1 | /** \file |
2 | * \brief Declaration of ogdf::MinSteinerTreeModule |
3 | * |
4 | * \author Matthias Woste, Stephan Beyer |
5 | * |
6 | * \par License: |
7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
8 | * |
9 | * \par |
10 | * Copyright (C)<br> |
11 | * See README.md in the OGDF root directory for details. |
12 | * |
13 | * \par |
14 | * This program is free software; you can redistribute it and/or |
15 | * modify it under the terms of the GNU General Public License |
16 | * Version 2 or 3 as published by the Free Software Foundation; |
17 | * see the file LICENSE.txt included in the packaging of this file |
18 | * for details. |
19 | * |
20 | * \par |
21 | * This program is distributed in the hope that it will be useful, |
22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
24 | * GNU General Public License for more details. |
25 | * |
26 | * \par |
27 | * You should have received a copy of the GNU General Public |
28 | * License along with this program; if not, see |
29 | * http://www.gnu.org/copyleft/gpl.html |
30 | */ |
31 | |
32 | #pragma once |
33 | |
34 | #include <ogdf/basic/GraphAttributes.h> |
35 | #include <ogdf/basic/PriorityQueue.h> |
36 | #include <ogdf/basic/simple_graph_alg.h> |
37 | #include <ogdf/basic/extended_graph_alg.h> |
38 | #include <ogdf/energybased/FMMMLayout.h> |
39 | #include <ogdf/graphalg/steiner_tree/Triple.h> |
40 | #include <ogdf/graphalg/steiner_tree/EdgeWeightedGraphCopy.h> |
41 | #include <ogdf/fileformats/GraphIO.h> |
42 | #include <ogdf/graphalg/AStarSearch.h> |
43 | #include <sstream> |
44 | |
45 | namespace ogdf { |
46 | |
47 | /** |
48 | * Serves as an interface for various methods to |
49 | * compute or approximate minimum Steiner trees |
50 | * on undirected graphs with edge costs. |
51 | * |
52 | * Furthermore it supplies some auxiliary methods. |
53 | * |
54 | * @tparam T The type of the edge costs of the Steiner tree instance |
55 | */ |
56 | template<typename T> |
57 | class MinSteinerTreeModule { |
58 | public: |
59 | //! Do nothing on destruction |
60 | virtual ~MinSteinerTreeModule() { } |
61 | |
62 | /** |
63 | * Calls the Steiner tree algorithm for nontrivial cases |
64 | * but handles trivial cases directly. |
65 | * |
66 | * @param G The weighted input graph |
67 | * @param terminals The list of terminal nodes |
68 | * @param isTerminal A bool array of terminals |
69 | * @param finalSteinerTree The final Steiner tree |
70 | * @return The total cost of the final Steiner tree |
71 | */ |
72 | virtual T call(const EdgeWeightedGraph<T> &G, |
73 | const List<node> &terminals, |
74 | const NodeArray<bool> &isTerminal, |
75 | EdgeWeightedGraphCopy<T> *&finalSteinerTree |
76 | ); |
77 | |
78 | //! @name Auxiliary post-processing functions |
79 | //! @{ |
80 | |
81 | /** |
82 | * Prunes nonterminal leaves and their paths to terminal or branching nodes |
83 | * |
84 | * @param steinerTree The given Steiner tree |
85 | * @param isTerminal Incidence vector indicating terminal nodes |
86 | * @return The total cost of the removed edges (achieved improvement) |
87 | */ |
88 | static T pruneAllDanglingSteinerPaths(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal); |
89 | |
90 | /** |
91 | * Prunes the dangling Steiner path beginning at a given nonterminal leaf only |
92 | * |
93 | * @param steinerTree The given Steiner tree |
94 | * @param isTerminal Incidence vector indicating terminals |
95 | * @param start A nonterminal leaf to start pruning at |
