace ogdf { |
| 41 | |
| 42 | /** |
| 43 | * This class implements the minimum Steiner tree 2-approximation algorithm |
| 44 | * by Takahashi and Matsuyama with improvements proposed by Poggi de Aragao et al. |
| 45 | * |
| 46 | * @ingroup ga-steiner |
| 47 | * |
| 48 | * This implementation is based on: |
| 49 | * |
| 50 | * (H. Takahashi and A. Matsuyama, An approximate solution for the Steiner problem in graphs, Math. Japonica, |
| 51 | * volume 24, number 6, pages 573-577, 1980) |
| 52 | * |
| 53 | * (M. Poggi de Aragao, C. Riberiro, E. Uchoa, R. Werneck, Hybrid Local Search for the Steiner Problem in Graphs, |
| 54 | * MIC 2001, pages 429-433, 2001) |
| 55 | */ |
| 56 | template<typename T> |
| 57 | class MinSteinerTreeTakahashi: public MinSteinerTreeModule<T> { |
| 58 | public: |
| 59 | MinSteinerTreeTakahashi() { } |
| 60 | |
| 61 | virtual ~MinSteinerTreeTakahashi() { } |
| 62 | |
| 63 | /** |
| 64 | * An extended call method with specific start node. |
| 65 | * |
| 66 | * You should only call this method when there is more than one terminal. |
| 67 | * |
| 68 | * @see MinSteinerTreeModule::call |
| 69 | */ |
| 70 | virtual T call(const EdgeWeightedGraph<T> &G, |
| 71 | const List<node> &terminals, |
| 72 | const NodeArray<bool> &isTerminal, |
| 73 | EdgeWeightedGraphCopy<T> *&finalSteinerTree, |
| 74 | const node startNode) |
| 75 | { |
| 76 | return call(G, terminals, isTerminal, isTerminal, finalSteinerTree, startNode); |
| 77 | } |
| 78 | |
| 79 | /** |
| 80 | * An extended call method with intermediate and final (original) terminals. |
| 81 | * |
| 82 | * You should only call this method when there is more than one terminal. |
| 83 | * |
| 84 | * @see MinSteinerTreeModule::call |
| 85 | */ |
| 86 | virtual T call(const EdgeWeightedGraph<T> &G, |
| 87 | const List<node> &terminals, |
| 88 | const NodeArray<bool> &isTerminal, |
| 89 | const NodeArray<bool> &isOriginalTerminal, |
| 90 | EdgeWeightedGraphCopy<T> *&finalSteinerTree) |
| 91 | { |
| 92 | return call(G, terminals, isTerminal, isOriginalTerminal, finalSteinerTree, terminals.front()); |
| 93 | } |
| 94 | |
| 95 | using MinSteinerTreeModule<T>::call; |
| 96 | |
| 97 | /*! |
| 98 | * An extended call method with intermediate and final (original) terminal nodes |
| 99 | * and a specific start node. |
| 100 | * |
| 101 | * You should only call this method when there is more than one terminal. |
| 102 | * |
| 103 | * @see MinSteinerTreeModule::call |
| 104 | */ |
| 105 | virtual T call(const EdgeWeightedGraph<T> &G, |
| 106 | const List<node> &terminals, |
| 107 | const NodeArray<bool> &isTerminal, |
| 108 | const NodeArray<bool> &isOriginalTerminal, |
| 109 | EdgeWeightedGraphCopy<T> *&finalSteinerTree, |
| 110 | const node startNode); |
| 111 | |
| 112 | protected: |
| 113 | virtual T computeSteinerTree( |
| 114 | const EdgeWeightedGraph<T> &G, |
| 115 | const List<node> &terminals, |
| 116 | const NodeArray<bool> &isTerminal, |
| 117 | EdgeWeightedGraphCopy<T> *&finalSteinerTree) override |
| 118 | { |
| 119 | return call(G, terminals, isTerminal, isTerminal, finalSteinerTree, terminals.front()); |
| 120 | } |
| 121 | |
| 122 | /*! |
| 123 | * Modified Dijkstra algorithm to solve the Minimum Steiner Tree problem |
| 124 | * @param wG the original graph |
| 125 | * @param intermediateTerminalSpanningTree intermediate terminal spanning tree |
| 126 | * @param s source node to start from |
| 127 | * @param numberOfTerminals number of terminal nodes |
| 128 | * @param isTerminal terminal incivende vector |
| 129 | * @return the weight of the intermediateTerminalSpanningTree |
| 130 | */ |
| 131 | T terminalDijkstra(const EdgeWeightedGraph<T> &wG, |
| 132 | EdgeWeightedGraphCopy<T> &intermediateTerminalSpanningTree, |
| 133 | const node s, |
| 134 | int numberOfTerminals, |
| 135 | const NodeArray<bool> &isTerminal); |
