| 1 | /* $Id: ClpGubMatrix.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | |
| 7 | #include <cstdio> |
| 8 | |
| 9 | #include "CoinPragma.hpp" |
| 10 | #include "CoinIndexedVector.hpp" |
| 11 | #include "CoinHelperFunctions.hpp" |
| 12 | |
| 13 | #include "ClpSimplex.hpp" |
| 14 | #include "ClpFactorization.hpp" |
| 15 | #include "ClpQuadraticObjective.hpp" |
| 16 | #include "ClpNonLinearCost.hpp" |
| 17 | // at end to get min/max! |
| 18 | #include "ClpGubMatrix.hpp" |
| 19 | //#include "ClpGubDynamicMatrix.hpp" |
| 20 | #include "ClpMessage.hpp" |
| 21 | //#define CLP_DEBUG |
| 22 | //#define CLP_DEBUG_PRINT |
| 23 | //############################################################################# |
| 24 | // Constructors / Destructor / Assignment |
| 25 | //############################################################################# |
| 26 | |
| 27 | //------------------------------------------------------------------- |
| 28 | // Default Constructor |
| 29 | //------------------------------------------------------------------- |
| 30 | ClpGubMatrix::ClpGubMatrix () |
| 31 | : ClpPackedMatrix(), |
| 32 | sumDualInfeasibilities_(0.0), |
| 33 | sumPrimalInfeasibilities_(0.0), |
| 34 | sumOfRelaxedDualInfeasibilities_(0.0), |
| 35 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
| 36 | infeasibilityWeight_(0.0), |
| 37 | start_(NULL), |
| 38 | end_(NULL), |
| 39 | lower_(NULL), |
| 40 | upper_(NULL), |
| 41 | status_(NULL), |
| 42 | saveStatus_(NULL), |
| 43 | savedKeyVariable_(NULL), |
| 44 | backward_(NULL), |
| 45 | backToPivotRow_(NULL), |
| 46 | changeCost_(NULL), |
| 47 | keyVariable_(NULL), |
| 48 | next_(NULL), |
| 49 | toIndex_(NULL), |
| 50 | fromIndex_(NULL), |
| 51 | model_(NULL), |
| 52 | numberDualInfeasibilities_(0), |
| 53 | numberPrimalInfeasibilities_(0), |
| 54 | noCheck_(-1), |
| 55 | numberSets_(0), |
| 56 | saveNumber_(0), |
| 57 | possiblePivotKey_(0), |
| 58 | gubSlackIn_(-1), |
| 59 | firstGub_(0), |
| 60 | lastGub_(0), |
| 61 | gubType_(0) |
| 62 | { |
| 63 | setType(16); |
| 64 | } |
| 65 | |
| 66 | //------------------------------------------------------------------- |
| 67 | // Copy constructor |
| 68 | //------------------------------------------------------------------- |
| 69 | ClpGubMatrix::ClpGubMatrix (const ClpGubMatrix & rhs) |
| 70 | : ClpPackedMatrix(rhs) |
| 71 | { |
| 72 | numberSets_ = rhs.numberSets_; |
| 73 | saveNumber_ = rhs.saveNumber_; |
| 74 | possiblePivotKey_ = rhs.possiblePivotKey_; |
| 75 | gubSlackIn_ = rhs.gubSlackIn_; |
| 76 | start_ = ClpCopyOfArray(rhs.start_, numberSets_); |
| 77 | end_ = ClpCopyOfArray(rhs.end_, numberSets_); |
| 78 | lower_ = ClpCopyOfArray(rhs.lower_, numberSets_); |
| 79 | upper_ = ClpCopyOfArray(rhs.upper_, numberSets_); |
| 80 | status_ = ClpCopyOfArray(rhs.status_, numberSets_); |
| 81 | saveStatus_ = ClpCopyOfArray(rhs.saveStatus_, numberSets_); |
| 82 | savedKeyVariable_ = ClpCopyOfArray(rhs.savedKeyVariable_, numberSets_); |
| 83 | int numberColumns = getNumCols(); |
| 84 | backward_ = ClpCopyOfArray(rhs.backward_, numberColumns); |
| 85 | backToPivotRow_ = ClpCopyOfArray(rhs.backToPivotRow_, numberColumns); |
| 86 | changeCost_ = ClpCopyOfArray(rhs.changeCost_, getNumRows() + numberSets_); |
| 87 | fromIndex_ = ClpCopyOfArray(rhs.fromIndex_, getNumRows() + numberSets_ + 1); |
| 88 | keyVariable_ = ClpCopyOfArray(rhs.keyVariable_, numberSets_); |
| 89 | // find longest set |
| 90 | int * longest = new int[numberSets_]; |
| 91 | CoinZeroN(longest, numberSets_); |
| 92 | int j; |
| 93 | for (j = 0; j < numberColumns; j++) { |
| 94 | int iSet = backward_[j]; |
| 95 | if (iSet >= 0) |
| 96 | longest[iSet]++; |
| 97 | } |
| 98 | int length = 0; |
| 99 | for (j = 0; j < numberSets_; j++) |
| 100 | length = CoinMax(length, longest[j]); |
| 101 | next_ = ClpCopyOfArray(rhs.next_, numberColumns + numberSets_ + 2 * length); |
| 102 | toIndex_ = ClpCopyOfArray(rhs.toIndex_, numberSets_); |
| 103 | sumDualInfeasibilities_ = rhs. sumDualInfeasibilities_; |
| 104 | sumPrimalInfeasibilities_ = rhs.sumPrimalInfeasibilities_; |
| 105 | sumOfRelaxedDualInfeasibilities_ = rhs.sumOfRelaxedDualInfeasibilities_; |
| 106 | sumOfRelaxedPrimalInfeasibilities_ = rhs.sumOfRelaxedPrimalInfeasibilities_; |
| 107 | infeasibilityWeight_ = rhs.infeasibilityWeight_; |
| 108 | numberDualInfeasibilities_ = rhs.numberDualInfeasibilities_; |
| 109 | numberPrimalInfeasibilities_ = rhs.numberPrimalInfeasibilities_; |
| 110 | noCheck_ = rhs.noCheck_; |
| 111 | firstGub_ = rhs.firstGub_; |
| 112 | lastGub_ = rhs.lastGub_; |
| 113 | gubType_ = rhs.gubType_; |
| 114 | model_ = rhs.model_; |
| 115 | } |
| 116 | |
| 117 | //------------------------------------------------------------------- |
| 118 | // assign matrix (for space reasons) |
| 119 | //------------------------------------------------------------------- |
| 120 | ClpGubMatrix::ClpGubMatrix (CoinPackedMatrix * rhs) |
| 121 | : ClpPackedMatrix(rhs), |
| 122 | sumDualInfeasibilities_(0.0), |
| 123 | sumPrimalInfeasibilities_(0.0), |
| 124 | sumOfRelaxedDualInfeasibilities_(0.0), |
| 125 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
| 126 | infeasibilityWeight_(0.0), |
| 127 | start_(NULL), |
| 128 | end_(NULL), |
| 129 | lower_(NULL), |
| 130 | upper_(NULL), |
| 131 | status_(NULL), |
| 132 | saveStatus_(NULL), |
| 133 | savedKeyVariable_(NULL), |
| 134 | backward_(NULL), |
| 135 | backToPivotRow_(NULL), |
| 136 | changeCost_(NULL), |
| 137 | keyVariable_(NULL), |
| 138 | next_(NULL), |
| 139 | toIndex_(NULL), |
| 140 | fromIndex_(NULL), |
| 141 | model_(NULL), |
| 142 | numberDualInfeasibilities_(0), |
| 143 | numberPrimalInfeasibilities_(0), |
| 144 | noCheck_(-1), |
| 145 | numberSets_(0), |
| 146 | saveNumber_(0), |
| 147 | possiblePivotKey_(0), |
| 148 | gubSlackIn_(-1), |
| 149 | firstGub_(0), |
| 150 | lastGub_(0), |
| 151 | gubType_(0) |
| 152 | { |
| 153 | setType(16); |
| 154 | } |
| 155 | |
| 156 | /* This takes over ownership (for space reasons) and is the |
| 157 | real constructor*/ |
| 158 | ClpGubMatrix::ClpGubMatrix(ClpPackedMatrix * matrix, int numberSets, |
| 159 | const int * start, const int * end, |
| 160 | const double * lower, const double * upper, |
| 161 | const unsigned char * status) |
| 162 | : ClpPackedMatrix(matrix->matrix()), |
| 163 | sumDualInfeasibilities_(0.0), |
| 164 | sumPrimalInfeasibilities_(0.0), |
| 165 | sumOfRelaxedDualInfeasibilities_(0.0), |
| 166 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
| 167 | numberDualInfeasibilities_(0), |
| 168 | numberPrimalInfeasibilities_(0), |
| 169 | saveNumber_(0), |
| 170 | possiblePivotKey_(0), |
| 171 | gubSlackIn_(-1) |
| 172 | { |
| 173 | model_ = NULL; |
| 174 | numberSets_ = numberSets; |
| 175 | start_ = ClpCopyOfArray(start, numberSets_); |
| 176 | end_ = ClpCopyOfArray(end, numberSets_); |
| 177 | lower_ = ClpCopyOfArray(lower, numberSets_); |
| 178 | upper_ = ClpCopyOfArray(upper, numberSets_); |
| 179 | // Check valid and ordered |
| 180 | int last = -1; |
| 181 | int numberColumns = matrix_->getNumCols(); |
| 182 | int numberRows = matrix_->getNumRows(); |
| 183 | backward_ = new int[numberColumns]; |
| 184 | backToPivotRow_ = new int[numberColumns]; |
| 185 | changeCost_ = new double [numberRows+numberSets_]; |
| 186 | keyVariable_ = new int[numberSets_]; |
| 187 | // signal to need new ordering |
| 188 | next_ = NULL; |
| 189 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) |
| 190 | backward_[iColumn] = -1; |
| 191 | |
| 192 | int iSet; |
| 193 | for (iSet = 0; iSet < numberSets_; iSet++) { |
| 194 | // set key variable as slack |
| 195 | keyVariable_[iSet] = iSet + numberColumns; |
| 196 | if (start_[iSet] < 0 || start_[iSet] >= numberColumns) |
| 197 | throw CoinError("Index out of range" , "constructor" , "ClpGubMatrix" ); |
| 198 | if (end_[iSet] < 0 || end_[iSet] > numberColumns) |
| 199 | throw CoinError("Index out of range" , "constructor" , "ClpGubMatrix" ); |
| 200 | if (end_[iSet] <= start_[iSet]) |
| 201 | throw CoinError("Empty or negative set" , "constructor" , "ClpGubMatrix" ); |
| 202 | if (start_[iSet] < last) |
| 203 | throw CoinError("overlapping or non-monotonic sets" , "constructor" , "ClpGubMatrix" ); |
| 204 | last = end_[iSet]; |
| 205 | int j; |
| 206 | for (j = start_[iSet]; j < end_[iSet]; j++) |
| 207 | backward_[j] = iSet; |
| 208 | } |
| 209 | // Find type of gub |
| 210 | firstGub_ = numberColumns + 1; |
| 211 | lastGub_ = -1; |
| 212 | int i; |
| 213 | for (i = 0; i < numberColumns; i++) { |
| 214 | if (backward_[i] >= 0) { |
| 215 | firstGub_ = CoinMin(firstGub_, i); |
| 216 | lastGub_ = CoinMax(lastGub_, i); |
| 217 | } |
| 218 | } |
| 219 | gubType_ = 0; |
| 220 | // adjust lastGub_ |
| 221 | if (lastGub_ > 0) |
| 222 | lastGub_++; |
| 223 | for (i = firstGub_; i < lastGub_; i++) { |
| 224 | if (backward_[i] < 0) { |
| 225 | gubType_ = 1; |
| 226 | printf("interior non gub %d\n" , i); |
| 227 | break; |
| 228 | } |
| 229 | } |
| 230 | if (status) { |
| 231 | status_ = ClpCopyOfArray(status, numberSets_); |
| 232 | } else { |
| 233 | status_ = new unsigned char [numberSets_]; |
| 234 | memset(status_, 0, numberSets_); |
| 235 | int i; |
| 236 | for (i = 0; i < numberSets_; i++) { |
| 237 | // make slack key |
| 238 | setStatus(i, ClpSimplex::basic); |
| 239 | } |
| 240 | } |
| 241 | saveStatus_ = new unsigned char [numberSets_]; |
| 242 | memset(saveStatus_, 0, numberSets_); |
| 243 | savedKeyVariable_ = new int [numberSets_]; |
| 244 | memset(savedKeyVariable_, 0, numberSets_ * sizeof(int)); |
| 245 | noCheck_ = -1; |
| 246 | infeasibilityWeight_ = 0.0; |
| 247 | } |
| 248 | |
| 249 | ClpGubMatrix::ClpGubMatrix (const CoinPackedMatrix & rhs) |
| 250 | : ClpPackedMatrix(rhs), |
| 251 | sumDualInfeasibilities_(0.0), |
| 252 | sumPrimalInfeasibilities_(0.0), |
| 253 | sumOfRelaxedDualInfeasibilities_(0.0), |
| 254 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
| 255 | infeasibilityWeight_(0.0), |
| 256 | start_(NULL), |
| 257 | end_(NULL), |
| 258 | lower_(NULL), |
| 259 | upper_(NULL), |
| 260 | status_(NULL), |
| 261 | saveStatus_(NULL), |
| 262 | savedKeyVariable_(NULL), |
| 263 | backward_(NULL), |
| 264 | backToPivotRow_(NULL), |
| 265 | changeCost_(NULL), |
| 266 | keyVariable_(NULL), |
| 267 | next_(NULL), |
| 268 | toIndex_(NULL), |
| 269 | fromIndex_(NULL), |
| 270 | model_(NULL), |
| 271 | numberDualInfeasibilities_(0), |
| 272 | numberPrimalInfeasibilities_(0), |
| 273 | noCheck_(-1), |
| 274 | numberSets_(0), |
| 275 | saveNumber_(0), |
| 276 | possiblePivotKey_(0), |
| 277 | gubSlackIn_(-1), |
| 278 | firstGub_(0), |
| 279 | lastGub_(0), |
| 280 | gubType_(0) |
| 281 | { |
| 282 | setType(16); |
| 283 | |
| 284 | } |
| 285 | |
| 286 | //------------------------------------------------------------------- |
| 287 | // Destructor |
| 288 | //------------------------------------------------------------------- |
| 289 | ClpGubMatrix::~ClpGubMatrix () |
| 290 | { |
| 291 | delete [] start_; |
| 292 | delete [] end_; |
| 293 | delete [] lower_; |
| 294 | delete [] upper_; |
| 295 | delete [] status_; |
| 296 | delete [] saveStatus_; |
| 297 | delete [] savedKeyVariable_; |
| 298 | delete [] backward_; |
| 299 | delete [] backToPivotRow_; |
| 300 | delete [] changeCost_; |
| 301 | delete [] keyVariable_; |
| 302 | delete [] next_; |
| 303 | delete [] toIndex_; |
| 304 | delete [] fromIndex_; |
| 305 | } |
| 306 | |
| 307 | //---------------------------------------------------------------- |
| 308 | // Assignment operator |
| 309 | //------------------------------------------------------------------- |
| 310 | ClpGubMatrix & |
| 311 | ClpGubMatrix::operator=(const ClpGubMatrix& rhs) |
| 312 | { |
| 313 | if (this != &rhs) { |
| 314 | ClpPackedMatrix::operator=(rhs); |
| 315 | delete [] start_; |
| 316 | delete [] end_; |
| 317 | delete [] lower_; |
| 318 | delete [] upper_; |
| 319 | delete [] status_; |
| 320 | delete [] saveStatus_; |
| 321 | delete [] savedKeyVariable_; |
| 322 | delete [] backward_; |
| 323 | delete [] backToPivotRow_; |
| 324 | delete [] changeCost_; |
| 325 | delete [] keyVariable_; |
| 326 | delete [] next_; |
| 327 | delete [] toIndex_; |
| 328 | delete [] fromIndex_; |
| 329 | numberSets_ = rhs.numberSets_; |
| 330 | saveNumber_ = rhs.saveNumber_; |
| 331 | possiblePivotKey_ = rhs.possiblePivotKey_; |
| 332 | gubSlackIn_ = rhs.gubSlackIn_; |
| 333 | start_ = ClpCopyOfArray(rhs.start_, numberSets_); |
| 334 | end_ = ClpCopyOfArray(rhs.end_, numberSets_); |
| 335 | lower_ = ClpCopyOfArray(rhs.lower_, numberSets_); |
| 336 | upper_ = ClpCopyOfArray(rhs.upper_, numberSets_); |
| 337 | status_ = ClpCopyOfArray(rhs.status_, numberSets_); |
| 338 | saveStatus_ = ClpCopyOfArray(rhs.saveStatus_, numberSets_); |
| 339 | savedKeyVariable_ = ClpCopyOfArray(rhs.savedKeyVariable_, numberSets_); |
| 340 | int numberColumns = getNumCols(); |
| 341 | backward_ = ClpCopyOfArray(rhs.backward_, numberColumns); |
| 342 | backToPivotRow_ = ClpCopyOfArray(rhs.backToPivotRow_, numberColumns); |
| 343 | changeCost_ = ClpCopyOfArray(rhs.changeCost_, getNumRows() + numberSets_); |
| 344 | fromIndex_ = ClpCopyOfArray(rhs.fromIndex_, getNumRows() + numberSets_ + 1); |
| 345 | keyVariable_ = ClpCopyOfArray(rhs.keyVariable_, numberSets_); |
| 346 | // find longest set |
| 347 | int * longest = new int[numberSets_]; |
| 348 | CoinZeroN(longest, numberSets_); |
| 349 | int j; |
| 350 | for (j = 0; j < numberColumns; j++) { |
| 351 | int iSet = backward_[j]; |
| 352 | if (iSet >= 0) |
| 353 | longest[iSet]++; |
| 354 | } |
| 355 | int length = 0; |
| 356 | for (j = 0; j < numberSets_; j++) |
| 357 | length = CoinMax(length, longest[j]); |
| 358 | next_ = ClpCopyOfArray(rhs.next_, numberColumns + numberSets_ + 2 * length); |
| 359 | toIndex_ = ClpCopyOfArray(rhs.toIndex_, numberSets_); |
| 360 | sumDualInfeasibilities_ = rhs. sumDualInfeasibilities_; |
| 361 | sumPrimalInfeasibilities_ = rhs.sumPrimalInfeasibilities_; |
| 362 | sumOfRelaxedDualInfeasibilities_ = rhs.sumOfRelaxedDualInfeasibilities_; |
| 363 | sumOfRelaxedPrimalInfeasibilities_ = rhs.sumOfRelaxedPrimalInfeasibilities_; |
| 364 | infeasibilityWeight_ = rhs.infeasibilityWeight_; |
| 365 | numberDualInfeasibilities_ = rhs.numberDualInfeasibilities_; |
| 366 | numberPrimalInfeasibilities_ = rhs.numberPrimalInfeasibilities_; |
| 367 | noCheck_ = rhs.noCheck_; |
| 368 | firstGub_ = rhs.firstGub_; |
| 369 | lastGub_ = rhs.lastGub_; |
| 370 | gubType_ = rhs.gubType_; |
| 371 | model_ = rhs.model_; |
| 372 | } |
| 373 | return *this; |
| 374 | } |
| 375 | //------------------------------------------------------------------- |
| 376 | // Clone |
| 377 | //------------------------------------------------------------------- |
| 378 | ClpMatrixBase * ClpGubMatrix::clone() const |
| 379 | { |
| 380 | return new ClpGubMatrix(*this); |
| 381 | } |
| 382 | /* Subset clone (without gaps). Duplicates are allowed |
| 383 | and order is as given */ |
| 384 | ClpMatrixBase * |
| 385 | ClpGubMatrix::subsetClone (int numberRows, const int * whichRows, |
| 386 | int numberColumns, |
| 387 | const int * whichColumns) const |
| 388 | { |
| 389 | return new ClpGubMatrix(*this, numberRows, whichRows, |
| 390 | numberColumns, whichColumns); |
| 391 | } |
| 392 | /* Returns a new matrix in reverse order without gaps |
| 393 | Is allowed to return NULL if doesn't want to have row copy */ |
| 394 | ClpMatrixBase * |
| 395 | ClpGubMatrix::reverseOrderedCopy() const |
| 396 | { |
| 397 | return NULL; |
| 398 | } |
| 399 | int |
| 400 | ClpGubMatrix::hiddenRows() const |
| 401 | { |
| 402 | return numberSets_; |
| 403 | } |
| 404 | /* Subset constructor (without gaps). Duplicates are allowed |
| 405 | and order is as given */ |
| 406 | ClpGubMatrix::ClpGubMatrix ( |
| 407 | const ClpGubMatrix & rhs, |
| 408 | int numberRows, const int * whichRows, |
| 409 | int numberColumns, const int * whichColumns) |
| 410 | : ClpPackedMatrix(rhs, numberRows, whichRows, numberColumns, whichColumns) |
| 411 | { |
| 412 | // Assuming no gub rows deleted |
| 413 | // We also assume all sets in same order |
| 414 | // Get array with backward pointers |
| 415 | int numberColumnsOld = rhs.matrix_->getNumCols(); |
| 416 | int * array = new int [ numberColumnsOld]; |
| 417 | int i; |
| 418 | for (i = 0; i < numberColumnsOld; i++) |
| 419 | array[i] = -1; |
| 420 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
| 421 | for (int j = start_[iSet]; j < end_[iSet]; j++) |
| 422 | array[j] = iSet; |
| 423 | } |
| 424 | numberSets_ = -1; |
| 425 | int lastSet = -1; |
| 426 | bool inSet = false; |
| 427 | for (i = 0; i < numberColumns; i++) { |
| 428 | int iColumn = whichColumns[i]; |
| 429 | int iSet = array[iColumn]; |
| 430 | if (iSet < 0) { |
| 431 | inSet = false; |
| 432 | } else { |
| 433 | if (!inSet) { |
| 434 | // start of new set but check okay |
| 435 | if (iSet <= lastSet) |
| 436 | throw CoinError("overlapping or non-monotonic sets" , "subset constructor" , "ClpGubMatrix" ); |
| 437 | lastSet = iSet; |
| 438 | numberSets_++; |
| 439 | start_[numberSets_] = i; |
| 440 | end_[numberSets_] = i + 1; |
| 441 | lower_[numberSets_] = lower_[iSet]; |
| 442 | upper_[numberSets_] = upper_[iSet]; |
| 443 | inSet = true; |
| 444 | } else { |
| 445 | if (iSet < lastSet) { |
| 446 | throw CoinError("overlapping or non-monotonic sets" , "subset constructor" , "ClpGubMatrix" ); |
| 447 | } else if (iSet == lastSet) { |
| 448 | end_[numberSets_] = i + 1; |
| 449 | } else { |
| 450 | // new set |
| 451 | lastSet = iSet; |
| 452 | numberSets_++; |
| 453 | start_[numberSets_] = i; |
| 454 | end_[numberSets_] = i + 1; |
| 455 | lower_[numberSets_] = lower_[iSet]; |
| 456 | upper_[numberSets_] = upper_[iSet]; |
| 457 | } |
| 458 | } |
| 459 | } |
| 460 | } |
| 461 | delete [] array; |
| 462 | numberSets_++; // adjust |
| 463 | // Find type of gub |
| 464 | firstGub_ = numberColumns + 1; |
| 465 | lastGub_ = -1; |
| 466 | for (i = 0; i < numberColumns; i++) { |
| 467 | if (backward_[i] >= 0) { |
| 468 | firstGub_ = CoinMin(firstGub_, i); |
| 469 | lastGub_ = CoinMax(lastGub_, i); |
| 470 | } |
| 471 | } |
| 472 | if (lastGub_ > 0) |
| 473 | lastGub_++; |
| 474 | gubType_ = 0; |
| 475 | for (i = firstGub_; i < lastGub_; i++) { |
| 476 | if (backward_[i] < 0) { |
| 477 | gubType_ = 1; |
| 478 | break; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | // Make sure key is feasible if only key in set |
| 483 | } |
| 484 | ClpGubMatrix::ClpGubMatrix ( |
| 485 | const CoinPackedMatrix & rhs, |
| 486 | int numberRows, const int * whichRows, |
| 487 | int numberColumns, const int * whichColumns) |
| 488 | : ClpPackedMatrix(rhs, numberRows, whichRows, numberColumns, whichColumns), |
| 489 | sumDualInfeasibilities_(0.0), |
| 490 | sumPrimalInfeasibilities_(0.0), |
| 491 | sumOfRelaxedDualInfeasibilities_(0.0), |
| 492 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
| 493 | start_(NULL), |
| 494 | end_(NULL), |
| 495 | lower_(NULL), |
| 496 | upper_(NULL), |
| 497 | backward_(NULL), |
| 498 | backToPivotRow_(NULL), |
| 499 | changeCost_(NULL), |