96 | * @return The total cost of the removed edges (achieved improvement) |
97 | */ |
98 | static T pruneDanglingSteinerPathFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, node start); |
99 | |
100 | /** |
101 | * Prunes dangling Steiner paths beginning at given nonterminal leaves only |
102 | * |
103 | * @see pruneDanglingSteinerPathFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, node start) |
104 | */ |
105 | static T pruneDanglingSteinerPathsFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, const List<node> &start); |
106 | |
107 | /** |
108 | * Remove remaining cycles from a Steiner "almost" tree |
109 | * |
110 | * @return The edge weights of the removed edges (achieved improvement) |
111 | */ |
112 | static T removeCyclesFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal); |
113 | |
114 | //! @} |
115 | //! @name Special SSSP and APSP algorithms used in component-based approximation algorithms |
116 | //! @{ |
117 | |
118 | /** |
119 | * Modified single-source-shortest-paths (%Dijkstra) |
120 | * with heuristic to prefer paths over terminals |
121 | * |
122 | * A shortest path over a terminal will mark the nodes that |
123 | * come after that terminal as unreachable by setting the predecessor |
124 | * to \c nullptr. |
125 | * Nevertheless, the distance will be set correctly. |
126 | * |
127 | * @param G Input graph |
128 | * @param source Start terminal |
129 | * @param isTerminal Incidence vector indicating terminal nodes |
130 | * @param distance Distance matrix result |
131 | * @param pred Resulting shortest path such that \p pred[s][t] contains last edge of an s-t-path |
132 | */ |
133 | static void singleSourceShortestPathsStrict(const EdgeWeightedGraph<T> &G, node source, const NodeArray<bool> &isTerminal, NodeArray<T> &distance, NodeArray<edge> &pred); |
134 | |
135 | /** |
136 | * Modified single-source-shortest-paths (%Dijkstra) |
137 | * with heuristic to avoid paths over terminals |
138 | * |
139 | * Avoiding terminals results in paths with detours. |
140 | * If a node is only reachable over a terminal, there is no path to it in the solution, i.e., |
141 | * there is no predecessor and the distance is \c std::numeric_limits<T>::max(). |
142 | */ |
143 | static void singleSourceShortestPathsDetour(const EdgeWeightedGraph<T> &G, node source, const NodeArray<bool> &isTerminal, NodeArray<T> &distance, NodeArray<edge> &pred); |
144 | |
145 | //! Runs #singleSourceShortestPathsDetour from all terminals |
146 | static void allTerminalShortestPathsDetour( |
147 | const EdgeWeightedGraph<T> &G, |
148 | const List<node> &terminals, |
149 | const NodeArray<bool> &isTerminal, |
150 | NodeArray<NodeArray<T>> &distance, |
151 | NodeArray<NodeArray<edge>> &pred) |
152 | { |
153 | allTerminalShortestPaths(G, terminals, isTerminal, distance, pred, singleSourceShortestPathsDetour); |
154 | } |
155 | |
156 | //! Runs #singleSourceShortestPathsStrict from all terminals |
157 | static void allTerminalShortestPathsStrict( |
158 | const EdgeWeightedGraph<T> &G, |
159 | const List<node> &terminals, |
160 | const NodeArray<bool> &isTerminal, |
161 | NodeArray<NodeArray<T>> &distance, |
162 | NodeArray<NodeArray<edge>> &pred) |
163 | { |
164 | allTerminalShortestPaths(G, terminals, isTerminal, distance, pred, singleSourceShortestPathsStrict); |
165 | } |
166 | |
167 | /** |
168 | * Modified all-pair-shortest-paths algorithm (%Floyd-Warshall) over nonterminals |
169 | * with heuristic to prefer paths over terminals |
