1 | /* $Id: ClpGubMatrix.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | |
7 | #include <cstdio> |
8 | |
9 | #include "CoinPragma.hpp" |
10 | #include "CoinIndexedVector.hpp" |
11 | #include "CoinHelperFunctions.hpp" |
12 | |
13 | #include "ClpSimplex.hpp" |
14 | #include "ClpFactorization.hpp" |
15 | #include "ClpQuadraticObjective.hpp" |
16 | #include "ClpNonLinearCost.hpp" |
17 | // at end to get min/max! |
18 | #include "ClpGubMatrix.hpp" |
19 | //#include "ClpGubDynamicMatrix.hpp" |
20 | #include "ClpMessage.hpp" |
21 | //#define CLP_DEBUG |
22 | //#define CLP_DEBUG_PRINT |
23 | //############################################################################# |
24 | // Constructors / Destructor / Assignment |
25 | //############################################################################# |
26 | |
27 | //------------------------------------------------------------------- |
28 | // Default Constructor |
29 | //------------------------------------------------------------------- |
30 | ClpGubMatrix::ClpGubMatrix () |
31 | : ClpPackedMatrix(), |
32 | sumDualInfeasibilities_(0.0), |
33 | sumPrimalInfeasibilities_(0.0), |
34 | sumOfRelaxedDualInfeasibilities_(0.0), |
35 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
36 | infeasibilityWeight_(0.0), |
37 | start_(NULL), |
38 | end_(NULL), |
39 | lower_(NULL), |
40 | upper_(NULL), |
41 | status_(NULL), |
42 | saveStatus_(NULL), |
43 | savedKeyVariable_(NULL), |
44 | backward_(NULL), |
45 | backToPivotRow_(NULL), |
46 | changeCost_(NULL), |
47 | keyVariable_(NULL), |
48 | next_(NULL), |
49 | toIndex_(NULL), |
50 | fromIndex_(NULL), |
51 | model_(NULL), |
52 | numberDualInfeasibilities_(0), |
53 | numberPrimalInfeasibilities_(0), |
54 | noCheck_(-1), |
55 | numberSets_(0), |
56 | saveNumber_(0), |
57 | possiblePivotKey_(0), |
58 | gubSlackIn_(-1), |
59 | firstGub_(0), |
60 | lastGub_(0), |
61 | gubType_(0) |
62 | { |
63 | setType(16); |
64 | } |
65 | |
66 | //------------------------------------------------------------------- |
67 | // Copy constructor |
68 | //------------------------------------------------------------------- |
69 | ClpGubMatrix::ClpGubMatrix (const ClpGubMatrix & rhs) |
70 | : ClpPackedMatrix(rhs) |
71 | { |
72 | numberSets_ = rhs.numberSets_; |
73 | saveNumber_ = rhs.saveNumber_; |
74 | possiblePivotKey_ = rhs.possiblePivotKey_; |
75 | gubSlackIn_ = rhs.gubSlackIn_; |
76 | start_ = ClpCopyOfArray(rhs.start_, numberSets_); |
77 | end_ = ClpCopyOfArray(rhs.end_, numberSets_); |
78 | lower_ = ClpCopyOfArray(rhs.lower_, numberSets_); |
79 | upper_ = ClpCopyOfArray(rhs.upper_, numberSets_); |
80 | status_ = ClpCopyOfArray(rhs.status_, numberSets_); |
81 | saveStatus_ = ClpCopyOfArray(rhs.saveStatus_, numberSets_); |
82 | savedKeyVariable_ = ClpCopyOfArray(rhs.savedKeyVariable_, numberSets_); |
83 | int numberColumns = getNumCols(); |
84 | backward_ = ClpCopyOfArray(rhs.backward_, numberColumns); |
85 | backToPivotRow_ = ClpCopyOfArray(rhs.backToPivotRow_, numberColumns); |
86 | changeCost_ = ClpCopyOfArray(rhs.changeCost_, getNumRows() + numberSets_); |
87 | fromIndex_ = ClpCopyOfArray(rhs.fromIndex_, getNumRows() + numberSets_ + 1); |
88 | keyVariable_ = ClpCopyOfArray(rhs.keyVariable_, numberSets_); |
89 | // find longest set |
90 | int * longest = new int[numberSets_]; |
91 | CoinZeroN(longest, numberSets_); |
92 | int j; |
93 | for (j = 0; j < numberColumns; j++) { |
94 | int iSet = backward_[j]; |
95 | if (iSet >= 0) |
96 | longest[iSet]++; |
97 | } |
98 | int length = 0; |
99 | for (j = 0; j < numberSets_; j++) |
100 | length = CoinMax(length, longest[j]); |
101 | next_ = ClpCopyOfArray(rhs.next_, numberColumns + numberSets_ + 2 * length); |
102 | toIndex_ = ClpCopyOfArray(rhs.toIndex_, numberSets_); |
103 | sumDualInfeasibilities_ = rhs. sumDualInfeasibilities_; |
104 | sumPrimalInfeasibilities_ = rhs.sumPrimalInfeasibilities_; |
105 | sumOfRelaxedDualInfeasibilities_ = rhs.sumOfRelaxedDualInfeasibilities_; |
106 | sumOfRelaxedPrimalInfeasibilities_ = rhs.sumOfRelaxedPrimalInfeasibilities_; |
107 | infeasibilityWeight_ = rhs.infeasibilityWeight_; |
108 | numberDualInfeasibilities_ = rhs.numberDualInfeasibilities_; |
109 | numberPrimalInfeasibilities_ = rhs.numberPrimalInfeasibilities_; |
110 | noCheck_ = rhs.noCheck_; |
111 | firstGub_ = rhs.firstGub_; |
112 | lastGub_ = rhs.lastGub_; |
113 | gubType_ = rhs.gubType_; |
114 | model_ = rhs.model_; |
115 | } |
116 | |
117 | //------------------------------------------------------------------- |
118 | // assign matrix (for space reasons) |
119 | //------------------------------------------------------------------- |
120 | ClpGubMatrix::ClpGubMatrix (CoinPackedMatrix * rhs) |
121 | : ClpPackedMatrix(rhs), |
122 | sumDualInfeasibilities_(0.0), |
123 | sumPrimalInfeasibilities_(0.0), |
124 | sumOfRelaxedDualInfeasibilities_(0.0), |
125 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
126 | infeasibilityWeight_(0.0), |
127 | start_(NULL), |
128 | end_(NULL), |
129 | lower_(NULL), |
130 | upper_(NULL), |
131 | status_(NULL), |
132 | saveStatus_(NULL), |
133 | savedKeyVariable_(NULL), |
134 | backward_(NULL), |
135 | backToPivotRow_(NULL), |
136 | changeCost_(NULL), |
137 | keyVariable_(NULL), |
138 | next_(NULL), |
139 | toIndex_(NULL), |
140 | fromIndex_(NULL), |
141 | model_(NULL), |
142 | numberDualInfeasibilities_(0), |
143 | numberPrimalInfeasibilities_(0), |
144 | noCheck_(-1), |
145 | numberSets_(0), |
146 | saveNumber_(0), |
147 | possiblePivotKey_(0), |
148 | gubSlackIn_(-1), |
149 | firstGub_(0), |
150 | lastGub_(0), |
151 | gubType_(0) |
152 | { |
153 | setType(16); |
154 | } |
155 | |
156 | /* This takes over ownership (for space reasons) and is the |
157 | real constructor*/ |
158 | ClpGubMatrix::ClpGubMatrix(ClpPackedMatrix * matrix, int numberSets, |
159 | const int * start, const int * end, |
160 | const double * lower, const double * upper, |
161 | const unsigned char * status) |
162 | : ClpPackedMatrix(matrix->matrix()), |
163 | sumDualInfeasibilities_(0.0), |
164 | sumPrimalInfeasibilities_(0.0), |
165 | sumOfRelaxedDualInfeasibilities_(0.0), |
166 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
167 | numberDualInfeasibilities_(0), |
168 | numberPrimalInfeasibilities_(0), |
169 | saveNumber_(0), |
170 | possiblePivotKey_(0), |
171 | gubSlackIn_(-1) |
172 | { |
173 | model_ = NULL; |
174 | numberSets_ = numberSets; |
175 | start_ = ClpCopyOfArray(start, numberSets_); |
176 | end_ = ClpCopyOfArray(end, numberSets_); |
177 | lower_ = ClpCopyOfArray(lower, numberSets_); |
178 | upper_ = ClpCopyOfArray(upper, numberSets_); |
179 | // Check valid and ordered |
180 | int last = -1; |
181 | int numberColumns = matrix_->getNumCols(); |
182 | int numberRows = matrix_->getNumRows(); |
183 | backward_ = new int[numberColumns]; |
184 | backToPivotRow_ = new int[numberColumns]; |
185 | changeCost_ = new double [numberRows+numberSets_]; |
186 | keyVariable_ = new int[numberSets_]; |
187 | // signal to need new ordering |
188 | next_ = NULL; |
189 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) |
190 | backward_[iColumn] = -1; |
191 | |
192 | int iSet; |
193 | for (iSet = 0; iSet < numberSets_; iSet++) { |
194 | // set key variable as slack |
195 | keyVariable_[iSet] = iSet + numberColumns; |
196 | if (start_[iSet] < 0 || start_[iSet] >= numberColumns) |
197 | throw CoinError("Index out of range" , "constructor" , "ClpGubMatrix" ); |
198 | if (end_[iSet] < 0 || end_[iSet] > numberColumns) |
199 | throw CoinError("Index out of range" , "constructor" , "ClpGubMatrix" ); |
200 | if (end_[iSet] <= start_[iSet]) |
201 | throw CoinError("Empty or negative set" , "constructor" , "ClpGubMatrix" ); |
202 | if (start_[iSet] < last) |
203 | throw CoinError("overlapping or non-monotonic sets" , "constructor" , "ClpGubMatrix" ); |
204 | last = end_[iSet]; |
205 | int j; |
206 | for (j = start_[iSet]; j < end_[iSet]; j++) |
207 | backward_[j] = iSet; |
208 | } |
209 | // Find type of gub |
210 | firstGub_ = numberColumns + 1; |
211 | lastGub_ = -1; |
212 | int i; |
213 | for (i = 0; i < numberColumns; i++) { |
214 | if (backward_[i] >= 0) { |
215 | firstGub_ = CoinMin(firstGub_, i); |
216 | lastGub_ = CoinMax(lastGub_, i); |
217 | } |
218 | } |
219 | gubType_ = 0; |
220 | // adjust lastGub_ |
221 | if (lastGub_ > 0) |
222 | lastGub_++; |
223 | for (i = firstGub_; i < lastGub_; i++) { |
224 | if (backward_[i] < 0) { |
225 | gubType_ = 1; |
226 | printf("interior non gub %d\n" , i); |
227 | break; |
228 | } |
229 | } |
230 | if (status) { |
231 | status_ = ClpCopyOfArray(status, numberSets_); |
232 | } else { |
233 | status_ = new unsigned char [numberSets_]; |
234 | memset(status_, 0, numberSets_); |
235 | int i; |
236 | for (i = 0; i < numberSets_; i++) { |
237 | // make slack key |
238 | setStatus(i, ClpSimplex::basic); |
239 | } |
240 | } |
241 | saveStatus_ = new unsigned char [numberSets_]; |
242 | memset(saveStatus_, 0, numberSets_); |
243 | savedKeyVariable_ = new int [numberSets_]; |
244 | memset(savedKeyVariable_, 0, numberSets_ * sizeof(int)); |
245 | noCheck_ = -1; |
246 | infeasibilityWeight_ = 0.0; |
247 | } |
248 | |
249 | ClpGubMatrix::ClpGubMatrix (const CoinPackedMatrix & rhs) |
250 | : ClpPackedMatrix(rhs), |
251 | sumDualInfeasibilities_(0.0), |
252 | sumPrimalInfeasibilities_(0.0), |
253 | sumOfRelaxedDualInfeasibilities_(0.0), |
254 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
255 | infeasibilityWeight_(0.0), |
256 | start_(NULL), |
257 | end_(NULL), |
258 | lower_(NULL), |
259 | upper_(NULL), |
260 | status_(NULL), |
261 | saveStatus_(NULL), |
262 | savedKeyVariable_(NULL), |
263 | backward_(NULL), |
264 | backToPivotRow_(NULL), |
265 | changeCost_(NULL), |
266 | keyVariable_(NULL), |
267 | next_(NULL), |
268 | toIndex_(NULL), |
269 | fromIndex_(NULL), |
270 | model_(NULL), |
271 | numberDualInfeasibilities_(0), |
272 | numberPrimalInfeasibilities_(0), |
273 | noCheck_(-1), |
274 | numberSets_(0), |
275 | saveNumber_(0), |
276 | possiblePivotKey_(0), |
277 | gubSlackIn_(-1), |
278 | firstGub_(0), |
279 | lastGub_(0), |
280 | gubType_(0) |
281 | { |
282 | setType(16); |
283 | |
284 | } |
285 | |
286 | //------------------------------------------------------------------- |
287 | // Destructor |
288 | //------------------------------------------------------------------- |
289 | ClpGubMatrix::~ClpGubMatrix () |
290 | { |
291 | delete [] start_; |
292 | delete [] end_; |
293 | delete [] lower_; |
294 | delete [] upper_; |
295 | delete [] status_; |
296 | delete [] saveStatus_; |
297 | delete [] savedKeyVariable_; |
298 | delete [] backward_; |
299 | delete [] backToPivotRow_; |
300 | delete [] changeCost_; |
301 | delete [] keyVariable_; |
302 | delete [] next_; |
303 | delete [] toIndex_; |
304 | delete [] fromIndex_; |
305 | } |
306 | |
307 | //---------------------------------------------------------------- |
308 | // Assignment operator |
309 | //------------------------------------------------------------------- |
310 | ClpGubMatrix & |
311 | ClpGubMatrix::operator=(const ClpGubMatrix& rhs) |
312 | { |
313 | if (this != &rhs) { |
314 | ClpPackedMatrix::operator=(rhs); |
315 | delete [] start_; |
316 | delete [] end_; |
317 | delete [] lower_; |