| 500 | keyVariable_(NULL), |
| 501 | next_(NULL), |
| 502 | toIndex_(NULL), |
| 503 | fromIndex_(NULL), |
| 504 | numberDualInfeasibilities_(0), |
| 505 | numberPrimalInfeasibilities_(0), |
| 506 | numberSets_(0), |
| 507 | saveNumber_(0), |
| 508 | possiblePivotKey_(0), |
| 509 | gubSlackIn_(-1), |
| 510 | firstGub_(0), |
| 511 | lastGub_(0), |
| 512 | gubType_(0) |
| 513 | { |
| 514 | setType(16); |
| 515 | } |
| 516 | /* Return <code>x * A + y</code> in <code>z</code>. |
| 517 | Squashes small elements and knows about ClpSimplex */ |
| 518 | void |
| 519 | ClpGubMatrix::transposeTimes(const ClpSimplex * model, double scalar, |
| 520 | const CoinIndexedVector * rowArray, |
| 521 | CoinIndexedVector * y, |
| 522 | CoinIndexedVector * columnArray) const |
| 523 | { |
| 524 | columnArray->clear(); |
| 525 | double * pi = rowArray->denseVector(); |
| 526 | int numberNonZero = 0; |
| 527 | int * index = columnArray->getIndices(); |
| 528 | double * array = columnArray->denseVector(); |
| 529 | int numberInRowArray = rowArray->getNumElements(); |
| 530 | // maybe I need one in OsiSimplex |
| 531 | double zeroTolerance = model->zeroTolerance(); |
| 532 | int numberRows = model->numberRows(); |
| 533 | ClpPackedMatrix* rowCopy = |
| 534 | dynamic_cast< ClpPackedMatrix*>(model->rowCopy()); |
| 535 | bool packed = rowArray->packedMode(); |
| 536 | double factor = 0.3; |
| 537 | // We may not want to do by row if there may be cache problems |
| 538 | int numberColumns = model->numberColumns(); |
| 539 | // It would be nice to find L2 cache size - for moment 512K |
| 540 | // Be slightly optimistic |
| 541 | if (numberColumns * sizeof(double) > 1000000) { |
| 542 | if (numberRows * 10 < numberColumns) |
| 543 | factor = 0.1; |
| 544 | else if (numberRows * 4 < numberColumns) |
| 545 | factor = 0.15; |
| 546 | else if (numberRows * 2 < numberColumns) |
| 547 | factor = 0.2; |
| 548 | //if (model->numberIterations()%50==0) |
| 549 | //printf("%d nonzero\n",numberInRowArray); |
| 550 | } |
| 551 | // reduce for gub |
| 552 | factor *= 0.5; |
| 553 | assert (!y->getNumElements()); |
| 554 | if (numberInRowArray > factor * numberRows || !rowCopy) { |
| 555 | // do by column |
| 556 | int iColumn; |
| 557 | // get matrix data pointers |
| 558 | const int * row = matrix_->getIndices(); |
| 559 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 560 | const int * columnLength = matrix_->getVectorLengths(); |
| 561 | const double * elementByColumn = matrix_->getElements(); |
| 562 | const double * rowScale = model->rowScale(); |
| 563 | int numberColumns = model->numberColumns(); |
| 564 | int iSet = -1; |
| 565 | double djMod = 0.0; |
| 566 | if (packed) { |
| 567 | // need to expand pi into y |
| 568 | assert(y->capacity() >= numberRows); |
| 569 | double * piOld = pi; |
| 570 | pi = y->denseVector(); |
| 571 | const int * whichRow = rowArray->getIndices(); |
| 572 | int i; |
| 573 | if (!rowScale) { |
| 574 | // modify pi so can collapse to one loop |
| 575 | for (i = 0; i < numberInRowArray; i++) { |
| 576 | int iRow = whichRow[i]; |
| 577 | pi[iRow] = scalar * piOld[i]; |
| 578 | } |
| 579 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 580 | if (backward_[iColumn] != iSet) { |
| 581 | // get pi on gub row |
| 582 | iSet = backward_[iColumn]; |
| 583 | if (iSet >= 0) { |
| 584 | int iBasic = keyVariable_[iSet]; |
| 585 | if (iBasic < numberColumns) { |
| 586 | // get dj without |
| 587 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
| 588 | djMod = 0.0; |
| 589 | for (CoinBigIndex j = columnStart[iBasic]; |
| 590 | j < columnStart[iBasic] + columnLength[iBasic]; j++) { |
| 591 | int jRow = row[j]; |
| 592 | djMod -= pi[jRow] * elementByColumn[j]; |
| 593 | } |
| 594 | } else { |
| 595 | djMod = 0.0; |
| 596 | } |
| 597 | } else { |
| 598 | djMod = 0.0; |
| 599 | } |
| 600 | } |
| 601 | double value = -djMod; |
| 602 | CoinBigIndex j; |
| 603 | for (j = columnStart[iColumn]; |
| 604 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 605 | int iRow = row[j]; |
| 606 | value += pi[iRow] * elementByColumn[j]; |
| 607 | } |
| 608 | if (fabs(value) > zeroTolerance) { |
| 609 | array[numberNonZero] = value; |
| 610 | index[numberNonZero++] = iColumn; |
| 611 | } |
| 612 | } |
| 613 | } else { |
| 614 | // scaled |
| 615 | // modify pi so can collapse to one loop |
| 616 | for (i = 0; i < numberInRowArray; i++) { |
| 617 | int iRow = whichRow[i]; |
| 618 | pi[iRow] = scalar * piOld[i] * rowScale[iRow]; |
| 619 | } |
| 620 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 621 | if (backward_[iColumn] != iSet) { |
| 622 | // get pi on gub row |
| 623 | iSet = backward_[iColumn]; |
| 624 | if (iSet >= 0) { |
| 625 | int iBasic = keyVariable_[iSet]; |
| 626 | if (iBasic < numberColumns) { |
| 627 | // get dj without |
| 628 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
| 629 | djMod = 0.0; |
| 630 | // scaled |
| 631 | for (CoinBigIndex j = columnStart[iBasic]; |
| 632 | j < columnStart[iBasic] + columnLength[iBasic]; j++) { |
| 633 | int jRow = row[j]; |
| 634 | djMod -= pi[jRow] * elementByColumn[j] * rowScale[jRow]; |
| 635 | } |
| 636 | } else { |
| 637 | djMod = 0.0; |
| 638 | } |
| 639 | } else { |
| 640 | djMod = 0.0; |
| 641 | } |
| 642 | } |
| 643 | double value = -djMod; |
| 644 | CoinBigIndex j; |
| 645 | const double * columnScale = model->columnScale(); |
| 646 | for (j = columnStart[iColumn]; |
| 647 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 648 | int iRow = row[j]; |
| 649 | value += pi[iRow] * elementByColumn[j]; |
| 650 | } |
| 651 | value *= columnScale[iColumn]; |
| 652 | if (fabs(value) > zeroTolerance) { |
| 653 | array[numberNonZero] = value; |
| 654 | index[numberNonZero++] = iColumn; |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | // zero out |
| 659 | for (i = 0; i < numberInRowArray; i++) { |
| 660 | int iRow = whichRow[i]; |
| 661 | pi[iRow] = 0.0; |
| 662 | } |
| 663 | } else { |
| 664 | // code later |
| 665 | assert (packed); |
| 666 | if (!rowScale) { |
| 667 | if (scalar == -1.0) { |
| 668 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 669 | double value = 0.0; |
| 670 | CoinBigIndex j; |
| 671 | for (j = columnStart[iColumn]; |
| 672 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 673 | int iRow = row[j]; |
| 674 | value += pi[iRow] * elementByColumn[j]; |
| 675 | } |
| 676 | if (fabs(value) > zeroTolerance) { |
| 677 | index[numberNonZero++] = iColumn; |
| 678 | array[iColumn] = -value; |
| 679 | } |
| 680 | } |
| 681 | } else if (scalar == 1.0) { |
| 682 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 683 | double value = 0.0; |
| 684 | CoinBigIndex j; |
| 685 | for (j = columnStart[iColumn]; |
| 686 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 687 | int iRow = row[j]; |
| 688 | value += pi[iRow] * elementByColumn[j]; |
| 689 | } |
| 690 | if (fabs(value) > zeroTolerance) { |
| 691 | index[numberNonZero++] = iColumn; |
| 692 | array[iColumn] = value; |
| 693 | } |
| 694 | } |
| 695 | } else { |
| 696 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 697 | double value = 0.0; |
| 698 | CoinBigIndex j; |
| 699 | for (j = columnStart[iColumn]; |
| 700 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 701 | int iRow = row[j]; |
| 702 | value += pi[iRow] * elementByColumn[j]; |
| 703 | } |
| 704 | value *= scalar; |
| 705 | if (fabs(value) > zeroTolerance) { |
| 706 | index[numberNonZero++] = iColumn; |
| 707 | array[iColumn] = value; |
| 708 | } |
| 709 | } |
| 710 | } |
| 711 | } else { |
| 712 | // scaled |
| 713 | if (scalar == -1.0) { |
| 714 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 715 | double value = 0.0; |
| 716 | CoinBigIndex j; |
| 717 | const double * columnScale = model->columnScale(); |
| 718 | for (j = columnStart[iColumn]; |
| 719 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 720 | int iRow = row[j]; |
| 721 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
| 722 | } |
| 723 | value *= columnScale[iColumn]; |
| 724 | if (fabs(value) > zeroTolerance) { |
| 725 | index[numberNonZero++] = iColumn; |
| 726 | array[iColumn] = -value; |
| 727 | } |
| 728 | } |
| 729 | } else if (scalar == 1.0) { |
| 730 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 731 | double value = 0.0; |
| 732 | CoinBigIndex j; |
| 733 | const double * columnScale = model->columnScale(); |
| 734 | for (j = columnStart[iColumn]; |
| 735 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 736 | int iRow = row[j]; |
| 737 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
| 738 | } |
| 739 | value *= columnScale[iColumn]; |
| 740 | if (fabs(value) > zeroTolerance) { |
| 741 | index[numberNonZero++] = iColumn; |
| 742 | array[iColumn] = value; |
| 743 | } |
| 744 | } |
| 745 | } else { |
| 746 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 747 | double value = 0.0; |
| 748 | CoinBigIndex j; |
| 749 | const double * columnScale = model->columnScale(); |
| 750 | for (j = columnStart[iColumn]; |
| 751 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 752 | int iRow = row[j]; |
| 753 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
| 754 | } |
| 755 | value *= scalar * columnScale[iColumn]; |
| 756 | if (fabs(value) > zeroTolerance) { |
| 757 | index[numberNonZero++] = iColumn; |
| 758 | array[iColumn] = value; |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | columnArray->setNumElements(numberNonZero); |
| 765 | y->setNumElements(0); |
| 766 | } else { |
| 767 | // do by row |
| 768 | transposeTimesByRow(model, scalar, rowArray, y, columnArray); |
| 769 | } |
| 770 | if (packed) |
| 771 | columnArray->setPackedMode(true); |
| 772 | if (0) { |
| 773 | columnArray->checkClean(); |
| 774 | int numberNonZero = columnArray->getNumElements(); |
| 775 | int * index = columnArray->getIndices(); |
| 776 | double * array = columnArray->denseVector(); |
| 777 | int i; |
| 778 | for (i = 0; i < numberNonZero; i++) { |
| 779 | int j = index[i]; |
| 780 | double value; |
| 781 | if (packed) |
| 782 | value = array[i]; |
| 783 | else |
| 784 | value = array[j]; |
| 785 | printf("Ti %d %d %g\n" , i, j, value); |
| 786 | } |
| 787 | } |
| 788 | } |
| 789 | /* Return <code>x * A + y</code> in <code>z</code>. |
| 790 | Squashes small elements and knows about ClpSimplex */ |
| 791 | void |
| 792 | ClpGubMatrix::transposeTimesByRow(const ClpSimplex * model, double scalar, |
| 793 | const CoinIndexedVector * rowArray, |
| 794 | CoinIndexedVector * y, |
| 795 | CoinIndexedVector * columnArray) const |
| 796 | { |
| 797 | // Do packed part |
| 798 | ClpPackedMatrix::transposeTimesByRow(model, scalar, rowArray, y, columnArray); |
| 799 | if (numberSets_) { |
| 800 | /* what we need to do is do by row as normal but get list of sets touched |
| 801 | and then update those ones */ |
| 802 | abort(); |
| 803 | } |
| 804 | } |
| 805 | /* Return <code>x *A in <code>z</code> but |
| 806 | just for indices in y. */ |
| 807 | void |
| 808 | ClpGubMatrix::subsetTransposeTimes(const ClpSimplex * model, |
| 809 | const CoinIndexedVector * rowArray, |
| 810 | const CoinIndexedVector * y, |
| 811 | CoinIndexedVector * columnArray) const |
| 812 | { |
| 813 | columnArray->clear(); |
| 814 | double * pi = rowArray->denseVector(); |
| 815 | double * array = columnArray->denseVector(); |
| 816 | int jColumn; |
| 817 | // get matrix data pointers |
| 818 | const int * row = matrix_->getIndices(); |
| 819 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 820 | const int * columnLength = matrix_->getVectorLengths(); |
| 821 | const double * elementByColumn = matrix_->getElements(); |
| 822 | const double * rowScale = model->rowScale(); |
| 823 | int numberToDo = y->getNumElements(); |
| 824 | const int * which = y->getIndices(); |
| 825 | assert (!rowArray->packedMode()); |
| 826 | columnArray->setPacked(); |
| 827 | int numberTouched = 0; |
| 828 | if (!rowScale) { |
| 829 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
| 830 | int iColumn = which[jColumn]; |
| 831 | double value = 0.0; |
| 832 | CoinBigIndex j; |
| 833 | for (j = columnStart[iColumn]; |
| 834 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 835 | int iRow = row[j]; |
| 836 | value += pi[iRow] * elementByColumn[j]; |
| 837 | } |
| 838 | array[jColumn] = value; |
| 839 | if (value) { |
| 840 | int iSet = backward_[iColumn]; |
| 841 | if (iSet >= 0) { |
| 842 | int iBasic = keyVariable_[iSet]; |
| 843 | if (iBasic == iColumn) { |
| 844 | toIndex_[iSet] = jColumn; |
| 845 | fromIndex_[numberTouched++] = iSet; |
| 846 | } |
| 847 | } |
| 848 | } |
| 849 | } |
| 850 | } else { |
| 851 | // scaled |
| 852 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
| 853 | int iColumn = which[jColumn]; |
| 854 | double value = 0.0; |
| 855 | CoinBigIndex j; |
| 856 | const double * columnScale = model->columnScale(); |
| 857 | for (j = columnStart[iColumn]; |
| 858 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 859 | int iRow = row[j]; |
| 860 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
| 861 | } |
| 862 | value *= columnScale[iColumn]; |
| 863 | array[jColumn] = value; |
| 864 | if (value) { |
| 865 | int iSet = backward_[iColumn]; |
| 866 | if (iSet >= 0) { |
| 867 | int iBasic = keyVariable_[iSet]; |
| 868 | if (iBasic == iColumn) { |
| 869 | toIndex_[iSet] = jColumn; |
| 870 | fromIndex_[numberTouched++] = iSet; |
| 871 | } |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | } |
| 876 | // adjust djs |
| 877 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
| 878 | int iColumn = which[jColumn]; |
| 879 | int iSet = backward_[iColumn]; |
| 880 | if (iSet >= 0) { |
| 881 | int kColumn = toIndex_[iSet]; |
| 882 | if (kColumn >= 0) |
| 883 | array[jColumn] -= array[kColumn]; |
| 884 | } |
| 885 | } |
| 886 | // and clear basic |
| 887 | for (int j = 0; j < numberTouched; j++) { |
| 888 | int iSet = fromIndex_[j]; |
| 889 | int kColumn = toIndex_[iSet]; |
| 890 | toIndex_[iSet] = -1; |
| 891 | array[kColumn] = 0.0; |
| 892 | } |
| 893 | } |
| 894 | /// returns number of elements in column part of basis, |
| 895 | CoinBigIndex |
| 896 | ClpGubMatrix::countBasis(const int * whichColumn, |
| 897 | int & numberColumnBasic) |
| 898 | { |
| 899 | int i; |
| 900 | int numberColumns = getNumCols(); |
| 901 | const int * columnLength = matrix_->getVectorLengths(); |
| 902 | int numberRows = getNumRows(); |
| 903 | int numberBasic = 0; |
| 904 | CoinBigIndex numberElements = 0; |
| 905 | int lastSet = -1; |
| 906 | int key = -1; |
| 907 | int keyLength = -1; |
| 908 | double * work = new double[numberRows]; |
| 909 | CoinZeroN(work, numberRows); |
| 910 | char * mark = new char[numberRows]; |
| 911 | CoinZeroN(mark, numberRows); |
| 912 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 913 | const int * row = matrix_->getIndices(); |
| 914 | const double * elementByColumn = matrix_->getElements(); |
| 915 | //ClpGubDynamicMatrix* gubx = |
| 916 | //dynamic_cast< ClpGubDynamicMatrix*>(this); |
| 917 | //int * id = gubx->id(); |
| 918 | // just count |
| 919 | for (i = 0; i < numberColumnBasic; i++) { |
| 920 | int iColumn = whichColumn[i]; |
| 921 | int iSet = backward_[iColumn]; |
| 922 | int length = columnLength[iColumn]; |
| 923 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
| 924 | numberElements += length; |
| 925 | numberBasic++; |
| 926 | //printf("non gub - set %d id %d (column %d) nel %d\n",iSet,id[iColumn-20],iColumn,length); |
| 927 | } else { |
| 928 | // in gub set |
| 929 | if (iColumn != keyVariable_[iSet]) { |
| 930 | numberBasic++; |
| 931 | CoinBigIndex j; |
| 932 | // not key |
| 933 | if (lastSet < iSet) { |
| 934 | // erase work |
| 935 | if (key >= 0) { |
| 936 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) |
| 937 | work[row[j]] = 0.0; |
| 938 | } |
| 939 | key = keyVariable_[iSet]; |
| 940 | lastSet = iSet; |
| 941 | keyLength = columnLength[key]; |
| 942 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) |
| 943 | work[row[j]] = elementByColumn[j]; |
| 944 | } |
| 945 | int = keyLength; |
| 946 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
| 947 | int iRow = row[j]; |
| 948 | double keyValue = work[iRow]; |
| 949 | double value = elementByColumn[j]; |
| 950 | if (!keyValue) { |
| 951 | if (fabs(value) > 1.0e-20) |
| 952 | extra++; |
| 953 | } else { |
| 954 | value -= keyValue; |
| 955 | if (fabs(value) <= 1.0e-20) |
| 956 | extra--; |
| 957 | } |
| 958 | } |
| 959 | numberElements += extra; |
| 960 | //printf("gub - set %d id %d (column %d) nel %d\n",iSet,id[iColumn-20],iColumn,extra); |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | delete [] work; |
| 965 | delete [] mark; |
| 966 | // update number of column basic |
| 967 | numberColumnBasic = numberBasic; |
| 968 | return numberElements; |
| 969 | } |
| 970 | void |
| 971 | ClpGubMatrix::fillBasis(ClpSimplex * model, |
| 972 | const int * whichColumn, |
| 973 | int & numberColumnBasic, |
| 974 | int * indexRowU, int * start, |
| 975 | int * rowCount, int * columnCount, |
| 976 | CoinFactorizationDouble * elementU) |
| 977 | { |
| 978 | int i; |
| 979 | int numberColumns = getNumCols(); |
| 980 | const int * columnLength = matrix_->getVectorLengths(); |
| 981 | int numberRows = getNumRows(); |
| 982 | assert (next_ || !elementU) ; |
| 983 | CoinBigIndex numberElements = start[0]; |
| 984 | int lastSet = -1; |
| 985 | int key = -1; |
| 986 | int keyLength = -1; |
| 987 | double * work = new double[numberRows]; |
| 988 | CoinZeroN(work, numberRows); |
| 989 | char * mark = new char[numberRows]; |
| 990 | CoinZeroN(mark, numberRows); |
| 991 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 992 | const int * row = matrix_->getIndices(); |
| 993 | const double * elementByColumn = matrix_->getElements(); |
| 994 | const double * rowScale = model->rowScale(); |
| 995 | int numberBasic = 0; |
| 996 | if (0) { |
| 997 | printf("%d basiccolumns\n" , numberColumnBasic); |
| 998 | int i; |
| 999 | for (i = 0; i < numberSets_; i++) { |
| 1000 | int k = keyVariable_[i]; |
| 1001 | if (k < numberColumns) { |
| 1002 | printf("key %d on set %d, %d elements\n" , k, i, columnStart[k+1] - columnStart[k]); |
| 1003 | for (int j = columnStart[k]; j < columnStart[k+1]; j++) |
| 1004 | printf("row %d el %g\n" , row[j], elementByColumn[j]); |
| 1005 | } else { |
| 1006 | printf("slack key on set %d\n" , i); |
| 1007 | } |
| 1008 | } |
| 1009 | } |
| 1010 | // fill |
| 1011 | if (!rowScale) { |
| 1012 | // no scaling |
| 1013 | for (i = 0; i < numberColumnBasic; i++) { |
| 1014 | int iColumn = whichColumn[i]; |
| 1015 | int iSet = backward_[iColumn]; |
| 1016 | int length = columnLength[iColumn]; |
| 1017 | if (0) { |
| 1018 | int k = iColumn; |
| 1019 | printf("column %d in set %d, %d elements\n" , k, iSet, columnStart[k+1] - columnStart[k]); |
| 1020 | for (int j = columnStart[k]; j < columnStart[k+1]; j++) |
| 1021 | printf("row %d el %g\n" , row[j], elementByColumn[j]); |
| 1022 | } |
| 1023 | CoinBigIndex j; |
| 1024 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
| 1025 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1026 | double value = elementByColumn[j]; |
