| 1 | /* $Id: ClpDualRowSteepest.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinPragma.hpp" |
| 7 | #include "ClpSimplex.hpp" |
| 8 | #include "ClpDualRowSteepest.hpp" |
| 9 | #include "CoinIndexedVector.hpp" |
| 10 | #include "ClpFactorization.hpp" |
| 11 | #include "CoinHelperFunctions.hpp" |
| 12 | #include <cstdio> |
| 13 | //############################################################################# |
| 14 | // Constructors / Destructor / Assignment |
| 15 | //############################################################################# |
| 16 | //#define CLP_DEBUG 4 |
| 17 | //------------------------------------------------------------------- |
| 18 | // Default Constructor |
| 19 | //------------------------------------------------------------------- |
| 20 | ClpDualRowSteepest::ClpDualRowSteepest (int mode) |
| 21 | : ClpDualRowPivot(), |
| 22 | state_(-1), |
| 23 | mode_(mode), |
| 24 | persistence_(normal), |
| 25 | weights_(NULL), |
| 26 | infeasible_(NULL), |
| 27 | alternateWeights_(NULL), |
| 28 | savedWeights_(NULL), |
| 29 | dubiousWeights_(NULL) |
| 30 | { |
| 31 | type_ = 2 + 64 * mode; |
| 32 | } |
| 33 | |
| 34 | //------------------------------------------------------------------- |
| 35 | // Copy constructor |
| 36 | //------------------------------------------------------------------- |
| 37 | ClpDualRowSteepest::ClpDualRowSteepest (const ClpDualRowSteepest & rhs) |
| 38 | : ClpDualRowPivot(rhs) |
| 39 | { |
| 40 | state_ = rhs.state_; |
| 41 | mode_ = rhs.mode_; |
| 42 | persistence_ = rhs.persistence_; |
| 43 | model_ = rhs.model_; |
| 44 | if ((model_ && model_->whatsChanged() & 1) != 0) { |
| 45 | int number = model_->numberRows(); |
| 46 | if (rhs.savedWeights_) |
| 47 | number = CoinMin(number, rhs.savedWeights_->capacity()); |
| 48 | if (rhs.infeasible_) { |
| 49 | infeasible_ = new CoinIndexedVector(rhs.infeasible_); |
| 50 | } else { |
| 51 | infeasible_ = NULL; |
| 52 | } |
| 53 | if (rhs.weights_) { |
| 54 | weights_ = new double[number]; |
| 55 | ClpDisjointCopyN(rhs.weights_, number, weights_); |
| 56 | } else { |
| 57 | weights_ = NULL; |
| 58 | } |
| 59 | if (rhs.alternateWeights_) { |
| 60 | alternateWeights_ = new CoinIndexedVector(rhs.alternateWeights_); |
| 61 | } else { |
| 62 | alternateWeights_ = NULL; |
| 63 | } |
| 64 | if (rhs.savedWeights_) { |
| 65 | savedWeights_ = new CoinIndexedVector(rhs.savedWeights_); |
| 66 | } else { |
| 67 | savedWeights_ = NULL; |
| 68 | } |
| 69 | if (rhs.dubiousWeights_) { |
| 70 | assert(model_); |
| 71 | int number = model_->numberRows(); |
| 72 | dubiousWeights_ = new int[number]; |
| 73 | ClpDisjointCopyN(rhs.dubiousWeights_, number, dubiousWeights_); |
| 74 | } else { |
| 75 | dubiousWeights_ = NULL; |
| 76 | } |
| 77 | } else { |
| 78 | infeasible_ = NULL; |
| 79 | weights_ = NULL; |
| 80 | alternateWeights_ = NULL; |
| 81 | savedWeights_ = NULL; |
| 82 | dubiousWeights_ = NULL; |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | //------------------------------------------------------------------- |
| 87 | // Destructor |
| 88 | //------------------------------------------------------------------- |
| 89 | ClpDualRowSteepest::~ClpDualRowSteepest () |
| 90 | { |
| 91 | delete [] weights_; |
| 92 | delete [] dubiousWeights_; |
| 93 | delete infeasible_; |
| 94 | delete alternateWeights_; |
| 95 | delete savedWeights_; |
| 96 | } |
| 97 | |
| 98 | //---------------------------------------------------------------- |
| 99 | // Assignment operator |
| 100 | //------------------------------------------------------------------- |
| 101 | ClpDualRowSteepest & |
| 102 | ClpDualRowSteepest::operator=(const ClpDualRowSteepest& rhs) |
| 103 | { |
| 104 | if (this != &rhs) { |
| 105 | ClpDualRowPivot::operator=(rhs); |
| 106 | state_ = rhs.state_; |
| 107 | mode_ = rhs.mode_; |
| 108 | persistence_ = rhs.persistence_; |
| 109 | model_ = rhs.model_; |
| 110 | delete [] weights_; |
| 111 | delete [] dubiousWeights_; |
| 112 | delete infeasible_; |
| 113 | delete alternateWeights_; |
| 114 | delete savedWeights_; |
| 115 | assert(model_); |
| 116 | int number = model_->numberRows(); |
| 117 | if (rhs.savedWeights_) |
| 118 | number = CoinMin(number, rhs.savedWeights_->capacity()); |
| 119 | if (rhs.infeasible_ != NULL) { |
| 120 | infeasible_ = new CoinIndexedVector(rhs.infeasible_); |
| 121 | } else { |
| 122 | infeasible_ = NULL; |
| 123 | } |
| 124 | if (rhs.weights_ != NULL) { |
| 125 | weights_ = new double[number]; |
| 126 | ClpDisjointCopyN(rhs.weights_, number, weights_); |
| 127 | } else { |
| 128 | weights_ = NULL; |
| 129 | } |
| 130 | if (rhs.alternateWeights_ != NULL) { |
| 131 | alternateWeights_ = new CoinIndexedVector(rhs.alternateWeights_); |
| 132 | } else { |
| 133 | alternateWeights_ = NULL; |
| 134 | } |
| 135 | if (rhs.savedWeights_ != NULL) { |
| 136 | savedWeights_ = new CoinIndexedVector(rhs.savedWeights_); |
| 137 | } else { |
| 138 | savedWeights_ = NULL; |
| 139 | } |
| 140 | if (rhs.dubiousWeights_) { |
| 141 | assert(model_); |
| 142 | int number = model_->numberRows(); |
| 143 | dubiousWeights_ = new int[number]; |
| 144 | ClpDisjointCopyN(rhs.dubiousWeights_, number, dubiousWeights_); |