318 | delete [] upper_; |
319 | delete [] status_; |
320 | delete [] saveStatus_; |
321 | delete [] savedKeyVariable_; |
322 | delete [] backward_; |
323 | delete [] backToPivotRow_; |
324 | delete [] changeCost_; |
325 | delete [] keyVariable_; |
326 | delete [] next_; |
327 | delete [] toIndex_; |
328 | delete [] fromIndex_; |
329 | numberSets_ = rhs.numberSets_; |
330 | saveNumber_ = rhs.saveNumber_; |
331 | possiblePivotKey_ = rhs.possiblePivotKey_; |
332 | gubSlackIn_ = rhs.gubSlackIn_; |
333 | start_ = ClpCopyOfArray(rhs.start_, numberSets_); |
334 | end_ = ClpCopyOfArray(rhs.end_, numberSets_); |
335 | lower_ = ClpCopyOfArray(rhs.lower_, numberSets_); |
336 | upper_ = ClpCopyOfArray(rhs.upper_, numberSets_); |
337 | status_ = ClpCopyOfArray(rhs.status_, numberSets_); |
338 | saveStatus_ = ClpCopyOfArray(rhs.saveStatus_, numberSets_); |
339 | savedKeyVariable_ = ClpCopyOfArray(rhs.savedKeyVariable_, numberSets_); |
340 | int numberColumns = getNumCols(); |
341 | backward_ = ClpCopyOfArray(rhs.backward_, numberColumns); |
342 | backToPivotRow_ = ClpCopyOfArray(rhs.backToPivotRow_, numberColumns); |
343 | changeCost_ = ClpCopyOfArray(rhs.changeCost_, getNumRows() + numberSets_); |
344 | fromIndex_ = ClpCopyOfArray(rhs.fromIndex_, getNumRows() + numberSets_ + 1); |
345 | keyVariable_ = ClpCopyOfArray(rhs.keyVariable_, numberSets_); |
346 | // find longest set |
347 | int * longest = new int[numberSets_]; |
348 | CoinZeroN(longest, numberSets_); |
349 | int j; |
350 | for (j = 0; j < numberColumns; j++) { |
351 | int iSet = backward_[j]; |
352 | if (iSet >= 0) |
353 | longest[iSet]++; |
354 | } |
355 | int length = 0; |
356 | for (j = 0; j < numberSets_; j++) |
357 | length = CoinMax(length, longest[j]); |
358 | next_ = ClpCopyOfArray(rhs.next_, numberColumns + numberSets_ + 2 * length); |
359 | toIndex_ = ClpCopyOfArray(rhs.toIndex_, numberSets_); |
360 | sumDualInfeasibilities_ = rhs. sumDualInfeasibilities_; |
361 | sumPrimalInfeasibilities_ = rhs.sumPrimalInfeasibilities_; |
362 | sumOfRelaxedDualInfeasibilities_ = rhs.sumOfRelaxedDualInfeasibilities_; |
363 | sumOfRelaxedPrimalInfeasibilities_ = rhs.sumOfRelaxedPrimalInfeasibilities_; |
364 | infeasibilityWeight_ = rhs.infeasibilityWeight_; |
365 | numberDualInfeasibilities_ = rhs.numberDualInfeasibilities_; |
366 | numberPrimalInfeasibilities_ = rhs.numberPrimalInfeasibilities_; |
367 | noCheck_ = rhs.noCheck_; |
368 | firstGub_ = rhs.firstGub_; |
369 | lastGub_ = rhs.lastGub_; |
370 | gubType_ = rhs.gubType_; |
371 | model_ = rhs.model_; |
372 | } |
373 | return *this; |
374 | } |
375 | //------------------------------------------------------------------- |
376 | // Clone |
377 | //------------------------------------------------------------------- |
378 | ClpMatrixBase * ClpGubMatrix::clone() const |
379 | { |
380 | return new ClpGubMatrix(*this); |
381 | } |
382 | /* Subset clone (without gaps). Duplicates are allowed |
383 | and order is as given */ |
384 | ClpMatrixBase * |
385 | ClpGubMatrix::subsetClone (int numberRows, const int * whichRows, |
386 | int numberColumns, |
387 | const int * whichColumns) const |
388 | { |
389 | return new ClpGubMatrix(*this, numberRows, whichRows, |
390 | numberColumns, whichColumns); |
391 | } |
392 | /* Returns a new matrix in reverse order without gaps |
393 | Is allowed to return NULL if doesn't want to have row copy */ |
394 | ClpMatrixBase * |
395 | ClpGubMatrix::reverseOrderedCopy() const |
396 | { |
397 | return NULL; |
398 | } |
399 | int |
400 | ClpGubMatrix::hiddenRows() const |
401 | { |
402 | return numberSets_; |
403 | } |
404 | /* Subset constructor (without gaps). Duplicates are allowed |
405 | and order is as given */ |
406 | ClpGubMatrix::ClpGubMatrix ( |
407 | const ClpGubMatrix & rhs, |
408 | int numberRows, const int * whichRows, |
409 | int numberColumns, const int * whichColumns) |
410 | : ClpPackedMatrix(rhs, numberRows, whichRows, numberColumns, whichColumns) |
411 | { |
412 | // Assuming no gub rows deleted |
413 | // We also assume all sets in same order |
414 | // Get array with backward pointers |
415 | int numberColumnsOld = rhs.matrix_->getNumCols(); |
416 | int * array = new int [ numberColumnsOld]; |
417 | int i; |
418 | for (i = 0; i < numberColumnsOld; i++) |
419 | array[i] = -1; |
420 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
421 | for (int j = start_[iSet]; j < end_[iSet]; j++) |
422 | array[j] = iSet; |
423 | } |
424 | numberSets_ = -1; |
425 | int lastSet = -1; |
426 | bool inSet = false; |
427 | for (i = 0; i < numberColumns; i++) { |
428 | int iColumn = whichColumns[i]; |
429 | int iSet = array[iColumn]; |
430 | if (iSet < 0) { |
431 | inSet = false; |
432 | } else { |
433 | if (!inSet) { |
434 | // start of new set but check okay |
435 | if (iSet <= lastSet) |
436 | throw CoinError("overlapping or non-monotonic sets" , "subset constructor" , "ClpGubMatrix" ); |
437 | lastSet = iSet; |
438 | numberSets_++; |
439 | start_[numberSets_] = i; |
440 | end_[numberSets_] = i + 1; |
441 | lower_[numberSets_] = lower_[iSet]; |
442 | upper_[numberSets_] = upper_[iSet]; |
443 | inSet = true; |
444 | } else { |
445 | if (iSet < lastSet) { |
446 | throw CoinError("overlapping or non-monotonic sets" , "subset constructor" , "ClpGubMatrix" ); |
447 | } else if (iSet == lastSet) { |
448 | end_[numberSets_] = i + 1; |
449 | } else { |
450 | // new set |
451 | lastSet = iSet; |
452 | numberSets_++; |
453 | start_[numberSets_] = i; |
454 | end_[numberSets_] = i + 1; |
455 | lower_[numberSets_] = lower_[iSet]; |
456 | upper_[numberSets_] = upper_[iSet]; |
457 | } |
458 | } |
459 | } |
460 | } |
461 | delete [] array; |
462 | numberSets_++; // adjust |
463 | // Find type of gub |
464 | firstGub_ = numberColumns + 1; |
465 | lastGub_ = -1; |
466 | for (i = 0; i < numberColumns; i++) { |
467 | if (backward_[i] >= 0) { |
468 | firstGub_ = CoinMin(firstGub_, i); |
469 | lastGub_ = CoinMax(lastGub_, i); |
470 | } |
471 | } |
472 | if (lastGub_ > 0) |
473 | lastGub_++; |
474 | gubType_ = 0; |
475 | for (i = firstGub_; i < lastGub_; i++) { |
476 | if (backward_[i] < 0) { |
477 | gubType_ = 1; |
478 | break; |
479 | } |
480 | } |
481 | |
482 | // Make sure key is feasible if only key in set |
483 | } |
484 | ClpGubMatrix::ClpGubMatrix ( |
485 | const CoinPackedMatrix & rhs, |
486 | int numberRows, const int * whichRows, |
487 | int numberColumns, const int * whichColumns) |
488 | : ClpPackedMatrix(rhs, numberRows, whichRows, numberColumns, whichColumns), |
489 | sumDualInfeasibilities_(0.0), |
490 | sumPrimalInfeasibilities_(0.0), |
491 | sumOfRelaxedDualInfeasibilities_(0.0), |
492 | sumOfRelaxedPrimalInfeasibilities_(0.0), |
493 | start_(NULL), |
494 | end_(NULL), |
495 | lower_(NULL), |
496 | upper_(NULL), |
497 | backward_(NULL), |
498 | backToPivotRow_(NULL), |
499 | changeCost_(NULL), |
500 | keyVariable_(NULL), |
501 | next_(NULL), |
502 | toIndex_(NULL), |
503 | fromIndex_(NULL), |
504 | numberDualInfeasibilities_(0), |
505 | numberPrimalInfeasibilities_(0), |
506 | numberSets_(0), |
507 | saveNumber_(0), |
508 | possiblePivotKey_(0), |
509 | gubSlackIn_(-1), |
510 | firstGub_(0), |
511 | lastGub_(0), |
512 | gubType_(0) |
513 | { |
514 | setType(16); |
515 | } |
516 | /* Return <code>x * A + y</code> in <code>z</code>. |
517 | Squashes small elements and knows about ClpSimplex */ |
518 | void |
519 | ClpGubMatrix::transposeTimes(const ClpSimplex * model, double scalar, |
520 | const CoinIndexedVector * rowArray, |
521 | CoinIndexedVector * y, |
522 | CoinIndexedVector * columnArray) const |
523 | { |
524 | columnArray->clear(); |
525 | double * pi = rowArray->denseVector(); |
526 | int numberNonZero = 0; |
527 | int * index = columnArray->getIndices(); |
528 | double * array = columnArray->denseVector(); |
529 | int numberInRowArray = rowArray->getNumElements(); |
530 | // maybe I need one in OsiSimplex |
531 | double zeroTolerance = model->zeroTolerance(); |
532 | int numberRows = model->numberRows(); |
533 | ClpPackedMatrix* rowCopy = |
534 | dynamic_cast< ClpPackedMatrix*>(model->rowCopy()); |
535 | bool packed = rowArray->packedMode(); |
536 | double factor = 0.3; |
537 | // We may not want to do by row if there may be cache problems |
538 | int numberColumns = model->numberColumns(); |
539 | // It would be nice to find L2 cache size - for moment 512K |
540 | // Be slightly optimistic |
541 | if (numberColumns * sizeof(double) > 1000000) { |
542 | if (numberRows * 10 < numberColumns) |
543 | factor = 0.1; |
544 | else if (numberRows * 4 < numberColumns) |
545 | factor = 0.15; |
546 | else if (numberRows * 2 < numberColumns) |
547 | factor = 0.2; |
548 | //if (model->numberIterations()%50==0) |
549 | //printf("%d nonzero\n",numberInRowArray); |
550 | } |
551 | // reduce for gub |
552 | factor *= 0.5; |
553 | assert (!y->getNumElements()); |
554 | if (numberInRowArray > factor * numberRows || !rowCopy) { |
555 | // do by column |
556 | int iColumn; |
557 | // get matrix data pointers |
558 | const int * row = matrix_->getIndices(); |
559 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
560 | const int * columnLength = matrix_->getVectorLengths(); |
561 | const double * elementByColumn = matrix_->getElements(); |
562 | const double * rowScale = model->rowScale(); |
563 | int numberColumns = model->numberColumns(); |
564 | int iSet = -1; |
565 | double djMod = 0.0; |
566 | if (packed) { |
567 | // need to expand pi into y |
568 | assert(y->capacity() >= numberRows); |
569 | double * piOld = pi; |
570 | pi = y->denseVector(); |
571 | const int * whichRow = rowArray->getIndices(); |
572 | int i; |
573 | if (!rowScale) { |
574 | // modify pi so can collapse to one loop |
575 | for (i = 0; i < numberInRowArray; i++) { |
576 | int iRow = whichRow[i]; |
577 | pi[iRow] = scalar * piOld[i]; |
578 | } |
579 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
580 | if (backward_[iColumn] != iSet) { |
581 | // get pi on gub row |
582 | iSet = backward_[iColumn]; |
583 | if (iSet >= 0) { |
584 | int iBasic = keyVariable_[iSet]; |
585 | if (iBasic < numberColumns) { |
586 | // get dj without |
587 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
588 | djMod = 0.0; |
589 | for (CoinBigIndex j = columnStart[iBasic]; |
590 | j < columnStart[iBasic] + columnLength[iBasic]; j++) { |
591 | int jRow = row[j]; |
592 | djMod -= pi[jRow] * elementByColumn[j]; |
593 | } |
594 | } else { |
595 | djMod = 0.0; |
596 | } |
597 | } else { |
598 | djMod = 0.0; |
599 | } |
600 | } |
601 | double value = -djMod; |
602 | CoinBigIndex j; |
603 | for (j = columnStart[iColumn]; |
604 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
605 | int iRow = row[j]; |
606 | value += pi[iRow] * elementByColumn[j]; |
607 | } |
608 | if (fabs(value) > zeroTolerance) { |
609 | array[numberNonZero] = value; |
610 | index[numberNonZero++] = iColumn; |
611 | } |
612 | } |
613 | } else { |
614 | // scaled |
615 | // modify pi so can collapse to one loop |
616 | for (i = 0; i < numberInRowArray; i++) { |
617 | int iRow = whichRow[i]; |
618 | pi[iRow] = scalar * piOld[i] * rowScale[iRow]; |
619 | } |
620 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
621 | if (backward_[iColumn] != iSet) { |
622 | // get pi on gub row |