| 1027 | if (fabs(value) > 1.0e-20) { |
| 1028 | int iRow = row[j]; |
| 1029 | indexRowU[numberElements] = iRow; |
| 1030 | rowCount[iRow]++; |
| 1031 | elementU[numberElements++] = value; |
| 1032 | } |
| 1033 | } |
| 1034 | // end of column |
| 1035 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
| 1036 | numberBasic++; |
| 1037 | start[numberBasic] = numberElements; |
| 1038 | } else { |
| 1039 | // in gub set |
| 1040 | if (iColumn != keyVariable_[iSet]) { |
| 1041 | // not key |
| 1042 | if (lastSet != iSet) { |
| 1043 | // erase work |
| 1044 | if (key >= 0) { |
| 1045 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1046 | int iRow = row[j]; |
| 1047 | work[iRow] = 0.0; |
| 1048 | mark[iRow] = 0; |
| 1049 | } |
| 1050 | } |
| 1051 | key = keyVariable_[iSet]; |
| 1052 | lastSet = iSet; |
| 1053 | keyLength = columnLength[key]; |
| 1054 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1055 | int iRow = row[j]; |
| 1056 | work[iRow] = elementByColumn[j]; |
| 1057 | mark[iRow] = 1; |
| 1058 | } |
| 1059 | } |
| 1060 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
| 1061 | int iRow = row[j]; |
| 1062 | double value = elementByColumn[j]; |
| 1063 | if (mark[iRow]) { |
| 1064 | mark[iRow] = 0; |
| 1065 | double keyValue = work[iRow]; |
| 1066 | value -= keyValue; |
| 1067 | } |
| 1068 | if (fabs(value) > 1.0e-20) { |
| 1069 | indexRowU[numberElements] = iRow; |
| 1070 | rowCount[iRow]++; |
| 1071 | elementU[numberElements++] = value; |
| 1072 | } |
| 1073 | } |
| 1074 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1075 | int iRow = row[j]; |
| 1076 | if (mark[iRow]) { |
| 1077 | double value = -work[iRow]; |
| 1078 | if (fabs(value) > 1.0e-20) { |
| 1079 | indexRowU[numberElements] = iRow; |
| 1080 | rowCount[iRow]++; |
| 1081 | elementU[numberElements++] = value; |
| 1082 | } |
| 1083 | } else { |
| 1084 | // just put back mark |
| 1085 | mark[iRow] = 1; |
| 1086 | } |
| 1087 | } |
| 1088 | // end of column |
| 1089 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
| 1090 | numberBasic++; |
| 1091 | start[numberBasic] = numberElements; |
| 1092 | } |
| 1093 | } |
| 1094 | } |
| 1095 | } else { |
| 1096 | // scaling |
| 1097 | const double * columnScale = model->columnScale(); |
| 1098 | for (i = 0; i < numberColumnBasic; i++) { |
| 1099 | int iColumn = whichColumn[i]; |
| 1100 | int iSet = backward_[iColumn]; |
| 1101 | int length = columnLength[iColumn]; |
| 1102 | CoinBigIndex j; |
| 1103 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
| 1104 | double scale = columnScale[iColumn]; |
| 1105 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
| 1106 | int iRow = row[j]; |
| 1107 | double value = elementByColumn[j] * scale * rowScale[iRow]; |
| 1108 | if (fabs(value) > 1.0e-20) { |
| 1109 | indexRowU[numberElements] = iRow; |
| 1110 | rowCount[iRow]++; |
| 1111 | elementU[numberElements++] = value; |
| 1112 | } |
| 1113 | } |
| 1114 | // end of column |
| 1115 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
| 1116 | numberBasic++; |
| 1117 | start[numberBasic] = numberElements; |
| 1118 | } else { |
| 1119 | // in gub set |
| 1120 | if (iColumn != keyVariable_[iSet]) { |
| 1121 | double scale = columnScale[iColumn]; |
| 1122 | // not key |
| 1123 | if (lastSet < iSet) { |
| 1124 | // erase work |
| 1125 | if (key >= 0) { |
| 1126 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1127 | int iRow = row[j]; |
| 1128 | work[iRow] = 0.0; |
| 1129 | mark[iRow] = 0; |
| 1130 | } |
| 1131 | } |
| 1132 | key = keyVariable_[iSet]; |
| 1133 | lastSet = iSet; |
| 1134 | keyLength = columnLength[key]; |
| 1135 | double scale = columnScale[key]; |
| 1136 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1137 | int iRow = row[j]; |
| 1138 | work[iRow] = elementByColumn[j] * scale * rowScale[iRow]; |
| 1139 | mark[iRow] = 1; |
| 1140 | } |
| 1141 | } |
| 1142 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
| 1143 | int iRow = row[j]; |
| 1144 | double value = elementByColumn[j] * scale * rowScale[iRow]; |
| 1145 | if (mark[iRow]) { |
| 1146 | mark[iRow] = 0; |
| 1147 | double keyValue = work[iRow]; |
| 1148 | value -= keyValue; |
| 1149 | } |
| 1150 | if (fabs(value) > 1.0e-20) { |
| 1151 | indexRowU[numberElements] = iRow; |
| 1152 | rowCount[iRow]++; |
| 1153 | elementU[numberElements++] = value; |
| 1154 | } |
| 1155 | } |
| 1156 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
| 1157 | int iRow = row[j]; |
| 1158 | if (mark[iRow]) { |
| 1159 | double value = -work[iRow]; |
| 1160 | if (fabs(value) > 1.0e-20) { |
| 1161 | indexRowU[numberElements] = iRow; |
| 1162 | rowCount[iRow]++; |
| 1163 | elementU[numberElements++] = value; |
| 1164 | } |
| 1165 | } else { |
| 1166 | // just put back mark |
| 1167 | mark[iRow] = 1; |
| 1168 | } |
| 1169 | } |
| 1170 | // end of column |
| 1171 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
| 1172 | numberBasic++; |
| 1173 | start[numberBasic] = numberElements; |
| 1174 | } |
| 1175 | } |
| 1176 | } |
| 1177 | } |
| 1178 | delete [] work; |
| 1179 | delete [] mark; |
| 1180 | // update number of column basic |
| 1181 | numberColumnBasic = numberBasic; |
| 1182 | } |
| 1183 | /* Unpacks a column into an CoinIndexedvector |
| 1184 | */ |
| 1185 | void |
| 1186 | ClpGubMatrix::unpack(const ClpSimplex * model, CoinIndexedVector * rowArray, |
| 1187 | int iColumn) const |
| 1188 | { |
| 1189 | assert (iColumn < model->numberColumns()); |
| 1190 | // Do packed part |
| 1191 | ClpPackedMatrix::unpack(model, rowArray, iColumn); |
| 1192 | int iSet = backward_[iColumn]; |
| 1193 | if (iSet >= 0) { |
| 1194 | int iBasic = keyVariable_[iSet]; |
| 1195 | if (iBasic < model->numberColumns()) { |
| 1196 | add(model, rowArray, iBasic, -1.0); |
| 1197 | } |
| 1198 | } |
| 1199 | } |
| 1200 | /* Unpacks a column into a CoinIndexedVector |
| 1201 | ** in packed format |
| 1202 | Note that model is NOT const. Bounds and objective could |
| 1203 | be modified if doing column generation (just for this variable) */ |
| 1204 | void |
| 1205 | ClpGubMatrix::unpackPacked(ClpSimplex * model, |
| 1206 | CoinIndexedVector * rowArray, |
| 1207 | int iColumn) const |
| 1208 | { |
| 1209 | int numberColumns = model->numberColumns(); |
| 1210 | if (iColumn < numberColumns) { |
| 1211 | // Do packed part |
| 1212 | ClpPackedMatrix::unpackPacked(model, rowArray, iColumn); |
| 1213 | int iSet = backward_[iColumn]; |
| 1214 | if (iSet >= 0) { |
| 1215 | // columns are in order |
| 1216 | int iBasic = keyVariable_[iSet]; |
| 1217 | if (iBasic < numberColumns) { |
| 1218 | int number = rowArray->getNumElements(); |
| 1219 | const double * rowScale = model->rowScale(); |
| 1220 | const int * row = matrix_->getIndices(); |
| 1221 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 1222 | const int * columnLength = matrix_->getVectorLengths(); |
| 1223 | const double * elementByColumn = matrix_->getElements(); |
| 1224 | double * array = rowArray->denseVector(); |
| 1225 | int * index = rowArray->getIndices(); |
| 1226 | CoinBigIndex i; |
| 1227 | int numberOld = number; |
| 1228 | int lastIndex = 0; |
| 1229 | int next = index[lastIndex]; |
| 1230 | if (!rowScale) { |
| 1231 | for (i = columnStart[iBasic]; |
| 1232 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
| 1233 | int iRow = row[i]; |
| 1234 | while (iRow > next) { |
| 1235 | lastIndex++; |
| 1236 | if (lastIndex == numberOld) |
| 1237 | next = matrix_->getNumRows(); |
| 1238 | else |
| 1239 | next = index[lastIndex]; |
| 1240 | } |
| 1241 | if (iRow < next) { |
| 1242 | array[number] = -elementByColumn[i]; |
| 1243 | index[number++] = iRow; |
| 1244 | } else { |
| 1245 | assert (iRow == next); |
| 1246 | array[lastIndex] -= elementByColumn[i]; |
| 1247 | if (!array[lastIndex]) |
| 1248 | array[lastIndex] = 1.0e-100; |
| 1249 | } |
| 1250 | } |
| 1251 | } else { |
| 1252 | // apply scaling |
| 1253 | double scale = model->columnScale()[iBasic]; |
| 1254 | for (i = columnStart[iBasic]; |
| 1255 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
| 1256 | int iRow = row[i]; |
| 1257 | while (iRow > next) { |
| 1258 | lastIndex++; |
| 1259 | if (lastIndex == numberOld) |
| 1260 | next = matrix_->getNumRows(); |
| 1261 | else |
| 1262 | next = index[lastIndex]; |
| 1263 | } |
| 1264 | if (iRow < next) { |
| 1265 | array[number] = -elementByColumn[i] * scale * rowScale[iRow]; |
| 1266 | index[number++] = iRow; |
| 1267 | } else { |
| 1268 | assert (iRow == next); |
| 1269 | array[lastIndex] -= elementByColumn[i] * scale * rowScale[iRow]; |
| 1270 | if (!array[lastIndex]) |
| 1271 | array[lastIndex] = 1.0e-100; |
| 1272 | } |
| 1273 | } |
| 1274 | } |
| 1275 | rowArray->setNumElements(number); |
| 1276 | } |
| 1277 | } |
| 1278 | } else { |
| 1279 | // key slack entering |
| 1280 | int iBasic = keyVariable_[gubSlackIn_]; |
| 1281 | assert (iBasic < numberColumns); |
| 1282 | int number = 0; |
| 1283 | const double * rowScale = model->rowScale(); |
| 1284 | const int * row = matrix_->getIndices(); |
| 1285 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 1286 | const int * columnLength = matrix_->getVectorLengths(); |
| 1287 | const double * elementByColumn = matrix_->getElements(); |
| 1288 | double * array = rowArray->denseVector(); |
| 1289 | int * index = rowArray->getIndices(); |
| 1290 | CoinBigIndex i; |
| 1291 | if (!rowScale) { |
| 1292 | for (i = columnStart[iBasic]; |
| 1293 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
| 1294 | int iRow = row[i]; |
| 1295 | array[number] = elementByColumn[i]; |
| 1296 | index[number++] = iRow; |
| 1297 | } |
| 1298 | } else { |
| 1299 | // apply scaling |
| 1300 | double scale = model->columnScale()[iBasic]; |
| 1301 | for (i = columnStart[iBasic]; |
| 1302 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
| 1303 | int iRow = row[i]; |
| 1304 | array[number] = elementByColumn[i] * scale * rowScale[iRow]; |
| 1305 | index[number++] = iRow; |
| 1306 | } |
| 1307 | } |
| 1308 | rowArray->setNumElements(number); |
| 1309 | rowArray->setPacked(); |
| 1310 | } |
| 1311 | } |
| 1312 | /* Adds multiple of a column into an CoinIndexedvector |
| 1313 | You can use quickAdd to add to vector */ |
| 1314 | void |
| 1315 | ClpGubMatrix::add(const ClpSimplex * model, CoinIndexedVector * rowArray, |
| 1316 | int iColumn, double multiplier) const |
| 1317 | { |
| 1318 | assert (iColumn < model->numberColumns()); |
| 1319 | // Do packed part |
| 1320 | ClpPackedMatrix::add(model, rowArray, iColumn, multiplier); |
| 1321 | int iSet = backward_[iColumn]; |
| 1322 | if (iSet >= 0 && iColumn != keyVariable_[iSet]) { |
| 1323 | ClpPackedMatrix::add(model, rowArray, keyVariable_[iSet], -multiplier); |
| 1324 | } |
| 1325 | } |
| 1326 | /* Adds multiple of a column into an array */ |
| 1327 | void |
| 1328 | ClpGubMatrix::add(const ClpSimplex * model, double * array, |
| 1329 | int iColumn, double multiplier) const |
| 1330 | { |
| 1331 | assert (iColumn < model->numberColumns()); |
| 1332 | // Do packed part |
| 1333 | ClpPackedMatrix::add(model, array, iColumn, multiplier); |
| 1334 | if (iColumn < model->numberColumns()) { |
| 1335 | int iSet = backward_[iColumn]; |
| 1336 | if (iSet >= 0 && iColumn != keyVariable_[iSet] && keyVariable_[iSet] < model->numberColumns()) { |
| 1337 | ClpPackedMatrix::add(model, array, keyVariable_[iSet], -multiplier); |
| 1338 | } |
| 1339 | } |
| 1340 | } |
| 1341 | // Partial pricing |
| 1342 | void |
| 1343 | ClpGubMatrix::partialPricing(ClpSimplex * model, double startFraction, double endFraction, |
| 1344 | int & bestSequence, int & numberWanted) |
| 1345 | { |
| 1346 | numberWanted = currentWanted_; |
| 1347 | if (numberSets_) { |
| 1348 | // Do packed part before gub |
| 1349 | int numberColumns = matrix_->getNumCols(); |
| 1350 | double ratio = static_cast<double> (firstGub_) / |
| 1351 | static_cast<double> (numberColumns); |
| 1352 | ClpPackedMatrix::partialPricing(model, startFraction * ratio, |
| 1353 | endFraction * ratio, bestSequence, numberWanted); |
| 1354 | if (numberWanted || minimumGoodReducedCosts_ < -1) { |
| 1355 | // do gub |
| 1356 | const double * element = matrix_->getElements(); |
| 1357 | const int * row = matrix_->getIndices(); |
| 1358 | const CoinBigIndex * startColumn = matrix_->getVectorStarts(); |
| 1359 | const int * length = matrix_->getVectorLengths(); |
| 1360 | const double * rowScale = model->rowScale(); |
| 1361 | const double * columnScale = model->columnScale(); |
| 1362 | int iSequence; |
| 1363 | CoinBigIndex j; |
| 1364 | double tolerance = model->currentDualTolerance(); |
| 1365 | double * reducedCost = model->djRegion(); |
| 1366 | const double * duals = model->dualRowSolution(); |
| 1367 | const double * cost = model->costRegion(); |
| 1368 | double bestDj; |
| 1369 | int numberColumns = model->numberColumns(); |
| 1370 | int numberRows = model->numberRows(); |
| 1371 | if (bestSequence >= 0) |
| 1372 | bestDj = fabs(this->reducedCost(model, bestSequence)); |
| 1373 | else |
| 1374 | bestDj = tolerance; |
| 1375 | int sequenceOut = model->sequenceOut(); |
| 1376 | int saveSequence = bestSequence; |
| 1377 | int startG = firstGub_ + static_cast<int> (startFraction * (lastGub_ - firstGub_)); |
| 1378 | int endG = firstGub_ + static_cast<int> (endFraction * (lastGub_ - firstGub_)); |
| 1379 | endG = CoinMin(lastGub_, endG + 1); |
| 1380 | // If nothing found yet can go all the way to end |
| 1381 | int endAll = endG; |
| 1382 | if (bestSequence < 0 && !startG) |
| 1383 | endAll = lastGub_; |
| 1384 | int minSet = minimumObjectsScan_ < 0 ? 5 : minimumObjectsScan_; |
| 1385 | int minNeg = minimumGoodReducedCosts_ == -1 ? 5 : minimumGoodReducedCosts_; |
| 1386 | int nSets = 0; |
| 1387 | int iSet = -1; |
| 1388 | double djMod = 0.0; |
| 1389 | double infeasibilityCost = model->infeasibilityCost(); |
| 1390 | if (rowScale) { |
| 1391 | double bestDjMod = 0.0; |
| 1392 | // scaled |
| 1393 | for (iSequence = startG; iSequence < endAll; iSequence++) { |
| 1394 | if (numberWanted + minNeg < originalWanted_ && nSets > minSet) { |
| 1395 | // give up |
| 1396 | numberWanted = 0; |
| 1397 | break; |
| 1398 | } else if (iSequence == endG && bestSequence >= 0) { |
| 1399 | break; |
| 1400 | } |
| 1401 | if (backward_[iSequence] != iSet) { |
| 1402 | // get pi on gub row |
| 1403 | iSet = backward_[iSequence]; |
| 1404 | if (iSet >= 0) { |
| 1405 | nSets++; |
| 1406 | int iBasic = keyVariable_[iSet]; |
| 1407 | if (iBasic >= numberColumns) { |
| 1408 | djMod = - weight(iSet) * infeasibilityCost; |
| 1409 | } else { |
| 1410 | // get dj without |
| 1411 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
| 1412 | djMod = 0.0; |
| 1413 | // scaled |
| 1414 | for (j = startColumn[iBasic]; |
| 1415 | j < startColumn[iBasic] + length[iBasic]; j++) { |
| 1416 | int jRow = row[j]; |
| 1417 | djMod -= duals[jRow] * element[j] * rowScale[jRow]; |
| 1418 | } |
| 1419 | // allow for scaling |
| 1420 | djMod += cost[iBasic] / columnScale[iBasic]; |
| 1421 | // See if gub slack possible - dj is djMod |
| 1422 | if (getStatus(iSet) == ClpSimplex::atLowerBound) { |
| 1423 | double value = -djMod; |
| 1424 | if (value > tolerance) { |
| 1425 | numberWanted--; |
| 1426 | if (value > bestDj) { |
| 1427 | // check flagged variable and correct dj |
| 1428 | if (!flagged(iSet)) { |
| 1429 | bestDj = value; |
| 1430 | bestSequence = numberRows + numberColumns + iSet; |
| 1431 | bestDjMod = djMod; |
| 1432 | } else { |
| 1433 | // just to make sure we don't exit before got something |
| 1434 | numberWanted++; |
| 1435 | abort(); |
| 1436 | } |
| 1437 | } |
| 1438 | } |
| 1439 | } else if (getStatus(iSet) == ClpSimplex::atUpperBound) { |
| 1440 | double value = djMod; |
| 1441 | if (value > tolerance) { |
| 1442 | numberWanted--; |
| 1443 | if (value > bestDj) { |
| 1444 | // check flagged variable and correct dj |
| 1445 | if (!flagged(iSet)) { |
| 1446 | bestDj = value; |
| 1447 | bestSequence = numberRows + numberColumns + iSet; |
| 1448 | bestDjMod = djMod; |
| 1449 | } else { |
| 1450 | // just to make sure we don't exit before got something |
| 1451 | numberWanted++; |
| 1452 | abort(); |
| 1453 | } |
| 1454 | } |
| 1455 | } |
| 1456 | } |
| 1457 | } |
| 1458 | } else { |
| 1459 | // not in set |
| 1460 | djMod = 0.0; |
| 1461 | } |
| 1462 | } |
| 1463 | if (iSequence != sequenceOut) { |
| 1464 | double value; |
| 1465 | ClpSimplex::Status status = model->getStatus(iSequence); |
| 1466 | |
| 1467 | switch(status) { |
| 1468 | |
| 1469 | case ClpSimplex::basic: |
| 1470 | case ClpSimplex::isFixed: |
| 1471 | break; |
| 1472 | case ClpSimplex::isFree: |
| 1473 | case ClpSimplex::superBasic: |
| 1474 | value = -djMod; |
| 1475 | // scaled |
| 1476 | for (j = startColumn[iSequence]; |
| 1477 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1478 | int jRow = row[j]; |
| 1479 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
| 1480 | } |
| 1481 | value = fabs(cost[iSequence] + value * columnScale[iSequence]); |
| 1482 | if (value > FREE_ACCEPT * tolerance) { |
| 1483 | numberWanted--; |
| 1484 | // we are going to bias towards free (but only if reasonable) |
| 1485 | value *= FREE_BIAS; |
| 1486 | if (value > bestDj) { |
| 1487 | // check flagged variable and correct dj |
| 1488 | if (!model->flagged(iSequence)) { |
| 1489 | bestDj = value; |
| 1490 | bestSequence = iSequence; |
| 1491 | bestDjMod = djMod; |
| 1492 | } else { |
| 1493 | // just to make sure we don't exit before got something |
| 1494 | numberWanted++; |
| 1495 | } |
| 1496 | } |
| 1497 | } |
| 1498 | break; |
| 1499 | case ClpSimplex::atUpperBound: |
| 1500 | value = -djMod; |
| 1501 | // scaled |
| 1502 | for (j = startColumn[iSequence]; |
| 1503 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1504 | int jRow = row[j]; |
| 1505 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
| 1506 | } |
| 1507 | value = cost[iSequence] + value * columnScale[iSequence]; |
| 1508 | if (value > tolerance) { |
| 1509 | numberWanted--; |
| 1510 | if (value > bestDj) { |
| 1511 | // check flagged variable and correct dj |
| 1512 | if (!model->flagged(iSequence)) { |
| 1513 | bestDj = value; |
| 1514 | bestSequence = iSequence; |
| 1515 | bestDjMod = djMod; |
| 1516 | } else { |
| 1517 | // just to make sure we don't exit before got something |
| 1518 | numberWanted++; |
| 1519 | } |
| 1520 | } |
| 1521 | } |
| 1522 | break; |
| 1523 | case ClpSimplex::atLowerBound: |
| 1524 | value = -djMod; |
| 1525 | // scaled |
| 1526 | for (j = startColumn[iSequence]; |
| 1527 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1528 | int jRow = row[j]; |
| 1529 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
| 1530 | } |
| 1531 | value = -(cost[iSequence] + value * columnScale[iSequence]); |
| 1532 | if (value > tolerance) { |
| 1533 | numberWanted--; |
| 1534 | if (value > bestDj) { |
| 1535 | // check flagged variable and correct dj |
| 1536 | if (!model->flagged(iSequence)) { |
| 1537 | bestDj = value; |
| 1538 | bestSequence = iSequence; |
| 1539 | bestDjMod = djMod; |
| 1540 | } else { |