| 145 | } else { |
| 146 | dubiousWeights_ = NULL; |
| 147 | } |
| 148 | } |
| 149 | return *this; |
| 150 | } |
| 151 | // Fill most values |
| 152 | void |
| 153 | ClpDualRowSteepest::fill(const ClpDualRowSteepest& rhs) |
| 154 | { |
| 155 | state_ = rhs.state_; |
| 156 | mode_ = rhs.mode_; |
| 157 | persistence_ = rhs.persistence_; |
| 158 | assert (model_->numberRows() == rhs.model_->numberRows()); |
| 159 | model_ = rhs.model_; |
| 160 | assert(model_); |
| 161 | int number = model_->numberRows(); |
| 162 | if (rhs.savedWeights_) |
| 163 | number = CoinMin(number, rhs.savedWeights_->capacity()); |
| 164 | if (rhs.infeasible_ != NULL) { |
| 165 | if (!infeasible_) |
| 166 | infeasible_ = new CoinIndexedVector(rhs.infeasible_); |
| 167 | else |
| 168 | *infeasible_ = *rhs.infeasible_; |
| 169 | } else { |
| 170 | delete infeasible_; |
| 171 | infeasible_ = NULL; |
| 172 | } |
| 173 | if (rhs.weights_ != NULL) { |
| 174 | if (!weights_) |
| 175 | weights_ = new double[number]; |
| 176 | ClpDisjointCopyN(rhs.weights_, number, weights_); |
| 177 | } else { |
| 178 | delete [] weights_; |
| 179 | weights_ = NULL; |
| 180 | } |
| 181 | if (rhs.alternateWeights_ != NULL) { |
| 182 | if (!alternateWeights_) |
| 183 | alternateWeights_ = new CoinIndexedVector(rhs.alternateWeights_); |
| 184 | else |
| 185 | *alternateWeights_ = *rhs.alternateWeights_; |
| 186 | } else { |
| 187 | delete alternateWeights_; |
| 188 | alternateWeights_ = NULL; |
| 189 | } |
| 190 | if (rhs.savedWeights_ != NULL) { |
| 191 | if (!savedWeights_) |
| 192 | savedWeights_ = new CoinIndexedVector(rhs.savedWeights_); |
| 193 | else |
| 194 | *savedWeights_ = *rhs.savedWeights_; |
| 195 | } else { |
| 196 | delete savedWeights_; |
| 197 | savedWeights_ = NULL; |
| 198 | } |
| 199 | if (rhs.dubiousWeights_) { |
| 200 | assert(model_); |
| 201 | int number = model_->numberRows(); |
| 202 | if (!dubiousWeights_) |
| 203 | dubiousWeights_ = new int[number]; |
| 204 | ClpDisjointCopyN(rhs.dubiousWeights_, number, dubiousWeights_); |
| 205 | } else { |
| 206 | delete [] dubiousWeights_; |
| 207 | dubiousWeights_ = NULL; |
| 208 | } |
| 209 | } |
| 210 | // Returns pivot row, -1 if none |
| 211 | int |
| 212 | ClpDualRowSteepest::pivotRow() |
| 213 | { |
| 214 | assert(model_); |
| 215 | int i, iRow; |
| 216 | double * infeas = infeasible_->denseVector(); |
| 217 | double largest = 0.0; |
| 218 | int * index = infeasible_->getIndices(); |
| 219 | int number = infeasible_->getNumElements(); |
| 220 | const int * pivotVariable = model_->pivotVariable(); |
| 221 | int chosenRow = -1; |
| 222 | int lastPivotRow = model_->pivotRow(); |
| 223 | assert (lastPivotRow < model_->numberRows()); |
| 224 | double tolerance = model_->currentPrimalTolerance(); |
| 225 | // we can't really trust infeasibilities if there is primal error |
| 226 | // this coding has to mimic coding in checkPrimalSolution |
| 227 | double error = CoinMin(1.0e-2, model_->largestPrimalError()); |
| 228 | // allow tolerance at least slightly bigger than standard |
| 229 | tolerance = tolerance + error; |
| 230 | // But cap |
| 231 | tolerance = CoinMin(1000.0, tolerance); |
| 232 | tolerance *= tolerance; // as we are using squares |
| 233 | bool toleranceChanged = false; |
| 234 | double * solution = model_->solutionRegion(); |
| 235 | double * lower = model_->lowerRegion(); |
| 236 | double * upper = model_->upperRegion(); |
| 237 | // do last pivot row one here |
| 238 | //#define CLP_DUAL_FIXED_COLUMN_MULTIPLIER 10.0 |
| 239 | if (lastPivotRow >= 0 && lastPivotRow < model_->numberRows()) { |
| 240 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 241 | int numberColumns = model_->numberColumns(); |
| 242 | #endif |
| 243 | int iPivot = pivotVariable[lastPivotRow]; |
| 244 | double value = solution[iPivot]; |
| 245 | double lower = model_->lower(iPivot); |
| 246 | double upper = model_->upper(iPivot); |
| 247 | if (value > upper + tolerance) { |
| 248 | value -= upper; |
| 249 | value *= value; |
| 250 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 251 | if (iPivot < numberColumns) |
| 252 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 253 | #endif |
| 254 | // store square in list |
| 255 | if (infeas[lastPivotRow]) |
| 256 | infeas[lastPivotRow] = value; // already there |
| 257 | else |
| 258 | infeasible_->quickAdd(lastPivotRow, value); |
| 259 | } else if (value < lower - tolerance) { |
| 260 | value -= lower; |
| 261 | value *= value; |
| 262 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 263 | if (iPivot < numberColumns) |
| 264 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 265 | #endif |
| 266 | // store square in list |
| 267 | if (infeas[lastPivotRow]) |
| 268 | infeas[lastPivotRow] = value; // already there |
| 269 | else |
| 270 | infeasible_->add(lastPivotRow, value); |
| 271 | } else { |
| 272 | // feasible - was it infeasible - if so set tiny |
| 273 | if (infeas[lastPivotRow]) |
| 274 | infeas[lastPivotRow] = COIN_INDEXED_REALLY_TINY_ELEMENT; |
| 275 | } |
| 276 | number = infeasible_->getNumElements(); |
| 277 | } |
| 278 | if(model_->numberIterations() < model_->lastBadIteration() + 200) { |