623 | iSet = backward_[iColumn]; |
624 | if (iSet >= 0) { |
625 | int iBasic = keyVariable_[iSet]; |
626 | if (iBasic < numberColumns) { |
627 | // get dj without |
628 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
629 | djMod = 0.0; |
630 | // scaled |
631 | for (CoinBigIndex j = columnStart[iBasic]; |
632 | j < columnStart[iBasic] + columnLength[iBasic]; j++) { |
633 | int jRow = row[j]; |
634 | djMod -= pi[jRow] * elementByColumn[j] * rowScale[jRow]; |
635 | } |
636 | } else { |
637 | djMod = 0.0; |
638 | } |
639 | } else { |
640 | djMod = 0.0; |
641 | } |
642 | } |
643 | double value = -djMod; |
644 | CoinBigIndex j; |
645 | const double * columnScale = model->columnScale(); |
646 | for (j = columnStart[iColumn]; |
647 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
648 | int iRow = row[j]; |
649 | value += pi[iRow] * elementByColumn[j]; |
650 | } |
651 | value *= columnScale[iColumn]; |
652 | if (fabs(value) > zeroTolerance) { |
653 | array[numberNonZero] = value; |
654 | index[numberNonZero++] = iColumn; |
655 | } |
656 | } |
657 | } |
658 | // zero out |
659 | for (i = 0; i < numberInRowArray; i++) { |
660 | int iRow = whichRow[i]; |
661 | pi[iRow] = 0.0; |
662 | } |
663 | } else { |
664 | // code later |
665 | assert (packed); |
666 | if (!rowScale) { |
667 | if (scalar == -1.0) { |
668 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
669 | double value = 0.0; |
670 | CoinBigIndex j; |
671 | for (j = columnStart[iColumn]; |
672 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
673 | int iRow = row[j]; |
674 | value += pi[iRow] * elementByColumn[j]; |
675 | } |
676 | if (fabs(value) > zeroTolerance) { |
677 | index[numberNonZero++] = iColumn; |
678 | array[iColumn] = -value; |
679 | } |
680 | } |
681 | } else if (scalar == 1.0) { |
682 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
683 | double value = 0.0; |
684 | CoinBigIndex j; |
685 | for (j = columnStart[iColumn]; |
686 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
687 | int iRow = row[j]; |
688 | value += pi[iRow] * elementByColumn[j]; |
689 | } |
690 | if (fabs(value) > zeroTolerance) { |
691 | index[numberNonZero++] = iColumn; |
692 | array[iColumn] = value; |
693 | } |
694 | } |
695 | } else { |
696 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
697 | double value = 0.0; |
698 | CoinBigIndex j; |
699 | for (j = columnStart[iColumn]; |
700 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
701 | int iRow = row[j]; |
702 | value += pi[iRow] * elementByColumn[j]; |
703 | } |
704 | value *= scalar; |
705 | if (fabs(value) > zeroTolerance) { |
706 | index[numberNonZero++] = iColumn; |
707 | array[iColumn] = value; |
708 | } |
709 | } |
710 | } |
711 | } else { |
712 | // scaled |
713 | if (scalar == -1.0) { |
714 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
715 | double value = 0.0; |
716 | CoinBigIndex j; |
717 | const double * columnScale = model->columnScale(); |
718 | for (j = columnStart[iColumn]; |
719 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
720 | int iRow = row[j]; |
721 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
722 | } |
723 | value *= columnScale[iColumn]; |
724 | if (fabs(value) > zeroTolerance) { |
725 | index[numberNonZero++] = iColumn; |
726 | array[iColumn] = -value; |
727 | } |
728 | } |
729 | } else if (scalar == 1.0) { |
730 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
731 | double value = 0.0; |
732 | CoinBigIndex j; |
733 | const double * columnScale = model->columnScale(); |
734 | for (j = columnStart[iColumn]; |
735 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
736 | int iRow = row[j]; |
737 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
738 | } |
739 | value *= columnScale[iColumn]; |
740 | if (fabs(value) > zeroTolerance) { |
741 | index[numberNonZero++] = iColumn; |
742 | array[iColumn] = value; |
743 | } |
744 | } |
745 | } else { |
746 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
747 | double value = 0.0; |
748 | CoinBigIndex j; |
749 | const double * columnScale = model->columnScale(); |
750 | for (j = columnStart[iColumn]; |
751 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
752 | int iRow = row[j]; |
753 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
754 | } |
755 | value *= scalar * columnScale[iColumn]; |
756 | if (fabs(value) > zeroTolerance) { |
757 | index[numberNonZero++] = iColumn; |
758 | array[iColumn] = value; |
759 | } |
760 | } |
761 | } |
762 | } |
763 | } |
764 | columnArray->setNumElements(numberNonZero); |
765 | y->setNumElements(0); |
766 | } else { |
767 | // do by row |
768 | transposeTimesByRow(model, scalar, rowArray, y, columnArray); |
769 | } |
770 | if (packed) |
771 | columnArray->setPackedMode(true); |
772 | if (0) { |
773 | columnArray->checkClean(); |
774 | int numberNonZero = columnArray->getNumElements(); |
775 | int * index = columnArray->getIndices(); |
776 | double * array = columnArray->denseVector(); |
777 | int i; |
778 | for (i = 0; i < numberNonZero; i++) { |
779 | int j = index[i]; |
780 | double value; |
781 | if (packed) |
782 | value = array[i]; |
783 | else |
784 | value = array[j]; |
785 | printf("Ti %d %d %g\n" , i, j, value); |
786 | } |
787 | } |
788 | } |
789 | /* Return <code>x * A + y</code> in <code>z</code>. |
790 | Squashes small elements and knows about ClpSimplex */ |
791 | void |
792 | ClpGubMatrix::transposeTimesByRow(const ClpSimplex * model, double scalar, |
793 | const CoinIndexedVector * rowArray, |
794 | CoinIndexedVector * y, |
795 | CoinIndexedVector * columnArray) const |
796 | { |
797 | // Do packed part |
798 | ClpPackedMatrix::transposeTimesByRow(model, scalar, rowArray, y, columnArray); |
799 | if (numberSets_) { |
800 | /* what we need to do is do by row as normal but get list of sets touched |
801 | and then update those ones */ |
802 | abort(); |
803 | } |
804 | } |
805 | /* Return <code>x *A in <code>z</code> but |
806 | just for indices in y. */ |
807 | void |
808 | ClpGubMatrix::subsetTransposeTimes(const ClpSimplex * model, |
809 | const CoinIndexedVector * rowArray, |
810 | const CoinIndexedVector * y, |
811 | CoinIndexedVector * columnArray) const |
812 | { |
813 | columnArray->clear(); |
814 | double * pi = rowArray->denseVector(); |
815 | double * array = columnArray->denseVector(); |
816 | int jColumn; |
817 | // get matrix data pointers |
818 | const int * row = matrix_->getIndices(); |
819 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
820 | const int * columnLength = matrix_->getVectorLengths(); |
821 | const double * elementByColumn = matrix_->getElements(); |
822 | const double * rowScale = model->rowScale(); |
823 | int numberToDo = y->getNumElements(); |
824 | const int * which = y->getIndices(); |
825 | assert (!rowArray->packedMode()); |
826 | columnArray->setPacked(); |
827 | int numberTouched = 0; |
828 | if (!rowScale) { |
829 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
830 | int iColumn = which[jColumn]; |
831 | double value = 0.0; |
832 | CoinBigIndex j; |
833 | for (j = columnStart[iColumn]; |
834 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
835 | int iRow = row[j]; |
836 | value += pi[iRow] * elementByColumn[j]; |
837 | } |
838 | array[jColumn] = value; |
839 | if (value) { |
840 | int iSet = backward_[iColumn]; |
841 | if (iSet >= 0) { |
842 | int iBasic = keyVariable_[iSet]; |
843 | if (iBasic == iColumn) { |
844 | toIndex_[iSet] = jColumn; |
845 | fromIndex_[numberTouched++] = iSet; |
846 | } |
847 | } |
848 | } |
849 | } |
850 | } else { |
851 | // scaled |
852 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
853 | int iColumn = which[jColumn]; |
854 | double value = 0.0; |
855 | CoinBigIndex j; |
856 | const double * columnScale = model->columnScale(); |
857 | for (j = columnStart[iColumn]; |
858 | j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
859 | int iRow = row[j]; |
860 | value += pi[iRow] * elementByColumn[j] * rowScale[iRow]; |
861 | } |
862 | value *= columnScale[iColumn]; |
863 | array[jColumn] = value; |
864 | if (value) { |
865 | int iSet = backward_[iColumn]; |
866 | if (iSet >= 0) { |
867 | int iBasic = keyVariable_[iSet]; |
868 | if (iBasic == iColumn) { |
869 | toIndex_[iSet] = jColumn; |
870 | fromIndex_[numberTouched++] = iSet; |
871 | } |
872 | } |
873 | } |
874 | } |
875 | } |
876 | // adjust djs |
877 | for (jColumn = 0; jColumn < numberToDo; jColumn++) { |
878 | int iColumn = which[jColumn]; |
879 | int iSet = backward_[iColumn]; |
880 | if (iSet >= 0) { |
881 | int kColumn = toIndex_[iSet]; |
882 | if (kColumn >= 0) |
883 | array[jColumn] -= array[kColumn]; |
884 | } |
885 | } |
886 | // and clear basic |
887 | for (int j = 0; j < numberTouched; j++) { |
888 | int iSet = fromIndex_[j]; |
889 | int kColumn = toIndex_[iSet]; |
890 | toIndex_[iSet] = -1; |
891 | array[kColumn] = 0.0; |
892 | } |
893 | } |
894 | /// returns number of elements in column part of basis, |
895 | CoinBigIndex |
896 | ClpGubMatrix::countBasis(const int * whichColumn, |
897 | int & numberColumnBasic) |
898 | { |
899 | int i; |
900 | int numberColumns = getNumCols(); |
901 | const int * columnLength = matrix_->getVectorLengths(); |
902 | int numberRows = getNumRows(); |
903 | int numberBasic = 0; |
904 | CoinBigIndex numberElements = 0; |
905 | int lastSet = -1; |
906 | int key = -1; |
907 | int keyLength = -1; |
908 | double * work = new double[numberRows]; |
909 | CoinZeroN(work, numberRows); |
910 | char * mark = new char[numberRows]; |
911 | CoinZeroN(mark, numberRows); |
912 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
913 | const int * row = matrix_->getIndices(); |
914 | const double * elementByColumn = matrix_->getElements(); |
915 | //ClpGubDynamicMatrix* gubx = |
916 | //dynamic_cast< ClpGubDynamicMatrix*>(this); |
917 | //int * id = gubx->id(); |
918 | // just count |
919 | for (i = 0; i < numberColumnBasic; i++) { |
920 | int iColumn = whichColumn[i]; |
921 | int iSet = backward_[iColumn]; |
922 | int length = columnLength[iColumn]; |
923 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
924 | numberElements += length; |
925 | numberBasic++; |
926 | //printf("non gub - set %d id %d (column %d) nel %d\n",iSet,id[iColumn-20],iColumn,length); |
927 | } else { |
928 | // in gub set |
929 | if (iColumn != keyVariable_[iSet]) { |
930 | numberBasic++; |
931 | CoinBigIndex j; |
932 | // not key |
933 | if (lastSet < iSet) { |
934 | // erase work |
935 | if (key >= 0) { |
936 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) |
937 | work[row[j]] = 0.0; |
938 | } |
939 | key = keyVariable_[iSet]; |
940 | lastSet = iSet; |
941 | keyLength = columnLength[key]; |
942 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) |
943 | work[row[j]] = elementByColumn[j]; |
944 | } |
945 | int = keyLength; |
946 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
947 | int iRow = row[j]; |
948 | double keyValue = work[iRow]; |
949 | double value = elementByColumn[j]; |
950 | if (!keyValue) { |
951 | if (fabs(value) > 1.0e-20) |
952 | extra++; |
953 | } else { |
954 | value -= keyValue; |
955 | if (fabs(value) <= 1.0e-20) |
956 | extra--; |
957 | } |
958 | } |
959 | numberElements += extra; |
960 | //printf("gub - set %d id %d (column %d) nel %d\n",iSet,id[iColumn-20],iColumn,extra); |