| 1541 | // just to make sure we don't exit before got something |
| 1542 | numberWanted++; |
| 1543 | } |
| 1544 | } |
| 1545 | } |
| 1546 | break; |
| 1547 | } |
| 1548 | } |
| 1549 | if (!numberWanted) |
| 1550 | break; |
| 1551 | } |
| 1552 | if (bestSequence != saveSequence) { |
| 1553 | if (bestSequence < numberRows + numberColumns) { |
| 1554 | // recompute dj |
| 1555 | double value = bestDjMod; |
| 1556 | // scaled |
| 1557 | for (j = startColumn[bestSequence]; |
| 1558 | j < startColumn[bestSequence] + length[bestSequence]; j++) { |
| 1559 | int jRow = row[j]; |
| 1560 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
| 1561 | } |
| 1562 | reducedCost[bestSequence] = cost[bestSequence] + value * columnScale[bestSequence]; |
| 1563 | gubSlackIn_ = -1; |
| 1564 | } else { |
| 1565 | // slack - make last column |
| 1566 | gubSlackIn_ = bestSequence - numberRows - numberColumns; |
| 1567 | bestSequence = numberColumns + 2 * numberRows; |
| 1568 | reducedCost[bestSequence] = bestDjMod; |
| 1569 | model->setStatus(bestSequence, getStatus(gubSlackIn_)); |
| 1570 | if (getStatus(gubSlackIn_) == ClpSimplex::atUpperBound) |
| 1571 | model->solutionRegion()[bestSequence] = upper_[gubSlackIn_]; |
| 1572 | else |
| 1573 | model->solutionRegion()[bestSequence] = lower_[gubSlackIn_]; |
| 1574 | model->lowerRegion()[bestSequence] = lower_[gubSlackIn_]; |
| 1575 | model->upperRegion()[bestSequence] = upper_[gubSlackIn_]; |
| 1576 | model->costRegion()[bestSequence] = 0.0; |
| 1577 | } |
| 1578 | savedBestSequence_ = bestSequence; |
| 1579 | savedBestDj_ = reducedCost[savedBestSequence_]; |
| 1580 | } |
| 1581 | } else { |
| 1582 | double bestDjMod = 0.0; |
| 1583 | //printf("iteration %d start %d end %d - wanted %d\n",model->numberIterations(), |
| 1584 | // startG,endG,numberWanted); |
| 1585 | for (iSequence = startG; iSequence < endG; iSequence++) { |
| 1586 | if (numberWanted + minNeg < originalWanted_ && nSets > minSet) { |
| 1587 | // give up |
| 1588 | numberWanted = 0; |
| 1589 | break; |
| 1590 | } else if (iSequence == endG && bestSequence >= 0) { |
| 1591 | break; |
| 1592 | } |
| 1593 | if (backward_[iSequence] != iSet) { |
| 1594 | // get pi on gub row |
| 1595 | iSet = backward_[iSequence]; |
| 1596 | if (iSet >= 0) { |
| 1597 | nSets++; |
| 1598 | int iBasic = keyVariable_[iSet]; |
| 1599 | if (iBasic >= numberColumns) { |
| 1600 | djMod = - weight(iSet) * infeasibilityCost; |
| 1601 | } else { |
| 1602 | // get dj without |
| 1603 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
| 1604 | djMod = 0.0; |
| 1605 | |
| 1606 | for (j = startColumn[iBasic]; |
| 1607 | j < startColumn[iBasic] + length[iBasic]; j++) { |
| 1608 | int jRow = row[j]; |
| 1609 | djMod -= duals[jRow] * element[j]; |
| 1610 | } |
| 1611 | djMod += cost[iBasic]; |
| 1612 | // See if gub slack possible - dj is djMod |
| 1613 | if (getStatus(iSet) == ClpSimplex::atLowerBound) { |
| 1614 | double value = -djMod; |
| 1615 | if (value > tolerance) { |
| 1616 | numberWanted--; |
| 1617 | if (value > bestDj) { |
| 1618 | // check flagged variable and correct dj |
| 1619 | if (!flagged(iSet)) { |
| 1620 | bestDj = value; |
| 1621 | bestSequence = numberRows + numberColumns + iSet; |
| 1622 | bestDjMod = djMod; |
| 1623 | } else { |
| 1624 | // just to make sure we don't exit before got something |
| 1625 | numberWanted++; |
| 1626 | abort(); |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | } else if (getStatus(iSet) == ClpSimplex::atUpperBound) { |
| 1631 | double value = djMod; |
| 1632 | if (value > tolerance) { |
| 1633 | numberWanted--; |
| 1634 | if (value > bestDj) { |
| 1635 | // check flagged variable and correct dj |
| 1636 | if (!flagged(iSet)) { |
| 1637 | bestDj = value; |
| 1638 | bestSequence = numberRows + numberColumns + iSet; |
| 1639 | bestDjMod = djMod; |
| 1640 | } else { |
| 1641 | // just to make sure we don't exit before got something |
| 1642 | numberWanted++; |
| 1643 | abort(); |
| 1644 | } |
| 1645 | } |
| 1646 | } |
| 1647 | } |
| 1648 | } |
| 1649 | } else { |
| 1650 | // not in set |
| 1651 | djMod = 0.0; |
| 1652 | } |
| 1653 | } |
| 1654 | if (iSequence != sequenceOut) { |
| 1655 | double value; |
| 1656 | ClpSimplex::Status status = model->getStatus(iSequence); |
| 1657 | |
| 1658 | switch(status) { |
| 1659 | |
| 1660 | case ClpSimplex::basic: |
| 1661 | case ClpSimplex::isFixed: |
| 1662 | break; |
| 1663 | case ClpSimplex::isFree: |
| 1664 | case ClpSimplex::superBasic: |
| 1665 | value = cost[iSequence] - djMod; |
| 1666 | for (j = startColumn[iSequence]; |
| 1667 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1668 | int jRow = row[j]; |
| 1669 | value -= duals[jRow] * element[j]; |
| 1670 | } |
| 1671 | value = fabs(value); |
| 1672 | if (value > FREE_ACCEPT * tolerance) { |
| 1673 | numberWanted--; |
| 1674 | // we are going to bias towards free (but only if reasonable) |
| 1675 | value *= FREE_BIAS; |
| 1676 | if (value > bestDj) { |
| 1677 | // check flagged variable and correct dj |
| 1678 | if (!model->flagged(iSequence)) { |
| 1679 | bestDj = value; |
| 1680 | bestSequence = iSequence; |
| 1681 | bestDjMod = djMod; |
| 1682 | } else { |
| 1683 | // just to make sure we don't exit before got something |
| 1684 | numberWanted++; |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | break; |
| 1689 | case ClpSimplex::atUpperBound: |
| 1690 | value = cost[iSequence] - djMod; |
| 1691 | for (j = startColumn[iSequence]; |
| 1692 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1693 | int jRow = row[j]; |
| 1694 | value -= duals[jRow] * element[j]; |
| 1695 | } |
| 1696 | if (value > tolerance) { |
| 1697 | numberWanted--; |
| 1698 | if (value > bestDj) { |
| 1699 | // check flagged variable and correct dj |
| 1700 | if (!model->flagged(iSequence)) { |
| 1701 | bestDj = value; |
| 1702 | bestSequence = iSequence; |
| 1703 | bestDjMod = djMod; |
| 1704 | } else { |
| 1705 | // just to make sure we don't exit before got something |
| 1706 | numberWanted++; |
| 1707 | } |
| 1708 | } |
| 1709 | } |
| 1710 | break; |
| 1711 | case ClpSimplex::atLowerBound: |
| 1712 | value = cost[iSequence] - djMod; |
| 1713 | for (j = startColumn[iSequence]; |
| 1714 | j < startColumn[iSequence] + length[iSequence]; j++) { |
| 1715 | int jRow = row[j]; |
| 1716 | value -= duals[jRow] * element[j]; |
| 1717 | } |
| 1718 | value = -value; |
| 1719 | if (value > tolerance) { |
| 1720 | numberWanted--; |
| 1721 | if (value > bestDj) { |
| 1722 | // check flagged variable and correct dj |
| 1723 | if (!model->flagged(iSequence)) { |
| 1724 | bestDj = value; |
| 1725 | bestSequence = iSequence; |
| 1726 | bestDjMod = djMod; |
| 1727 | } else { |
| 1728 | // just to make sure we don't exit before got something |
| 1729 | numberWanted++; |
| 1730 | } |
| 1731 | } |
| 1732 | } |
| 1733 | break; |
| 1734 | } |
| 1735 | } |
| 1736 | if (!numberWanted) |
| 1737 | break; |
| 1738 | } |
| 1739 | if (bestSequence != saveSequence) { |
| 1740 | if (bestSequence < numberRows + numberColumns) { |
| 1741 | // recompute dj |
| 1742 | double value = cost[bestSequence] - bestDjMod; |
| 1743 | for (j = startColumn[bestSequence]; |
| 1744 | j < startColumn[bestSequence] + length[bestSequence]; j++) { |
| 1745 | int jRow = row[j]; |
| 1746 | value -= duals[jRow] * element[j]; |
| 1747 | } |
| 1748 | //printf("price struct %d - dj %g gubpi %g\n",bestSequence,value,bestDjMod); |
| 1749 | reducedCost[bestSequence] = value; |
| 1750 | gubSlackIn_ = -1; |
| 1751 | } else { |
| 1752 | // slack - make last column |
| 1753 | gubSlackIn_ = bestSequence - numberRows - numberColumns; |
| 1754 | bestSequence = numberColumns + 2 * numberRows; |
| 1755 | reducedCost[bestSequence] = bestDjMod; |
| 1756 | //printf("price slack %d - gubpi %g\n",gubSlackIn_,bestDjMod); |
| 1757 | model->setStatus(bestSequence, getStatus(gubSlackIn_)); |
| 1758 | if (getStatus(gubSlackIn_) == ClpSimplex::atUpperBound) |
| 1759 | model->solutionRegion()[bestSequence] = upper_[gubSlackIn_]; |
| 1760 | else |
| 1761 | model->solutionRegion()[bestSequence] = lower_[gubSlackIn_]; |
| 1762 | model->lowerRegion()[bestSequence] = lower_[gubSlackIn_]; |
| 1763 | model->upperRegion()[bestSequence] = upper_[gubSlackIn_]; |
| 1764 | model->costRegion()[bestSequence] = 0.0; |
| 1765 | } |
| 1766 | } |
| 1767 | } |
| 1768 | // See if may be finished |
| 1769 | if (startG == firstGub_ && bestSequence < 0) |
| 1770 | infeasibilityWeight_ = model_->infeasibilityCost(); |
| 1771 | else if (bestSequence >= 0) |
| 1772 | infeasibilityWeight_ = -1.0; |
| 1773 | } |
| 1774 | if (numberWanted) { |
| 1775 | // Do packed part after gub |
| 1776 | double offset = static_cast<double> (lastGub_) / |
| 1777 | static_cast<double> (numberColumns); |
| 1778 | double ratio = static_cast<double> (numberColumns) / |
| 1779 | static_cast<double> (numberColumns) - offset; |
| 1780 | double start2 = offset + ratio * startFraction; |
| 1781 | double end2 = CoinMin(1.0, offset + ratio * endFraction + 1.0e-6); |
| 1782 | ClpPackedMatrix::partialPricing(model, start2, end2, bestSequence, numberWanted); |
| 1783 | } |
| 1784 | } else { |
| 1785 | // no gub |
| 1786 | ClpPackedMatrix::partialPricing(model, startFraction, endFraction, bestSequence, numberWanted); |
| 1787 | } |
| 1788 | if (bestSequence >= 0) |
| 1789 | infeasibilityWeight_ = -1.0; // not optimal |
| 1790 | currentWanted_ = numberWanted; |
| 1791 | } |
| 1792 | /* expands an updated column to allow for extra rows which the main |
| 1793 | solver does not know about and returns number added. |
| 1794 | */ |
| 1795 | int |
| 1796 | ClpGubMatrix::extendUpdated(ClpSimplex * model, CoinIndexedVector * update, int mode) |
| 1797 | { |
| 1798 | // I think we only need to bother about sets with two in basis or incoming set |
| 1799 | int number = update->getNumElements(); |
| 1800 | double * array = update->denseVector(); |
| 1801 | int * index = update->getIndices(); |
| 1802 | int i; |
| 1803 | assert (!number || update->packedMode()); |
| 1804 | int * pivotVariable = model->pivotVariable(); |
| 1805 | int numberRows = model->numberRows(); |
| 1806 | int numberColumns = model->numberColumns(); |
| 1807 | int numberTotal = numberRows + numberColumns; |
| 1808 | int sequenceIn = model->sequenceIn(); |
| 1809 | int returnCode = 0; |
| 1810 | int iSetIn; |
| 1811 | if (sequenceIn < numberColumns) { |
| 1812 | iSetIn = backward_[sequenceIn]; |
| 1813 | gubSlackIn_ = -1; // in case set |
| 1814 | } else if (sequenceIn < numberRows + numberColumns) { |
| 1815 | iSetIn = -1; |
| 1816 | gubSlackIn_ = -1; // in case set |
| 1817 | } else { |
| 1818 | iSetIn = gubSlackIn_; |
| 1819 | } |
| 1820 | double * lower = model->lowerRegion(); |
| 1821 | double * upper = model->upperRegion(); |
| 1822 | double * cost = model->costRegion(); |
| 1823 | double * solution = model->solutionRegion(); |
| 1824 | int number2 = number; |
| 1825 | if (!mode) { |
| 1826 | double primalTolerance = model->primalTolerance(); |
| 1827 | double infeasibilityCost = model->infeasibilityCost(); |
| 1828 | // extend |
| 1829 | saveNumber_ = number; |
| 1830 | for (i = 0; i < number; i++) { |
| 1831 | int iRow = index[i]; |
| 1832 | int iPivot = pivotVariable[iRow]; |
| 1833 | if (iPivot < numberColumns) { |
| 1834 | int iSet = backward_[iPivot]; |
| 1835 | if (iSet >= 0) { |
| 1836 | // two (or more) in set |
| 1837 | int iIndex = toIndex_[iSet]; |
| 1838 | double otherValue = array[i]; |
| 1839 | double value; |
| 1840 | if (iIndex < 0) { |
| 1841 | toIndex_[iSet] = number2; |
| 1842 | int iNew = number2 - number; |
| 1843 | fromIndex_[number2-number] = iSet; |
| 1844 | iIndex = number2; |
| 1845 | index[number2] = numberRows + iNew; |
| 1846 | // do key stuff |
| 1847 | int iKey = keyVariable_[iSet]; |
| 1848 | if (iKey < numberColumns) { |
| 1849 | // Save current cost of key |
| 1850 | changeCost_[number2-number] = cost[iKey]; |
| 1851 | if (iSet != iSetIn) |
| 1852 | value = 0.0; |
| 1853 | else if (iSetIn != gubSlackIn_) |
| 1854 | value = 1.0; |
| 1855 | else |
| 1856 | value = -1.0; |
| 1857 | pivotVariable[numberRows+iNew] = iKey; |
| 1858 | // Do I need to recompute? |
| 1859 | double sol; |
| 1860 | assert (getStatus(iSet) != ClpSimplex::basic); |
| 1861 | if (getStatus(iSet) == ClpSimplex::atLowerBound) |
| 1862 | sol = lower_[iSet]; |
| 1863 | else |
| 1864 | sol = upper_[iSet]; |
| 1865 | if ((gubType_ & 8) != 0) { |
| 1866 | int iColumn = next_[iKey]; |
| 1867 | // sum all non-key variables |
| 1868 | while(iColumn >= 0) { |
| 1869 | sol -= solution[iColumn]; |
| 1870 | iColumn = next_[iColumn]; |
| 1871 | } |
| 1872 | } else { |
| 1873 | int stop = -(iKey + 1); |
| 1874 | int iColumn = next_[iKey]; |
| 1875 | // sum all non-key variables |
| 1876 | while(iColumn != stop) { |
| 1877 | if (iColumn < 0) |
| 1878 | iColumn = -iColumn - 1; |
| 1879 | sol -= solution[iColumn]; |
| 1880 | iColumn = next_[iColumn]; |
| 1881 | } |
| 1882 | } |
| 1883 | solution[iKey] = sol; |
| 1884 | if (model->algorithm() > 0) |
| 1885 | model->nonLinearCost()->setOne(iKey, sol); |
| 1886 | //assert (fabs(sol-solution[iKey])<1.0e-3); |
| 1887 | } else { |
| 1888 | // gub slack is basic |
| 1889 | // Save current cost of key |
| 1890 | changeCost_[number2-number] = -weight(iSet) * infeasibilityCost; |
| 1891 | otherValue = - otherValue; //allow for - sign on slack |
| 1892 | if (iSet != iSetIn) |
| 1893 | value = 0.0; |
| 1894 | else |
| 1895 | value = -1.0; |
| 1896 | pivotVariable[numberRows+iNew] = iNew + numberTotal; |
| 1897 | model->djRegion()[iNew+numberTotal] = 0.0; |
| 1898 | double sol = 0.0; |
| 1899 | if ((gubType_ & 8) != 0) { |
| 1900 | int iColumn = next_[iKey]; |
| 1901 | // sum all non-key variables |
| 1902 | while(iColumn >= 0) { |
| 1903 | sol += solution[iColumn]; |
| 1904 | iColumn = next_[iColumn]; |
| 1905 | } |
| 1906 | } else { |
| 1907 | int stop = -(iKey + 1); |
| 1908 | int iColumn = next_[iKey]; |
| 1909 | // sum all non-key variables |
| 1910 | while(iColumn != stop) { |
| 1911 | if (iColumn < 0) |
| 1912 | iColumn = -iColumn - 1; |
| 1913 | sol += solution[iColumn]; |
| 1914 | iColumn = next_[iColumn]; |
| 1915 | } |
| 1916 | } |
| 1917 | solution[iNew+numberTotal] = sol; |
| 1918 | // and do cost in nonLinearCost |
| 1919 | if (model->algorithm() > 0) |
| 1920 | model->nonLinearCost()->setOne(iNew + numberTotal, sol, lower_[iSet], upper_[iSet]); |
| 1921 | if (sol > upper_[iSet] + primalTolerance) { |
| 1922 | setAbove(iSet); |
| 1923 | lower[iNew+numberTotal] = upper_[iSet]; |
| 1924 | upper[iNew+numberTotal] = COIN_DBL_MAX; |
| 1925 | } else if (sol < lower_[iSet] - primalTolerance) { |
| 1926 | setBelow(iSet); |
| 1927 | lower[iNew+numberTotal] = -COIN_DBL_MAX; |
| 1928 | upper[iNew+numberTotal] = lower_[iSet]; |
| 1929 | } else { |
| 1930 | setFeasible(iSet); |
| 1931 | lower[iNew+numberTotal] = lower_[iSet]; |
| 1932 | upper[iNew+numberTotal] = upper_[iSet]; |
| 1933 | } |
| 1934 | cost[iNew+numberTotal] = weight(iSet) * infeasibilityCost; |
| 1935 | } |
| 1936 | number2++; |
| 1937 | } else { |
| 1938 | value = array[iIndex]; |
| 1939 | int iKey = keyVariable_[iSet]; |
| 1940 | if (iKey >= numberColumns) |
| 1941 | otherValue = - otherValue; //allow for - sign on slack |
| 1942 | } |
| 1943 | value -= otherValue; |
| 1944 | array[iIndex] = value; |
| 1945 | } |
| 1946 | } |
| 1947 | } |
| 1948 | if (iSetIn >= 0 && toIndex_[iSetIn] < 0) { |
| 1949 | // Do incoming |
| 1950 | update->setPacked(); // just in case no elements |
| 1951 | toIndex_[iSetIn] = number2; |
| 1952 | int iNew = number2 - number; |
| 1953 | fromIndex_[number2-number] = iSetIn; |
| 1954 | // Save current cost of key |
| 1955 | double currentCost; |
| 1956 | int key = keyVariable_[iSetIn]; |
| 1957 | if (key < numberColumns) |
| 1958 | currentCost = cost[key]; |
| 1959 | else |
| 1960 | currentCost = -weight(iSetIn) * infeasibilityCost; |
| 1961 | changeCost_[number2-number] = currentCost; |
| 1962 | index[number2] = numberRows + iNew; |
| 1963 | // do key stuff |
| 1964 | int iKey = keyVariable_[iSetIn]; |
| 1965 | if (iKey < numberColumns) { |
| 1966 | if (gubSlackIn_ < 0) |
| 1967 | array[number2] = 1.0; |
| 1968 | else |
| 1969 | array[number2] = -1.0; |
| 1970 | pivotVariable[numberRows+iNew] = iKey; |
| 1971 | // Do I need to recompute? |
| 1972 | double sol; |
| 1973 | assert (getStatus(iSetIn) != ClpSimplex::basic); |
| 1974 | if (getStatus(iSetIn) == ClpSimplex::atLowerBound) |
| 1975 | sol = lower_[iSetIn]; |
| 1976 | else |
| 1977 | sol = upper_[iSetIn]; |
| 1978 | if ((gubType_ & 8) != 0) { |
| 1979 | int iColumn = next_[iKey]; |
| 1980 | // sum all non-key variables |
| 1981 | while(iColumn >= 0) { |
| 1982 | sol -= solution[iColumn]; |
| 1983 | iColumn = next_[iColumn]; |
| 1984 | } |
| 1985 | } else { |
| 1986 | // bounds exist - sum over all except key |
| 1987 | int stop = -(iKey + 1); |
| 1988 | int iColumn = next_[iKey]; |
| 1989 | // sum all non-key variables |
| 1990 | while(iColumn != stop) { |
| 1991 | if (iColumn < 0) |
| 1992 | iColumn = -iColumn - 1; |
| 1993 | sol -= solution[iColumn]; |
| 1994 | iColumn = next_[iColumn]; |
| 1995 | } |
| 1996 | } |
| 1997 | solution[iKey] = sol; |
| 1998 | if (model->algorithm() > 0) |
| 1999 | model->nonLinearCost()->setOne(iKey, sol); |
| 2000 | //assert (fabs(sol-solution[iKey])<1.0e-3); |
| 2001 | } else { |
| 2002 | // gub slack is basic |
| 2003 | array[number2] = -1.0; |
| 2004 | pivotVariable[numberRows+iNew] = iNew + numberTotal; |
| 2005 | model->djRegion()[iNew+numberTotal] = 0.0; |
| 2006 | double sol = 0.0; |
| 2007 | if ((gubType_ & 8) != 0) { |
| 2008 | int iColumn = next_[iKey]; |
| 2009 | // sum all non-key variables |
| 2010 | while(iColumn >= 0) { |
| 2011 | sol += solution[iColumn]; |
| 2012 | iColumn = next_[iColumn]; |
| 2013 | } |
| 2014 | } else { |
| 2015 | // bounds exist - sum over all except key |
| 2016 | int stop = -(iKey + 1); |
| 2017 | int iColumn = next_[iKey]; |
| 2018 | // sum all non-key variables |
| 2019 | while(iColumn != stop) { |
| 2020 | if (iColumn < 0) |
| 2021 | iColumn = -iColumn - 1; |
| 2022 | sol += solution[iColumn]; |
| 2023 | iColumn = next_[iColumn]; |
| 2024 | } |
| 2025 | } |
| 2026 | solution[iNew+numberTotal] = sol; |
| 2027 | // and do cost in nonLinearCost |
| 2028 | if (model->algorithm() > 0) |
| 2029 | model->nonLinearCost()->setOne(iNew + numberTotal, sol, lower_[iSetIn], upper_[iSetIn]); |
| 2030 | if (sol > upper_[iSetIn] + primalTolerance) { |
| 2031 | setAbove(iSetIn); |
| 2032 | lower[iNew+numberTotal] = upper_[iSetIn]; |
| 2033 | upper[iNew+numberTotal] = COIN_DBL_MAX; |
| 2034 | } else if (sol < lower_[iSetIn] - primalTolerance) { |
| 2035 | setBelow(iSetIn); |
| 2036 | lower[iNew+numberTotal] = -COIN_DBL_MAX; |
| 2037 | upper[iNew+numberTotal] = lower_[iSetIn]; |
| 2038 | } else { |
| 2039 | setFeasible(iSetIn); |
| 2040 | lower[iNew+numberTotal] = lower_[iSetIn]; |
| 2041 | upper[iNew+numberTotal] = upper_[iSetIn]; |
| 2042 | } |
| 2043 | cost[iNew+numberTotal] = weight(iSetIn) * infeasibilityCost; |
| 2044 | } |
| 2045 | number2++; |
| 2046 | } |