| 279 | // we can't really trust infeasibilities if there is dual error |
| 280 | if (model_->largestDualError() > model_->largestPrimalError()) { |
| 281 | tolerance *= CoinMin(model_->largestDualError() / model_->largestPrimalError(), 1000.0); |
| 282 | toleranceChanged = true; |
| 283 | } |
| 284 | } |
| 285 | int numberWanted; |
| 286 | if (mode_ < 2 ) { |
| 287 | numberWanted = number + 1; |
| 288 | } else if (mode_ == 2) { |
| 289 | numberWanted = CoinMax(2000, number / 8); |
| 290 | } else { |
| 291 | int numberElements = model_->factorization()->numberElements(); |
| 292 | double ratio = static_cast<double> (numberElements) / |
| 293 | static_cast<double> (model_->numberRows()); |
| 294 | numberWanted = CoinMax(2000, number / 8); |
| 295 | if (ratio < 1.0) { |
| 296 | numberWanted = CoinMax(2000, number / 20); |
| 297 | } else if (ratio > 10.0) { |
| 298 | ratio = number * (ratio / 80.0); |
| 299 | if (ratio > number) |
| 300 | numberWanted = number + 1; |
| 301 | else |
| 302 | numberWanted = CoinMax(2000, static_cast<int> (ratio)); |
| 303 | } |
| 304 | } |
| 305 | if (model_->largestPrimalError() > 1.0e-3) |
| 306 | numberWanted = number + 1; // be safe |
| 307 | int iPass; |
| 308 | // Setup two passes |
| 309 | int start[4]; |
| 310 | start[1] = number; |
| 311 | start[2] = 0; |
| 312 | double dstart = static_cast<double> (number) * model_->randomNumberGenerator()->randomDouble(); |
| 313 | start[0] = static_cast<int> (dstart); |
| 314 | start[3] = start[0]; |
| 315 | //double largestWeight=0.0; |
| 316 | //double smallestWeight=1.0e100; |
| 317 | for (iPass = 0; iPass < 2; iPass++) { |
| 318 | int end = start[2*iPass+1]; |
| 319 | for (i = start[2*iPass]; i < end; i++) { |
| 320 | iRow = index[i]; |
| 321 | double value = infeas[iRow]; |
| 322 | if (value > tolerance) { |
| 323 | //#define OUT_EQ |
| 324 | #ifdef OUT_EQ |
| 325 | { |
| 326 | int iSequence = pivotVariable[iRow]; |
| 327 | if (upper[iSequence] == lower[iSequence]) |
| 328 | value *= 2.0; |
| 329 | } |
| 330 | #endif |
| 331 | double weight = CoinMin(weights_[iRow], 1.0e50); |
| 332 | //largestWeight = CoinMax(largestWeight,weight); |
| 333 | //smallestWeight = CoinMin(smallestWeight,weight); |
| 334 | //double dubious = dubiousWeights_[iRow]; |
| 335 | //weight *= dubious; |
| 336 | //if (value>2.0*largest*weight||(value>0.5*largest*weight&&value*largestWeight>dubious*largest*weight)) { |
| 337 | if (value > largest * weight) { |
| 338 | // make last pivot row last resort choice |
| 339 | if (iRow == lastPivotRow) { |
| 340 | if (value * 1.0e-10 < largest * weight) |
| 341 | continue; |
| 342 | else |
| 343 | value *= 1.0e-10; |
| 344 | } |
| 345 | int iSequence = pivotVariable[iRow]; |
| 346 | if (!model_->flagged(iSequence)) { |
| 347 | //#define CLP_DEBUG 3 |
| 348 | #ifdef CLP_DEBUG |
| 349 | double value2 = 0.0; |
| 350 | if (solution[iSequence] > upper[iSequence] + tolerance) |
| 351 | value2 = solution[iSequence] - upper[iSequence]; |
| 352 | else if (solution[iSequence] < lower[iSequence] - tolerance) |
| 353 | value2 = solution[iSequence] - lower[iSequence]; |
| 354 | assert(fabs(value2 * value2 - infeas[iRow]) < 1.0e-8 * CoinMin(value2 * value2, infeas[iRow])); |
| 355 | #endif |
| 356 | if (solution[iSequence] > upper[iSequence] + tolerance || |
| 357 | solution[iSequence] < lower[iSequence] - tolerance) { |
| 358 | chosenRow = iRow; |
| 359 | largest = value / weight; |
| 360 | //largestWeight = dubious; |
| 361 | } |
| 362 | } else { |
| 363 | // just to make sure we don't exit before got something |
| 364 | numberWanted++; |
| 365 | } |
| 366 | } |
| 367 | numberWanted--; |
| 368 | if (!numberWanted) |
| 369 | break; |
| 370 | } |
| 371 | } |
| 372 | if (!numberWanted) |
| 373 | break; |
| 374 | } |
| 375 | //printf("smallest %g largest %g\n",smallestWeight,largestWeight); |
| 376 | if (chosenRow < 0 && toleranceChanged) { |
| 377 | // won't line up with checkPrimalSolution - do again |
| 378 | double saveError = model_->largestDualError(); |
| 379 | model_->setLargestDualError(0.0); |
| 380 | // can't loop |
| 381 | chosenRow = pivotRow(); |
| 382 | model_->setLargestDualError(saveError); |
| 383 | } |
| 384 | if (chosenRow < 0 && lastPivotRow < 0) { |
| 385 | int nLeft = 0; |
| 386 | for (int i = 0; i < number; i++) { |
| 387 | int iRow = index[i]; |
| 388 | if (fabs(infeas[iRow]) > 1.0e-50) { |
| 389 | index[nLeft++] = iRow; |
| 390 | } else { |
| 391 | infeas[iRow] = 0.0; |
| 392 | } |
| 393 | } |
| 394 | infeasible_->setNumElements(nLeft); |
| 395 | model_->setNumberPrimalInfeasibilities(nLeft); |
| 396 | } |
| 397 | return chosenRow; |
| 398 | } |
| 399 | #if 0 |
| 400 | static double ft_count = 0.0; |
| 401 | static double up_count = 0.0; |
| 402 | static double ft_count_in = 0.0; |
| 403 | static double up_count_in = 0.0; |
| 404 | static int xx_count = 0; |
| 405 | #endif |
| 406 | /* Updates weights and returns pivot alpha. |
| 407 | Also does FT update */ |
| 408 | double |
| 409 | ClpDualRowSteepest::updateWeights(CoinIndexedVector * input, |
| 410 | CoinIndexedVector * spare, |
| 411 | CoinIndexedVector * spare2, |
| 412 | CoinIndexedVector * updatedColumn) |
| 413 | { |