961 | } |
962 | } |
963 | } |
964 | delete [] work; |
965 | delete [] mark; |
966 | // update number of column basic |
967 | numberColumnBasic = numberBasic; |
968 | return numberElements; |
969 | } |
970 | void |
971 | ClpGubMatrix::fillBasis(ClpSimplex * model, |
972 | const int * whichColumn, |
973 | int & numberColumnBasic, |
974 | int * indexRowU, int * start, |
975 | int * rowCount, int * columnCount, |
976 | CoinFactorizationDouble * elementU) |
977 | { |
978 | int i; |
979 | int numberColumns = getNumCols(); |
980 | const int * columnLength = matrix_->getVectorLengths(); |
981 | int numberRows = getNumRows(); |
982 | assert (next_ || !elementU) ; |
983 | CoinBigIndex numberElements = start[0]; |
984 | int lastSet = -1; |
985 | int key = -1; |
986 | int keyLength = -1; |
987 | double * work = new double[numberRows]; |
988 | CoinZeroN(work, numberRows); |
989 | char * mark = new char[numberRows]; |
990 | CoinZeroN(mark, numberRows); |
991 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
992 | const int * row = matrix_->getIndices(); |
993 | const double * elementByColumn = matrix_->getElements(); |
994 | const double * rowScale = model->rowScale(); |
995 | int numberBasic = 0; |
996 | if (0) { |
997 | printf("%d basiccolumns\n" , numberColumnBasic); |
998 | int i; |
999 | for (i = 0; i < numberSets_; i++) { |
1000 | int k = keyVariable_[i]; |
1001 | if (k < numberColumns) { |
1002 | printf("key %d on set %d, %d elements\n" , k, i, columnStart[k+1] - columnStart[k]); |
1003 | for (int j = columnStart[k]; j < columnStart[k+1]; j++) |
1004 | printf("row %d el %g\n" , row[j], elementByColumn[j]); |
1005 | } else { |
1006 | printf("slack key on set %d\n" , i); |
1007 | } |
1008 | } |
1009 | } |
1010 | // fill |
1011 | if (!rowScale) { |
1012 | // no scaling |
1013 | for (i = 0; i < numberColumnBasic; i++) { |
1014 | int iColumn = whichColumn[i]; |
1015 | int iSet = backward_[iColumn]; |
1016 | int length = columnLength[iColumn]; |
1017 | if (0) { |
1018 | int k = iColumn; |
1019 | printf("column %d in set %d, %d elements\n" , k, iSet, columnStart[k+1] - columnStart[k]); |
1020 | for (int j = columnStart[k]; j < columnStart[k+1]; j++) |
1021 | printf("row %d el %g\n" , row[j], elementByColumn[j]); |
1022 | } |
1023 | CoinBigIndex j; |
1024 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
1025 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
1026 | double value = elementByColumn[j]; |
1027 | if (fabs(value) > 1.0e-20) { |
1028 | int iRow = row[j]; |
1029 | indexRowU[numberElements] = iRow; |
1030 | rowCount[iRow]++; |
1031 | elementU[numberElements++] = value; |
1032 | } |
1033 | } |
1034 | // end of column |
1035 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
1036 | numberBasic++; |
1037 | start[numberBasic] = numberElements; |
1038 | } else { |
1039 | // in gub set |
1040 | if (iColumn != keyVariable_[iSet]) { |
1041 | // not key |
1042 | if (lastSet != iSet) { |
1043 | // erase work |
1044 | if (key >= 0) { |
1045 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1046 | int iRow = row[j]; |
1047 | work[iRow] = 0.0; |
1048 | mark[iRow] = 0; |
1049 | } |
1050 | } |
1051 | key = keyVariable_[iSet]; |
1052 | lastSet = iSet; |
1053 | keyLength = columnLength[key]; |
1054 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1055 | int iRow = row[j]; |
1056 | work[iRow] = elementByColumn[j]; |
1057 | mark[iRow] = 1; |
1058 | } |
1059 | } |
1060 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
1061 | int iRow = row[j]; |
1062 | double value = elementByColumn[j]; |
1063 | if (mark[iRow]) { |
1064 | mark[iRow] = 0; |
1065 | double keyValue = work[iRow]; |
1066 | value -= keyValue; |
1067 | } |
1068 | if (fabs(value) > 1.0e-20) { |
1069 | indexRowU[numberElements] = iRow; |
1070 | rowCount[iRow]++; |
1071 | elementU[numberElements++] = value; |
1072 | } |
1073 | } |
1074 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1075 | int iRow = row[j]; |
1076 | if (mark[iRow]) { |
1077 | double value = -work[iRow]; |
1078 | if (fabs(value) > 1.0e-20) { |
1079 | indexRowU[numberElements] = iRow; |
1080 | rowCount[iRow]++; |
1081 | elementU[numberElements++] = value; |
1082 | } |
1083 | } else { |
1084 | // just put back mark |
1085 | mark[iRow] = 1; |
1086 | } |
1087 | } |
1088 | // end of column |
1089 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
1090 | numberBasic++; |
1091 | start[numberBasic] = numberElements; |
1092 | } |
1093 | } |
1094 | } |
1095 | } else { |
1096 | // scaling |
1097 | const double * columnScale = model->columnScale(); |
1098 | for (i = 0; i < numberColumnBasic; i++) { |
1099 | int iColumn = whichColumn[i]; |
1100 | int iSet = backward_[iColumn]; |
1101 | int length = columnLength[iColumn]; |
1102 | CoinBigIndex j; |
1103 | if (iSet < 0 || keyVariable_[iSet] >= numberColumns) { |
1104 | double scale = columnScale[iColumn]; |
1105 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + columnLength[iColumn]; j++) { |
1106 | int iRow = row[j]; |
1107 | double value = elementByColumn[j] * scale * rowScale[iRow]; |
1108 | if (fabs(value) > 1.0e-20) { |
1109 | indexRowU[numberElements] = iRow; |
1110 | rowCount[iRow]++; |
1111 | elementU[numberElements++] = value; |
1112 | } |
1113 | } |
1114 | // end of column |
1115 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
1116 | numberBasic++; |
1117 | start[numberBasic] = numberElements; |
1118 | } else { |
1119 | // in gub set |
1120 | if (iColumn != keyVariable_[iSet]) { |
1121 | double scale = columnScale[iColumn]; |
1122 | // not key |
1123 | if (lastSet < iSet) { |
1124 | // erase work |
1125 | if (key >= 0) { |
1126 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1127 | int iRow = row[j]; |
1128 | work[iRow] = 0.0; |
1129 | mark[iRow] = 0; |
1130 | } |
1131 | } |
1132 | key = keyVariable_[iSet]; |
1133 | lastSet = iSet; |
1134 | keyLength = columnLength[key]; |
1135 | double scale = columnScale[key]; |
1136 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1137 | int iRow = row[j]; |
1138 | work[iRow] = elementByColumn[j] * scale * rowScale[iRow]; |
1139 | mark[iRow] = 1; |
1140 | } |
1141 | } |
1142 | for (j = columnStart[iColumn]; j < columnStart[iColumn] + length; j++) { |
1143 | int iRow = row[j]; |
1144 | double value = elementByColumn[j] * scale * rowScale[iRow]; |
1145 | if (mark[iRow]) { |
1146 | mark[iRow] = 0; |
1147 | double keyValue = work[iRow]; |
1148 | value -= keyValue; |
1149 | } |
1150 | if (fabs(value) > 1.0e-20) { |
1151 | indexRowU[numberElements] = iRow; |
1152 | rowCount[iRow]++; |
1153 | elementU[numberElements++] = value; |
1154 | } |
1155 | } |
1156 | for (j = columnStart[key]; j < columnStart[key] + keyLength; j++) { |
1157 | int iRow = row[j]; |
1158 | if (mark[iRow]) { |
1159 | double value = -work[iRow]; |
1160 | if (fabs(value) > 1.0e-20) { |
1161 | indexRowU[numberElements] = iRow; |
1162 | rowCount[iRow]++; |
1163 | elementU[numberElements++] = value; |
1164 | } |
1165 | } else { |
1166 | // just put back mark |
1167 | mark[iRow] = 1; |
1168 | } |
1169 | } |
1170 | // end of column |
1171 | columnCount[numberBasic] = numberElements - start[numberBasic]; |
1172 | numberBasic++; |
1173 | start[numberBasic] = numberElements; |
1174 | } |
1175 | } |
1176 | } |
1177 | } |
1178 | delete [] work; |
1179 | delete [] mark; |
1180 | // update number of column basic |
1181 | numberColumnBasic = numberBasic; |
1182 | } |
1183 | /* Unpacks a column into an CoinIndexedvector |
1184 | */ |
1185 | void |
1186 | ClpGubMatrix::unpack(const ClpSimplex * model, CoinIndexedVector * rowArray, |
1187 | int iColumn) const |
1188 | { |
1189 | assert (iColumn < model->numberColumns()); |
1190 | // Do packed part |
1191 | ClpPackedMatrix::unpack(model, rowArray, iColumn); |
1192 | int iSet = backward_[iColumn]; |
1193 | if (iSet >= 0) { |
1194 | int iBasic = keyVariable_[iSet]; |
1195 | if (iBasic < model->numberColumns()) { |
1196 | add(model, rowArray, iBasic, -1.0); |
1197 | } |
1198 | } |
1199 | } |
1200 | /* Unpacks a column into a CoinIndexedVector |
1201 | ** in packed format |
1202 | Note that model is NOT const. Bounds and objective could |
1203 | be modified if doing column generation (just for this variable) */ |
1204 | void |
1205 | ClpGubMatrix::unpackPacked(ClpSimplex * model, |
1206 | CoinIndexedVector * rowArray, |
1207 | int iColumn) const |
1208 | { |
1209 | int numberColumns = model->numberColumns(); |
1210 | if (iColumn < numberColumns) { |
1211 | // Do packed part |
1212 | ClpPackedMatrix::unpackPacked(model, rowArray, iColumn); |
1213 | int iSet = backward_[iColumn]; |
1214 | if (iSet >= 0) { |
1215 | // columns are in order |
1216 | int iBasic = keyVariable_[iSet]; |
1217 | if (iBasic < numberColumns) { |
1218 | int number = rowArray->getNumElements(); |
1219 | const double * rowScale = model->rowScale(); |
1220 | const int * row = matrix_->getIndices(); |
1221 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
1222 | const int * columnLength = matrix_->getVectorLengths(); |
1223 | const double * elementByColumn = matrix_->getElements(); |
1224 | double * array = rowArray->denseVector(); |
1225 | int * index = rowArray->getIndices(); |
1226 | CoinBigIndex i; |
1227 | int numberOld = number; |
1228 | int lastIndex = 0; |
1229 | int next = index[lastIndex]; |
1230 | if (!rowScale) { |
1231 | for (i = columnStart[iBasic]; |
1232 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
1233 | int iRow = row[i]; |
1234 | while (iRow > next) { |
1235 | lastIndex++; |
1236 | if (lastIndex == numberOld) |
1237 | next = matrix_->getNumRows(); |
1238 | else |
1239 | next = index[lastIndex]; |
1240 | } |
1241 | if (iRow < next) { |
1242 | array[number] = -elementByColumn[i]; |
1243 | index[number++] = iRow; |
1244 | } else { |
1245 | assert (iRow == next); |
1246 | array[lastIndex] -= elementByColumn[i]; |
1247 | if (!array[lastIndex]) |
1248 | array[lastIndex] = 1.0e-100; |
1249 | } |
1250 | } |
1251 | } else { |
1252 | // apply scaling |
1253 | double scale = model->columnScale()[iBasic]; |
1254 | for (i = columnStart[iBasic]; |
1255 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
1256 | int iRow = row[i]; |
1257 | while (iRow > next) { |
1258 | lastIndex++; |
1259 | if (lastIndex == numberOld) |
1260 | next = matrix_->getNumRows(); |
1261 | else |
1262 | next = index[lastIndex]; |
1263 | } |
1264 | if (iRow < next) { |
1265 | array[number] = -elementByColumn[i] * scale * rowScale[iRow]; |
1266 | index[number++] = iRow; |
1267 | } else { |
1268 | assert (iRow == next); |
1269 | array[lastIndex] -= elementByColumn[i] * scale * rowScale[iRow]; |
1270 | if (!array[lastIndex]) |
1271 | array[lastIndex] = 1.0e-100; |
1272 | } |
1273 | } |
1274 | } |
1275 | rowArray->setNumElements(number); |
1276 | } |
1277 | } |
1278 | } else { |
1279 | // key slack entering |
1280 | int iBasic = keyVariable_[gubSlackIn_]; |
1281 | assert (iBasic < numberColumns); |
1282 | int number = 0; |
1283 | const double * rowScale = model->rowScale(); |
1284 | const int * row = matrix_->getIndices(); |
1285 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
1286 | const int * columnLength = matrix_->getVectorLengths(); |
1287 | const double * elementByColumn = matrix_->getElements(); |