170 | * |
171 | * @param G Input graph |
172 | * @param isTerminal Incidence vector indicating terminal nodes |
173 | * @param distance Distance matrix result |
174 | * @param pred Resulting shortest path such that \p pred[s][t] contains last edge of an s-t-path |
175 | */ |
176 | static void allPairShortestPathsStrict(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred); |
177 | |
178 | /** |
179 | * Modified all-pair-shortest-paths algorithm (%Floyd-Warshall) over nonterminals |
180 | * with heuristic to avoid paths over terminals |
181 | * and hence accepting detours |
182 | * |
183 | * @param G Input graph |
184 | * @param nonterminals Container of nonterminals |
185 | * @param distance Distance matrix result |
186 | * @param pred Resulting shortest path such that \p pred[s][t] contains last edge of an s-t-path |
187 | * @tparam CONTAINER Container |
188 | */ |
189 | template<typename CONTAINER> |
190 | static void allPairShortestPathsDetour(const EdgeWeightedGraph<T> &G, const CONTAINER &nonterminals, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred); |
191 | |
192 | //! @} |
193 | //! @name Drawings for debugging |
194 | //! @{ |
195 | |
196 | /** |
197 | * Writes an SVG file of a minimum Steiner tree in the original graph |
198 | * |
199 | * @param G The original weighted graph |
200 | * @param isTerminal Incidence vector indicating terminal nodes |
201 | * @param steinerTree The Steiner tree of the given graph |
202 | * @param filename The name of the output file |
203 | */ |
204 | static void drawSVG(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal, const EdgeWeightedGraphCopy<T> &steinerTree, const char *filename); |
205 | |
206 | /** |
207 | * Writes an SVG file of the instance graph |
208 | * |
209 | * @param G The weighted graph instance |
210 | * @param isTerminal Incidence vector indicating terminal nodes |
211 | * @param filename The name of the output file |
212 | */ |
213 | static void drawSVG(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal, const char *filename) { |
214 | EdgeWeightedGraphCopy<T> emptySteinerTree; |
215 | emptySteinerTree.createEmpty(G); |
216 | drawSVG(G, isTerminal, emptySteinerTree, filename); |
217 | } |
218 | |
219 | /** |
220 | * Writes a SVG that shows only the given Steiner tree |
221 | * |
222 | * @param steinerTree The Steiner tree to be drawn |
223 | * @param isTerminal Incidence vector indicating terminal nodes |
224 | * @param filename The name of the output file |
225 | */ |
226 | static void drawSteinerTreeSVG(const EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, const char *filename); |
227 | |
228 | //! @} |
229 | |
230 | /** |
231 | * Checks in O(n) time if a given tree is acually a Steiner Tree |
232 | * |
233 | * @param G The original graph |
234 | * @param terminals The list of terminal nodes |
235 | * @param isTerminal A bool array of terminals |
236 | * @param steinerTree The Steiner tree to be checked |
237 | * @return true iff the given Steiner tree is actually one, false otherwise |
238 | */ |
239 | static bool isSteinerTree(const EdgeWeightedGraph<T> &G, const List<node> &terminals, const NodeArray<bool> &isTerminal, const EdgeWeightedGraphCopy<T> &steinerTree); |
240 | |
241 | /** |
242 | * Checks in O(n + m) time if a given Steiner tree problem instance is quasi-bipartite |
243 | * |
244 | * @param G The original graph |
245 | * @param isTerminal A bool array of terminals |