| 414 | //#define CLP_DEBUG 3 |
| 415 | #if CLP_DEBUG>2 |
| 416 | // Very expensive debug |
| 417 | { |
| 418 | int numberRows = model_->numberRows(); |
| 419 | CoinIndexedVector * temp = new CoinIndexedVector(); |
| 420 | temp->reserve(numberRows + |
| 421 | model_->factorization()->maximumPivots()); |
| 422 | double * array = alternateWeights_->denseVector(); |
| 423 | int * which = alternateWeights_->getIndices(); |
| 424 | alternateWeights_->clear(); |
| 425 | int i; |
| 426 | for (i = 0; i < numberRows; i++) { |
| 427 | double value = 0.0; |
| 428 | array[i] = 1.0; |
| 429 | which[0] = i; |
| 430 | alternateWeights_->setNumElements(1); |
| 431 | model_->factorization()->updateColumnTranspose(temp, |
| 432 | alternateWeights_); |
| 433 | int number = alternateWeights_->getNumElements(); |
| 434 | int j; |
| 435 | for (j = 0; j < number; j++) { |
| 436 | int iRow = which[j]; |
| 437 | value += array[iRow] * array[iRow]; |
| 438 | array[iRow] = 0.0; |
| 439 | } |
| 440 | alternateWeights_->setNumElements(0); |
| 441 | double w = CoinMax(weights_[i], value) * .1; |
| 442 | if (fabs(weights_[i] - value) > w) { |
| 443 | printf("%d old %g, true %g\n" , i, weights_[i], value); |
| 444 | weights_[i] = value; // to reduce printout |
| 445 | } |
| 446 | //else |
| 447 | //printf("%d matches %g\n",i,value); |
| 448 | } |
| 449 | delete temp; |
| 450 | } |
| 451 | #endif |
| 452 | assert (input->packedMode()); |
| 453 | if (!updatedColumn->packedMode()) { |
| 454 | // I think this means empty |
| 455 | #ifdef COIN_DEVELOP |
| 456 | printf("updatedColumn not packed mode ClpDualRowSteepest::updateWeights\n" ); |
| 457 | #endif |
| 458 | return 0.0; |
| 459 | } |
| 460 | double alpha = 0.0; |
| 461 | if (!model_->factorization()->networkBasis()) { |
| 462 | // clear other region |
| 463 | alternateWeights_->clear(); |
| 464 | double norm = 0.0; |
| 465 | int i; |
| 466 | double * work = input->denseVector(); |
| 467 | int numberNonZero = input->getNumElements(); |
| 468 | int * which = input->getIndices(); |
| 469 | double * work2 = spare->denseVector(); |
| 470 | int * which2 = spare->getIndices(); |
| 471 | // ftran |
| 472 | //permute and move indices into index array |
| 473 | //also compute norm |
| 474 | //int *regionIndex = alternateWeights_->getIndices ( ); |
| 475 | const int *permute = model_->factorization()->permute(); |
| 476 | //double * region = alternateWeights_->denseVector(); |
| 477 | if (permute) { |
| 478 | for ( i = 0; i < numberNonZero; i ++ ) { |
| 479 | int iRow = which[i]; |
| 480 | double value = work[i]; |
| 481 | norm += value * value; |
| 482 | iRow = permute[iRow]; |
| 483 | work2[iRow] = value; |
| 484 | which2[i] = iRow; |
| 485 | } |
| 486 | } else { |
| 487 | for ( i = 0; i < numberNonZero; i ++ ) { |
| 488 | int iRow = which[i]; |
| 489 | double value = work[i]; |
| 490 | norm += value * value; |
| 491 | //iRow = permute[iRow]; |
| 492 | work2[iRow] = value; |
| 493 | which2[i] = iRow; |
| 494 | } |
| 495 | } |
| 496 | spare->setNumElements ( numberNonZero ); |
| 497 | // Do FT update |
| 498 | #if 0 |
| 499 | ft_count_in += updatedColumn->getNumElements(); |
| 500 | up_count_in += spare->getNumElements(); |
| 501 | #endif |
| 502 | if (permute || true) { |
| 503 | #if CLP_DEBUG>2 |
| 504 | printf("REGION before %d els\n" , spare->getNumElements()); |
| 505 | spare->print(); |
| 506 | #endif |
| 507 | model_->factorization()->updateTwoColumnsFT(spare2, updatedColumn, |
| 508 | spare, permute != NULL); |
| 509 | #if CLP_DEBUG>2 |
| 510 | printf("REGION after %d els\n" , spare->getNumElements()); |
| 511 | spare->print(); |
| 512 | #endif |
| 513 | } else { |
| 514 | // Leave as old way |
| 515 | model_->factorization()->updateColumnFT(spare2, updatedColumn); |
| 516 | model_->factorization()->updateColumn(spare2, spare, false); |
| 517 | } |
| 518 | #undef CLP_DEBUG |
| 519 | #if 0 |
| 520 | ft_count += updatedColumn->getNumElements(); |
| 521 | up_count += spare->getNumElements(); |
| 522 | xx_count++; |
| 523 | if ((xx_count % 1000) == 0) |
| 524 | printf("zz %d ft %g up %g (in %g %g)\n" , xx_count, ft_count, up_count, |
| 525 | ft_count_in, up_count_in); |
| 526 | #endif |
| 527 | numberNonZero = spare->getNumElements(); |
| 528 | // alternateWeights_ should still be empty |
| 529 | int pivotRow = model_->pivotRow(); |
| 530 | #ifdef CLP_DEBUG |
| 531 | if ( model_->logLevel ( ) > 4 && |
| 532 | fabs(norm - weights_[pivotRow]) > 1.0e-3 * (1.0 + norm)) |
| 533 | printf("on row %d, true weight %g, old %g\n" , |
| 534 | pivotRow, sqrt(norm), sqrt(weights_[pivotRow])); |
| 535 | #endif |
| 536 | // could re-initialize here (could be expensive) |
| 537 | norm /= model_->alpha() * model_->alpha(); |
| 538 | assert(model_->alpha()); |
| 539 | assert(norm); |
| 540 | // pivot element |
| 541 | alpha = 0.0; |
| 542 | double multiplier = 2.0 / model_->alpha(); |
| 543 | // look at updated column |
| 544 | work = updatedColumn->denseVector(); |
| 545 | numberNonZero = updatedColumn->getNumElements(); |
| 546 | which = updatedColumn->getIndices(); |
| 547 | |
| 548 | int nSave = 0; |
| 549 | double * work3 = alternateWeights_->denseVector(); |
| 550 | int * which3 = alternateWeights_->getIndices(); |