1288 | double * array = rowArray->denseVector(); |
1289 | int * index = rowArray->getIndices(); |
1290 | CoinBigIndex i; |
1291 | if (!rowScale) { |
1292 | for (i = columnStart[iBasic]; |
1293 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
1294 | int iRow = row[i]; |
1295 | array[number] = elementByColumn[i]; |
1296 | index[number++] = iRow; |
1297 | } |
1298 | } else { |
1299 | // apply scaling |
1300 | double scale = model->columnScale()[iBasic]; |
1301 | for (i = columnStart[iBasic]; |
1302 | i < columnStart[iBasic] + columnLength[iBasic]; i++) { |
1303 | int iRow = row[i]; |
1304 | array[number] = elementByColumn[i] * scale * rowScale[iRow]; |
1305 | index[number++] = iRow; |
1306 | } |
1307 | } |
1308 | rowArray->setNumElements(number); |
1309 | rowArray->setPacked(); |
1310 | } |
1311 | } |
1312 | /* Adds multiple of a column into an CoinIndexedvector |
1313 | You can use quickAdd to add to vector */ |
1314 | void |
1315 | ClpGubMatrix::add(const ClpSimplex * model, CoinIndexedVector * rowArray, |
1316 | int iColumn, double multiplier) const |
1317 | { |
1318 | assert (iColumn < model->numberColumns()); |
1319 | // Do packed part |
1320 | ClpPackedMatrix::add(model, rowArray, iColumn, multiplier); |
1321 | int iSet = backward_[iColumn]; |
1322 | if (iSet >= 0 && iColumn != keyVariable_[iSet]) { |
1323 | ClpPackedMatrix::add(model, rowArray, keyVariable_[iSet], -multiplier); |
1324 | } |
1325 | } |
1326 | /* Adds multiple of a column into an array */ |
1327 | void |
1328 | ClpGubMatrix::add(const ClpSimplex * model, double * array, |
1329 | int iColumn, double multiplier) const |
1330 | { |
1331 | assert (iColumn < model->numberColumns()); |
1332 | // Do packed part |
1333 | ClpPackedMatrix::add(model, array, iColumn, multiplier); |
1334 | if (iColumn < model->numberColumns()) { |
1335 | int iSet = backward_[iColumn]; |
1336 | if (iSet >= 0 && iColumn != keyVariable_[iSet] && keyVariable_[iSet] < model->numberColumns()) { |
1337 | ClpPackedMatrix::add(model, array, keyVariable_[iSet], -multiplier); |
1338 | } |
1339 | } |
1340 | } |
1341 | // Partial pricing |
1342 | void |
1343 | ClpGubMatrix::partialPricing(ClpSimplex * model, double startFraction, double endFraction, |
1344 | int & bestSequence, int & numberWanted) |
1345 | { |
1346 | numberWanted = currentWanted_; |
1347 | if (numberSets_) { |
1348 | // Do packed part before gub |
1349 | int numberColumns = matrix_->getNumCols(); |
1350 | double ratio = static_cast<double> (firstGub_) / |
1351 | static_cast<double> (numberColumns); |
1352 | ClpPackedMatrix::partialPricing(model, startFraction * ratio, |
1353 | endFraction * ratio, bestSequence, numberWanted); |
1354 | if (numberWanted || minimumGoodReducedCosts_ < -1) { |
1355 | // do gub |
1356 | const double * element = matrix_->getElements(); |
1357 | const int * row = matrix_->getIndices(); |
1358 | const CoinBigIndex * startColumn = matrix_->getVectorStarts(); |
1359 | const int * length = matrix_->getVectorLengths(); |
1360 | const double * rowScale = model->rowScale(); |
1361 | const double * columnScale = model->columnScale(); |
1362 | int iSequence; |
1363 | CoinBigIndex j; |
1364 | double tolerance = model->currentDualTolerance(); |
1365 | double * reducedCost = model->djRegion(); |
1366 | const double * duals = model->dualRowSolution(); |
1367 | const double * cost = model->costRegion(); |
1368 | double bestDj; |
1369 | int numberColumns = model->numberColumns(); |
1370 | int numberRows = model->numberRows(); |
1371 | if (bestSequence >= 0) |
1372 | bestDj = fabs(this->reducedCost(model, bestSequence)); |
1373 | else |
1374 | bestDj = tolerance; |
1375 | int sequenceOut = model->sequenceOut(); |
1376 | int saveSequence = bestSequence; |
1377 | int startG = firstGub_ + static_cast<int> (startFraction * (lastGub_ - firstGub_)); |
1378 | int endG = firstGub_ + static_cast<int> (endFraction * (lastGub_ - firstGub_)); |
1379 | endG = CoinMin(lastGub_, endG + 1); |
1380 | // If nothing found yet can go all the way to end |
1381 | int endAll = endG; |
1382 | if (bestSequence < 0 && !startG) |
1383 | endAll = lastGub_; |
1384 | int minSet = minimumObjectsScan_ < 0 ? 5 : minimumObjectsScan_; |
1385 | int minNeg = minimumGoodReducedCosts_ == -1 ? 5 : minimumGoodReducedCosts_; |
1386 | int nSets = 0; |
1387 | int iSet = -1; |
1388 | double djMod = 0.0; |
1389 | double infeasibilityCost = model->infeasibilityCost(); |
1390 | if (rowScale) { |
1391 | double bestDjMod = 0.0; |
1392 | // scaled |
1393 | for (iSequence = startG; iSequence < endAll; iSequence++) { |
1394 | if (numberWanted + minNeg < originalWanted_ && nSets > minSet) { |
1395 | // give up |
1396 | numberWanted = 0; |
1397 | break; |
1398 | } else if (iSequence == endG && bestSequence >= 0) { |
1399 | break; |
1400 | } |
1401 | if (backward_[iSequence] != iSet) { |
1402 | // get pi on gub row |
1403 | iSet = backward_[iSequence]; |
1404 | if (iSet >= 0) { |
1405 | nSets++; |
1406 | int iBasic = keyVariable_[iSet]; |
1407 | if (iBasic >= numberColumns) { |
1408 | djMod = - weight(iSet) * infeasibilityCost; |
1409 | } else { |
1410 | // get dj without |
1411 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
1412 | djMod = 0.0; |
1413 | // scaled |
1414 | for (j = startColumn[iBasic]; |
1415 | j < startColumn[iBasic] + length[iBasic]; j++) { |
1416 | int jRow = row[j]; |
1417 | djMod -= duals[jRow] * element[j] * rowScale[jRow]; |
1418 | } |
1419 | // allow for scaling |
1420 | djMod += cost[iBasic] / columnScale[iBasic]; |
1421 | // See if gub slack possible - dj is djMod |
1422 | if (getStatus(iSet) == ClpSimplex::atLowerBound) { |
1423 | double value = -djMod; |
1424 | if (value > tolerance) { |
1425 | numberWanted--; |
1426 | if (value > bestDj) { |
1427 | // check flagged variable and correct dj |
1428 | if (!flagged(iSet)) { |
1429 | bestDj = value; |
1430 | bestSequence = numberRows + numberColumns + iSet; |
1431 | bestDjMod = djMod; |
1432 | } else { |
1433 | // just to make sure we don't exit before got something |
1434 | numberWanted++; |
1435 | abort(); |
1436 | } |
1437 | } |
1438 | } |
1439 | } else if (getStatus(iSet) == ClpSimplex::atUpperBound) { |
1440 | double value = djMod; |
1441 | if (value > tolerance) { |
1442 | numberWanted--; |
1443 | if (value > bestDj) { |
1444 | // check flagged variable and correct dj |
1445 | if (!flagged(iSet)) { |
1446 | bestDj = value; |
1447 | bestSequence = numberRows + numberColumns + iSet; |
1448 | bestDjMod = djMod; |
1449 | } else { |
1450 | // just to make sure we don't exit before got something |
1451 | numberWanted++; |
1452 | abort(); |
1453 | } |
1454 | } |
1455 | } |
1456 | } |
1457 | } |
1458 | } else { |
1459 | // not in set |
1460 | djMod = 0.0; |
1461 | } |
1462 | } |
1463 | if (iSequence != sequenceOut) { |
1464 | double value; |
1465 | ClpSimplex::Status status = model->getStatus(iSequence); |
1466 | |
1467 | switch(status) { |
1468 | |
1469 | case ClpSimplex::basic: |
1470 | case ClpSimplex::isFixed: |
1471 | break; |
1472 | case ClpSimplex::isFree: |
1473 | case ClpSimplex::superBasic: |
1474 | value = -djMod; |
1475 | // scaled |
1476 | for (j = startColumn[iSequence]; |
1477 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1478 | int jRow = row[j]; |
1479 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
1480 | } |
1481 | value = fabs(cost[iSequence] + value * columnScale[iSequence]); |
1482 | if (value > FREE_ACCEPT * tolerance) { |
1483 | numberWanted--; |
1484 | // we are going to bias towards free (but only if reasonable) |
1485 | value *= FREE_BIAS; |
1486 | if (value > bestDj) { |
1487 | // check flagged variable and correct dj |
1488 | if (!model->flagged(iSequence)) { |
1489 | bestDj = value; |
1490 | bestSequence = iSequence; |
1491 | bestDjMod = djMod; |
1492 | } else { |
1493 | // just to make sure we don't exit before got something |
1494 | numberWanted++; |
1495 | } |
1496 | } |
1497 | } |
1498 | break; |
1499 | case ClpSimplex::atUpperBound: |
1500 | value = -djMod; |
1501 | // scaled |
1502 | for (j = startColumn[iSequence]; |
1503 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1504 | int jRow = row[j]; |
1505 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
1506 | } |
1507 | value = cost[iSequence] + value * columnScale[iSequence]; |
1508 | if (value > tolerance) { |
1509 | numberWanted--; |
1510 | if (value > bestDj) { |
1511 | // check flagged variable and correct dj |
1512 | if (!model->flagged(iSequence)) { |
1513 | bestDj = value; |
1514 | bestSequence = iSequence; |
1515 | bestDjMod = djMod; |
1516 | } else { |
1517 | // just to make sure we don't exit before got something |
1518 | numberWanted++; |
1519 | } |
1520 | } |
1521 | } |
1522 | break; |
1523 | case ClpSimplex::atLowerBound: |
1524 | value = -djMod; |
1525 | // scaled |
1526 | for (j = startColumn[iSequence]; |
1527 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1528 | int jRow = row[j]; |
1529 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
1530 | } |
1531 | value = -(cost[iSequence] + value * columnScale[iSequence]); |
1532 | if (value > tolerance) { |
1533 | numberWanted--; |
1534 | if (value > bestDj) { |
1535 | // check flagged variable and correct dj |
1536 | if (!model->flagged(iSequence)) { |
1537 | bestDj = value; |
1538 | bestSequence = iSequence; |
1539 | bestDjMod = djMod; |
1540 | } else { |
1541 | // just to make sure we don't exit before got something |
1542 | numberWanted++; |
1543 | } |
1544 | } |
1545 | } |
1546 | break; |
1547 | } |
1548 | } |
1549 | if (!numberWanted) |
1550 | break; |
1551 | } |
1552 | if (bestSequence != saveSequence) { |
1553 | if (bestSequence < numberRows + numberColumns) { |
1554 | // recompute dj |
1555 | double value = bestDjMod; |
1556 | // scaled |
1557 | for (j = startColumn[bestSequence]; |
1558 | j < startColumn[bestSequence] + length[bestSequence]; j++) { |
1559 | int jRow = row[j]; |
1560 | value -= duals[jRow] * element[j] * rowScale[jRow]; |
1561 | } |
1562 | reducedCost[bestSequence] = cost[bestSequence] + value * columnScale[bestSequence]; |
1563 | gubSlackIn_ = -1; |
1564 | } else { |
1565 | // slack - make last column |
1566 | gubSlackIn_ = bestSequence - numberRows - numberColumns; |
1567 | bestSequence = numberColumns + 2 * numberRows; |
1568 | reducedCost[bestSequence] = bestDjMod; |
1569 | model->setStatus(bestSequence, getStatus(gubSlackIn_)); |
1570 | if (getStatus(gubSlackIn_) == ClpSimplex::atUpperBound) |
1571 | model->solutionRegion()[bestSequence] = upper_[gubSlackIn_]; |
1572 | else |
1573 | model->solutionRegion()[bestSequence] = lower_[gubSlackIn_]; |
1574 | model->lowerRegion()[bestSequence] = lower_[gubSlackIn_]; |
1575 | model->upperRegion()[bestSequence] = upper_[gubSlackIn_]; |
1576 | model->costRegion()[bestSequence] = 0.0; |
1577 | } |
1578 | savedBestSequence_ = bestSequence; |
1579 | savedBestDj_ = reducedCost[savedBestSequence_]; |
1580 | } |
1581 | } else { |
1582 | double bestDjMod = 0.0; |
1583 | //printf("iteration %d start %d end %d - wanted %d\n",model->numberIterations(), |
1584 | // startG,endG,numberWanted); |
1585 | for (iSequence = startG; iSequence < endG; iSequence++) { |
1586 | if (numberWanted + minNeg < originalWanted_ && nSets > minSet) { |