246 | * @return true iff the given Steiner tree problem instance is quasi-bipartite |
247 | */ |
248 | static bool isQuasiBipartite(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal); |
249 | |
250 | /** |
251 | * Generates a list (as List<node>) of all terminals |
252 | * |
253 | * @param terminals The returned list (terminals are appended) |
254 | * @param G The weighted input graph |
255 | * @param isTerminal A bool array of terminals |
256 | */ |
257 | static inline void getTerminals(List<node> &terminals, const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal) |
258 | { |
259 | for (node v : G.nodes) { |
260 | if (isTerminal[v]) { |
261 | terminals.pushBack(v); |
262 | } |
263 | } |
264 | } |
265 | |
266 | //! Sort terminals by index |
267 | static inline void sortTerminals(List<node> &terminals) |
268 | { |
269 | terminals.quicksort(GenericComparer<node, int>([](node v) { return v->index(); })); |
270 | } |
271 | |
272 | /** |
273 | * Generates a list (as ArrayBuffer<node>) of all nonterminals |
274 | * |
275 | * @param nonterminals The returned list (nonterminals are appended) |
276 | * @param G The weighted input graph |
277 | * @param isTerminal A bool array of terminals |
278 | */ |
279 | static inline void getNonterminals(ArrayBuffer<node> &nonterminals, const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal) |
280 | { |
281 | for (node v : G.nodes) { |
282 | if (!isTerminal[v]) { |
283 | nonterminals.push(v); |
284 | } |
285 | } |
286 | } |
287 | |
288 | protected: |
289 | /** |
290 | * Computes the actual Steiner tree |
291 | * |
292 | * @return The total cost of the final Steiner tree |
293 | */ |
294 | virtual T computeSteinerTree(const EdgeWeightedGraph<T> &G, |
295 | const List<node> &terminals, |
296 | const NodeArray<bool> &isTerminal, |
297 | EdgeWeightedGraphCopy<T> *&finalSteinerTree |
298 | ) = 0; |
299 | |
300 | //! Runs a given single-source-shortest-paths function from all terminals |
301 | static void allTerminalShortestPaths( |
302 | const EdgeWeightedGraph<T> &G, |
303 | const List<node> &terminals, |
304 | const NodeArray<bool> &isTerminal, |
305 | NodeArray<NodeArray<T>> &distance, |
306 | NodeArray<NodeArray<edge>> &pred, |
307 | std::function<void(const EdgeWeightedGraph<T> &, node, const NodeArray<bool> &, NodeArray<T> &, NodeArray<edge> &)> ssspFunc) |
308 | { |
309 | distance.init(G); |
310 | pred.init(G); |
311 | for (node u : terminals) { |
312 | ssspFunc(G, u, isTerminal, distance[u], pred[u]); |
313 | } |
314 | } |
315 | |
316 | private: |
317 | //! Common initialization routine for APSP algorithms |
318 | static void apspInit(const EdgeWeightedGraph<T> &G, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred); |
319 | //! Common initialization routine for SSSP algorithms |
320 | static void ssspInit(const EdgeWeightedGraph<T> &G, node source, PrioritizedMapQueue<node, T> &queue, NodeArray<T> &distance, NodeArray<edge> &pred); |
321 | |
322 | //! The inner loop for APSP algorithm to avoid code duplication |
323 | inline static void apspInnerLoop(node v, const EdgeWeightedGraph<T> &G, NodeArray<NodeArray<T>> &distance, std::function<void(node, node, T)> func) |
324 | { |
325 | for (node u : G.nodes) { |
326 | const T duv = distance[u][v]; |
327 | if (duv < std::numeric_limits<T>::max()) { |
328 | for (node w = u->succ(); w != nullptr; w = w->succ()) { |
329 | if (distance[v][w] < std::numeric_limits<T>::max()) { |
330 | func(u, w, duv + distance[v][w]); |
331 | } |
332 | } |
333 | } |
334 | } |
335 | } |