| 551 | const int * pivotColumn = model_->factorization()->pivotColumn(); |
| 552 | for (i = 0; i < numberNonZero; i++) { |
| 553 | int iRow = which[i]; |
| 554 | double theta = work[i]; |
| 555 | if (iRow == pivotRow) |
| 556 | alpha = theta; |
| 557 | double devex = weights_[iRow]; |
| 558 | work3[nSave] = devex; // save old |
| 559 | which3[nSave++] = iRow; |
| 560 | // transform to match spare |
| 561 | int jRow = permute ? pivotColumn[iRow] : iRow; |
| 562 | double value = work2[jRow]; |
| 563 | devex += theta * (theta * norm + value * multiplier); |
| 564 | if (devex < DEVEX_TRY_NORM) |
| 565 | devex = DEVEX_TRY_NORM; |
| 566 | weights_[iRow] = devex; |
| 567 | } |
| 568 | alternateWeights_->setPackedMode(true); |
| 569 | alternateWeights_->setNumElements(nSave); |
| 570 | if (norm < DEVEX_TRY_NORM) |
| 571 | norm = DEVEX_TRY_NORM; |
| 572 | // Try this to make less likely will happen again and stop cycling |
| 573 | //norm *= 1.02; |
| 574 | weights_[pivotRow] = norm; |
| 575 | spare->clear(); |
| 576 | #ifdef CLP_DEBUG |
| 577 | spare->checkClear(); |
| 578 | #endif |
| 579 | } else { |
| 580 | // Do FT update |
| 581 | model_->factorization()->updateColumnFT(spare, updatedColumn); |
| 582 | // clear other region |
| 583 | alternateWeights_->clear(); |
| 584 | double norm = 0.0; |
| 585 | int i; |
| 586 | double * work = input->denseVector(); |
| 587 | int number = input->getNumElements(); |
| 588 | int * which = input->getIndices(); |
| 589 | double * work2 = spare->denseVector(); |
| 590 | int * which2 = spare->getIndices(); |
| 591 | for (i = 0; i < number; i++) { |
| 592 | int iRow = which[i]; |
| 593 | double value = work[i]; |
| 594 | norm += value * value; |
| 595 | work2[iRow] = value; |
| 596 | which2[i] = iRow; |
| 597 | } |
| 598 | spare->setNumElements(number); |
| 599 | // ftran |
| 600 | #ifndef NDEBUG |
| 601 | alternateWeights_->checkClear(); |
| 602 | #endif |
| 603 | model_->factorization()->updateColumn(alternateWeights_, spare); |
| 604 | // alternateWeights_ should still be empty |
| 605 | #ifndef NDEBUG |
| 606 | alternateWeights_->checkClear(); |
| 607 | #endif |
| 608 | int pivotRow = model_->pivotRow(); |
| 609 | #ifdef CLP_DEBUG |
| 610 | if ( model_->logLevel ( ) > 4 && |
| 611 | fabs(norm - weights_[pivotRow]) > 1.0e-3 * (1.0 + norm)) |
| 612 | printf("on row %d, true weight %g, old %g\n" , |
| 613 | pivotRow, sqrt(norm), sqrt(weights_[pivotRow])); |
| 614 | #endif |
| 615 | // could re-initialize here (could be expensive) |
| 616 | norm /= model_->alpha() * model_->alpha(); |
| 617 | |
| 618 | assert(norm); |
| 619 | //if (norm < DEVEX_TRY_NORM) |
| 620 | //norm = DEVEX_TRY_NORM; |
| 621 | // pivot element |
| 622 | alpha = 0.0; |
| 623 | double multiplier = 2.0 / model_->alpha(); |
| 624 | // look at updated column |
| 625 | work = updatedColumn->denseVector(); |
| 626 | number = updatedColumn->getNumElements(); |
| 627 | which = updatedColumn->getIndices(); |
| 628 | |
| 629 | int nSave = 0; |
| 630 | double * work3 = alternateWeights_->denseVector(); |
| 631 | int * which3 = alternateWeights_->getIndices(); |
| 632 | for (i = 0; i < number; i++) { |
| 633 | int iRow = which[i]; |
| 634 | double theta = work[i]; |
| 635 | if (iRow == pivotRow) |
| 636 | alpha = theta; |
| 637 | double devex = weights_[iRow]; |
| 638 | work3[nSave] = devex; // save old |
| 639 | which3[nSave++] = iRow; |
| 640 | double value = work2[iRow]; |
| 641 | devex += theta * (theta * norm + value * multiplier); |
| 642 | if (devex < DEVEX_TRY_NORM) |
| 643 | devex = DEVEX_TRY_NORM; |
| 644 | weights_[iRow] = devex; |
| 645 | } |
| 646 | if (!alpha) { |
| 647 | // error - but carry on |
| 648 | alpha = 1.0e-50; |
| 649 | } |
| 650 | alternateWeights_->setPackedMode(true); |
| 651 | alternateWeights_->setNumElements(nSave); |
| 652 | if (norm < DEVEX_TRY_NORM) |
| 653 | norm = DEVEX_TRY_NORM; |
| 654 | weights_[pivotRow] = norm; |
| 655 | spare->clear(); |
| 656 | } |
| 657 | #ifdef CLP_DEBUG |
| 658 | spare->checkClear(); |
| 659 | #endif |
| 660 | return alpha; |
| 661 | } |
| 662 | |
| 663 | /* Updates primal solution (and maybe list of candidates) |
| 664 | Uses input vector which it deletes |
| 665 | Computes change in objective function |
| 666 | */ |
| 667 | void |
| 668 | ClpDualRowSteepest::updatePrimalSolution( |
| 669 | CoinIndexedVector * primalUpdate, |
| 670 | double primalRatio, |
| 671 | double & objectiveChange) |
| 672 | { |
| 673 | double * COIN_RESTRICT work = primalUpdate->denseVector(); |
| 674 | int number = primalUpdate->getNumElements(); |
| 675 | int * COIN_RESTRICT which = primalUpdate->getIndices(); |
| 676 | int i; |
| 677 | double changeObj = 0.0; |
| 678 | double tolerance = model_->currentPrimalTolerance(); |
| 679 | const int * COIN_RESTRICT pivotVariable = model_->pivotVariable(); |
| 680 | double * COIN_RESTRICT infeas = infeasible_->denseVector(); |
| 681 | double * COIN_RESTRICT solution = model_->solutionRegion(); |
| 682 | const double * COIN_RESTRICT costModel = model_->costRegion(); |
| 683 | const double * COIN_RESTRICT lowerModel = model_->lowerRegion(); |
| 684 | const double * COIN_RESTRICT upperModel = model_->upperRegion(); |