| 2047 | // mark end |
| 2048 | fromIndex_[number2-number] = -1; |
| 2049 | returnCode = number2 - number; |
| 2050 | // make sure lower_ upper_ adjusted |
| 2051 | synchronize(model, 9); |
| 2052 | } else { |
| 2053 | // take off? |
| 2054 | if (number > saveNumber_) { |
| 2055 | // clear |
| 2056 | double theta = model->theta(); |
| 2057 | double * solution = model->solutionRegion(); |
| 2058 | for (i = saveNumber_; i < number; i++) { |
| 2059 | int iRow = index[i]; |
| 2060 | int iColumn = pivotVariable[iRow]; |
| 2061 | #ifdef CLP_DEBUG_PRINT |
| 2062 | printf("Column %d (set %d) lower %g, upper %g - alpha %g - old value %g, new %g (theta %g)\n" , |
| 2063 | iColumn, fromIndex_[i-saveNumber_], lower[iColumn], upper[iColumn], array[i], |
| 2064 | solution[iColumn], solution[iColumn] - model->theta()*array[i], model->theta()); |
| 2065 | #endif |
| 2066 | double value = array[i]; |
| 2067 | array[i] = 0.0; |
| 2068 | int iSet = fromIndex_[i-saveNumber_]; |
| 2069 | toIndex_[iSet] = -1; |
| 2070 | if (iSet == iSetIn && iColumn < numberColumns) { |
| 2071 | // update as may need value |
| 2072 | solution[iColumn] -= theta * value; |
| 2073 | } |
| 2074 | } |
| 2075 | } |
| 2076 | #ifdef CLP_DEBUG |
| 2077 | for (i = 0; i < numberSets_; i++) |
| 2078 | assert(toIndex_[i] == -1); |
| 2079 | #endif |
| 2080 | number2 = saveNumber_; |
| 2081 | } |
| 2082 | update->setNumElements(number2); |
| 2083 | return returnCode; |
| 2084 | } |
| 2085 | /* |
| 2086 | utility primal function for dealing with dynamic constraints |
| 2087 | mode=n see ClpGubMatrix.hpp for definition |
| 2088 | Remember to update here when settled down |
| 2089 | */ |
| 2090 | void |
| 2091 | ClpGubMatrix::primalExpanded(ClpSimplex * model, int mode) |
| 2092 | { |
| 2093 | int numberColumns = model->numberColumns(); |
| 2094 | switch (mode) { |
| 2095 | // If key variable then slot in gub rhs so will get correct contribution |
| 2096 | case 0: { |
| 2097 | int i; |
| 2098 | double * solution = model->solutionRegion(); |
| 2099 | ClpSimplex::Status iStatus; |
| 2100 | for (i = 0; i < numberSets_; i++) { |
| 2101 | int iColumn = keyVariable_[i]; |
| 2102 | if (iColumn < numberColumns) { |
| 2103 | // key is structural - where is slack |
| 2104 | iStatus = getStatus(i); |
| 2105 | assert (iStatus != ClpSimplex::basic); |
| 2106 | if (iStatus == ClpSimplex::atLowerBound) |
| 2107 | solution[iColumn] = lower_[i]; |
| 2108 | else |
| 2109 | solution[iColumn] = upper_[i]; |
| 2110 | } |
| 2111 | } |
| 2112 | } |
| 2113 | break; |
| 2114 | // Compute values of key variables |
| 2115 | case 1: { |
| 2116 | int i; |
| 2117 | double * solution = model->solutionRegion(); |
| 2118 | ClpSimplex::Status iStatus; |
| 2119 | //const int * columnLength = matrix_->getVectorLengths(); |
| 2120 | //const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 2121 | //const int * row = matrix_->getIndices(); |
| 2122 | //const double * elementByColumn = matrix_->getElements(); |
| 2123 | //int * pivotVariable = model->pivotVariable(); |
| 2124 | sumPrimalInfeasibilities_ = 0.0; |
| 2125 | numberPrimalInfeasibilities_ = 0; |
| 2126 | double primalTolerance = model->primalTolerance(); |
| 2127 | double relaxedTolerance = primalTolerance; |
| 2128 | // we can't really trust infeasibilities if there is primal error |
| 2129 | double error = CoinMin(1.0e-2, model->largestPrimalError()); |
| 2130 | // allow tolerance at least slightly bigger than standard |
| 2131 | relaxedTolerance = relaxedTolerance + error; |
| 2132 | // but we will be using difference |
| 2133 | relaxedTolerance -= primalTolerance; |
| 2134 | sumOfRelaxedPrimalInfeasibilities_ = 0.0; |
| 2135 | for (i = 0; i < numberSets_; i++) { // Could just be over basics (esp if no bounds) |
| 2136 | int kColumn = keyVariable_[i]; |
| 2137 | double value = 0.0; |
| 2138 | if ((gubType_ & 8) != 0) { |
| 2139 | int iColumn = next_[kColumn]; |
| 2140 | // sum all non-key variables |
| 2141 | while(iColumn >= 0) { |
| 2142 | value += solution[iColumn]; |
| 2143 | iColumn = next_[iColumn]; |
| 2144 | } |
| 2145 | } else { |
| 2146 | // bounds exist - sum over all except key |
| 2147 | int stop = -(kColumn + 1); |
| 2148 | int iColumn = next_[kColumn]; |
| 2149 | // sum all non-key variables |
| 2150 | while(iColumn != stop) { |
| 2151 | if (iColumn < 0) |
| 2152 | iColumn = -iColumn - 1; |
| 2153 | value += solution[iColumn]; |
| 2154 | iColumn = next_[iColumn]; |
| 2155 | } |
| 2156 | } |
| 2157 | if (kColumn < numberColumns) { |
| 2158 | // make sure key is basic - so will be skipped in values pass |
| 2159 | model->setStatus(kColumn, ClpSimplex::basic); |
| 2160 | // feasibility will be done later |
| 2161 | assert (getStatus(i) != ClpSimplex::basic); |
| 2162 | if (getStatus(i) == ClpSimplex::atUpperBound) |
| 2163 | solution[kColumn] = upper_[i] - value; |
| 2164 | else |
| 2165 | solution[kColumn] = lower_[i] - value; |
| 2166 | //printf("Value of key structural %d for set %d is %g\n",kColumn,i,solution[kColumn]); |
| 2167 | } else { |
| 2168 | // slack is key |
| 2169 | iStatus = getStatus(i); |
| 2170 | assert (iStatus == ClpSimplex::basic); |
| 2171 | double infeasibility = 0.0; |
| 2172 | if (value > upper_[i] + primalTolerance) { |
| 2173 | infeasibility = value - upper_[i] - primalTolerance; |
| 2174 | setAbove(i); |
| 2175 | } else if (value < lower_[i] - primalTolerance) { |
| 2176 | infeasibility = lower_[i] - value - primalTolerance ; |
| 2177 | setBelow(i); |
| 2178 | } else { |
| 2179 | setFeasible(i); |
| 2180 | } |
| 2181 | //printf("Value of key slack for set %d is %g\n",i,value); |
| 2182 | if (infeasibility > 0.0) { |
| 2183 | sumPrimalInfeasibilities_ += infeasibility; |
| 2184 | if (infeasibility > relaxedTolerance) |
| 2185 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility; |
| 2186 | numberPrimalInfeasibilities_ ++; |
| 2187 | } |
| 2188 | } |
| 2189 | } |
| 2190 | } |
| 2191 | break; |
| 2192 | // Report on infeasibilities of key variables |
| 2193 | case 2: { |
| 2194 | model->setSumPrimalInfeasibilities(model->sumPrimalInfeasibilities() + |
| 2195 | sumPrimalInfeasibilities_); |
| 2196 | model->setNumberPrimalInfeasibilities(model->numberPrimalInfeasibilities() + |
| 2197 | numberPrimalInfeasibilities_); |
| 2198 | model->setSumOfRelaxedPrimalInfeasibilities(model->sumOfRelaxedPrimalInfeasibilities() + |
| 2199 | sumOfRelaxedPrimalInfeasibilities_); |
| 2200 | } |
| 2201 | break; |
| 2202 | } |
| 2203 | } |
| 2204 | /* |
| 2205 | utility dual function for dealing with dynamic constraints |
| 2206 | mode=n see ClpGubMatrix.hpp for definition |
| 2207 | Remember to update here when settled down |
| 2208 | */ |
| 2209 | void |
| 2210 | ClpGubMatrix::dualExpanded(ClpSimplex * model, |
| 2211 | CoinIndexedVector * array, |
| 2212 | double * /*other*/, int mode) |
| 2213 | { |
| 2214 | switch (mode) { |
| 2215 | // modify costs before transposeUpdate |
| 2216 | case 0: { |
| 2217 | int i; |
| 2218 | double * cost = model->costRegion(); |
| 2219 | ClpSimplex::Status iStatus; |
| 2220 | // not dual values yet |
| 2221 | //assert (!other); |
| 2222 | //double * work = array->denseVector(); |
| 2223 | double infeasibilityCost = model->infeasibilityCost(); |
| 2224 | int * pivotVariable = model->pivotVariable(); |
| 2225 | int numberRows = model->numberRows(); |
| 2226 | int numberColumns = model->numberColumns(); |
| 2227 | for (i = 0; i < numberRows; i++) { |
| 2228 | int iPivot = pivotVariable[i]; |
| 2229 | if (iPivot < numberColumns) { |
| 2230 | int iSet = backward_[iPivot]; |
| 2231 | if (iSet >= 0) { |
| 2232 | int kColumn = keyVariable_[iSet]; |
| 2233 | double costValue; |
| 2234 | if (kColumn < numberColumns) { |
| 2235 | // structural has cost |
| 2236 | costValue = cost[kColumn]; |
| 2237 | } else { |
| 2238 | // slack is key |
| 2239 | iStatus = getStatus(iSet); |
| 2240 | assert (iStatus == ClpSimplex::basic); |
| 2241 | // negative as -1.0 for slack |
| 2242 | costValue = -weight(iSet) * infeasibilityCost; |
| 2243 | } |
| 2244 | array->add(i, -costValue); // was work[i]-costValue |
| 2245 | } |
| 2246 | } |
| 2247 | } |
| 2248 | } |
| 2249 | break; |
| 2250 | // create duals for key variables (without check on dual infeasible) |
| 2251 | case 1: { |
| 2252 | // If key slack then dual 0.0 (if feasible) |
| 2253 | // dj for key is zero so that defines dual on set |
| 2254 | int i; |
| 2255 | double * dj = model->djRegion(); |
| 2256 | int numberColumns = model->numberColumns(); |
| 2257 | double infeasibilityCost = model->infeasibilityCost(); |
| 2258 | for (i = 0; i < numberSets_; i++) { |
| 2259 | int kColumn = keyVariable_[i]; |
| 2260 | if (kColumn < numberColumns) { |
| 2261 | // dj without set |
| 2262 | double value = dj[kColumn]; |
| 2263 | // Now subtract out from all |
| 2264 | dj[kColumn] = 0.0; |
| 2265 | int iColumn = next_[kColumn]; |
| 2266 | // modify all non-key variables |
| 2267 | while(iColumn >= 0) { |
| 2268 | dj[iColumn] -= value; |
| 2269 | iColumn = next_[iColumn]; |
| 2270 | } |
| 2271 | } else { |
| 2272 | // slack key - may not be feasible |
| 2273 | assert (getStatus(i) == ClpSimplex::basic); |
| 2274 | // negative as -1.0 for slack |
| 2275 | double value = -weight(i) * infeasibilityCost; |
| 2276 | if (value) { |
| 2277 | int iColumn = next_[kColumn]; |
| 2278 | // modify all non-key variables basic |
| 2279 | while(iColumn >= 0) { |
| 2280 | dj[iColumn] -= value; |
| 2281 | iColumn = next_[iColumn]; |
| 2282 | } |
| 2283 | } |
| 2284 | } |
| 2285 | } |
| 2286 | } |
| 2287 | break; |
| 2288 | // as 1 but check slacks and compute djs |
| 2289 | case 2: { |
| 2290 | // If key slack then dual 0.0 |
| 2291 | // If not then slack could be dual infeasible |
| 2292 | // dj for key is zero so that defines dual on set |
| 2293 | int i; |
| 2294 | // make sure fromIndex will not confuse pricing |
| 2295 | fromIndex_[0] = -1; |
| 2296 | possiblePivotKey_ = -1; |
| 2297 | // Create array |
| 2298 | int numberColumns = model->numberColumns(); |
| 2299 | int * pivotVariable = model->pivotVariable(); |
| 2300 | int numberRows = model->numberRows(); |
| 2301 | for (i = 0; i < numberRows; i++) { |
| 2302 | int iPivot = pivotVariable[i]; |
| 2303 | if (iPivot < numberColumns) |
| 2304 | backToPivotRow_[iPivot] = i; |
| 2305 | } |
| 2306 | if (noCheck_ >= 0) { |
| 2307 | if (infeasibilityWeight_ != model->infeasibilityCost()) { |
| 2308 | // don't bother checking |
| 2309 | sumDualInfeasibilities_ = 100.0; |
| 2310 | numberDualInfeasibilities_ = 1; |
| 2311 | sumOfRelaxedDualInfeasibilities_ = 100.0; |
| 2312 | return; |
| 2313 | } |
| 2314 | } |
| 2315 | double * dj = model->djRegion(); |
| 2316 | double * dual = model->dualRowSolution(); |
| 2317 | double * cost = model->costRegion(); |
| 2318 | ClpSimplex::Status iStatus; |
| 2319 | const int * columnLength = matrix_->getVectorLengths(); |
| 2320 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
| 2321 | const int * row = matrix_->getIndices(); |
| 2322 | const double * elementByColumn = matrix_->getElements(); |
| 2323 | double infeasibilityCost = model->infeasibilityCost(); |
| 2324 | sumDualInfeasibilities_ = 0.0; |
| 2325 | numberDualInfeasibilities_ = 0; |
| 2326 | double dualTolerance = model->dualTolerance(); |
| 2327 | double relaxedTolerance = dualTolerance; |
| 2328 | // we can't really trust infeasibilities if there is dual error |
| 2329 | double error = CoinMin(1.0e-2, model->largestDualError()); |
| 2330 | // allow tolerance at least slightly bigger than standard |
| 2331 | relaxedTolerance = relaxedTolerance + error; |
| 2332 | // but we will be using difference |
| 2333 | relaxedTolerance -= dualTolerance; |
| 2334 | sumOfRelaxedDualInfeasibilities_ = 0.0; |
| 2335 | for (i = 0; i < numberSets_; i++) { |
| 2336 | int kColumn = keyVariable_[i]; |
| 2337 | if (kColumn < numberColumns) { |
| 2338 | // dj without set |
| 2339 | double value = cost[kColumn]; |
| 2340 | for (CoinBigIndex j = columnStart[kColumn]; |
| 2341 | j < columnStart[kColumn] + columnLength[kColumn]; j++) { |
| 2342 | int iRow = row[j]; |
| 2343 | value -= dual[iRow] * elementByColumn[j]; |
| 2344 | } |
| 2345 | // Now subtract out from all |
| 2346 | dj[kColumn] -= value; |
| 2347 | int stop = -(kColumn + 1); |
| 2348 | kColumn = next_[kColumn]; |
| 2349 | while (kColumn != stop) { |
| 2350 | if (kColumn < 0) |
| 2351 | kColumn = -kColumn - 1; |
| 2352 | double djValue = dj[kColumn] - value; |
| 2353 | dj[kColumn] = djValue; |
| 2354 | double infeasibility = 0.0; |
| 2355 | iStatus = model->getStatus(kColumn); |
| 2356 | if (iStatus == ClpSimplex::atLowerBound) { |
| 2357 | if (djValue < -dualTolerance) |
| 2358 | infeasibility = -djValue - dualTolerance; |
| 2359 | } else if (iStatus == ClpSimplex::atUpperBound) { |
| 2360 | // at upper bound |
| 2361 | if (djValue > dualTolerance) |
| 2362 | infeasibility = djValue - dualTolerance; |
| 2363 | } |
| 2364 | if (infeasibility > 0.0) { |
| 2365 | sumDualInfeasibilities_ += infeasibility; |
| 2366 | if (infeasibility > relaxedTolerance) |
| 2367 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
| 2368 | numberDualInfeasibilities_ ++; |
| 2369 | } |
| 2370 | kColumn = next_[kColumn]; |
| 2371 | } |
| 2372 | // check slack |
| 2373 | iStatus = getStatus(i); |
| 2374 | assert (iStatus != ClpSimplex::basic); |
| 2375 | double infeasibility = 0.0; |
| 2376 | // dj of slack is -(-1.0)value |
| 2377 | if (iStatus == ClpSimplex::atLowerBound) { |
| 2378 | if (value < -dualTolerance) |
| 2379 | infeasibility = -value - dualTolerance; |
| 2380 | } else if (iStatus == ClpSimplex::atUpperBound) { |
| 2381 | // at upper bound |
| 2382 | if (value > dualTolerance) |
| 2383 | infeasibility = value - dualTolerance; |
| 2384 | } |
| 2385 | if (infeasibility > 0.0) { |
| 2386 | sumDualInfeasibilities_ += infeasibility; |
| 2387 | if (infeasibility > relaxedTolerance) |
| 2388 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
| 2389 | numberDualInfeasibilities_ ++; |
| 2390 | } |
| 2391 | } else { |
| 2392 | // slack key - may not be feasible |
| 2393 | assert (getStatus(i) == ClpSimplex::basic); |
| 2394 | // negative as -1.0 for slack |
| 2395 | double value = -weight(i) * infeasibilityCost; |
| 2396 | if (value) { |
| 2397 | // Now subtract out from all |
| 2398 | int kColumn = i + numberColumns; |
| 2399 | int stop = -(kColumn + 1); |
| 2400 | kColumn = next_[kColumn]; |
| 2401 | while (kColumn != stop) { |
| 2402 | if (kColumn < 0) |
| 2403 | kColumn = -kColumn - 1; |
| 2404 | double djValue = dj[kColumn] - value; |
| 2405 | dj[kColumn] = djValue; |
| 2406 | double infeasibility = 0.0; |
| 2407 | iStatus = model->getStatus(kColumn); |
| 2408 | if (iStatus == ClpSimplex::atLowerBound) { |
| 2409 | if (djValue < -dualTolerance) |
| 2410 | infeasibility = -djValue - dualTolerance; |
| 2411 | } else if (iStatus == ClpSimplex::atUpperBound) { |
| 2412 | // at upper bound |
| 2413 | if (djValue > dualTolerance) |
| 2414 | infeasibility = djValue - dualTolerance; |
| 2415 | } |
| 2416 | if (infeasibility > 0.0) { |
| 2417 | sumDualInfeasibilities_ += infeasibility; |
| 2418 | if (infeasibility > relaxedTolerance) |
| 2419 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
| 2420 | numberDualInfeasibilities_ ++; |
| 2421 | } |
| 2422 | kColumn = next_[kColumn]; |
| 2423 | } |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | // and get statistics for column generation |
| 2428 | synchronize(model, 4); |
| 2429 | infeasibilityWeight_ = -1.0; |
| 2430 | } |
| 2431 | break; |
| 2432 | // Report on infeasibilities of key variables |
| 2433 | case 3: { |
| 2434 | model->setSumDualInfeasibilities(model->sumDualInfeasibilities() + |
| 2435 | sumDualInfeasibilities_); |
| 2436 | model->setNumberDualInfeasibilities(model->numberDualInfeasibilities() + |
| 2437 | numberDualInfeasibilities_); |
| 2438 | model->setSumOfRelaxedDualInfeasibilities(model->sumOfRelaxedDualInfeasibilities() + |
| 2439 | sumOfRelaxedDualInfeasibilities_); |
| 2440 | } |
| 2441 | break; |
| 2442 | // modify costs before transposeUpdate for partial pricing |
| 2443 | case 4: { |
| 2444 | // First compute new costs etc for interesting gubs |
| 2445 | int iLook = 0; |
| 2446 | int iSet = fromIndex_[0]; |
| 2447 | double primalTolerance = model->primalTolerance(); |
| 2448 | const double * cost = model->costRegion(); |
| 2449 | double * solution = model->solutionRegion(); |
| 2450 | double infeasibilityCost = model->infeasibilityCost(); |
| 2451 | int numberColumns = model->numberColumns(); |
| 2452 | int numberChanged = 0; |
| 2453 | int * pivotVariable = model->pivotVariable(); |
| 2454 | while (iSet >= 0) { |
| 2455 | int key = keyVariable_[iSet]; |
| 2456 | double value = 0.0; |
| 2457 | // sum over all except key |
| 2458 | if ((gubType_ & 8) != 0) { |
| 2459 | int iColumn = next_[key]; |
| 2460 | // sum all non-key variables |
| 2461 | while(iColumn >= 0) { |
| 2462 | value += solution[iColumn]; |
| 2463 | iColumn = next_[iColumn]; |
| 2464 | } |
| 2465 | } else { |
| 2466 | // bounds exist - sum over all except key |
| 2467 | int stop = -(key + 1); |
| 2468 | int iColumn = next_[key]; |
| 2469 | // sum all non-key variables |
| 2470 | while(iColumn != stop) { |
| 2471 | if (iColumn < 0) |
| 2472 | iColumn = -iColumn - 1; |
| 2473 | value += solution[iColumn]; |
| 2474 | iColumn = next_[iColumn]; |
| 2475 | } |
| 2476 | } |
| 2477 | double costChange; |
| 2478 | double oldCost = changeCost_[iLook]; |
| 2479 | if (key < numberColumns) { |
| 2480 | assert (getStatus(iSet) != ClpSimplex::basic); |
| 2481 | double sol; |
| 2482 | if (getStatus(iSet) == ClpSimplex::atUpperBound) |
| 2483 | sol = upper_[iSet] - value; |
| 2484 | else |
| 2485 | sol = lower_[iSet] - value; |
| 2486 | solution[key] = sol; |
| 2487 | // fix up cost |
| 2488 | model->nonLinearCost()->setOne(key, sol); |
| 2489 | #ifdef CLP_DEBUG_PRINT |
| 2490 | printf("yy Value of key structural %d for set %d is %g - cost %g old cost %g\n" , key, iSet, sol, |
| 2491 | cost[key], oldCost); |
| 2492 | #endif |
| 2493 | costChange = cost[key] - oldCost; |
| 2494 | } else { |
| 2495 | // slack is key |
| 2496 | if (value > upper_[iSet] + primalTolerance) { |
| 2497 | setAbove(iSet); |
| 2498 | } else if (value < lower_[iSet] - primalTolerance) { |
| 2499 | setBelow(iSet); |
| 2500 | } else { |
| 2501 | setFeasible(iSet); |
| 2502 | } |
| 2503 | // negative as -1.0 for slack |
| 2504 | costChange = -weight(iSet) * infeasibilityCost - oldCost; |
| 2505 | #ifdef CLP_DEBUG_PRINT |
| 2506 | printf("yy Value of key slack for set %d is %g - cost %g old cost %g\n" , iSet, value, |
| 2507 | weight(iSet)*infeasibilityCost, oldCost); |
| 2508 | #endif |
| 2509 | } |
| 2510 | if (costChange) { |
| 2511 | fromIndex_[numberChanged] = iSet; |
| 2512 | toIndex_[iSet] = numberChanged; |
| 2513 | changeCost_[numberChanged++] = costChange; |
| 2514 | } |
| 2515 | iSet = fromIndex_[++iLook]; |
| 2516 | } |
| 2517 | if (numberChanged || possiblePivotKey_ >= 0) { |
| 2518 | // first do those in list already |
| 2519 | int number = array->getNumElements(); |
| 2520 | array->setPacked(); |