1587 | // give up |
1588 | numberWanted = 0; |
1589 | break; |
1590 | } else if (iSequence == endG && bestSequence >= 0) { |
1591 | break; |
1592 | } |
1593 | if (backward_[iSequence] != iSet) { |
1594 | // get pi on gub row |
1595 | iSet = backward_[iSequence]; |
1596 | if (iSet >= 0) { |
1597 | nSets++; |
1598 | int iBasic = keyVariable_[iSet]; |
1599 | if (iBasic >= numberColumns) { |
1600 | djMod = - weight(iSet) * infeasibilityCost; |
1601 | } else { |
1602 | // get dj without |
1603 | assert (model->getStatus(iBasic) == ClpSimplex::basic); |
1604 | djMod = 0.0; |
1605 | |
1606 | for (j = startColumn[iBasic]; |
1607 | j < startColumn[iBasic] + length[iBasic]; j++) { |
1608 | int jRow = row[j]; |
1609 | djMod -= duals[jRow] * element[j]; |
1610 | } |
1611 | djMod += cost[iBasic]; |
1612 | // See if gub slack possible - dj is djMod |
1613 | if (getStatus(iSet) == ClpSimplex::atLowerBound) { |
1614 | double value = -djMod; |
1615 | if (value > tolerance) { |
1616 | numberWanted--; |
1617 | if (value > bestDj) { |
1618 | // check flagged variable and correct dj |
1619 | if (!flagged(iSet)) { |
1620 | bestDj = value; |
1621 | bestSequence = numberRows + numberColumns + iSet; |
1622 | bestDjMod = djMod; |
1623 | } else { |
1624 | // just to make sure we don't exit before got something |
1625 | numberWanted++; |
1626 | abort(); |
1627 | } |
1628 | } |
1629 | } |
1630 | } else if (getStatus(iSet) == ClpSimplex::atUpperBound) { |
1631 | double value = djMod; |
1632 | if (value > tolerance) { |
1633 | numberWanted--; |
1634 | if (value > bestDj) { |
1635 | // check flagged variable and correct dj |
1636 | if (!flagged(iSet)) { |
1637 | bestDj = value; |
1638 | bestSequence = numberRows + numberColumns + iSet; |
1639 | bestDjMod = djMod; |
1640 | } else { |
1641 | // just to make sure we don't exit before got something |
1642 | numberWanted++; |
1643 | abort(); |
1644 | } |
1645 | } |
1646 | } |
1647 | } |
1648 | } |
1649 | } else { |
1650 | // not in set |
1651 | djMod = 0.0; |
1652 | } |
1653 | } |
1654 | if (iSequence != sequenceOut) { |
1655 | double value; |
1656 | ClpSimplex::Status status = model->getStatus(iSequence); |
1657 | |
1658 | switch(status) { |
1659 | |
1660 | case ClpSimplex::basic: |
1661 | case ClpSimplex::isFixed: |
1662 | break; |
1663 | case ClpSimplex::isFree: |
1664 | case ClpSimplex::superBasic: |
1665 | value = cost[iSequence] - djMod; |
1666 | for (j = startColumn[iSequence]; |
1667 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1668 | int jRow = row[j]; |
1669 | value -= duals[jRow] * element[j]; |
1670 | } |
1671 | value = fabs(value); |
1672 | if (value > FREE_ACCEPT * tolerance) { |
1673 | numberWanted--; |
1674 | // we are going to bias towards free (but only if reasonable) |
1675 | value *= FREE_BIAS; |
1676 | if (value > bestDj) { |
1677 | // check flagged variable and correct dj |
1678 | if (!model->flagged(iSequence)) { |
1679 | bestDj = value; |
1680 | bestSequence = iSequence; |
1681 | bestDjMod = djMod; |
1682 | } else { |
1683 | // just to make sure we don't exit before got something |
1684 | numberWanted++; |
1685 | } |
1686 | } |
1687 | } |
1688 | break; |
1689 | case ClpSimplex::atUpperBound: |
1690 | value = cost[iSequence] - djMod; |
1691 | for (j = startColumn[iSequence]; |
1692 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1693 | int jRow = row[j]; |
1694 | value -= duals[jRow] * element[j]; |
1695 | } |
1696 | if (value > tolerance) { |
1697 | numberWanted--; |
1698 | if (value > bestDj) { |
1699 | // check flagged variable and correct dj |
1700 | if (!model->flagged(iSequence)) { |
1701 | bestDj = value; |
1702 | bestSequence = iSequence; |
1703 | bestDjMod = djMod; |
1704 | } else { |
1705 | // just to make sure we don't exit before got something |
1706 | numberWanted++; |
1707 | } |
1708 | } |
1709 | } |
1710 | break; |
1711 | case ClpSimplex::atLowerBound: |
1712 | value = cost[iSequence] - djMod; |
1713 | for (j = startColumn[iSequence]; |
1714 | j < startColumn[iSequence] + length[iSequence]; j++) { |
1715 | int jRow = row[j]; |
1716 | value -= duals[jRow] * element[j]; |
1717 | } |
1718 | value = -value; |
1719 | if (value > tolerance) { |
1720 | numberWanted--; |
1721 | if (value > bestDj) { |
1722 | // check flagged variable and correct dj |
1723 | if (!model->flagged(iSequence)) { |
1724 | bestDj = value; |
1725 | bestSequence = iSequence; |
1726 | bestDjMod = djMod; |
1727 | } else { |
1728 | // just to make sure we don't exit before got something |
1729 | numberWanted++; |
1730 | } |
1731 | } |
1732 | } |
1733 | break; |
1734 | } |
1735 | } |
1736 | if (!numberWanted) |
1737 | break; |
1738 | } |
1739 | if (bestSequence != saveSequence) { |
1740 | if (bestSequence < numberRows + numberColumns) { |
1741 | // recompute dj |
1742 | double value = cost[bestSequence] - bestDjMod; |
1743 | for (j = startColumn[bestSequence]; |
1744 | j < startColumn[bestSequence] + length[bestSequence]; j++) { |
1745 | int jRow = row[j]; |
1746 | value -= duals[jRow] * element[j]; |
1747 | } |
1748 | //printf("price struct %d - dj %g gubpi %g\n",bestSequence,value,bestDjMod); |
1749 | reducedCost[bestSequence] = value; |
1750 | gubSlackIn_ = -1; |
1751 | } else { |
1752 | // slack - make last column |
1753 | gubSlackIn_ = bestSequence - numberRows - numberColumns; |
1754 | bestSequence = numberColumns + 2 * numberRows; |
1755 | reducedCost[bestSequence] = bestDjMod; |
1756 | //printf("price slack %d - gubpi %g\n",gubSlackIn_,bestDjMod); |
1757 | model->setStatus(bestSequence, getStatus(gubSlackIn_)); |
1758 | if (getStatus(gubSlackIn_) == ClpSimplex::atUpperBound) |
1759 | model->solutionRegion()[bestSequence] = upper_[gubSlackIn_]; |
1760 | else |
1761 | model->solutionRegion()[bestSequence] = lower_[gubSlackIn_]; |
1762 | model->lowerRegion()[bestSequence] = lower_[gubSlackIn_]; |
1763 | model->upperRegion()[bestSequence] = upper_[gubSlackIn_]; |
1764 | model->costRegion()[bestSequence] = 0.0; |
1765 | } |
1766 | } |
1767 | } |
1768 | // See if may be finished |
1769 | if (startG == firstGub_ && bestSequence < 0) |
1770 | infeasibilityWeight_ = model_->infeasibilityCost(); |
1771 | else if (bestSequence >= 0) |
1772 | infeasibilityWeight_ = -1.0; |
1773 | } |
1774 | if (numberWanted) { |
1775 | // Do packed part after gub |
1776 | double offset = static_cast<double> (lastGub_) / |
1777 | static_cast<double> (numberColumns); |
1778 | double ratio = static_cast<double> (numberColumns) / |
1779 | static_cast<double> (numberColumns) - offset; |
1780 | double start2 = offset + ratio * startFraction; |
1781 | double end2 = CoinMin(1.0, offset + ratio * endFraction + 1.0e-6); |
1782 | ClpPackedMatrix::partialPricing(model, start2, end2, bestSequence, numberWanted); |
1783 | } |
1784 | } else { |
1785 | // no gub |
1786 | ClpPackedMatrix::partialPricing(model, startFraction, endFraction, bestSequence, numberWanted); |
1787 | } |
1788 | if (bestSequence >= 0) |
1789 | infeasibilityWeight_ = -1.0; // not optimal |
1790 | currentWanted_ = numberWanted; |
1791 | } |
1792 | /* expands an updated column to allow for extra rows which the main |
1793 | solver does not know about and returns number added. |
1794 | */ |
1795 | int |
1796 | ClpGubMatrix::extendUpdated(ClpSimplex * model, CoinIndexedVector * update, int mode) |
1797 | { |
1798 | // I think we only need to bother about sets with two in basis or incoming set |
1799 | int number = update->getNumElements(); |
1800 | double * array = update->denseVector(); |
1801 | int * index = update->getIndices(); |
1802 | int i; |
1803 | assert (!number || update->packedMode()); |
1804 | int * pivotVariable = model->pivotVariable(); |
1805 | int numberRows = model->numberRows(); |
1806 | int numberColumns = model->numberColumns(); |
1807 | int numberTotal = numberRows + numberColumns; |
1808 | int sequenceIn = model->sequenceIn(); |
1809 | int returnCode = 0; |
1810 | int iSetIn; |
1811 | if (sequenceIn < numberColumns) { |
1812 | iSetIn = backward_[sequenceIn]; |
1813 | gubSlackIn_ = -1; // in case set |
1814 | } else if (sequenceIn < numberRows + numberColumns) { |
1815 | iSetIn = -1; |
1816 | gubSlackIn_ = -1; // in case set |
1817 | } else { |
1818 | iSetIn = gubSlackIn_; |
1819 | } |
1820 | double * lower = model->lowerRegion(); |
1821 | double * upper = model->upperRegion(); |
1822 | double * cost = model->costRegion(); |
1823 | double * solution = model->solutionRegion(); |
1824 | int number2 = number; |
1825 | if (!mode) { |
1826 | double primalTolerance = model->primalTolerance(); |
1827 | double infeasibilityCost = model->infeasibilityCost(); |
1828 | // extend |
1829 | saveNumber_ = number; |
1830 | for (i = 0; i < number; i++) { |
1831 | int iRow = index[i]; |
1832 | int iPivot = pivotVariable[iRow]; |
1833 | if (iPivot < numberColumns) { |
1834 | int iSet = backward_[iPivot]; |
1835 | if (iSet >= 0) { |
1836 | // two (or more) in set |
1837 | int iIndex = toIndex_[iSet]; |
1838 | double otherValue = array[i]; |
1839 | double value; |
1840 | if (iIndex < 0) { |
1841 | toIndex_[iSet] = number2; |
1842 | int iNew = number2 - number; |
1843 | fromIndex_[number2-number] = iSet; |
1844 | iIndex = number2; |
1845 | index[number2] = numberRows + iNew; |
1846 | // do key stuff |
1847 | int iKey = keyVariable_[iSet]; |
1848 | if (iKey < numberColumns) { |
1849 | // Save current cost of key |
1850 | changeCost_[number2-number] = cost[iKey]; |
1851 | if (iSet != iSetIn) |
1852 | value = 0.0; |
1853 | else if (iSetIn != gubSlackIn_) |
1854 | value = 1.0; |
1855 | else |
1856 | value = -1.0; |
1857 | pivotVariable[numberRows+iNew] = iKey; |
1858 | // Do I need to recompute? |
1859 | double sol; |
1860 | assert (getStatus(iSet) != ClpSimplex::basic); |
1861 | if (getStatus(iSet) == ClpSimplex::atLowerBound) |
1862 | sol = lower_[iSet]; |
1863 | else |
1864 | sol = upper_[iSet]; |
1865 | if ((gubType_ & 8) != 0) { |
1866 | int iColumn = next_[iKey]; |
1867 | // sum all non-key variables |
1868 | while(iColumn >= 0) { |
1869 | sol -= solution[iColumn]; |
1870 | iColumn = next_[iColumn]; |
1871 | } |
1872 | } else { |
1873 | int stop = -(iKey + 1); |
1874 | int iColumn = next_[iKey]; |
1875 | // sum all non-key variables |
1876 | while(iColumn != stop) { |
1877 | if (iColumn < 0) |
1878 | iColumn = -iColumn - 1; |
1879 | sol -= solution[iColumn]; |
1880 | iColumn = next_[iColumn]; |
1881 | } |
1882 | } |
1883 | solution[iKey] = sol; |
1884 | if (model->algorithm() > 0) |
1885 | model->nonLinearCost()->setOne(iKey, sol); |
1886 | //assert (fabs(sol-solution[iKey])<1.0e-3); |
1887 | } else { |
1888 | // gub slack is basic |
1889 | // Save current cost of key |
1890 | changeCost_[number2-number] = -weight(iSet) * infeasibilityCost; |
1891 | otherValue = - otherValue; //allow for - sign on slack |
1892 | if (iSet != iSetIn) |
1893 | value = 0.0; |
1894 | else |
1895 | value = -1.0; |
1896 | pivotVariable[numberRows+iNew] = iNew + numberTotal; |
1897 | model->djRegion()[iNew+numberTotal] = 0.0; |
1898 | double sol = 0.0; |
1899 | if ((gubType_ & 8) != 0) { |
1900 | int iColumn = next_[iKey]; |
1901 | // sum all non-key variables |
1902 | while(iColumn >= 0) { |
1903 | sol += solution[iColumn]; |
1904 | iColumn = next_[iColumn]; |