336 | }; |
337 | |
338 | template<typename T> |
339 | T MinSteinerTreeModule<T>::call(const EdgeWeightedGraph<T> &G, |
340 | const List<node> &terminals, |
341 | const NodeArray<bool> &isTerminal, |
342 | EdgeWeightedGraphCopy<T> *&finalSteinerTree |
343 | ) |
344 | { |
345 | OGDF_ASSERT(isConnected(G)); |
346 | |
347 | if (terminals.size() > 2) { |
348 | return this->computeSteinerTree(G, terminals, isTerminal, finalSteinerTree); |
349 | } |
350 | |
351 | finalSteinerTree = new EdgeWeightedGraphCopy<T>(); |
352 | finalSteinerTree->createEmpty(G); |
353 | if (!terminals.empty()) { |
354 | finalSteinerTree->newNode(terminals.back()); |
355 | } |
356 | if (terminals.size() <= 1) { |
357 | return 0; |
358 | } |
359 | |
360 | OGDF_ASSERT(terminals.size() == 2); |
361 | T cost(0); |
362 | AStarSearch<T> astar; |
363 | NodeArray<edge> pred; |
364 | NodeArray<T> dist; |
365 | astar.call(G, G.edgeWeights(), terminals.front(), terminals.back(), pred); |
366 | OGDF_ASSERT(pred[terminals.back()] != nullptr); // connected |
367 | for (node t = terminals.back(); t != terminals.front(); t = pred[t]->opposite(t)) { |
368 | const edge e = pred[t]; |
369 | finalSteinerTree->newNode(e->opposite(t)); |
370 | finalSteinerTree->newEdge(e, G.weight(e)); |
371 | cost += G.weight(e); |
372 | } |
373 | return cost; |
374 | } |
375 | |
376 | template<typename T> |
377 | bool MinSteinerTreeModule<T>::isSteinerTree( |
378 | const EdgeWeightedGraph<T> &G, |
379 | const List<node> &terminals, |
380 | const NodeArray<bool> &isTerminal, |
381 | const EdgeWeightedGraphCopy<T> &steinerTree) |
382 | { |
383 | // the Steiner tree is actually a tree |
384 | if (!isTree(steinerTree)) { |
385 | return false; |
386 | } |
387 | |
388 | // all terminal nodes are in the graph and have degree >= 1 |
389 | for(node v : terminals) { |
390 | const node u = steinerTree.copy(v); |
391 | if (!u || (terminals.size() > 1 && u->degree() < 1)) { |
392 | return false; |
393 | } |
394 | } |
395 | |
396 | // all Steiner nodes are inner nodes |
397 | for(node u : steinerTree.nodes) { |
398 | if (!isTerminal[steinerTree.original(u)] |
399 | && u->degree() <= 1) { |
400 | return false; |
401 | } |
402 | } |
403 | |
404 | return true; |
405 | } |
406 | |
407 | template<typename T> |
408 | bool MinSteinerTreeModule<T>::isQuasiBipartite(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal) |
409 | { |
410 | for (node v = G.firstNode(); v; v = v->succ()) { |
411 | if (!isTerminal[v]) { |
412 | for (adjEntry adj = v->firstAdj(); adj; adj = adj->succ()) { |
413 | if (!isTerminal[adj->twinNode()]) { |
414 | return false; |
415 | } |
416 | } |
417 | } |
418 | } |
419 | return true; |
420 | } |
421 | |
422 | template<typename T> |
423 | T MinSteinerTreeModule<T>::pruneDanglingSteinerPathFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, const node start) |
424 | { |
425 | OGDF_ASSERT(isConnected(steinerTree)); |
426 | T delWeights(0); |
427 | node u = start; |
428 | while (u->degree() == 1 |
429 | && !isTerminal[steinerTree.original(u)]) { |
430 | const adjEntry adj = u->firstAdj(); |
431 | const node v = adj->twinNode(); |
432 | delWeights += steinerTree.weight(adj->theEdge()); |
433 | steinerTree.delNode(u); |
434 | u = v; |
435 | } |
436 | return delWeights; |
437 | } |
438 | |
439 | template<typename T> |
440 | T MinSteinerTreeModule<T>::pruneDanglingSteinerPathsFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, const List<node> &start) |
441 | { |
442 | T delWeights(0); |