| 2521 | int i; |
| 2522 | double * work = array->denseVector(); |
| 2523 | int * which = array->getIndices(); |
| 2524 | for (i = 0; i < number; i++) { |
| 2525 | int iRow = which[i]; |
| 2526 | int iPivot = pivotVariable[iRow]; |
| 2527 | if (iPivot < numberColumns) { |
| 2528 | int iSet = backward_[iPivot]; |
| 2529 | if (iSet >= 0 && toIndex_[iSet] >= 0) { |
| 2530 | double newValue = work[i] + changeCost_[toIndex_[iSet]]; |
| 2531 | if (!newValue) |
| 2532 | newValue = 1.0e-100; |
| 2533 | work[i] = newValue; |
| 2534 | // mark as done |
| 2535 | backward_[iPivot] = -1; |
| 2536 | } |
| 2537 | } |
| 2538 | if (possiblePivotKey_ == iRow) { |
| 2539 | double newValue = work[i] - model->dualIn(); |
| 2540 | if (!newValue) |
| 2541 | newValue = 1.0e-100; |
| 2542 | work[i] = newValue; |
| 2543 | possiblePivotKey_ = -1; |
| 2544 | } |
| 2545 | } |
| 2546 | // now do rest and clean up |
| 2547 | for (i = 0; i < numberChanged; i++) { |
| 2548 | int iSet = fromIndex_[i]; |
| 2549 | int key = keyVariable_[iSet]; |
| 2550 | int iColumn = next_[key]; |
| 2551 | double change = changeCost_[i]; |
| 2552 | while (iColumn >= 0) { |
| 2553 | if (backward_[iColumn] >= 0) { |
| 2554 | int iRow = backToPivotRow_[iColumn]; |
| 2555 | assert (iRow >= 0); |
| 2556 | work[number] = change; |
| 2557 | if (possiblePivotKey_ == iRow) { |
| 2558 | double newValue = work[number] - model->dualIn(); |
| 2559 | if (!newValue) |
| 2560 | newValue = 1.0e-100; |
| 2561 | work[number] = newValue; |
| 2562 | possiblePivotKey_ = -1; |
| 2563 | } |
| 2564 | which[number++] = iRow; |
| 2565 | } else { |
| 2566 | // reset |
| 2567 | backward_[iColumn] = iSet; |
| 2568 | } |
| 2569 | iColumn = next_[iColumn]; |
| 2570 | } |
| 2571 | toIndex_[iSet] = -1; |
| 2572 | } |
| 2573 | if (possiblePivotKey_ >= 0) { |
| 2574 | work[number] = -model->dualIn(); |
| 2575 | which[number++] = possiblePivotKey_; |
| 2576 | possiblePivotKey_ = -1; |
| 2577 | } |
| 2578 | fromIndex_[0] = -1; |
| 2579 | array->setNumElements(number); |
| 2580 | } |
| 2581 | } |
| 2582 | break; |
| 2583 | } |
| 2584 | } |
| 2585 | // This is local to Gub to allow synchronization when status is good |
| 2586 | int |
| 2587 | ClpGubMatrix::synchronize(ClpSimplex *, int) |
| 2588 | { |
| 2589 | return 0; |
| 2590 | } |
| 2591 | /* |
| 2592 | general utility function for dealing with dynamic constraints |
| 2593 | mode=n see ClpGubMatrix.hpp for definition |
| 2594 | Remember to update here when settled down |
| 2595 | */ |
| 2596 | int |
| 2597 | ClpGubMatrix::generalExpanded(ClpSimplex * model, int mode, int &number) |
| 2598 | { |
| 2599 | int returnCode = 0; |
| 2600 | int numberColumns = model->numberColumns(); |
| 2601 | switch (mode) { |
| 2602 | // Fill in pivotVariable but not for key variables |
| 2603 | case 0: { |
| 2604 | if (!next_ ) { |
| 2605 | // do ordering |
| 2606 | assert (!rhsOffset_); |
| 2607 | // create and do gub crash |
| 2608 | useEffectiveRhs(model, false); |
| 2609 | } |
| 2610 | int i; |
| 2611 | int numberBasic = number; |
| 2612 | // Use different array so can build from true pivotVariable_ |
| 2613 | //int * pivotVariable = model->pivotVariable(); |
| 2614 | int * pivotVariable = model->rowArray(0)->getIndices(); |
| 2615 | for (i = 0; i < numberColumns; i++) { |
| 2616 | if (model->getColumnStatus(i) == ClpSimplex::basic) { |
| 2617 | int iSet = backward_[i]; |
| 2618 | if (iSet < 0 || i != keyVariable_[iSet]) |
| 2619 | pivotVariable[numberBasic++] = i; |
| 2620 | } |
| 2621 | } |
| 2622 | number = numberBasic; |
| 2623 | if (model->numberIterations()) |
| 2624 | assert (number == model->numberRows()); |
| 2625 | } |
| 2626 | break; |
| 2627 | // Make all key variables basic |
| 2628 | case 1: { |
| 2629 | int i; |
| 2630 | for (i = 0; i < numberSets_; i++) { |
| 2631 | int iColumn = keyVariable_[i]; |
| 2632 | if (iColumn < numberColumns) |
| 2633 | model->setColumnStatus(iColumn, ClpSimplex::basic); |
| 2634 | } |
| 2635 | } |
| 2636 | break; |
| 2637 | // Do initial extra rows + maximum basic |
| 2638 | case 2: { |
| 2639 | returnCode = getNumRows() + 1; |
| 2640 | number = model->numberRows() + numberSets_; |
| 2641 | } |
| 2642 | break; |
| 2643 | // Before normal replaceColumn |
| 2644 | case 3: { |
| 2645 | int sequenceIn = model->sequenceIn(); |
| 2646 | int sequenceOut = model->sequenceOut(); |
| 2647 | int numberColumns = model->numberColumns(); |
| 2648 | int numberRows = model->numberRows(); |
| 2649 | int pivotRow = model->pivotRow(); |
| 2650 | if (gubSlackIn_ >= 0) |
| 2651 | assert (sequenceIn > numberRows + numberColumns); |
| 2652 | if (sequenceIn == sequenceOut) |
| 2653 | return -1; |
| 2654 | int iSetIn = -1; |
| 2655 | int iSetOut = -1; |
| 2656 | if (sequenceOut < numberColumns) { |
| 2657 | iSetOut = backward_[sequenceOut]; |
| 2658 | } else if (sequenceOut >= numberRows + numberColumns) { |
| 2659 | assert (pivotRow >= numberRows); |
| 2660 | int = pivotRow - numberRows; |
| 2661 | assert (iExtra >= 0); |
| 2662 | if (iSetOut < 0) |
| 2663 | iSetOut = fromIndex_[iExtra]; |
| 2664 | else |
| 2665 | assert(iSetOut == fromIndex_[iExtra]); |
| 2666 | } |
| 2667 | if (sequenceIn < numberColumns) { |
| 2668 | iSetIn = backward_[sequenceIn]; |
| 2669 | } else if (gubSlackIn_ >= 0) { |
| 2670 | iSetIn = gubSlackIn_; |
| 2671 | } |
| 2672 | possiblePivotKey_ = -1; |
| 2673 | number = 0; // say do ordinary |
| 2674 | int * pivotVariable = model->pivotVariable(); |
| 2675 | if (pivotRow >= numberRows) { |
| 2676 | int = pivotRow - numberRows; |
| 2677 | //const int * length = matrix_->getVectorLengths(); |
| 2678 | |
| 2679 | assert (sequenceOut >= numberRows + numberColumns || |
| 2680 | sequenceOut == keyVariable_[iSetOut]); |
| 2681 | int incomingColumn = sequenceIn; // to be used in updates |
| 2682 | if (iSetIn != iSetOut) { |
| 2683 | // We need to find a possible pivot for incoming |
| 2684 | // look through rowArray_[1] |
| 2685 | int n = model->rowArray(1)->getNumElements(); |
| 2686 | int * which = model->rowArray(1)->getIndices(); |
| 2687 | double * array = model->rowArray(1)->denseVector(); |
| 2688 | double bestAlpha = 1.0e-5; |
| 2689 | //int shortest=numberRows+1; |
| 2690 | for (int i = 0; i < n; i++) { |
| 2691 | int iRow = which[i]; |
| 2692 | int iPivot = pivotVariable[iRow]; |
| 2693 | if (iPivot < numberColumns && backward_[iPivot] == iSetOut) { |
| 2694 | if (fabs(array[i]) > fabs(bestAlpha)) { |
| 2695 | bestAlpha = array[i]; |
| 2696 | possiblePivotKey_ = iRow; |
| 2697 | } |
| 2698 | } |
| 2699 | } |
| 2700 | assert (possiblePivotKey_ >= 0); // could set returnCode=4 |
| 2701 | number = 1; |
| 2702 | if (sequenceIn >= numberRows + numberColumns) { |
| 2703 | number = 3; |
| 2704 | // need swap as gub slack in and must become key |
| 2705 | // is this best way |
| 2706 | int key = keyVariable_[iSetIn]; |
| 2707 | assert (key < numberColumns); |
| 2708 | // check other basic |
| 2709 | int iColumn = next_[key]; |
| 2710 | // set new key to be used by unpack |
| 2711 | keyVariable_[iSetIn] = iSetIn + numberColumns; |
| 2712 | // change cost in changeCost |
| 2713 | { |
| 2714 | int iLook = 0; |
| 2715 | int iSet = fromIndex_[0]; |
| 2716 | while (iSet >= 0) { |
| 2717 | if (iSet == iSetIn) { |
| 2718 | changeCost_[iLook] = 0.0; |
| 2719 | break; |
| 2720 | } |
| 2721 | iSet = fromIndex_[++iLook]; |
| 2722 | } |
| 2723 | } |
| 2724 | while (iColumn >= 0) { |
| 2725 | if (iColumn != sequenceOut) { |
| 2726 | // need partial ftran and skip accuracy check in replaceColumn |
| 2727 | #ifdef CLP_DEBUG_PRINT |
| 2728 | printf("TTTTTry 5\n" ); |
| 2729 | #endif |
| 2730 | int iRow = backToPivotRow_[iColumn]; |
| 2731 | assert (iRow >= 0); |
| 2732 | unpack(model, model->rowArray(3), iColumn); |
| 2733 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
| 2734 | double alpha = model->rowArray(3)->denseVector()[iRow]; |
| 2735 | //if (!alpha) |
| 2736 | //printf("zero alpha a\n"); |
| 2737 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2738 | model->rowArray(2), |
| 2739 | model->rowArray(3), |
| 2740 | iRow, alpha); |
| 2741 | returnCode = CoinMax(updateStatus, returnCode); |
| 2742 | model->rowArray(3)->clear(); |
| 2743 | if (returnCode) |
| 2744 | break; |
| 2745 | } |
| 2746 | iColumn = next_[iColumn]; |
| 2747 | } |
| 2748 | if (!returnCode) { |
| 2749 | // now factorization looks as if key is out |
| 2750 | // pivot back in |
| 2751 | #ifdef CLP_DEBUG_PRINT |
| 2752 | printf("TTTTTry 6\n" ); |
| 2753 | #endif |
| 2754 | unpack(model, model->rowArray(3), key); |
| 2755 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
| 2756 | pivotRow = possiblePivotKey_; |
| 2757 | double alpha = model->rowArray(3)->denseVector()[pivotRow]; |
| 2758 | //if (!alpha) |
| 2759 | //printf("zero alpha b\n"); |
| 2760 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2761 | model->rowArray(2), |
| 2762 | model->rowArray(3), |
| 2763 | pivotRow, alpha); |
| 2764 | returnCode = CoinMax(updateStatus, returnCode); |
| 2765 | model->rowArray(3)->clear(); |
| 2766 | } |
| 2767 | // restore key |
| 2768 | keyVariable_[iSetIn] = key; |
| 2769 | // now alternate column can replace key on out |
| 2770 | incomingColumn = pivotVariable[possiblePivotKey_]; |
| 2771 | } else { |
| 2772 | #ifdef CLP_DEBUG_PRINT |
| 2773 | printf("TTTTTTry 4 %d\n" , possiblePivotKey_); |
| 2774 | #endif |
| 2775 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2776 | model->rowArray(2), |
| 2777 | model->rowArray(1), |
| 2778 | possiblePivotKey_, |
| 2779 | bestAlpha); |
| 2780 | returnCode = CoinMax(updateStatus, returnCode); |
| 2781 | incomingColumn = pivotVariable[possiblePivotKey_]; |
| 2782 | } |
| 2783 | |
| 2784 | //returnCode=4; // need swap |
| 2785 | } else { |
| 2786 | // key swap |
| 2787 | number = -1; |
| 2788 | } |
| 2789 | int key = keyVariable_[iSetOut]; |
| 2790 | if (key < numberColumns) |
| 2791 | assert(key == sequenceOut); |
| 2792 | // check if any other basic |
| 2793 | int iColumn = next_[key]; |
| 2794 | if (returnCode) |
| 2795 | iColumn = -1; // skip if error on previous |
| 2796 | // set new key to be used by unpack |
| 2797 | if (incomingColumn < numberColumns) |
| 2798 | keyVariable_[iSetOut] = incomingColumn; |
| 2799 | else |
| 2800 | keyVariable_[iSetOut] = iSetIn + numberColumns; |
| 2801 | double * cost = model->costRegion(); |
| 2802 | if (possiblePivotKey_ < 0) { |
| 2803 | double dj = model->djRegion()[sequenceIn] - cost[sequenceIn]; |
| 2804 | changeCost_[iExtra] = -dj; |
| 2805 | #ifdef CLP_DEBUG_PRINT |
| 2806 | printf("modifying changeCost %d by %g - cost %g\n" , iExtra, dj, cost[sequenceIn]); |
| 2807 | #endif |
| 2808 | } |
| 2809 | while (iColumn >= 0) { |
| 2810 | if (iColumn != incomingColumn) { |
| 2811 | number = -2; |
| 2812 | // need partial ftran and skip accuracy check in replaceColumn |
| 2813 | #ifdef CLP_DEBUG_PRINT |
| 2814 | printf("TTTTTTry 1\n" ); |
| 2815 | #endif |
| 2816 | int iRow = backToPivotRow_[iColumn]; |
| 2817 | assert (iRow >= 0 && iRow < numberRows); |
| 2818 | unpack(model, model->rowArray(3), iColumn); |
| 2819 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
| 2820 | double * array = model->rowArray(3)->denseVector(); |
| 2821 | double alpha = array[iRow]; |
| 2822 | //if (!alpha) |
| 2823 | //printf("zero alpha d\n"); |
| 2824 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2825 | model->rowArray(2), |
| 2826 | model->rowArray(3), |
| 2827 | iRow, alpha); |
| 2828 | returnCode = CoinMax(updateStatus, returnCode); |
| 2829 | model->rowArray(3)->clear(); |
| 2830 | if (returnCode) |
| 2831 | break; |
| 2832 | } |
| 2833 | iColumn = next_[iColumn]; |
| 2834 | } |
| 2835 | // restore key |
| 2836 | keyVariable_[iSetOut] = key; |
| 2837 | } else if (sequenceIn >= numberRows + numberColumns) { |
| 2838 | number = 2; |
| 2839 | //returnCode=4; |
| 2840 | // need swap as gub slack in and must become key |
| 2841 | // is this best way |
| 2842 | int key = keyVariable_[iSetIn]; |
| 2843 | assert (key < numberColumns); |
| 2844 | // check other basic |
| 2845 | int iColumn = next_[key]; |
| 2846 | // set new key to be used by unpack |
| 2847 | keyVariable_[iSetIn] = iSetIn + numberColumns; |
| 2848 | // change cost in changeCost |
| 2849 | { |
| 2850 | int iLook = 0; |
| 2851 | int iSet = fromIndex_[0]; |
| 2852 | while (iSet >= 0) { |
| 2853 | if (iSet == iSetIn) { |
| 2854 | changeCost_[iLook] = 0.0; |
| 2855 | break; |
| 2856 | } |
| 2857 | iSet = fromIndex_[++iLook]; |
| 2858 | } |
| 2859 | } |
| 2860 | while (iColumn >= 0) { |
| 2861 | if (iColumn != sequenceOut) { |
| 2862 | // need partial ftran and skip accuracy check in replaceColumn |
| 2863 | #ifdef CLP_DEBUG_PRINT |
| 2864 | printf("TTTTTry 2\n" ); |
| 2865 | #endif |
| 2866 | int iRow = backToPivotRow_[iColumn]; |
| 2867 | assert (iRow >= 0); |
| 2868 | unpack(model, model->rowArray(3), iColumn); |
| 2869 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
| 2870 | double alpha = model->rowArray(3)->denseVector()[iRow]; |
| 2871 | //if (!alpha) |
| 2872 | //printf("zero alpha e\n"); |
| 2873 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2874 | model->rowArray(2), |
| 2875 | model->rowArray(3), |
| 2876 | iRow, alpha); |
| 2877 | returnCode = CoinMax(updateStatus, returnCode); |
| 2878 | model->rowArray(3)->clear(); |
| 2879 | if (returnCode) |
| 2880 | break; |
| 2881 | } |
| 2882 | iColumn = next_[iColumn]; |
| 2883 | } |
| 2884 | if (!returnCode) { |
| 2885 | // now factorization looks as if key is out |
| 2886 | // pivot back in |
| 2887 | #ifdef CLP_DEBUG_PRINT |
| 2888 | printf("TTTTTry 3\n" ); |
| 2889 | #endif |
| 2890 | unpack(model, model->rowArray(3), key); |
| 2891 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
| 2892 | double alpha = model->rowArray(3)->denseVector()[pivotRow]; |
| 2893 | //if (!alpha) |
| 2894 | //printf("zero alpha f\n"); |
| 2895 | int updateStatus = model->factorization()->replaceColumn(model, |
| 2896 | model->rowArray(2), |
| 2897 | model->rowArray(3), |
| 2898 | pivotRow, alpha); |
| 2899 | returnCode = CoinMax(updateStatus, returnCode); |
| 2900 | model->rowArray(3)->clear(); |
| 2901 | } |
| 2902 | // restore key |
| 2903 | keyVariable_[iSetIn] = key; |
| 2904 | } else { |
| 2905 | // normal - but might as well do here |
| 2906 | returnCode = model->factorization()->replaceColumn(model, |
| 2907 | model->rowArray(2), |
| 2908 | model->rowArray(1), |
| 2909 | model->pivotRow(), |
| 2910 | model->alpha()); |
| 2911 | } |
| 2912 | } |
| 2913 | #ifdef CLP_DEBUG_PRINT |
| 2914 | printf("Update type after %d - status %d - pivot row %d\n" , |
| 2915 | number, returnCode, model->pivotRow()); |
| 2916 | #endif |
| 2917 | // see if column generation says time to re-factorize |
| 2918 | returnCode = CoinMax(returnCode, synchronize(model, 5)); |
| 2919 | number = -1; // say no need for normal replaceColumn |
| 2920 | break; |
| 2921 | // To see if can dual or primal |
| 2922 | case 4: { |
| 2923 | returnCode = 1; |
| 2924 | } |
| 2925 | break; |
| 2926 | // save status |
| 2927 | case 5: { |
| 2928 | synchronize(model, 0); |
| 2929 | CoinMemcpyN(status_, numberSets_, saveStatus_); |
| 2930 | CoinMemcpyN(keyVariable_, numberSets_, savedKeyVariable_); |
| 2931 | } |
| 2932 | break; |
| 2933 | // restore status |
| 2934 | case 6: { |
| 2935 | CoinMemcpyN(saveStatus_, numberSets_, status_); |
| 2936 | CoinMemcpyN(savedKeyVariable_, numberSets_, keyVariable_); |
| 2937 | // restore firstAvailable_ |
| 2938 | synchronize(model, 7); |
| 2939 | // redo next_ |
| 2940 | int i; |
| 2941 | int * last = new int[numberSets_]; |
| 2942 | for (i = 0; i < numberSets_; i++) { |
| 2943 | int iKey = keyVariable_[i]; |
| 2944 | assert(iKey >= numberColumns || backward_[iKey] == i); |
| 2945 | last[i] = iKey; |
| 2946 | // make sure basic |
| 2947 | //if (iKey<numberColumns) |
| 2948 | //model->setStatus(iKey,ClpSimplex::basic); |
| 2949 | } |
| 2950 | for (i = 0; i < numberColumns; i++) { |
| 2951 | int iSet = backward_[i]; |
| 2952 | if (iSet >= 0) { |
| 2953 | next_[last[iSet]] = i; |
| 2954 | last[iSet] = i; |
| 2955 | } |
| 2956 | } |
| 2957 | for (i = 0; i < numberSets_; i++) { |
| 2958 | next_[last[i]] = -(keyVariable_[i] + 1); |
| 2959 | redoSet(model, keyVariable_[i], keyVariable_[i], i); |
| 2960 | } |
| 2961 | delete [] last; |
| 2962 | // redo pivotVariable |
| 2963 | int * pivotVariable = model->pivotVariable(); |
| 2964 | int iRow; |
| 2965 | int numberBasic = 0; |
| 2966 | int numberRows = model->numberRows(); |
| 2967 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 2968 | if (model->getRowStatus(iRow) == ClpSimplex::basic) { |
| 2969 | numberBasic++; |
| 2970 | pivotVariable[iRow] = iRow + numberColumns; |
| 2971 | } else { |
| 2972 | pivotVariable[iRow] = -1; |
| 2973 | } |
| 2974 | } |
| 2975 | i = 0; |
| 2976 | int iColumn; |
| 2977 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 2978 | if (model->getStatus(iColumn) == ClpSimplex::basic) { |
| 2979 | int iSet = backward_[iColumn]; |
| 2980 | if (iSet < 0 || keyVariable_[iSet] != iColumn) { |
| 2981 | while (pivotVariable[i] >= 0) { |
| 2982 | i++; |
| 2983 | assert (i < numberRows); |
| 2984 | } |
| 2985 | pivotVariable[i] = iColumn; |
| 2986 | backToPivotRow_[iColumn] = i; |
| 2987 | numberBasic++; |
| 2988 | } |
| 2989 | } |
| 2990 | } |
| 2991 | assert (numberBasic == numberRows); |
| 2992 | rhsOffset(model, true); |
| 2993 | } |
| 2994 | break; |
| 2995 | // flag a variable |
| 2996 | case 7: { |
| 2997 | assert (number == model->sequenceIn()); |
| 2998 | synchronize(model, 1); |
| 2999 | synchronize(model, 8); |
| 3000 | } |
| 3001 | break; |
| 3002 | // unflag all variables |
| 3003 | case 8: { |
| 3004 | returnCode = synchronize(model, 2); |
| 3005 | } |
| 3006 | break; |
| 3007 | // redo costs in primal |
| 3008 | case 9: { |
| 3009 | returnCode = synchronize(model, 3); |
| 3010 | } |
| 3011 | break; |
| 3012 | // return 1 if there may be changing bounds on variable (column generation) |
| 3013 | case 10: { |
| 3014 | returnCode = synchronize(model, 6); |
| 3015 | } |
| 3016 | break; |
| 3017 | // make sure set is clean |
| 3018 | case 11: { |
| 3019 | assert (number == model->sequenceIn()); |
| 3020 | returnCode = synchronize(model, 8); |
| 3021 | } |
| 3022 | break; |
| 3023 | default: |
| 3024 | break; |
| 3025 | } |
| 3026 | return returnCode; |
| 3027 | } |
| 3028 | // Sets up an effective RHS and does gub crash if needed |
| 3029 | void |
| 3030 | ClpGubMatrix::useEffectiveRhs(ClpSimplex * model, bool cheapest) |
| 3031 | { |
| 3032 | // Do basis - cheapest or slack if feasible (unless cheapest set) |
| 3033 | int longestSet = 0; |
| 3034 | int iSet; |
| 3035 | for (iSet = 0; iSet < numberSets_; iSet++) |
| 3036 | longestSet = CoinMax(longestSet, end_[iSet] - start_[iSet]); |
| 3037 | |
| 3038 | double * upper = new double[longestSet+1]; |
| 3039 | double * cost = new double[longestSet+1]; |
| 3040 | double * lower = new double[longestSet+1]; |
| 3041 | double * solution = new double[longestSet+1]; |
| 3042 | assert (!next_); |
| 3043 | int numberColumns = getNumCols(); |