| 136 | }; |
| 137 | |
| 138 | template<typename T> |
| 139 | T MinSteinerTreeTakahashi<T>::call(const EdgeWeightedGraph<T> &G, |
| 140 | const List<node> &terminals, |
| 141 | const NodeArray<bool> &isTerminal, |
| 142 | const NodeArray<bool> &isOriginalTerminal, |
| 143 | EdgeWeightedGraphCopy<T> *&finalSteinerTree, |
| 144 | const node startNode) |
| 145 | { |
| 146 | OGDF_ASSERT(isConnected(G)); |
| 147 | |
| 148 | EdgeWeightedGraphCopy<T> terminalSpanningTree; |
| 149 | terminalSpanningTree.createEmpty(G); |
| 150 | terminalDijkstra(G, terminalSpanningTree, startNode, terminals.size(), isTerminal); |
| 151 | |
| 152 | finalSteinerTree = new EdgeWeightedGraphCopy<T>(G); |
| 153 | for(node u : G.nodes) { |
| 154 | if (!terminalSpanningTree.copy(u)) { |
| 155 | finalSteinerTree->delNode(finalSteinerTree->copy(u)); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | T mstWeight = makeMinimumSpanningTree(*finalSteinerTree, finalSteinerTree->edgeWeights()); |
| 160 | mstWeight -= MinSteinerTreeModule<T>::pruneAllDanglingSteinerPaths(*finalSteinerTree, isOriginalTerminal); |
| 161 | |
| 162 | return mstWeight; |
| 163 | } |
| 164 | |
| 165 | template<typename T> |
| 166 | T MinSteinerTreeTakahashi<T>::terminalDijkstra(const EdgeWeightedGraph<T> &wG, |
| 167 | EdgeWeightedGraphCopy<T> &intermediateTerminalSpanningTree, const node s, int numberOfTerminals, |
| 168 | const NodeArray<bool> &isTerminal) |
| 169 | { |
| 170 | NodeArray<edge> predecessor(wG, nullptr); |
| 171 | NodeArray<T> distance(wG, std::numeric_limits<T>::max()); |
| 172 | distance[s] = 0; |
| 173 | NodeArray<T> bestDistance(wG, std::numeric_limits<T>::max()); |
| 174 | bestDistance[s] = 0; |
| 175 | NodeArray<bool> isInQueue(wG, true); |
| 176 | |
| 177 | PrioritizedMapQueue<node, T> queue(wG); //priority queue |
| 178 | for (node v : wG.nodes) { |
| 179 | queue.push(v, distance[v]); |
| 180 | } |
| 181 | |
| 182 | T mstWeight = 0; |
| 183 | int terminalsFound = 1; |
| 184 | while (!queue.empty() && terminalsFound < numberOfTerminals) { |
| 185 | node v = queue.topElement(); |
| 186 | queue.pop(); |
| 187 | isInQueue[v] = false; |
| 188 | bestDistance[v] = distance[v]; |
| 189 | if (isTerminal[v] |
| 190 | && distance[v] > 0) { |
| 191 | ++terminalsFound; |
| 192 | // insert path from new node to old tree |
| 193 | node tmpT = intermediateTerminalSpanningTree.newNode(v); |
| 194 | while (distance[v] > 0) { |
| 195 | distance[v] = 0; |
| 196 | queue.push(v, distance[v]); |
| 197 | isInQueue[v] = true; |
| 198 | const edge e = predecessor[v]; |
| 199 | OGDF_ASSERT(e); |
| 200 | const node w = e->opposite(v); |
| 201 | node tmpS = intermediateTerminalSpanningTree.copy(w); |
| 202 | if (!tmpS) { |
| 203 | tmpS = intermediateTerminalSpanningTree.newNode(w); |
| 204 | } |
| 205 | edge tmpE; |
| 206 | if (e->target() == v) { |
| 207 | tmpE = intermediateTerminalSpanningTree.newEdge(tmpS, tmpT, wG.weight(e)); |
| 208 | } else { |
| 209 | tmpE = intermediateTerminalSpanningTree.newEdge(tmpT, tmpS, wG.weight(e)); |
| 210 | } |
| 211 | mstWeight += wG.weight(e); |
| 212 | intermediateTerminalSpanningTree.setEdge(e, tmpE); |
| 213 | tmpT = tmpS; |
| 214 | v = w; |
| 215 | } |
| 216 | } else { // !isTerminal[v] || distance[v] == 0 |
| 217 | for(adjEntry adj : v->adjEntries) { |
| 218 | const node w = adj->twinNode(); |
| 219 | const edge e = adj->theEdge(); |
| 220 | if (distance[w] > distance[v] + wG.weight(e) |
| 221 | && bestDistance[w] >= distance[w]) { |
| 222 | distance[w] = distance[v] + wG.weight(e); |
| 223 | if (!isInQueue[w]) { |
| 224 | queue.push(w, distance[w]); |
| 225 | isInQueue[w] = true; |
| 226 | } else { |
| 227 | queue.decrease(w, distance[w]); |
| 228 | } |
| 229 | predecessor[w] = e; |
| 230 | } |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | return mstWeight; |
| 235 | } |
| 236 | |
| 237 | } |
| 238 | |