| 685 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 686 | int numberColumns = model_->numberColumns(); |
| 687 | #endif |
| 688 | if (primalUpdate->packedMode()) { |
| 689 | for (i = 0; i < number; i++) { |
| 690 | int iRow = which[i]; |
| 691 | int iPivot = pivotVariable[iRow]; |
| 692 | double value = solution[iPivot]; |
| 693 | double cost = costModel[iPivot]; |
| 694 | double change = primalRatio * work[i]; |
| 695 | work[i] = 0.0; |
| 696 | value -= change; |
| 697 | changeObj -= change * cost; |
| 698 | double lower = lowerModel[iPivot]; |
| 699 | double upper = upperModel[iPivot]; |
| 700 | solution[iPivot] = value; |
| 701 | if (value < lower - tolerance) { |
| 702 | value -= lower; |
| 703 | value *= value; |
| 704 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 705 | if (iPivot < numberColumns) |
| 706 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 707 | #endif |
| 708 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 709 | if (lower == upper) |
| 710 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 711 | #endif |
| 712 | // store square in list |
| 713 | if (infeas[iRow]) |
| 714 | infeas[iRow] = value; // already there |
| 715 | else |
| 716 | infeasible_->quickAdd(iRow, value); |
| 717 | } else if (value > upper + tolerance) { |
| 718 | value -= upper; |
| 719 | value *= value; |
| 720 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 721 | if (iPivot < numberColumns) |
| 722 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 723 | #endif |
| 724 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 725 | if (lower == upper) |
| 726 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 727 | #endif |
| 728 | // store square in list |
| 729 | if (infeas[iRow]) |
| 730 | infeas[iRow] = value; // already there |
| 731 | else |
| 732 | infeasible_->quickAdd(iRow, value); |
| 733 | } else { |
| 734 | // feasible - was it infeasible - if so set tiny |
| 735 | if (infeas[iRow]) |
| 736 | infeas[iRow] = COIN_INDEXED_REALLY_TINY_ELEMENT; |
| 737 | } |
| 738 | } |
| 739 | } else { |
| 740 | for (i = 0; i < number; i++) { |
| 741 | int iRow = which[i]; |
| 742 | int iPivot = pivotVariable[iRow]; |
| 743 | double value = solution[iPivot]; |
| 744 | double cost = costModel[iPivot]; |
| 745 | double change = primalRatio * work[iRow]; |
| 746 | value -= change; |
| 747 | changeObj -= change * cost; |
| 748 | double lower = lowerModel[iPivot]; |
| 749 | double upper = upperModel[iPivot]; |
| 750 | solution[iPivot] = value; |
| 751 | if (value < lower - tolerance) { |
| 752 | value -= lower; |
| 753 | value *= value; |
| 754 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 755 | if (iPivot < numberColumns) |
| 756 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 757 | #endif |
| 758 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 759 | if (lower == upper) |
| 760 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 761 | #endif |
| 762 | // store square in list |
| 763 | if (infeas[iRow]) |
| 764 | infeas[iRow] = value; // already there |
| 765 | else |
| 766 | infeasible_->quickAdd(iRow, value); |
| 767 | } else if (value > upper + tolerance) { |
| 768 | value -= upper; |
| 769 | value *= value; |
| 770 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 771 | if (iPivot < numberColumns) |
| 772 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 773 | #endif |
| 774 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 775 | if (lower == upper) |
| 776 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 777 | #endif |
| 778 | // store square in list |
| 779 | if (infeas[iRow]) |
| 780 | infeas[iRow] = value; // already there |
| 781 | else |
| 782 | infeasible_->quickAdd(iRow, value); |
| 783 | } else { |
| 784 | // feasible - was it infeasible - if so set tiny |
| 785 | if (infeas[iRow]) |
| 786 | infeas[iRow] = COIN_INDEXED_REALLY_TINY_ELEMENT; |
| 787 | } |
| 788 | work[iRow] = 0.0; |
| 789 | } |
| 790 | } |
| 791 | // Do pivot row |
| 792 | { |
| 793 | int iRow = model_->pivotRow(); |
| 794 | // feasible - was it infeasible - if so set tiny |
| 795 | //assert (infeas[iRow]); |
| 796 | if (infeas[iRow]) |
| 797 | infeas[iRow] = COIN_INDEXED_REALLY_TINY_ELEMENT; |
| 798 | } |
| 799 | primalUpdate->setNumElements(0); |
| 800 | objectiveChange += changeObj; |
| 801 | } |
| 802 | /* Saves any weights round factorization as pivot rows may change |
| 803 | 1) before factorization |
| 804 | 2) after factorization |
| 805 | 3) just redo infeasibilities |
| 806 | 4) restore weights |
| 807 | */ |
| 808 | void |
| 809 | ClpDualRowSteepest::saveWeights(ClpSimplex * model, int mode) |
| 810 | { |
| 811 | // alternateWeights_ is defined as indexed but is treated oddly |
| 812 | model_ = model; |
| 813 | int numberRows = model_->numberRows(); |
| 814 | int numberColumns = model_->numberColumns(); |
| 815 | const int * pivotVariable = model_->pivotVariable(); |
| 816 | int i; |
| 817 | if (mode == 1) { |
| 818 | if(weights_) { |
| 819 | // Check if size has changed |
| 820 | if (infeasible_->capacity() == numberRows) { |
| 821 | alternateWeights_->clear(); |
| 822 | // change from row numbers to sequence numbers |