| 3044 | const int * columnLength = matrix_->getVectorLengths(); |
| 3045 | const double * columnLower = model->lowerRegion(); |
| 3046 | const double * columnUpper = model->upperRegion(); |
| 3047 | double * columnSolution = model->solutionRegion(); |
| 3048 | const double * objective = model->costRegion(); |
| 3049 | int numberRows = getNumRows(); |
| 3050 | toIndex_ = new int[numberSets_]; |
| 3051 | for (iSet = 0; iSet < numberSets_; iSet++) |
| 3052 | toIndex_[iSet] = -1; |
| 3053 | fromIndex_ = new int [getNumRows()+1]; |
| 3054 | double tolerance = model->primalTolerance(); |
| 3055 | bool noNormalBounds = true; |
| 3056 | gubType_ &= ~8; |
| 3057 | bool gotBasis = false; |
| 3058 | for (iSet = 0; iSet < numberSets_; iSet++) { |
| 3059 | if (keyVariable_[iSet] < numberColumns) |
| 3060 | gotBasis = true; |
| 3061 | CoinBigIndex j; |
| 3062 | CoinBigIndex iStart = start_[iSet]; |
| 3063 | CoinBigIndex iEnd = end_[iSet]; |
| 3064 | for (j = iStart; j < iEnd; j++) { |
| 3065 | if (columnLower[j] && columnLower[j] > -1.0e20) |
| 3066 | noNormalBounds = false; |
| 3067 | if (columnUpper[j] && columnUpper[j] < 1.0e20) |
| 3068 | noNormalBounds = false; |
| 3069 | } |
| 3070 | } |
| 3071 | if (noNormalBounds) |
| 3072 | gubType_ |= 8; |
| 3073 | if (!gotBasis) { |
| 3074 | for (iSet = 0; iSet < numberSets_; iSet++) { |
| 3075 | CoinBigIndex j; |
| 3076 | int numberBasic = 0; |
| 3077 | int iBasic = -1; |
| 3078 | CoinBigIndex iStart = start_[iSet]; |
| 3079 | CoinBigIndex iEnd = end_[iSet]; |
| 3080 | // find one with smallest length |
| 3081 | int smallest = numberRows + 1; |
| 3082 | double value = 0.0; |
| 3083 | for (j = iStart; j < iEnd; j++) { |
| 3084 | if (model->getStatus(j) == ClpSimplex::basic) { |
| 3085 | if (columnLength[j] < smallest) { |
| 3086 | smallest = columnLength[j]; |
| 3087 | iBasic = j; |
| 3088 | } |
| 3089 | numberBasic++; |
| 3090 | } |
| 3091 | value += columnSolution[j]; |
| 3092 | } |
| 3093 | bool done = false; |
| 3094 | if (numberBasic > 1 || (numberBasic == 1 && getStatus(iSet) == ClpSimplex::basic)) { |
| 3095 | if (getStatus(iSet) == ClpSimplex::basic) |
| 3096 | iBasic = iSet + numberColumns; // slack key - use |
| 3097 | done = true; |
| 3098 | } else if (numberBasic == 1) { |
| 3099 | // see if can be key |
| 3100 | double thisSolution = columnSolution[iBasic]; |
| 3101 | if (thisSolution > columnUpper[iBasic]) { |
| 3102 | value -= thisSolution - columnUpper[iBasic]; |
| 3103 | thisSolution = columnUpper[iBasic]; |
| 3104 | columnSolution[iBasic] = thisSolution; |
| 3105 | } |
| 3106 | if (thisSolution < columnLower[iBasic]) { |
| 3107 | value -= thisSolution - columnLower[iBasic]; |
| 3108 | thisSolution = columnLower[iBasic]; |
| 3109 | columnSolution[iBasic] = thisSolution; |
| 3110 | } |
| 3111 | // try setting slack to a bound |
| 3112 | assert (upper_[iSet] < 1.0e20 || lower_[iSet] > -1.0e20); |
| 3113 | double cost1 = COIN_DBL_MAX; |
| 3114 | int whichBound = -1; |
| 3115 | if (upper_[iSet] < 1.0e20) { |
| 3116 | // try slack at ub |
| 3117 | double newBasic = thisSolution + upper_[iSet] - value; |
| 3118 | if (newBasic >= columnLower[iBasic] - tolerance && |
| 3119 | newBasic <= columnUpper[iBasic] + tolerance) { |
| 3120 | // can go |
| 3121 | whichBound = 1; |
| 3122 | cost1 = newBasic * objective[iBasic]; |
| 3123 | // But if exact then may be good solution |
| 3124 | if (fabs(upper_[iSet] - value) < tolerance) |
| 3125 | cost1 = -COIN_DBL_MAX; |
| 3126 | } |
| 3127 | } |
| 3128 | if (lower_[iSet] > -1.0e20) { |
| 3129 | // try slack at lb |
| 3130 | double newBasic = thisSolution + lower_[iSet] - value; |
| 3131 | if (newBasic >= columnLower[iBasic] - tolerance && |
| 3132 | newBasic <= columnUpper[iBasic] + tolerance) { |
| 3133 | // can go but is it cheaper |
| 3134 | double cost2 = newBasic * objective[iBasic]; |
| 3135 | // But if exact then may be good solution |
| 3136 | if (fabs(lower_[iSet] - value) < tolerance) |
| 3137 | cost2 = -COIN_DBL_MAX; |
| 3138 | if (cost2 < cost1) |
| 3139 | whichBound = 0; |
| 3140 | } |
| 3141 | } |
| 3142 | if (whichBound != -1) { |
| 3143 | // key |
| 3144 | done = true; |
| 3145 | if (whichBound) { |
| 3146 | // slack to upper |
| 3147 | columnSolution[iBasic] = thisSolution + upper_[iSet] - value; |
| 3148 | setStatus(iSet, ClpSimplex::atUpperBound); |
| 3149 | } else { |
| 3150 | // slack to lower |
| 3151 | columnSolution[iBasic] = thisSolution + lower_[iSet] - value; |
| 3152 | setStatus(iSet, ClpSimplex::atLowerBound); |
| 3153 | } |
| 3154 | } |
| 3155 | } |
| 3156 | if (!done) { |
| 3157 | if (!cheapest) { |
| 3158 | // see if slack can be key |
| 3159 | if (value >= lower_[iSet] - tolerance && value <= upper_[iSet] + tolerance) { |
| 3160 | done = true; |
| 3161 | setStatus(iSet, ClpSimplex::basic); |
| 3162 | iBasic = iSet + numberColumns; |
| 3163 | } |
| 3164 | } |
| 3165 | if (!done) { |
| 3166 | // set non basic if there was one |
| 3167 | if (iBasic >= 0) |
| 3168 | model->setStatus(iBasic, ClpSimplex::atLowerBound); |
| 3169 | // find cheapest |
| 3170 | int numberInSet = iEnd - iStart; |
| 3171 | CoinMemcpyN(columnLower + iStart, numberInSet, lower); |
| 3172 | CoinMemcpyN(columnUpper + iStart, numberInSet, upper); |
| 3173 | CoinMemcpyN(columnSolution + iStart, numberInSet, solution); |
| 3174 | // and slack |
| 3175 | iBasic = numberInSet; |
| 3176 | solution[iBasic] = -value; |
| 3177 | lower[iBasic] = -upper_[iSet]; |
| 3178 | upper[iBasic] = -lower_[iSet]; |
| 3179 | int kphase; |
| 3180 | if (value >= lower_[iSet] - tolerance && value <= upper_[iSet] + tolerance) { |
| 3181 | // feasible |
| 3182 | kphase = 1; |
| 3183 | cost[iBasic] = 0.0; |
| 3184 | CoinMemcpyN(objective + iStart, numberInSet, cost); |
| 3185 | } else { |
| 3186 | // infeasible |
| 3187 | kphase = 0; |
| 3188 | // remember bounds are flipped so opposite to natural |
| 3189 | if (value < lower_[iSet] - tolerance) |
| 3190 | cost[iBasic] = 1.0; |
| 3191 | else |
| 3192 | cost[iBasic] = -1.0; |
| 3193 | CoinZeroN(cost, numberInSet); |
| 3194 | } |
| 3195 | double dualTolerance = model->dualTolerance(); |
| 3196 | for (int iphase = kphase; iphase < 2; iphase++) { |
| 3197 | if (iphase) { |
| 3198 | cost[numberInSet] = 0.0; |
| 3199 | CoinMemcpyN(objective + iStart, numberInSet, cost); |
| 3200 | } |
| 3201 | // now do one row lp |
| 3202 | bool improve = true; |
| 3203 | while (improve) { |
| 3204 | improve = false; |
| 3205 | double dual = cost[iBasic]; |
| 3206 | int chosen = -1; |
| 3207 | double best = dualTolerance; |
| 3208 | int way = 0; |
| 3209 | for (int i = 0; i <= numberInSet; i++) { |
| 3210 | double dj = cost[i] - dual; |
| 3211 | double improvement = 0.0; |
| 3212 | if (iphase || i < numberInSet) |
| 3213 | assert (solution[i] >= lower[i] && solution[i] <= upper[i]); |
| 3214 | if (dj > dualTolerance) |
| 3215 | improvement = dj * (solution[i] - lower[i]); |
| 3216 | else if (dj < -dualTolerance) |
| 3217 | improvement = dj * (solution[i] - upper[i]); |
| 3218 | if (improvement > best) { |
| 3219 | best = improvement; |
| 3220 | chosen = i; |
| 3221 | if (dj < 0.0) { |
| 3222 | way = 1; |
| 3223 | } else { |
| 3224 | way = -1; |
| 3225 | } |
| 3226 | } |
| 3227 | } |
| 3228 | if (chosen >= 0) { |
| 3229 | improve = true; |
| 3230 | // now see how far |
| 3231 | if (way > 0) { |
| 3232 | // incoming increasing so basic decreasing |
| 3233 | // if phase 0 then go to nearest bound |
| 3234 | double distance = upper[chosen] - solution[chosen]; |
| 3235 | double basicDistance; |
| 3236 | if (!iphase) { |
| 3237 | assert (iBasic == numberInSet); |
| 3238 | assert (solution[iBasic] > upper[iBasic]); |
| 3239 | basicDistance = solution[iBasic] - upper[iBasic]; |
| 3240 | } else { |
| 3241 | basicDistance = solution[iBasic] - lower[iBasic]; |
| 3242 | } |
| 3243 | // need extra coding for unbounded |
| 3244 | assert (CoinMin(distance, basicDistance) < 1.0e20); |
| 3245 | if (distance > basicDistance) { |
| 3246 | // incoming becomes basic |
| 3247 | solution[chosen] += basicDistance; |
| 3248 | if (!iphase) |
| 3249 | solution[iBasic] = upper[iBasic]; |
| 3250 | else |
| 3251 | solution[iBasic] = lower[iBasic]; |
| 3252 | iBasic = chosen; |
| 3253 | } else { |
| 3254 | // flip |
| 3255 | solution[chosen] = upper[chosen]; |
| 3256 | solution[iBasic] -= distance; |
| 3257 | } |
| 3258 | } else { |
| 3259 | // incoming decreasing so basic increasing |
| 3260 | // if phase 0 then go to nearest bound |
| 3261 | double distance = solution[chosen] - lower[chosen]; |
| 3262 | double basicDistance; |
| 3263 | if (!iphase) { |
| 3264 | assert (iBasic == numberInSet); |
| 3265 | assert (solution[iBasic] < lower[iBasic]); |
| 3266 | basicDistance = lower[iBasic] - solution[iBasic]; |
| 3267 | } else { |
| 3268 | basicDistance = upper[iBasic] - solution[iBasic]; |
| 3269 | } |
| 3270 | // need extra coding for unbounded - for now just exit |
| 3271 | if (CoinMin(distance, basicDistance) > 1.0e20) { |
| 3272 | printf("unbounded on set %d\n" , iSet); |
| 3273 | iphase = 1; |
| 3274 | iBasic = numberInSet; |
| 3275 | break; |
| 3276 | } |
| 3277 | if (distance > basicDistance) { |
| 3278 | // incoming becomes basic |
| 3279 | solution[chosen] -= basicDistance; |
| 3280 | if (!iphase) |
| 3281 | solution[iBasic] = lower[iBasic]; |
| 3282 | else |
| 3283 | solution[iBasic] = upper[iBasic]; |
| 3284 | iBasic = chosen; |
| 3285 | } else { |
| 3286 | // flip |
| 3287 | solution[chosen] = lower[chosen]; |
| 3288 | solution[iBasic] += distance; |
| 3289 | } |
| 3290 | } |
| 3291 | if (!iphase) { |
| 3292 | if(iBasic < numberInSet) |
| 3293 | break; // feasible |
| 3294 | else if (solution[iBasic] >= lower[iBasic] && |
| 3295 | solution[iBasic] <= upper[iBasic]) |
| 3296 | break; // feasible (on flip) |
| 3297 | } |
| 3298 | } |
| 3299 | } |
| 3300 | } |
| 3301 | // convert iBasic back and do bounds |
| 3302 | if (iBasic == numberInSet) { |
| 3303 | // slack basic |
| 3304 | setStatus(iSet, ClpSimplex::basic); |
| 3305 | iBasic = iSet + numberColumns; |
| 3306 | } else { |
| 3307 | iBasic += start_[iSet]; |
| 3308 | model->setStatus(iBasic, ClpSimplex::basic); |
| 3309 | // remember bounds flipped |
| 3310 | if (upper[numberInSet] == lower[numberInSet]) |
| 3311 | setStatus(iSet, ClpSimplex::isFixed); |
| 3312 | else if (solution[numberInSet] == upper[numberInSet]) |
| 3313 | setStatus(iSet, ClpSimplex::atLowerBound); |
| 3314 | else if (solution[numberInSet] == lower[numberInSet]) |
| 3315 | setStatus(iSet, ClpSimplex::atUpperBound); |
| 3316 | else |
| 3317 | abort(); |
| 3318 | } |
| 3319 | for (j = iStart; j < iEnd; j++) { |
| 3320 | if (model->getStatus(j) != ClpSimplex::basic) { |
| 3321 | int inSet = j - iStart; |
| 3322 | columnSolution[j] = solution[inSet]; |
| 3323 | if (upper[inSet] == lower[inSet]) |
| 3324 | model->setStatus(j, ClpSimplex::isFixed); |
| 3325 | else if (solution[inSet] == upper[inSet]) |
| 3326 | model->setStatus(j, ClpSimplex::atUpperBound); |
| 3327 | else if (solution[inSet] == lower[inSet]) |
| 3328 | model->setStatus(j, ClpSimplex::atLowerBound); |
| 3329 | } |
| 3330 | } |
| 3331 | } |
| 3332 | } |
| 3333 | keyVariable_[iSet] = iBasic; |
| 3334 | } |
| 3335 | } |
| 3336 | delete [] lower; |
| 3337 | delete [] solution; |
| 3338 | delete [] upper; |
| 3339 | delete [] cost; |
| 3340 | // make sure matrix is in good shape |
| 3341 | matrix_->orderMatrix(); |
| 3342 | // create effective rhs |
| 3343 | delete [] rhsOffset_; |
| 3344 | rhsOffset_ = new double[numberRows]; |
| 3345 | delete [] next_; |
| 3346 | next_ = new int[numberColumns+numberSets_+2*longestSet]; |
| 3347 | char * mark = new char[numberColumns]; |
| 3348 | memset(mark, 0, numberColumns); |
| 3349 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) |
| 3350 | next_[iColumn] = COIN_INT_MAX; |
| 3351 | int i; |
| 3352 | int * keys = new int[numberSets_]; |
| 3353 | for (i = 0; i < numberSets_; i++) |
| 3354 | keys[i] = COIN_INT_MAX; |
| 3355 | // set up chains |
| 3356 | for (i = 0; i < numberColumns; i++) { |
| 3357 | if (model->getStatus(i) == ClpSimplex::basic) |
| 3358 | mark[i] = 1; |
| 3359 | int iSet = backward_[i]; |
| 3360 | if (iSet >= 0) { |
| 3361 | int iNext = keys[iSet]; |
| 3362 | next_[i] = iNext; |
| 3363 | keys[iSet] = i; |
| 3364 | } |
| 3365 | } |
| 3366 | for (i = 0; i < numberSets_; i++) { |
| 3367 | int j; |
| 3368 | if (getStatus(i) != ClpSimplex::basic) { |
| 3369 | // make sure fixed if it is |
| 3370 | if (upper_[i] == lower_[i]) |
| 3371 | setStatus(i, ClpSimplex::isFixed); |
| 3372 | // slack not key - choose one with smallest length |
| 3373 | int smallest = numberRows + 1; |
| 3374 | int key = -1; |
| 3375 | j = keys[i]; |
| 3376 | if (j != COIN_INT_MAX) { |
| 3377 | while (1) { |
| 3378 | if (mark[j] && columnLength[j] < smallest && !gotBasis) { |
| 3379 | key = j; |
| 3380 | smallest = columnLength[j]; |
| 3381 | } |
| 3382 | if (next_[j] != COIN_INT_MAX) { |
| 3383 | j = next_[j]; |
| 3384 | } else { |
| 3385 | // correct end |
| 3386 | next_[j] = -(keys[i] + 1); |
| 3387 | break; |
| 3388 | } |
| 3389 | } |
| 3390 | } else { |
| 3391 | next_[i+numberColumns] = -(numberColumns + i + 1); |
| 3392 | } |
| 3393 | if (gotBasis) |
| 3394 | key = keyVariable_[i]; |
| 3395 | if (key >= 0) { |
| 3396 | keyVariable_[i] = key; |
| 3397 | } else { |
| 3398 | // nothing basic - make slack key |
| 3399 | //((ClpGubMatrix *)this)->setStatus(i,ClpSimplex::basic); |
| 3400 | // fudge to avoid const problem |
| 3401 | status_[i] = 1; |
| 3402 | } |
| 3403 | } else { |
| 3404 | // slack key |
| 3405 | keyVariable_[i] = numberColumns + i; |
| 3406 | int j; |
| 3407 | double sol = 0.0; |
| 3408 | j = keys[i]; |
| 3409 | if (j != COIN_INT_MAX) { |
| 3410 | while (1) { |
| 3411 | sol += columnSolution[j]; |
| 3412 | if (next_[j] != COIN_INT_MAX) { |
| 3413 | j = next_[j]; |
| 3414 | } else { |
| 3415 | // correct end |
| 3416 | next_[j] = -(keys[i] + 1); |
| 3417 | break; |
| 3418 | } |
| 3419 | } |
| 3420 | } else { |
| 3421 | next_[i+numberColumns] = -(numberColumns + i + 1); |
| 3422 | } |
| 3423 | if (sol > upper_[i] + tolerance) { |
| 3424 | setAbove(i); |
| 3425 | } else if (sol < lower_[i] - tolerance) { |
| 3426 | setBelow(i); |
| 3427 | } else { |
| 3428 | setFeasible(i); |
| 3429 | } |
| 3430 | } |
| 3431 | // Create next_ |
| 3432 | int key = keyVariable_[i]; |
| 3433 | redoSet(model, key, keys[i], i); |
| 3434 | } |
| 3435 | delete [] keys; |
| 3436 | delete [] mark; |
| 3437 | rhsOffset(model, true); |
| 3438 | } |
| 3439 | // redoes next_ for a set. |
| 3440 | void |
| 3441 | ClpGubMatrix::redoSet(ClpSimplex * model, int newKey, int oldKey, int iSet) |
| 3442 | { |
| 3443 | int numberColumns = model->numberColumns(); |
| 3444 | int * save = next_ + numberColumns + numberSets_; |
| 3445 | int number = 0; |
| 3446 | int stop = -(oldKey + 1); |
| 3447 | int j = next_[oldKey]; |
| 3448 | while (j != stop) { |
| 3449 | if (j < 0) |
| 3450 | j = -j - 1; |
| 3451 | if (j != newKey) |
| 3452 | save[number++] = j; |
| 3453 | j = next_[j]; |
| 3454 | } |
| 3455 | // and add oldkey |
| 3456 | if (newKey != oldKey) |
| 3457 | save[number++] = oldKey; |
| 3458 | // now do basic |
| 3459 | int lastMarker = -(newKey + 1); |
| 3460 | keyVariable_[iSet] = newKey; |
| 3461 | next_[newKey] = lastMarker; |
| 3462 | int last = newKey; |
| 3463 | for ( j = 0; j < number; j++) { |
| 3464 | int iColumn = save[j]; |
| 3465 | if (iColumn < numberColumns) { |
| 3466 | if (model->getStatus(iColumn) == ClpSimplex::basic) { |
| 3467 | next_[last] = iColumn; |
| 3468 | next_[iColumn] = lastMarker; |
| 3469 | last = iColumn; |
| 3470 | } |
| 3471 | } |
| 3472 | } |
| 3473 | // now add in non-basic |
| 3474 | for ( j = 0; j < number; j++) { |
| 3475 | int iColumn = save[j]; |
| 3476 | if (iColumn < numberColumns) { |
| 3477 | if (model->getStatus(iColumn) != ClpSimplex::basic) { |
| 3478 | next_[last] = -(iColumn + 1); |
| 3479 | next_[iColumn] = lastMarker; |
| 3480 | last = iColumn; |
| 3481 | } |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | } |
| 3486 | /* Returns effective RHS if it is being used. This is used for long problems |
| 3487 | or big gub or anywhere where going through full columns is |
| 3488 | expensive. This may re-compute */ |
| 3489 | double * |
| 3490 | ClpGubMatrix::rhsOffset(ClpSimplex * model, bool forceRefresh, bool |
| 3491 | #ifdef CLP_DEBUG |
| 3492 | check |
| 3493 | #endif |
| 3494 | ) |
| 3495 | { |
| 3496 | //forceRefresh=true; |
| 3497 | if (rhsOffset_) { |
| 3498 | #ifdef CLP_DEBUG |
| 3499 | if (check) { |
| 3500 | // no need - but check anyway |
| 3501 | // zero out basic |
| 3502 | int numberRows = model->numberRows(); |
| 3503 | int numberColumns = model->numberColumns(); |
| 3504 | double * solution = new double [numberColumns]; |
| 3505 | double * rhs = new double[numberRows]; |
| 3506 | CoinMemcpyN(model->solutionRegion(), numberColumns, solution); |
| 3507 | CoinZeroN(rhs, numberRows); |
| 3508 | int iRow; |
| 3509 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 3510 | if (model->getColumnStatus(iColumn) == ClpSimplex::basic) |
| 3511 | solution[iColumn] = 0.0; |
| 3512 | } |
| 3513 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
| 3514 | int iColumn = keyVariable_[iSet]; |
| 3515 | if (iColumn < numberColumns) |
| 3516 | solution[iColumn] = 0.0; |
| 3517 | } |
| 3518 | times(-1.0, solution, rhs); |
| 3519 | delete [] solution; |
| 3520 | const double * columnSolution = model->solutionRegion(); |
| 3521 | // and now subtract out non basic |
| 3522 | ClpSimplex::Status iStatus; |
| 3523 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
| 3524 | int iColumn = keyVariable_[iSet]; |
| 3525 | if (iColumn < numberColumns) { |
| 3526 | double b = 0.0; |
| 3527 | // key is structural - where is slack |
| 3528 | iStatus = getStatus(iSet); |
| 3529 | assert (iStatus != ClpSimplex::basic); |
| 3530 | if (iStatus == ClpSimplex::atLowerBound) |
| 3531 | b = lower_[iSet]; |
| 3532 | else |
| 3533 | b = upper_[iSet]; |
| 3534 | // subtract out others at bounds |
| 3535 | if ((gubType_ & 8) == 0) { |
| 3536 | int stop = -(iColumn + 1); |
| 3537 | int jColumn = next_[iColumn]; |
| 3538 | // sum all non-basic variables - first skip basic |
| 3539 | while(jColumn >= 0) |
| 3540 | jColumn = next_[jColumn]; |
| 3541 | while(jColumn != stop) { |
| 3542 | assert (jColumn < 0); |
| 3543 | jColumn = -jColumn - 1; |
| 3544 | b -= columnSolution[jColumn]; |
| 3545 | jColumn = next_[jColumn]; |
| 3546 | } |
| 3547 | } |
| 3548 | // subtract out |
| 3549 | ClpPackedMatrix::add(model, rhs, iColumn, -b); |
| 3550 | } |
| 3551 | } |
| 3552 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 3553 | if (fabs(rhs[iRow] - rhsOffset_[iRow]) > 1.0e-3) |
| 3554 | printf("** bad effective %d - true %g old %g\n" , iRow, rhs[iRow], rhsOffset_[iRow]); |
| 3555 | } |
| 3556 | delete [] rhs; |
| 3557 | } |
| 3558 | #endif |
| 3559 | if (forceRefresh || (refreshFrequency_ && model->numberIterations() >= |
| 3560 | lastRefresh_ + refreshFrequency_)) { |
| 3561 | // zero out basic |
| 3562 | int numberRows = model->numberRows(); |