443 | for (node v : start) { |
444 | delWeights += pruneDanglingSteinerPathFrom(steinerTree, isTerminal, v); |
445 | } |
446 | return delWeights; |
447 | } |
448 | |
449 | template<typename T> |
450 | T MinSteinerTreeModule<T>::pruneAllDanglingSteinerPaths(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal) |
451 | { |
452 | List<node> start; |
453 | for (node u : steinerTree.nodes) { |
454 | if (u->degree() == 1 |
455 | && !isTerminal[steinerTree.original(u)]) { |
456 | start.pushBack(u); |
457 | } |
458 | } |
459 | |
460 | return pruneDanglingSteinerPathsFrom(steinerTree, isTerminal, start); |
461 | } |
462 | |
463 | template<typename T> |
464 | T MinSteinerTreeModule<T>::removeCyclesFrom(EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal) |
465 | { |
466 | if (steinerTree.numberOfEdges() > steinerTree.numberOfNodes() - 1) { |
467 | EdgeArray<bool> isInTree(steinerTree); |
468 | T oldCost(0); |
469 | T newCost(computeMinST(steinerTree, steinerTree.edgeWeights(), isInTree)); |
470 | |
471 | List<node> pendant; // collect resulting pendant edges |
472 | for (edge nextEdge, e = steinerTree.firstEdge(); e; e = nextEdge) { |
473 | oldCost += steinerTree.weight(e); |
474 | nextEdge = e->succ(); |
475 | if (!isInTree[e]) { |
476 | if (e->source()->degree() == 2) { |
477 | pendant.pushBack(e->source()); |
478 | } |
479 | if (e->target()->degree() == 2) { |
480 | pendant.pushBack(e->target()); |
481 | } |
482 | steinerTree.delEdge(e); |
483 | } |
484 | } |
485 | newCost -= MinSteinerTreeModule<T>::pruneDanglingSteinerPathsFrom(steinerTree, isTerminal, pendant); |
486 | return oldCost - newCost; |
487 | } |
488 | return 0; |
489 | } |
490 | |
491 | template<typename T> |
492 | void MinSteinerTreeModule<T>::ssspInit(const EdgeWeightedGraph<T> &G, node source, PrioritizedMapQueue<node, T> &queue, NodeArray<T> &distance, NodeArray<edge> &pred) |
493 | { |
494 | distance.init(G, std::numeric_limits<T>::max()); |
495 | distance[source] = 0; |
496 | |
497 | for (node v : G.nodes) { |
498 | queue.push(v, distance[v]); |
499 | } |
500 | |
501 | pred.init(G, nullptr); |
502 | } |
503 | |
504 | template<typename T> |
505 | void MinSteinerTreeModule<T>::singleSourceShortestPathsStrict(const EdgeWeightedGraph<T> &G, node source, const NodeArray<bool> &isTerminal, NodeArray<T> &distance, NodeArray<edge> &pred) |
506 | { |
507 | PrioritizedMapQueue<node, T> queue(G); |
508 | ssspInit(G, source, queue, distance, pred); |
509 | |
510 | // we must handle the source explicitly because it is a terminal |
511 | node v = queue.topElement(); |
512 | queue.pop(); |
513 | OGDF_ASSERT(v == source); |
514 | for (adjEntry adj : v->adjEntries) { |
515 | edge e = adj->theEdge(); |
516 | node w = adj->twinNode(); |
517 | if (distance[w] > G.weight(e)) { // this check is only necessary for multigraphs, otherwise this is always true |
518 | queue.decrease(w, (distance[w] = G.weight(e))); |
519 | pred[w] = e; |
520 | } |
521 | } |
522 | |
523 | auto setPredecessor = [&](node w, edge e) { |
524 | bool wOnPathWithTerminal = isTerminal[v] || pred[v] == nullptr; |
525 | pred[w] = wOnPathWithTerminal ? nullptr : e; |
526 | }; |
527 | while (!queue.empty()) { |
528 | v = queue.topElement(); |
529 | queue.pop(); |
530 | |
531 | if (distance[v] == std::numeric_limits<T>::max()) { // min is unreachable, finished |
532 | break; |
533 | } |
534 | for (adjEntry adj : v->adjEntries) { |
535 | edge e = adj->theEdge(); |
536 | node w = adj->twinNode(); |