| 823 | int * which = alternateWeights_->getIndices(); |
| 824 | for (i = 0; i < numberRows; i++) { |
| 825 | int iPivot = pivotVariable[i]; |
| 826 | which[i] = iPivot; |
| 827 | } |
| 828 | state_ = 1; |
| 829 | } else { |
| 830 | // size has changed - clear everything |
| 831 | delete [] weights_; |
| 832 | weights_ = NULL; |
| 833 | delete [] dubiousWeights_; |
| 834 | dubiousWeights_ = NULL; |
| 835 | delete infeasible_; |
| 836 | infeasible_ = NULL; |
| 837 | delete alternateWeights_; |
| 838 | alternateWeights_ = NULL; |
| 839 | delete savedWeights_; |
| 840 | savedWeights_ = NULL; |
| 841 | state_ = -1; |
| 842 | } |
| 843 | } |
| 844 | } else if (mode == 2 || mode == 4 || mode >= 5) { |
| 845 | // restore |
| 846 | if (!weights_ || state_ == -1 || mode == 5) { |
| 847 | // initialize weights |
| 848 | delete [] weights_; |
| 849 | delete alternateWeights_; |
| 850 | weights_ = new double[numberRows]; |
| 851 | alternateWeights_ = new CoinIndexedVector(); |
| 852 | // enough space so can use it for factorization |
| 853 | alternateWeights_->reserve(numberRows + |
| 854 | model_->factorization()->maximumPivots()); |
| 855 | if (mode_ != 1 || mode == 5) { |
| 856 | // initialize to 1.0 (can we do better?) |
| 857 | for (i = 0; i < numberRows; i++) { |
| 858 | weights_[i] = 1.0; |
| 859 | } |
| 860 | } else { |
| 861 | CoinIndexedVector * temp = new CoinIndexedVector(); |
| 862 | temp->reserve(numberRows + |
| 863 | model_->factorization()->maximumPivots()); |
| 864 | double * array = alternateWeights_->denseVector(); |
| 865 | int * which = alternateWeights_->getIndices(); |
| 866 | for (i = 0; i < numberRows; i++) { |
| 867 | double value = 0.0; |
| 868 | array[0] = 1.0; |
| 869 | which[0] = i; |
| 870 | alternateWeights_->setNumElements(1); |
| 871 | alternateWeights_->setPackedMode(true); |
| 872 | model_->factorization()->updateColumnTranspose(temp, |
| 873 | alternateWeights_); |
| 874 | int number = alternateWeights_->getNumElements(); |
| 875 | int j; |
| 876 | for (j = 0; j < number; j++) { |
| 877 | value += array[j] * array[j]; |
| 878 | array[j] = 0.0; |
| 879 | } |
| 880 | alternateWeights_->setNumElements(0); |
| 881 | weights_[i] = value; |
| 882 | } |
| 883 | delete temp; |
| 884 | } |
| 885 | // create saved weights (not really indexedvector) |
| 886 | savedWeights_ = new CoinIndexedVector(); |
| 887 | savedWeights_->reserve(numberRows); |
| 888 | |
| 889 | double * array = savedWeights_->denseVector(); |
| 890 | int * which = savedWeights_->getIndices(); |
| 891 | for (i = 0; i < numberRows; i++) { |
| 892 | array[i] = weights_[i]; |
| 893 | which[i] = pivotVariable[i]; |
| 894 | } |
| 895 | } else if (mode != 6) { |
| 896 | int * which = alternateWeights_->getIndices(); |
| 897 | CoinIndexedVector * rowArray3 = model_->rowArray(3); |
| 898 | rowArray3->clear(); |
| 899 | int * back = rowArray3->getIndices(); |
| 900 | // In case something went wrong |
| 901 | for (i = 0; i < numberRows + numberColumns; i++) |
| 902 | back[i] = -1; |
| 903 | if (mode != 4) { |
| 904 | // save |
| 905 | CoinMemcpyN(which, numberRows, savedWeights_->getIndices()); |
| 906 | CoinMemcpyN(weights_, numberRows, savedWeights_->denseVector()); |
| 907 | } else { |
| 908 | // restore |
| 909 | //memcpy(which,savedWeights_->getIndices(), |
| 910 | // numberRows*sizeof(int)); |
| 911 | //memcpy(weights_,savedWeights_->denseVector(), |
| 912 | // numberRows*sizeof(double)); |
| 913 | which = savedWeights_->getIndices(); |
| 914 | } |
| 915 | // restore (a bit slow - but only every re-factorization) |
| 916 | double * array = savedWeights_->denseVector(); |
| 917 | for (i = 0; i < numberRows; i++) { |
| 918 | int iSeq = which[i]; |
| 919 | back[iSeq] = i; |
| 920 | } |
| 921 | for (i = 0; i < numberRows; i++) { |
| 922 | int iPivot = pivotVariable[i]; |
| 923 | iPivot = back[iPivot]; |
| 924 | if (iPivot >= 0) { |
| 925 | weights_[i] = array[iPivot]; |
| 926 | if (weights_[i] < DEVEX_TRY_NORM) |
| 927 | weights_[i] = DEVEX_TRY_NORM; // may need to check more |
| 928 | } else { |
| 929 | // odd |
| 930 | weights_[i] = 1.0; |
| 931 | } |
| 932 | } |
| 933 | } else { |
| 934 | // mode 6 - scale back weights as primal errors |
| 935 | double primalError = model_->largestPrimalError(); |
| 936 | double allowed ; |
| 937 | if (primalError > 1.0e3) |
| 938 | allowed = 10.0; |
| 939 | else if (primalError > 1.0e2) |
| 940 | allowed = 50.0; |
| 941 | else if (primalError > 1.0e1) |
| 942 | allowed = 100.0; |
| 943 | else |
| 944 | allowed = 1000.0; |
| 945 | double allowedInv = 1.0 / allowed; |
| 946 | for (i = 0; i < numberRows; i++) { |
| 947 | double value = weights_[i]; |
| 948 | if (value < allowedInv) |
| 949 | value = allowedInv; |
| 950 | else if (value > allowed) |
| 951 | value = allowed; |
| 952 | weights_[i] = allowed; |
| 953 | } |
| 954 | } |
| 955 | state_ = 0; |
| 956 | // set up infeasibilities |
| 957 | if (!infeasible_) { |
| 958 | infeasible_ = new CoinIndexedVector(); |
| 959 | infeasible_->reserve(numberRows); |
| 960 | } |
| 961 | } |
| 962 | if (mode >= 2) { |
| 963 | // Get dubious weights |
| 964 | //if (!dubiousWeights_) |
| 965 | //dubiousWeights_=new int[numberRows]; |