| 3563 | int numberColumns = model->numberColumns(); |
| 3564 | double * solution = new double [numberColumns]; |
| 3565 | CoinMemcpyN(model->solutionRegion(), numberColumns, solution); |
| 3566 | CoinZeroN(rhsOffset_, numberRows); |
| 3567 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 3568 | if (model->getColumnStatus(iColumn) == ClpSimplex::basic) |
| 3569 | solution[iColumn] = 0.0; |
| 3570 | } |
| 3571 | int iSet; |
| 3572 | for ( iSet = 0; iSet < numberSets_; iSet++) { |
| 3573 | int iColumn = keyVariable_[iSet]; |
| 3574 | if (iColumn < numberColumns) |
| 3575 | solution[iColumn] = 0.0; |
| 3576 | } |
| 3577 | times(-1.0, solution, rhsOffset_); |
| 3578 | delete [] solution; |
| 3579 | lastRefresh_ = model->numberIterations(); |
| 3580 | const double * columnSolution = model->solutionRegion(); |
| 3581 | // and now subtract out non basic |
| 3582 | ClpSimplex::Status iStatus; |
| 3583 | for ( iSet = 0; iSet < numberSets_; iSet++) { |
| 3584 | int iColumn = keyVariable_[iSet]; |
| 3585 | if (iColumn < numberColumns) { |
| 3586 | double b = 0.0; |
| 3587 | // key is structural - where is slack |
| 3588 | iStatus = getStatus(iSet); |
| 3589 | assert (iStatus != ClpSimplex::basic); |
| 3590 | if (iStatus == ClpSimplex::atLowerBound) |
| 3591 | b = lower_[iSet]; |
| 3592 | else |
| 3593 | b = upper_[iSet]; |
| 3594 | // subtract out others at bounds |
| 3595 | if ((gubType_ & 8) == 0) { |
| 3596 | int stop = -(iColumn + 1); |
| 3597 | int jColumn = next_[iColumn]; |
| 3598 | // sum all non-basic variables - first skip basic |
| 3599 | while(jColumn >= 0) |
| 3600 | jColumn = next_[jColumn]; |
| 3601 | while(jColumn != stop) { |
| 3602 | assert (jColumn < 0); |
| 3603 | jColumn = -jColumn - 1; |
| 3604 | b -= columnSolution[jColumn]; |
| 3605 | jColumn = next_[jColumn]; |
| 3606 | } |
| 3607 | } |
| 3608 | // subtract out |
| 3609 | if (b) |
| 3610 | ClpPackedMatrix::add(model, rhsOffset_, iColumn, -b); |
| 3611 | } |
| 3612 | } |
| 3613 | } |
| 3614 | } |
| 3615 | return rhsOffset_; |
| 3616 | } |
| 3617 | /* |
| 3618 | update information for a pivot (and effective rhs) |
| 3619 | */ |
| 3620 | int |
| 3621 | ClpGubMatrix::updatePivot(ClpSimplex * model, double oldInValue, double /*oldOutValue*/) |
| 3622 | { |
| 3623 | int sequenceIn = model->sequenceIn(); |
| 3624 | int sequenceOut = model->sequenceOut(); |
| 3625 | double * solution = model->solutionRegion(); |
| 3626 | int numberColumns = model->numberColumns(); |
| 3627 | int numberRows = model->numberRows(); |
| 3628 | int pivotRow = model->pivotRow(); |
| 3629 | int iSetIn; |
| 3630 | // Correct sequence in |
| 3631 | trueSequenceIn_ = sequenceIn; |
| 3632 | if (sequenceIn < numberColumns) { |
| 3633 | iSetIn = backward_[sequenceIn]; |
| 3634 | } else if (sequenceIn < numberColumns + numberRows) { |
| 3635 | iSetIn = -1; |
| 3636 | } else { |
| 3637 | iSetIn = gubSlackIn_; |
| 3638 | trueSequenceIn_ = numberColumns + numberRows + iSetIn; |
| 3639 | } |
| 3640 | int iSetOut = -1; |
| 3641 | trueSequenceOut_ = sequenceOut; |
| 3642 | if (sequenceOut < numberColumns) { |
| 3643 | iSetOut = backward_[sequenceOut]; |
| 3644 | } else if (sequenceOut >= numberRows + numberColumns) { |
| 3645 | assert (pivotRow >= numberRows); |
| 3646 | int = pivotRow - numberRows; |
| 3647 | assert (iExtra >= 0); |
| 3648 | if (iSetOut < 0) |
| 3649 | iSetOut = fromIndex_[iExtra]; |
| 3650 | else |
| 3651 | assert(iSetOut == fromIndex_[iExtra]); |
| 3652 | trueSequenceOut_ = numberColumns + numberRows + iSetOut; |
| 3653 | } |
| 3654 | if (rhsOffset_) { |
| 3655 | // update effective rhs |
| 3656 | if (sequenceIn == sequenceOut) { |
| 3657 | assert (sequenceIn < numberRows + numberColumns); // should be easy to deal with |
| 3658 | if (sequenceIn < numberColumns) |
| 3659 | add(model, rhsOffset_, sequenceIn, oldInValue - solution[sequenceIn]); |
| 3660 | } else { |
| 3661 | if (sequenceIn < numberColumns) { |
| 3662 | // we need to test if WILL be key |
| 3663 | ClpPackedMatrix::add(model, rhsOffset_, sequenceIn, oldInValue); |
| 3664 | if (iSetIn >= 0) { |
| 3665 | // old contribution to rhsOffset_ |
| 3666 | int key = keyVariable_[iSetIn]; |
| 3667 | if (key < numberColumns) { |
| 3668 | double oldB = 0.0; |
| 3669 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
| 3670 | if (iStatus == ClpSimplex::atLowerBound) |
| 3671 | oldB = lower_[iSetIn]; |
| 3672 | else |
| 3673 | oldB = upper_[iSetIn]; |
| 3674 | // subtract out others at bounds |
| 3675 | if ((gubType_ & 8) == 0) { |
| 3676 | int stop = -(key + 1); |
| 3677 | int iColumn = next_[key]; |
| 3678 | // skip basic |
| 3679 | while (iColumn >= 0) |
| 3680 | iColumn = next_[iColumn]; |
| 3681 | // sum all non-key variables |
| 3682 | while(iColumn != stop) { |
| 3683 | assert (iColumn < 0); |
| 3684 | iColumn = -iColumn - 1; |
| 3685 | if (iColumn == sequenceIn) |
| 3686 | oldB -= oldInValue; |
| 3687 | else if ( iColumn != sequenceOut ) |
| 3688 | oldB -= solution[iColumn]; |
| 3689 | iColumn = next_[iColumn]; |
| 3690 | } |
| 3691 | } |
| 3692 | if (oldB) |
| 3693 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
| 3694 | } |
| 3695 | } |
| 3696 | } else if (sequenceIn < numberRows + numberColumns) { |
| 3697 | //rhsOffset_[sequenceIn-numberColumns] -= oldInValue; |
| 3698 | } else { |
| 3699 | #ifdef CLP_DEBUG_PRINT |
| 3700 | printf("** in is key slack %d\n" , sequenceIn); |
| 3701 | #endif |
| 3702 | // old contribution to rhsOffset_ |
| 3703 | int key = keyVariable_[iSetIn]; |
| 3704 | if (key < numberColumns) { |
| 3705 | double oldB = 0.0; |
| 3706 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
| 3707 | if (iStatus == ClpSimplex::atLowerBound) |
| 3708 | oldB = lower_[iSetIn]; |
| 3709 | else |
| 3710 | oldB = upper_[iSetIn]; |
| 3711 | // subtract out others at bounds |
| 3712 | if ((gubType_ & 8) == 0) { |
| 3713 | int stop = -(key + 1); |
| 3714 | int iColumn = next_[key]; |
| 3715 | // skip basic |
| 3716 | while (iColumn >= 0) |
| 3717 | iColumn = next_[iColumn]; |
| 3718 | // sum all non-key variables |
| 3719 | while(iColumn != stop) { |
| 3720 | assert (iColumn < 0); |
| 3721 | iColumn = -iColumn - 1; |
| 3722 | if ( iColumn != sequenceOut ) |
| 3723 | oldB -= solution[iColumn]; |
| 3724 | iColumn = next_[iColumn]; |
| 3725 | } |
| 3726 | } |
| 3727 | if (oldB) |
| 3728 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
| 3729 | } |
| 3730 | } |
| 3731 | if (sequenceOut < numberColumns) { |
| 3732 | ClpPackedMatrix::add(model, rhsOffset_, sequenceOut, -solution[sequenceOut]); |
| 3733 | if (iSetOut >= 0) { |
| 3734 | // old contribution to rhsOffset_ |
| 3735 | int key = keyVariable_[iSetOut]; |
| 3736 | if (key < numberColumns && iSetIn != iSetOut) { |
| 3737 | double oldB = 0.0; |
| 3738 | ClpSimplex::Status iStatus = getStatus(iSetOut); |
| 3739 | if (iStatus == ClpSimplex::atLowerBound) |
| 3740 | oldB = lower_[iSetOut]; |
| 3741 | else |
| 3742 | oldB = upper_[iSetOut]; |
| 3743 | // subtract out others at bounds |
| 3744 | if ((gubType_ & 8) == 0) { |
| 3745 | int stop = -(key + 1); |
| 3746 | int iColumn = next_[key]; |
| 3747 | // skip basic |
| 3748 | while (iColumn >= 0) |
| 3749 | iColumn = next_[iColumn]; |
| 3750 | // sum all non-key variables |
| 3751 | while(iColumn != stop) { |
| 3752 | assert (iColumn < 0); |
| 3753 | iColumn = -iColumn - 1; |
| 3754 | if (iColumn == sequenceIn) |
| 3755 | oldB -= oldInValue; |
| 3756 | else if ( iColumn != sequenceOut ) |
| 3757 | oldB -= solution[iColumn]; |
| 3758 | iColumn = next_[iColumn]; |
| 3759 | } |
| 3760 | } |
| 3761 | if (oldB) |
| 3762 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
| 3763 | } |
| 3764 | } |
| 3765 | } else if (sequenceOut < numberRows + numberColumns) { |
| 3766 | //rhsOffset_[sequenceOut-numberColumns] -= -solution[sequenceOut]; |
| 3767 | } else { |
| 3768 | #ifdef CLP_DEBUG_PRINT |
| 3769 | printf("** out is key slack %d\n" , sequenceOut); |
| 3770 | #endif |
| 3771 | assert (pivotRow >= numberRows); |
| 3772 | } |
| 3773 | } |
| 3774 | } |
| 3775 | int * pivotVariable = model->pivotVariable(); |
| 3776 | // may need to deal with key |
| 3777 | // Also need coding to mark/allow key slack entering |
| 3778 | if (pivotRow >= numberRows) { |
| 3779 | assert (sequenceOut >= numberRows + numberColumns || sequenceOut == keyVariable_[iSetOut]); |
| 3780 | #ifdef CLP_DEBUG_PRINT |
| 3781 | if (sequenceIn >= numberRows + numberColumns) |
| 3782 | printf("key slack %d in, set out %d\n" , gubSlackIn_, iSetOut); |
| 3783 | printf("** danger - key out for set %d in %d (set %d)\n" , iSetOut, sequenceIn, |
| 3784 | iSetIn); |
| 3785 | #endif |
| 3786 | // if slack out mark correctly |
| 3787 | if (sequenceOut >= numberRows + numberColumns) { |
| 3788 | double value = model->valueOut(); |
| 3789 | if (value == upper_[iSetOut]) { |
| 3790 | setStatus(iSetOut, ClpSimplex::atUpperBound); |
| 3791 | } else if (value == lower_[iSetOut]) { |
| 3792 | setStatus(iSetOut, ClpSimplex::atLowerBound); |
| 3793 | } else { |
| 3794 | if (fabs(value - upper_[iSetOut]) < |
| 3795 | fabs(value - lower_[iSetOut])) { |
| 3796 | setStatus(iSetOut, ClpSimplex::atUpperBound); |
| 3797 | } else { |
| 3798 | setStatus(iSetOut, ClpSimplex::atLowerBound); |
| 3799 | } |
| 3800 | } |
| 3801 | if (upper_[iSetOut] == lower_[iSetOut]) |
| 3802 | setStatus(iSetOut, ClpSimplex::isFixed); |
| 3803 | setFeasible(iSetOut); |
| 3804 | } |
| 3805 | if (iSetOut == iSetIn) { |
| 3806 | // key swap |
| 3807 | int key; |
| 3808 | if (sequenceIn >= numberRows + numberColumns) { |
| 3809 | key = numberColumns + iSetIn; |
| 3810 | setStatus(iSetIn, ClpSimplex::basic); |
| 3811 | } else { |
| 3812 | key = sequenceIn; |
| 3813 | } |
| 3814 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
| 3815 | } else { |
| 3816 | // key was chosen |
| 3817 | assert (possiblePivotKey_ >= 0 && possiblePivotKey_ < numberRows); |
| 3818 | int key = pivotVariable[possiblePivotKey_]; |
| 3819 | // and set incoming here |
| 3820 | if (sequenceIn >= numberRows + numberColumns) { |
| 3821 | // slack in - so use old key |
| 3822 | sequenceIn = keyVariable_[iSetIn]; |
| 3823 | model->setStatus(sequenceIn, ClpSimplex::basic); |
| 3824 | setStatus(iSetIn, ClpSimplex::basic); |
| 3825 | redoSet(model, iSetIn + numberColumns, keyVariable_[iSetIn], iSetIn); |
| 3826 | } |
| 3827 | //? do not do if iSetIn<0 ? as will be done later |
| 3828 | pivotVariable[possiblePivotKey_] = sequenceIn; |
| 3829 | if (sequenceIn < numberColumns) |
| 3830 | backToPivotRow_[sequenceIn] = possiblePivotKey_; |
| 3831 | redoSet(model, key, keyVariable_[iSetOut], iSetOut); |
| 3832 | } |
| 3833 | } else { |
| 3834 | if (sequenceOut < numberColumns) { |
| 3835 | if (iSetIn >= 0 && iSetOut == iSetIn) { |
| 3836 | // key not out - only problem is if slack in |
| 3837 | int key; |
| 3838 | if (sequenceIn >= numberRows + numberColumns) { |
| 3839 | key = numberColumns + iSetIn; |
| 3840 | setStatus(iSetIn, ClpSimplex::basic); |
| 3841 | assert (pivotRow < numberRows); |
| 3842 | // must swap with current key |
| 3843 | int key = keyVariable_[iSetIn]; |
| 3844 | model->setStatus(key, ClpSimplex::basic); |
| 3845 | pivotVariable[pivotRow] = key; |
| 3846 | backToPivotRow_[key] = pivotRow; |
| 3847 | } else { |
| 3848 | key = keyVariable_[iSetIn]; |
| 3849 | } |
| 3850 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
| 3851 | } else if (iSetOut >= 0) { |
| 3852 | // just redo set |
| 3853 | int key = keyVariable_[iSetOut]; |
| 3854 | redoSet(model, key, keyVariable_[iSetOut], iSetOut); |
| 3855 | } |
| 3856 | } |
| 3857 | } |
| 3858 | if (iSetIn >= 0 && iSetIn != iSetOut) { |
| 3859 | int key = keyVariable_[iSetIn]; |
| 3860 | if (sequenceIn == numberColumns + 2 * numberRows) { |
| 3861 | // key slack in |
| 3862 | assert (pivotRow < numberRows); |
| 3863 | // must swap with current key |
| 3864 | model->setStatus(key, ClpSimplex::basic); |
| 3865 | pivotVariable[pivotRow] = key; |
| 3866 | backToPivotRow_[key] = pivotRow; |
| 3867 | setStatus(iSetIn, ClpSimplex::basic); |
| 3868 | key = iSetIn + numberColumns; |
| 3869 | } |
| 3870 | // redo set to allow for new one |
| 3871 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
| 3872 | } |
| 3873 | // update pivot |
| 3874 | if (sequenceIn < numberColumns) { |
| 3875 | if (pivotRow < numberRows) { |
| 3876 | backToPivotRow_[sequenceIn] = pivotRow; |
| 3877 | } else { |
| 3878 | if (possiblePivotKey_ >= 0) { |
| 3879 | assert (possiblePivotKey_ < numberRows); |
| 3880 | backToPivotRow_[sequenceIn] = possiblePivotKey_; |
| 3881 | pivotVariable[possiblePivotKey_] = sequenceIn; |
| 3882 | } |
| 3883 | } |
| 3884 | } else if (sequenceIn >= numberRows + numberColumns) { |
| 3885 | // key in - something should have been done before |
| 3886 | int key = keyVariable_[iSetIn]; |
| 3887 | assert (key == numberColumns + iSetIn); |
| 3888 | //pivotVariable[pivotRow]=key; |
| 3889 | //backToPivotRow_[key]=pivotRow; |
| 3890 | //model->setStatus(key,ClpSimplex::basic); |
| 3891 | //key=numberColumns+iSetIn; |
| 3892 | setStatus(iSetIn, ClpSimplex::basic); |
| 3893 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
| 3894 | } |
| 3895 | #ifdef CLP_DEBUG |
| 3896 | { |
| 3897 | char * xx = new char[numberColumns+numberRows]; |
| 3898 | memset(xx, 0, numberRows + numberColumns); |
| 3899 | for (int i = 0; i < numberRows; i++) { |
| 3900 | int iPivot = pivotVariable[i]; |
| 3901 | assert (iPivot < numberRows + numberColumns); |
| 3902 | assert (!xx[iPivot]); |
| 3903 | xx[iPivot] = 1; |
| 3904 | if (iPivot < numberColumns) { |
| 3905 | int iBack = backToPivotRow_[iPivot]; |
| 3906 | assert (i == iBack); |
| 3907 | } |
| 3908 | } |
| 3909 | delete [] xx; |
| 3910 | } |
| 3911 | #endif |
| 3912 | if (rhsOffset_) { |
| 3913 | // update effective rhs |
| 3914 | if (sequenceIn != sequenceOut) { |
| 3915 | if (sequenceIn < numberColumns) { |
| 3916 | if (iSetIn >= 0) { |
| 3917 | // new contribution to rhsOffset_ |
| 3918 | int key = keyVariable_[iSetIn]; |
| 3919 | if (key < numberColumns) { |
| 3920 | double newB = 0.0; |
| 3921 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
| 3922 | if (iStatus == ClpSimplex::atLowerBound) |
| 3923 | newB = lower_[iSetIn]; |
| 3924 | else |
| 3925 | newB = upper_[iSetIn]; |
| 3926 | // subtract out others at bounds |
| 3927 | if ((gubType_ & 8) == 0) { |
| 3928 | int stop = -(key + 1); |
| 3929 | int iColumn = next_[key]; |
| 3930 | // skip basic |
| 3931 | while (iColumn >= 0) |
| 3932 | iColumn = next_[iColumn]; |
| 3933 | // sum all non-key variables |
| 3934 | while(iColumn != stop) { |
| 3935 | assert (iColumn < 0); |
| 3936 | iColumn = -iColumn - 1; |
| 3937 | newB -= solution[iColumn]; |
| 3938 | iColumn = next_[iColumn]; |
| 3939 | } |
| 3940 | } |
| 3941 | if (newB) |
| 3942 | ClpPackedMatrix::add(model, rhsOffset_, key, -newB); |
| 3943 | } |
| 3944 | } |
| 3945 | } |
| 3946 | if (iSetOut >= 0) { |
| 3947 | // new contribution to rhsOffset_ |
| 3948 | int key = keyVariable_[iSetOut]; |
| 3949 | if (key < numberColumns && iSetIn != iSetOut) { |
| 3950 | double newB = 0.0; |
| 3951 | ClpSimplex::Status iStatus = getStatus(iSetOut); |
| 3952 | if (iStatus == ClpSimplex::atLowerBound) |
| 3953 | newB = lower_[iSetOut]; |
| 3954 | else |
| 3955 | newB = upper_[iSetOut]; |
| 3956 | // subtract out others at bounds |
| 3957 | if ((gubType_ & 8) == 0) { |
| 3958 | int stop = -(key + 1); |
| 3959 | int iColumn = next_[key]; |
| 3960 | // skip basic |
| 3961 | while (iColumn >= 0) |
| 3962 | iColumn = next_[iColumn]; |
| 3963 | // sum all non-key variables |
| 3964 | while(iColumn != stop) { |
| 3965 | assert (iColumn < 0); |
| 3966 | iColumn = -iColumn - 1; |
| 3967 | newB -= solution[iColumn]; |
| 3968 | iColumn = next_[iColumn]; |
| 3969 | } |
| 3970 | } |
| 3971 | if (newB) |
| 3972 | ClpPackedMatrix::add(model, rhsOffset_, key, -newB); |
| 3973 | } |
| 3974 | } |
| 3975 | } |
| 3976 | } |
| 3977 | #ifdef CLP_DEBUG |
| 3978 | // debug |
| 3979 | { |
| 3980 | int i; |
| 3981 | char * xxxx = new char[numberColumns]; |
| 3982 | memset(xxxx, 0, numberColumns); |
| 3983 | for (i = 0; i < numberRows; i++) { |
| 3984 | int iPivot = pivotVariable[i]; |
| 3985 | assert (model->getStatus(iPivot) == ClpSimplex::basic); |
| 3986 | if (iPivot < numberColumns && backward_[iPivot] >= 0) |
| 3987 | xxxx[iPivot] = 1; |
| 3988 | } |
| 3989 | double primalTolerance = model->primalTolerance(); |
| 3990 | for (i = 0; i < numberSets_; i++) { |
| 3991 | int key = keyVariable_[i]; |
| 3992 | double value = 0.0; |
| 3993 | // sum over all except key |
| 3994 | int iColumn = next_[key]; |
| 3995 | // sum all non-key variables |
| 3996 | int k = 0; |
| 3997 | int stop = -(key + 1); |
| 3998 | while (iColumn != stop) { |
| 3999 | if (iColumn < 0) |
| 4000 | iColumn = -iColumn - 1; |
| 4001 | value += solution[iColumn]; |
| 4002 | k++; |
| 4003 | assert (k < 100); |
| 4004 | assert (backward_[iColumn] == i); |
| 4005 | iColumn = next_[iColumn]; |
| 4006 | } |
| 4007 | iColumn = next_[key]; |
| 4008 | if (key < numberColumns) { |
| 4009 | // feasibility will be done later |
| 4010 | assert (getStatus(i) != ClpSimplex::basic); |
| 4011 | double sol; |
| 4012 | if (getStatus(i) == ClpSimplex::atUpperBound) |
| 4013 | sol = upper_[i] - value; |
| 4014 | else |
| 4015 | sol = lower_[i] - value; |
| 4016 | //printf("xx Value of key structural %d for set %d is %g - cost %g\n",key,i,sol, |
| 4017 | // cost[key]); |
| 4018 | //if (fabs(sol-solution[key])>1.0e-3) |
| 4019 | //printf("** stored value was %g\n",solution[key]); |
| 4020 | } else { |
| 4021 | // slack is key |
| 4022 | double infeasibility = 0.0; |
| 4023 | if (value > upper_[i] + primalTolerance) { |
| 4024 | infeasibility = value - upper_[i] - primalTolerance; |
| 4025 | //setAbove(i); |
| 4026 | } else if (value < lower_[i] - primalTolerance) { |
| 4027 | infeasibility = lower_[i] - value - primalTolerance ; |
| 4028 | //setBelow(i); |
| 4029 | } else { |
| 4030 | //setFeasible(i); |
| 4031 | } |
| 4032 | //printf("xx Value of key slack for set %d is %g\n",i,value); |
| 4033 | } |
| 4034 | while (iColumn >= 0) { |
| 4035 | assert (xxxx[iColumn]); |
| 4036 | xxxx[iColumn] = 0; |
| 4037 | iColumn = next_[iColumn]; |
| 4038 | } |
| 4039 | } |
| 4040 | for (i = 0; i < numberColumns; i++) { |
| 4041 | if (i < numberColumns && backward_[i] >= 0) { |
| 4042 | assert (!xxxx[i] || i == keyVariable_[backward_[i]]); |
| 4043 | } |
| 4044 | } |
| 4045 | delete [] xxxx; |
| 4046 | } |
| 4047 | #endif |
| 4048 | return 0; |
| 4049 | } |
| 4050 | // Switches off dj checking each factorization (for BIG models) |
| 4051 | void |
| 4052 | ClpGubMatrix::switchOffCheck() |
| 4053 | { |
| 4054 | noCheck_ = 0; |
| 4055 | infeasibilityWeight_ = 0.0; |
| 4056 | } |
| 4057 | // Correct sequence in and out to give true value |
| 4058 | void |
| 4059 | ClpGubMatrix::correctSequence(const ClpSimplex * /*model*/, int & sequenceIn, int & sequenceOut) |
| 4060 | { |
| 4061 | if (sequenceIn != -999) { |
| 4062 | sequenceIn = trueSequenceIn_; |
| 4063 | sequenceOut = trueSequenceOut_; |
| 4064 | } |
| 4065 | } |
| 4066 | |