537 | T dist = distance[v] + G.weight(e); |
538 | if (distance[w] > dist) { |
539 | queue.decrease(w, (distance[w] = dist)); |
540 | setPredecessor(w, e); |
541 | } else |
542 | if (distance[w] == dist |
543 | && pred[w] != nullptr) { // tie |
544 | setPredecessor(w, e); |
545 | } |
546 | } |
547 | } |
548 | } |
549 | |
550 | template<typename T> |
551 | void MinSteinerTreeModule<T>::singleSourceShortestPathsDetour(const EdgeWeightedGraph<T> &G, node source, const NodeArray<bool> &isTerminal, NodeArray<T> &distance, NodeArray<edge> &pred) |
552 | { |
553 | PrioritizedMapQueue<node, T> queue(G); |
554 | ssspInit(G, source, queue, distance, pred); |
555 | |
556 | while (!queue.empty()) { |
557 | node v = queue.topElement(); |
558 | queue.pop(); |
559 | |
560 | if (isTerminal[v] && v != source) { // v is a terminal, ignore |
561 | continue; |
562 | } |
563 | if (distance[v] == std::numeric_limits<T>::max()) { // min is unreachable, finished |
564 | break; |
565 | } |
566 | for (adjEntry adj : v->adjEntries) { |
567 | edge e = adj->theEdge(); |
568 | node w = adj->twinNode(); |
569 | if (distance[w] > distance[v] + G.weight(e)) { |
570 | queue.decrease(w, (distance[w] = distance[v] + G.weight(e))); |
571 | pred[w] = e; |
572 | } |
573 | } |
574 | } |
575 | } |
576 | |
577 | template<typename T> |
578 | void MinSteinerTreeModule<T>::allPairShortestPathsStrict(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred) |
579 | { |
580 | apspInit(G, distance, pred); |
581 | |
582 | for (node v : G.nodes) { |
583 | if (isTerminal[v]) { // v is a terminal |
584 | apspInnerLoop(v, G, distance, [&distance, &pred](node u, node w, T duvw) { |
585 | if (duvw <= distance[u][w]) { // prefer terminals |
586 | distance[w][u] = distance[u][w] = duvw; |
587 | pred[w][u] = pred[u][w] = nullptr; |
588 | } |
589 | }); |
590 | } else { // v is not a terminal |
591 | apspInnerLoop(v, G, distance, [&v, &distance, &pred](node u, node w, T duvw) { |
592 | if (duvw < distance[u][w]) { // do not prefer nonterminals |
593 | distance[w][u] = distance[u][w] = duvw; |
594 | pred[u][w] = (pred[u][v] ? pred[v][w] : nullptr); |
595 | pred[w][u] = (pred[w][v] ? pred[v][u] : nullptr); |
596 | } |
597 | }); |
598 | } |
599 | } |
600 | for (node u : G.nodes) { |
601 | distance[u][u] = 0; |
602 | } |
603 | } |
604 | |
605 | template<typename T> |
606 | void MinSteinerTreeModule<T>::apspInit(const EdgeWeightedGraph<T> &G, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred) |
607 | { |
608 | distance.init(G); |
609 | pred.init(G); |
610 | for (node u : G.nodes) { |
611 | distance[u].init(G, std::numeric_limits<T>::max()); |
612 | pred[u].init(G, nullptr); |
613 | } |
614 | for (edge e : G.edges) { |
615 | const node u = e->source(), v = e->target(); |
616 | distance[u][v] = distance[v][u] = G.weight(e); |
617 | pred[u][v] = pred[v][u] = e; |
618 | } |
619 | } |
620 | |
621 | template<typename T> |
622 | template<typename CONTAINER> |
623 | void MinSteinerTreeModule<T>::allPairShortestPathsDetour(const EdgeWeightedGraph<T> &G, const CONTAINER &nonterminals, NodeArray<NodeArray<T>> &distance, NodeArray<NodeArray<edge>> &pred) |
624 | { |
625 | apspInit(G, distance, pred); |
626 | |
627 | for (node v : nonterminals) { |
628 | apspInnerLoop(v, G, distance, [&v, &distance, &pred](node u, node w, T duvw) { |
629 | if (duvw < distance[u][w]) { |
630 | distance[w][u] = distance[u][w] = duvw; |
631 | pred[u][w] = pred[v][w]; |
632 | pred[w][u] = pred[v][u]; |
633 | } |
634 | }); |