1905 | } |
1906 | } else { |
1907 | int stop = -(iKey + 1); |
1908 | int iColumn = next_[iKey]; |
1909 | // sum all non-key variables |
1910 | while(iColumn != stop) { |
1911 | if (iColumn < 0) |
1912 | iColumn = -iColumn - 1; |
1913 | sol += solution[iColumn]; |
1914 | iColumn = next_[iColumn]; |
1915 | } |
1916 | } |
1917 | solution[iNew+numberTotal] = sol; |
1918 | // and do cost in nonLinearCost |
1919 | if (model->algorithm() > 0) |
1920 | model->nonLinearCost()->setOne(iNew + numberTotal, sol, lower_[iSet], upper_[iSet]); |
1921 | if (sol > upper_[iSet] + primalTolerance) { |
1922 | setAbove(iSet); |
1923 | lower[iNew+numberTotal] = upper_[iSet]; |
1924 | upper[iNew+numberTotal] = COIN_DBL_MAX; |
1925 | } else if (sol < lower_[iSet] - primalTolerance) { |
1926 | setBelow(iSet); |
1927 | lower[iNew+numberTotal] = -COIN_DBL_MAX; |
1928 | upper[iNew+numberTotal] = lower_[iSet]; |
1929 | } else { |
1930 | setFeasible(iSet); |
1931 | lower[iNew+numberTotal] = lower_[iSet]; |
1932 | upper[iNew+numberTotal] = upper_[iSet]; |
1933 | } |
1934 | cost[iNew+numberTotal] = weight(iSet) * infeasibilityCost; |
1935 | } |
1936 | number2++; |
1937 | } else { |
1938 | value = array[iIndex]; |
1939 | int iKey = keyVariable_[iSet]; |
1940 | if (iKey >= numberColumns) |
1941 | otherValue = - otherValue; //allow for - sign on slack |
1942 | } |
1943 | value -= otherValue; |
1944 | array[iIndex] = value; |
1945 | } |
1946 | } |
1947 | } |
1948 | if (iSetIn >= 0 && toIndex_[iSetIn] < 0) { |
1949 | // Do incoming |
1950 | update->setPacked(); // just in case no elements |
1951 | toIndex_[iSetIn] = number2; |
1952 | int iNew = number2 - number; |
1953 | fromIndex_[number2-number] = iSetIn; |
1954 | // Save current cost of key |
1955 | double currentCost; |
1956 | int key = keyVariable_[iSetIn]; |
1957 | if (key < numberColumns) |
1958 | currentCost = cost[key]; |
1959 | else |
1960 | currentCost = -weight(iSetIn) * infeasibilityCost; |
1961 | changeCost_[number2-number] = currentCost; |
1962 | index[number2] = numberRows + iNew; |
1963 | // do key stuff |
1964 | int iKey = keyVariable_[iSetIn]; |
1965 | if (iKey < numberColumns) { |
1966 | if (gubSlackIn_ < 0) |
1967 | array[number2] = 1.0; |
1968 | else |
1969 | array[number2] = -1.0; |
1970 | pivotVariable[numberRows+iNew] = iKey; |
1971 | // Do I need to recompute? |
1972 | double sol; |
1973 | assert (getStatus(iSetIn) != ClpSimplex::basic); |
1974 | if (getStatus(iSetIn) == ClpSimplex::atLowerBound) |
1975 | sol = lower_[iSetIn]; |
1976 | else |
1977 | sol = upper_[iSetIn]; |
1978 | if ((gubType_ & 8) != 0) { |
1979 | int iColumn = next_[iKey]; |
1980 | // sum all non-key variables |
1981 | while(iColumn >= 0) { |
1982 | sol -= solution[iColumn]; |
1983 | iColumn = next_[iColumn]; |
1984 | } |
1985 | } else { |
1986 | // bounds exist - sum over all except key |
1987 | int stop = -(iKey + 1); |
1988 | int iColumn = next_[iKey]; |
1989 | // sum all non-key variables |
1990 | while(iColumn != stop) { |
1991 | if (iColumn < 0) |
1992 | iColumn = -iColumn - 1; |
1993 | sol -= solution[iColumn]; |
1994 | iColumn = next_[iColumn]; |
1995 | } |
1996 | } |
1997 | solution[iKey] = sol; |
1998 | if (model->algorithm() > 0) |
1999 | model->nonLinearCost()->setOne(iKey, sol); |
2000 | //assert (fabs(sol-solution[iKey])<1.0e-3); |
2001 | } else { |
2002 | // gub slack is basic |
2003 | array[number2] = -1.0; |
2004 | pivotVariable[numberRows+iNew] = iNew + numberTotal; |
2005 | model->djRegion()[iNew+numberTotal] = 0.0; |
2006 | double sol = 0.0; |
2007 | if ((gubType_ & 8) != 0) { |
2008 | int iColumn = next_[iKey]; |
2009 | // sum all non-key variables |
2010 | while(iColumn >= 0) { |
2011 | sol += solution[iColumn]; |
2012 | iColumn = next_[iColumn]; |
2013 | } |
2014 | } else { |
2015 | // bounds exist - sum over all except key |
2016 | int stop = -(iKey + 1); |
2017 | int iColumn = next_[iKey]; |
2018 | // sum all non-key variables |
2019 | while(iColumn != stop) { |
2020 | if (iColumn < 0) |
2021 | iColumn = -iColumn - 1; |
2022 | sol += solution[iColumn]; |
2023 | iColumn = next_[iColumn]; |
2024 | } |
2025 | } |
2026 | solution[iNew+numberTotal] = sol; |
2027 | // and do cost in nonLinearCost |
2028 | if (model->algorithm() > 0) |
2029 | model->nonLinearCost()->setOne(iNew + numberTotal, sol, lower_[iSetIn], upper_[iSetIn]); |
2030 | if (sol > upper_[iSetIn] + primalTolerance) { |
2031 | setAbove(iSetIn); |
2032 | lower[iNew+numberTotal] = upper_[iSetIn]; |
2033 | upper[iNew+numberTotal] = COIN_DBL_MAX; |
2034 | } else if (sol < lower_[iSetIn] - primalTolerance) { |
2035 | setBelow(iSetIn); |
2036 | lower[iNew+numberTotal] = -COIN_DBL_MAX; |
2037 | upper[iNew+numberTotal] = lower_[iSetIn]; |
2038 | } else { |
2039 | setFeasible(iSetIn); |
2040 | lower[iNew+numberTotal] = lower_[iSetIn]; |
2041 | upper[iNew+numberTotal] = upper_[iSetIn]; |
2042 | } |
2043 | cost[iNew+numberTotal] = weight(iSetIn) * infeasibilityCost; |
2044 | } |
2045 | number2++; |
2046 | } |
2047 | // mark end |
2048 | fromIndex_[number2-number] = -1; |
2049 | returnCode = number2 - number; |
2050 | // make sure lower_ upper_ adjusted |
2051 | synchronize(model, 9); |
2052 | } else { |
2053 | // take off? |
2054 | if (number > saveNumber_) { |
2055 | // clear |
2056 | double theta = model->theta(); |
2057 | double * solution = model->solutionRegion(); |
2058 | for (i = saveNumber_; i < number; i++) { |
2059 | int iRow = index[i]; |
2060 | int iColumn = pivotVariable[iRow]; |
2061 | #ifdef CLP_DEBUG_PRINT |
2062 | printf("Column %d (set %d) lower %g, upper %g - alpha %g - old value %g, new %g (theta %g)\n" , |
2063 | iColumn, fromIndex_[i-saveNumber_], lower[iColumn], upper[iColumn], array[i], |
2064 | solution[iColumn], solution[iColumn] - model->theta()*array[i], model->theta()); |
2065 | #endif |
2066 | double value = array[i]; |
2067 | array[i] = 0.0; |
2068 | int iSet = fromIndex_[i-saveNumber_]; |
2069 | toIndex_[iSet] = -1; |
2070 | if (iSet == iSetIn && iColumn < numberColumns) { |
2071 | // update as may need value |
2072 | solution[iColumn] -= theta * value; |
2073 | } |
2074 | } |
2075 | } |
2076 | #ifdef CLP_DEBUG |
2077 | for (i = 0; i < numberSets_; i++) |
2078 | assert(toIndex_[i] == -1); |
2079 | #endif |
2080 | number2 = saveNumber_; |
2081 | } |
2082 | update->setNumElements(number2); |
2083 | return returnCode; |
2084 | } |
2085 | /* |
2086 | utility primal function for dealing with dynamic constraints |
2087 | mode=n see ClpGubMatrix.hpp for definition |
2088 | Remember to update here when settled down |
2089 | */ |
2090 | void |
2091 | ClpGubMatrix::primalExpanded(ClpSimplex * model, int mode) |
2092 | { |
2093 | int numberColumns = model->numberColumns(); |
2094 | switch (mode) { |
2095 | // If key variable then slot in gub rhs so will get correct contribution |
2096 | case 0: { |
2097 | int i; |
2098 | double * solution = model->solutionRegion(); |
2099 | ClpSimplex::Status iStatus; |
2100 | for (i = 0; i < numberSets_; i++) { |
2101 | int iColumn = keyVariable_[i]; |
2102 | if (iColumn < numberColumns) { |
2103 | // key is structural - where is slack |
2104 | iStatus = getStatus(i); |
2105 | assert (iStatus != ClpSimplex::basic); |
2106 | if (iStatus == ClpSimplex::atLowerBound) |
2107 | solution[iColumn] = lower_[i]; |
2108 | else |
2109 | solution[iColumn] = upper_[i]; |
2110 | } |
2111 | } |
2112 | } |
2113 | break; |
2114 | // Compute values of key variables |
2115 | case 1: { |
2116 | int i; |
2117 | double * solution = model->solutionRegion(); |
2118 | ClpSimplex::Status iStatus; |
2119 | //const int * columnLength = matrix_->getVectorLengths(); |
2120 | //const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
2121 | //const int * row = matrix_->getIndices(); |
2122 | //const double * elementByColumn = matrix_->getElements(); |
2123 | //int * pivotVariable = model->pivotVariable(); |
2124 | sumPrimalInfeasibilities_ = 0.0; |
2125 | numberPrimalInfeasibilities_ = 0; |
2126 | double primalTolerance = model->primalTolerance(); |
2127 | double relaxedTolerance = primalTolerance; |
2128 | // we can't really trust infeasibilities if there is primal error |
2129 | double error = CoinMin(1.0e-2, model->largestPrimalError()); |
2130 | // allow tolerance at least slightly bigger than standard |
2131 | relaxedTolerance = relaxedTolerance + error; |
2132 | // but we will be using difference |
2133 | relaxedTolerance -= primalTolerance; |
2134 | sumOfRelaxedPrimalInfeasibilities_ = 0.0; |
2135 | for (i = 0; i < numberSets_; i++) { // Could just be over basics (esp if no bounds) |
2136 | int kColumn = keyVariable_[i]; |
2137 | double value = 0.0; |
2138 | if ((gubType_ & 8) != 0) { |
2139 | int iColumn = next_[kColumn]; |
2140 | // sum all non-key variables |
2141 | while(iColumn >= 0) { |
2142 | value += solution[iColumn]; |
2143 | iColumn = next_[iColumn]; |
2144 | } |
2145 | } else { |
2146 | // bounds exist - sum over all except key |
2147 | int stop = -(kColumn + 1); |
2148 | int iColumn = next_[kColumn]; |
2149 | // sum all non-key variables |
2150 | while(iColumn != stop) { |
2151 | if (iColumn < 0) |
2152 | iColumn = -iColumn - 1; |
2153 | value += solution[iColumn]; |
2154 | iColumn = next_[iColumn]; |
2155 | } |
2156 | } |
2157 | if (kColumn < numberColumns) { |
2158 | // make sure key is basic - so will be skipped in values pass |
2159 | model->setStatus(kColumn, ClpSimplex::basic); |
2160 | // feasibility will be done later |
2161 | assert (getStatus(i) != ClpSimplex::basic); |
2162 | if (getStatus(i) == ClpSimplex::atUpperBound) |
2163 | solution[kColumn] = upper_[i] - value; |
2164 | else |
2165 | solution[kColumn] = lower_[i] - value; |
2166 | //printf("Value of key structural %d for set %d is %g\n",kColumn,i,solution[kColumn]); |
2167 | } else { |
2168 | // slack is key |
2169 | iStatus = getStatus(i); |
2170 | assert (iStatus == ClpSimplex::basic); |
2171 | double infeasibility = 0.0; |
2172 | if (value > upper_[i] + primalTolerance) { |
2173 | infeasibility = value - upper_[i] - primalTolerance; |
2174 | setAbove(i); |
2175 | } else if (value < lower_[i] - primalTolerance) { |
2176 | infeasibility = lower_[i] - value - primalTolerance ; |
2177 | setBelow(i); |
2178 | } else { |
2179 | setFeasible(i); |
2180 | } |
2181 | //printf("Value of key slack for set %d is %g\n",i,value); |
2182 | if (infeasibility > 0.0) { |
2183 | sumPrimalInfeasibilities_ += infeasibility; |
2184 | if (infeasibility > relaxedTolerance) |
2185 | sumOfRelaxedPrimalInfeasibilities_ += infeasibility; |
2186 | numberPrimalInfeasibilities_ ++; |
2187 | } |
2188 | } |
2189 | } |
2190 | } |
2191 | break; |
2192 | // Report on infeasibilities of key variables |
2193 | case 2: { |
2194 | model->setSumPrimalInfeasibilities(model->sumPrimalInfeasibilities() + |
2195 | sumPrimalInfeasibilities_); |
2196 | model->setNumberPrimalInfeasibilities(model->numberPrimalInfeasibilities() + |
2197 | numberPrimalInfeasibilities_); |
2198 | model->setSumOfRelaxedPrimalInfeasibilities(model->sumOfRelaxedPrimalInfeasibilities() + |
2199 | sumOfRelaxedPrimalInfeasibilities_); |
2200 | } |
2201 | break; |
2202 | } |
2203 | } |
2204 | /* |
2205 | utility dual function for dealing with dynamic constraints |