| 966 | //model_->factorization()->getWeights(dubiousWeights_); |
| 967 | infeasible_->clear(); |
| 968 | int iRow; |
| 969 | const int * pivotVariable = model_->pivotVariable(); |
| 970 | double tolerance = model_->currentPrimalTolerance(); |
| 971 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 972 | int iPivot = pivotVariable[iRow]; |
| 973 | double value = model_->solution(iPivot); |
| 974 | double lower = model_->lower(iPivot); |
| 975 | double upper = model_->upper(iPivot); |
| 976 | if (value < lower - tolerance) { |
| 977 | value -= lower; |
| 978 | value *= value; |
| 979 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 980 | if (iPivot < numberColumns) |
| 981 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 982 | #endif |
| 983 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 984 | if (lower == upper) |
| 985 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 986 | #endif |
| 987 | // store square in list |
| 988 | infeasible_->quickAdd(iRow, value); |
| 989 | } else if (value > upper + tolerance) { |
| 990 | value -= upper; |
| 991 | value *= value; |
| 992 | #ifdef CLP_DUAL_COLUMN_MULTIPLIER |
| 993 | if (iPivot < numberColumns) |
| 994 | value *= CLP_DUAL_COLUMN_MULTIPLIER; // bias towards columns |
| 995 | #endif |
| 996 | #ifdef CLP_DUAL_FIXED_COLUMN_MULTIPLIER |
| 997 | if (lower == upper) |
| 998 | value *= CLP_DUAL_FIXED_COLUMN_MULTIPLIER; // bias towards taking out fixed variables |
| 999 | #endif |
| 1000 | // store square in list |
| 1001 | infeasible_->quickAdd(iRow, value); |
| 1002 | } |
| 1003 | } |
| 1004 | } |
| 1005 | } |
| 1006 | // Gets rid of last update |
| 1007 | void |
| 1008 | ClpDualRowSteepest::unrollWeights() |
| 1009 | { |
| 1010 | double * saved = alternateWeights_->denseVector(); |
| 1011 | int number = alternateWeights_->getNumElements(); |
| 1012 | int * which = alternateWeights_->getIndices(); |
| 1013 | int i; |
| 1014 | if (alternateWeights_->packedMode()) { |
| 1015 | for (i = 0; i < number; i++) { |
| 1016 | int iRow = which[i]; |
| 1017 | weights_[iRow] = saved[i]; |
| 1018 | saved[i] = 0.0; |
| 1019 | } |
| 1020 | } else { |
| 1021 | for (i = 0; i < number; i++) { |
| 1022 | int iRow = which[i]; |
| 1023 | weights_[iRow] = saved[iRow]; |
| 1024 | saved[iRow] = 0.0; |
| 1025 | } |
| 1026 | } |
| 1027 | alternateWeights_->setNumElements(0); |
| 1028 | } |
| 1029 | //------------------------------------------------------------------- |
| 1030 | // Clone |
| 1031 | //------------------------------------------------------------------- |
| 1032 | ClpDualRowPivot * ClpDualRowSteepest::clone(bool CopyData) const |
| 1033 | { |
| 1034 | if (CopyData) { |
| 1035 | return new ClpDualRowSteepest(*this); |
| 1036 | } else { |
| 1037 | return new ClpDualRowSteepest(); |
| 1038 | } |
| 1039 | } |
| 1040 | // Gets rid of all arrays |
| 1041 | void |
| 1042 | ClpDualRowSteepest::clearArrays() |
| 1043 | { |
| 1044 | if (persistence_ == normal) { |
| 1045 | delete [] weights_; |
| 1046 | weights_ = NULL; |
| 1047 | delete [] dubiousWeights_; |
| 1048 | dubiousWeights_ = NULL; |
| 1049 | delete infeasible_; |
| 1050 | infeasible_ = NULL; |
| 1051 | delete alternateWeights_; |
| 1052 | alternateWeights_ = NULL; |
| 1053 | delete savedWeights_; |
| 1054 | savedWeights_ = NULL; |
| 1055 | } |
| 1056 | state_ = -1; |
| 1057 | } |
| 1058 | // Returns true if would not find any row |
| 1059 | bool |
| 1060 | ClpDualRowSteepest::looksOptimal() const |
| 1061 | { |
| 1062 | int iRow; |
| 1063 | const int * pivotVariable = model_->pivotVariable(); |
| 1064 | double tolerance = model_->currentPrimalTolerance(); |
| 1065 | // we can't really trust infeasibilities if there is primal error |
| 1066 | // this coding has to mimic coding in checkPrimalSolution |
| 1067 | double error = CoinMin(1.0e-2, model_->largestPrimalError()); |
| 1068 | // allow tolerance at least slightly bigger than standard |
| 1069 | tolerance = tolerance + error; |
| 1070 | // But cap |
| 1071 | tolerance = CoinMin(1000.0, tolerance); |
| 1072 | int numberRows = model_->numberRows(); |
| 1073 | int numberInfeasible = 0; |
| 1074 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 1075 | int iPivot = pivotVariable[iRow]; |
| 1076 | double value = model_->solution(iPivot); |
| 1077 | double lower = model_->lower(iPivot); |
| 1078 | double upper = model_->upper(iPivot); |
| 1079 | if (value < lower - tolerance) { |
| 1080 | numberInfeasible++; |
| 1081 | } else if (value > upper + tolerance) { |
| 1082 | numberInfeasible++; |
| 1083 | } |
| 1084 | } |
| 1085 | return (numberInfeasible == 0); |
| 1086 | } |
| 1087 | // Called when maximum pivots changes |
| 1088 | void |
| 1089 | ClpDualRowSteepest::maximumPivotsChanged() |
| 1090 | { |
| 1091 | if (alternateWeights_ && |
| 1092 | alternateWeights_->capacity() != model_->numberRows() + |
| 1093 | model_->factorization()->maximumPivots()) { |
| 1094 | delete alternateWeights_; |
| 1095 | alternateWeights_ = new CoinIndexedVector(); |
| 1096 | // enough space so can use it for factorization |
| 1097 | alternateWeights_->reserve(model_->numberRows() + |
| 1098 | model_->factorization()->maximumPivots()); |
| 1099 | } |
| 1100 | } |
| 1101 | |