635 | } |
636 | for (node u : G.nodes) { |
637 | distance[u][u] = 0; |
638 | } |
639 | } |
640 | |
641 | template<typename T> |
642 | void MinSteinerTreeModule<T>::drawSteinerTreeSVG(const EdgeWeightedGraphCopy<T> &steinerTree, const NodeArray<bool> &isTerminal, const char *filename) |
643 | { |
644 | GraphAttributes GA(steinerTree, |
645 | GraphAttributes::nodeGraphics | |
646 | GraphAttributes::nodeStyle | |
647 | GraphAttributes::nodeLabel | |
648 | GraphAttributes::edgeGraphics | |
649 | GraphAttributes::edgeStyle | |
650 | GraphAttributes::edgeLabel); |
651 | |
652 | GA.directed() = false; |
653 | |
654 | string s; |
655 | |
656 | for (node v : steinerTree.nodes) { |
657 | std::stringstream out; |
658 | GA.width(v) = GA.height(v) = 25.0; |
659 | if (isTerminal[steinerTree.original(v)]) { |
660 | out << "T" ; |
661 | GA.shape(v) = Shape::Rect; |
662 | GA.fillColor(v) = Color::Name::Red; |
663 | } else { |
664 | out << "S" ; |
665 | GA.shape(v) = Shape::Ellipse; |
666 | GA.fillColor(v) = Color::Name::Gray; |
667 | } |
668 | out << steinerTree.original(v); |
669 | GA.label(v) = out.str(); |
670 | } |
671 | |
672 | FMMMLayout fmmm; |
673 | |
674 | fmmm.useHighLevelOptions(true); |
675 | fmmm.unitEdgeLength(44.0); |
676 | fmmm.newInitialPlacement(true); |
677 | fmmm.qualityVersusSpeed(FMMMOptions::QualityVsSpeed::GorgeousAndEfficient); |
678 | |
679 | fmmm.call(GA); |
680 | std::ofstream writeStream(filename, std::ofstream::out); |
681 | GraphIO::drawSVG(GA, writeStream); |
682 | } |
683 | |
684 | template<typename T> |
685 | void MinSteinerTreeModule<T>::drawSVG(const EdgeWeightedGraph<T> &G, const NodeArray<bool> &isTerminal, const EdgeWeightedGraphCopy<T> &steinerTree, const char *filename) |
686 | { |
687 | GraphAttributes GA(G, |
688 | GraphAttributes::nodeGraphics | |
689 | GraphAttributes::nodeStyle | |
690 | GraphAttributes::nodeLabel | |
691 | GraphAttributes::edgeGraphics | |
692 | GraphAttributes::edgeStyle | |
693 | GraphAttributes::edgeLabel); |
694 | |
695 | GA.directed() = false; |
696 | |
697 | for (edge e : G.edges) { |
698 | GA.strokeColor(e) = Color::Name::Black; |
699 | GA.label(e) = to_string(G.weight(e)); |
700 | GA.strokeWidth(e) = 1; |
701 | } |
702 | for (edge e : steinerTree.edges) { |
703 | GA.strokeColor(steinerTree.original(e)) = Color::Name::Red; |
704 | GA.strokeWidth(steinerTree.original(e)) = 2; |
705 | } |
706 | |
707 | for (node v : G.nodes) { |
708 | std::stringstream out; |
709 | GA.width(v) = GA.height(v) = 25.0; |
710 | GA.strokeColor(v) = Color::Name::Black; |
711 | if (isTerminal[v]) { |
712 | out << "T" << v; |
713 | GA.shape(v) = Shape::Rect; |
714 | GA.fillColor(v) = Color::Name::Red; |
715 | GA.strokeWidth(v) = 2; |
716 | } else { |
717 | out << "S" << v; |
718 | GA.shape(v) = Shape::Ellipse; |
719 | if (steinerTree.copy(v)) { |
720 | GA.fillColor(v) = Color::Name::Gray; |
721 | GA.strokeWidth(v) = 2; |
722 | } else { |
723 | GA.fillColor(v) = Color::Name::White; |
724 | GA.strokeWidth(v) = 1; |
725 | } |
726 | } |
727 | GA.label(v) = out.str(); |
728 | } |
729 | |
730 | FMMMLayout fmmm; |
731 | |
732 | fmmm.useHighLevelOptions(true); |
733 | fmmm.unitEdgeLength(44.0); |
734 | fmmm.newInitialPlacement(true); |
735 | fmmm.qualityVersusSpeed(FMMMOptions::QualityVsSpeed::GorgeousAndEfficient); |
736 | |
737 | fmmm.call(GA); |
738 | |
739 | std::ofstream writeStream(filename, std::ofstream::out); |
740 | GraphIO::drawSVG(GA, writeStream); |
741 | } |
742 | |
743 | } |
744 | |