2206 | mode=n see ClpGubMatrix.hpp for definition |
2207 | Remember to update here when settled down |
2208 | */ |
2209 | void |
2210 | ClpGubMatrix::dualExpanded(ClpSimplex * model, |
2211 | CoinIndexedVector * array, |
2212 | double * /*other*/, int mode) |
2213 | { |
2214 | switch (mode) { |
2215 | // modify costs before transposeUpdate |
2216 | case 0: { |
2217 | int i; |
2218 | double * cost = model->costRegion(); |
2219 | ClpSimplex::Status iStatus; |
2220 | // not dual values yet |
2221 | //assert (!other); |
2222 | //double * work = array->denseVector(); |
2223 | double infeasibilityCost = model->infeasibilityCost(); |
2224 | int * pivotVariable = model->pivotVariable(); |
2225 | int numberRows = model->numberRows(); |
2226 | int numberColumns = model->numberColumns(); |
2227 | for (i = 0; i < numberRows; i++) { |
2228 | int iPivot = pivotVariable[i]; |
2229 | if (iPivot < numberColumns) { |
2230 | int iSet = backward_[iPivot]; |
2231 | if (iSet >= 0) { |
2232 | int kColumn = keyVariable_[iSet]; |
2233 | double costValue; |
2234 | if (kColumn < numberColumns) { |
2235 | // structural has cost |
2236 | costValue = cost[kColumn]; |
2237 | } else { |
2238 | // slack is key |
2239 | iStatus = getStatus(iSet); |
2240 | assert (iStatus == ClpSimplex::basic); |
2241 | // negative as -1.0 for slack |
2242 | costValue = -weight(iSet) * infeasibilityCost; |
2243 | } |
2244 | array->add(i, -costValue); // was work[i]-costValue |
2245 | } |
2246 | } |
2247 | } |
2248 | } |
2249 | break; |
2250 | // create duals for key variables (without check on dual infeasible) |
2251 | case 1: { |
2252 | // If key slack then dual 0.0 (if feasible) |
2253 | // dj for key is zero so that defines dual on set |
2254 | int i; |
2255 | double * dj = model->djRegion(); |
2256 | int numberColumns = model->numberColumns(); |
2257 | double infeasibilityCost = model->infeasibilityCost(); |
2258 | for (i = 0; i < numberSets_; i++) { |
2259 | int kColumn = keyVariable_[i]; |
2260 | if (kColumn < numberColumns) { |
2261 | // dj without set |
2262 | double value = dj[kColumn]; |
2263 | // Now subtract out from all |
2264 | dj[kColumn] = 0.0; |
2265 | int iColumn = next_[kColumn]; |
2266 | // modify all non-key variables |
2267 | while(iColumn >= 0) { |
2268 | dj[iColumn] -= value; |
2269 | iColumn = next_[iColumn]; |
2270 | } |
2271 | } else { |
2272 | // slack key - may not be feasible |
2273 | assert (getStatus(i) == ClpSimplex::basic); |
2274 | // negative as -1.0 for slack |
2275 | double value = -weight(i) * infeasibilityCost; |
2276 | if (value) { |
2277 | int iColumn = next_[kColumn]; |
2278 | // modify all non-key variables basic |
2279 | while(iColumn >= 0) { |
2280 | dj[iColumn] -= value; |
2281 | iColumn = next_[iColumn]; |
2282 | } |
2283 | } |
2284 | } |
2285 | } |
2286 | } |
2287 | break; |
2288 | // as 1 but check slacks and compute djs |
2289 | case 2: { |
2290 | // If key slack then dual 0.0 |
2291 | // If not then slack could be dual infeasible |
2292 | // dj for key is zero so that defines dual on set |
2293 | int i; |
2294 | // make sure fromIndex will not confuse pricing |
2295 | fromIndex_[0] = -1; |
2296 | possiblePivotKey_ = -1; |
2297 | // Create array |
2298 | int numberColumns = model->numberColumns(); |
2299 | int * pivotVariable = model->pivotVariable(); |
2300 | int numberRows = model->numberRows(); |
2301 | for (i = 0; i < numberRows; i++) { |
2302 | int iPivot = pivotVariable[i]; |
2303 | if (iPivot < numberColumns) |
2304 | backToPivotRow_[iPivot] = i; |
2305 | } |
2306 | if (noCheck_ >= 0) { |
2307 | if (infeasibilityWeight_ != model->infeasibilityCost()) { |
2308 | // don't bother checking |
2309 | sumDualInfeasibilities_ = 100.0; |
2310 | numberDualInfeasibilities_ = 1; |
2311 | sumOfRelaxedDualInfeasibilities_ = 100.0; |
2312 | return; |
2313 | } |
2314 | } |
2315 | double * dj = model->djRegion(); |
2316 | double * dual = model->dualRowSolution(); |
2317 | double * cost = model->costRegion(); |
2318 | ClpSimplex::Status iStatus; |
2319 | const int * columnLength = matrix_->getVectorLengths(); |
2320 | const CoinBigIndex * columnStart = matrix_->getVectorStarts(); |
2321 | const int * row = matrix_->getIndices(); |
2322 | const double * elementByColumn = matrix_->getElements(); |
2323 | double infeasibilityCost = model->infeasibilityCost(); |
2324 | sumDualInfeasibilities_ = 0.0; |
2325 | numberDualInfeasibilities_ = 0; |
2326 | double dualTolerance = model->dualTolerance(); |
2327 | double relaxedTolerance = dualTolerance; |
2328 | // we can't really trust infeasibilities if there is dual error |
2329 | double error = CoinMin(1.0e-2, model->largestDualError()); |
2330 | // allow tolerance at least slightly bigger than standard |
2331 | relaxedTolerance = relaxedTolerance + error; |
2332 | // but we will be using difference |
2333 | relaxedTolerance -= dualTolerance; |
2334 | sumOfRelaxedDualInfeasibilities_ = 0.0; |
2335 | for (i = 0; i < numberSets_; i++) { |
2336 | int kColumn = keyVariable_[i]; |
2337 | if (kColumn < numberColumns) { |
2338 | // dj without set |
2339 | double value = cost[kColumn]; |
2340 | for (CoinBigIndex j = columnStart[kColumn]; |
2341 | j < columnStart[kColumn] + columnLength[kColumn]; j++) { |
2342 | int iRow = row[j]; |
2343 | value -= dual[iRow] * elementByColumn[j]; |
2344 | } |
2345 | // Now subtract out from all |
2346 | dj[kColumn] -= value; |
2347 | int stop = -(kColumn + 1); |
2348 | kColumn = next_[kColumn]; |
2349 | while (kColumn != stop) { |
2350 | if (kColumn < 0) |
2351 | kColumn = -kColumn - 1; |
2352 | double djValue = dj[kColumn] - value; |
2353 | dj[kColumn] = djValue; |
2354 | double infeasibility = 0.0; |
2355 | iStatus = model->getStatus(kColumn); |
2356 | if (iStatus == ClpSimplex::atLowerBound) { |
2357 | if (djValue < -dualTolerance) |
2358 | infeasibility = -djValue - dualTolerance; |
2359 | } else if (iStatus == ClpSimplex::atUpperBound) { |
2360 | // at upper bound |
2361 | if (djValue > dualTolerance) |
2362 | infeasibility = djValue - dualTolerance; |
2363 | } |
2364 | if (infeasibility > 0.0) { |
2365 | sumDualInfeasibilities_ += infeasibility; |
2366 | if (infeasibility > relaxedTolerance) |
2367 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
2368 | numberDualInfeasibilities_ ++; |
2369 | } |
2370 | kColumn = next_[kColumn]; |
2371 | } |
2372 | // check slack |
2373 | iStatus = getStatus(i); |
2374 | assert (iStatus != ClpSimplex::basic); |
2375 | double infeasibility = 0.0; |
2376 | // dj of slack is -(-1.0)value |
2377 | if (iStatus == ClpSimplex::atLowerBound) { |
2378 | if (value < -dualTolerance) |
2379 | infeasibility = -value - dualTolerance; |
2380 | } else if (iStatus == ClpSimplex::atUpperBound) { |
2381 | // at upper bound |
2382 | if (value > dualTolerance) |
2383 | infeasibility = value - dualTolerance; |
2384 | } |
2385 | if (infeasibility > 0.0) { |
2386 | sumDualInfeasibilities_ += infeasibility; |
2387 | if (infeasibility > relaxedTolerance) |
2388 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
2389 | numberDualInfeasibilities_ ++; |
2390 | } |
2391 | } else { |
2392 | // slack key - may not be feasible |
2393 | assert (getStatus(i) == ClpSimplex::basic); |
2394 | // negative as -1.0 for slack |
2395 | double value = -weight(i) * infeasibilityCost; |
2396 | if (value) { |
2397 | // Now subtract out from all |
2398 | int kColumn = i + numberColumns; |
2399 | int stop = -(kColumn + 1); |
2400 | kColumn = next_[kColumn]; |
2401 | while (kColumn != stop) { |
2402 | if (kColumn < 0) |
2403 | kColumn = -kColumn - 1; |
2404 | double djValue = dj[kColumn] - value; |
2405 | dj[kColumn] = djValue; |
2406 | double infeasibility = 0.0; |
2407 | iStatus = model->getStatus(kColumn); |
2408 | if (iStatus == ClpSimplex::atLowerBound) { |
2409 | if (djValue < -dualTolerance) |
2410 | infeasibility = -djValue - dualTolerance; |
2411 | } else if (iStatus == ClpSimplex::atUpperBound) { |
2412 | // at upper bound |
2413 | if (djValue > dualTolerance) |
2414 | infeasibility = djValue - dualTolerance; |
2415 | } |
2416 | if (infeasibility > 0.0) { |
2417 | sumDualInfeasibilities_ += infeasibility; |
2418 | if (infeasibility > relaxedTolerance) |
2419 | sumOfRelaxedDualInfeasibilities_ += infeasibility; |
2420 | numberDualInfeasibilities_ ++; |
2421 | } |
2422 | kColumn = next_[kColumn]; |
2423 | } |
2424 | } |
2425 | } |
2426 | } |
2427 | // and get statistics for column generation |
2428 | synchronize(model, 4); |
2429 | infeasibilityWeight_ = -1.0; |
2430 | } |
2431 | break; |
2432 | // Report on infeasibilities of key variables |
2433 | case 3: { |
2434 | model->setSumDualInfeasibilities(model->sumDualInfeasibilities() + |
2435 | sumDualInfeasibilities_); |
2436 | model->setNumberDualInfeasibilities(model->numberDualInfeasibilities() + |
2437 | numberDualInfeasibilities_); |
2438 | model->setSumOfRelaxedDualInfeasibilities(model->sumOfRelaxedDualInfeasibilities() + |
2439 | sumOfRelaxedDualInfeasibilities_); |
2440 | } |
2441 | break; |
2442 | // modify costs before transposeUpdate for partial pricing |
2443 | case 4: { |
2444 | // First compute new costs etc for interesting gubs |
2445 | int iLook = 0; |
2446 | int iSet = fromIndex_[0]; |
2447 | double primalTolerance = model->primalTolerance(); |
2448 | const double * cost = model->costRegion(); |
2449 | double * solution = model->solutionRegion(); |
2450 | double infeasibilityCost = model->infeasibilityCost(); |
2451 | int numberColumns = model->numberColumns(); |
2452 | int numberChanged = 0; |
2453 | int * pivotVariable = model->pivotVariable(); |
2454 | while (iSet >= 0) { |
2455 | int key = keyVariable_[iSet]; |
2456 | double value = 0.0; |
2457 | // sum over all except key |
2458 | if ((gubType_ & 8) != 0) { |
2459 | int iColumn = next_[key]; |
2460 | // sum all non-key variables |
2461 | while(iColumn >= 0) { |
2462 | value += solution[iColumn]; |
2463 | iColumn = next_[iColumn]; |
2464 | } |
2465 | } else { |
2466 | // bounds exist - sum over all except key |
2467 | int stop = -(key + 1); |
2468 | int iColumn = next_[key]; |
2469 | // sum all non-key variables |
2470 | while(iColumn != stop) { |
2471 | if (iColumn < 0) |
2472 | iColumn = -iColumn - 1; |
2473 | value += solution[iColumn]; |
2474 | iColumn = next_[iColumn]; |
2475 | } |
2476 | } |
2477 | double costChange; |
2478 | double oldCost = changeCost_[iLook]; |
2479 | if (key < numberColumns) { |
2480 | assert (getStatus(iSet) != ClpSimplex::basic); |
2481 | double sol; |
2482 | if (getStatus(iSet) == ClpSimplex::atUpperBound) |
2483 | sol = upper_[iSet] - value; |
2484 | else |
2485 | sol = lower_[iSet] - value; |
2486 | solution[key] = sol; |
2487 | // fix up cost |
2488 | model->nonLinearCost()->setOne(key, sol); |
2489 | #ifdef CLP_DEBUG_PRINT |
2490 | printf("yy Value of key structural %d for set %d is %g - cost %g old cost %g\n" , key, iSet, sol, |
2491 | cost[key], oldCost); |
2492 | #endif |
2493 | costChange = cost[key] - oldCost; |
2494 | } else { |
2495 | // slack is key |
2496 | if (value > upper_[iSet] + primalTolerance) { |
2497 | setAbove(iSet); |
2498 | } else if (value < lower_[iSet] - primalTolerance) { |
2499 | setBelow(iSet); |
2500 | } else { |
2501 | setFeasible(iSet); |
2502 | } |
2503 | // negative as -1.0 for slack |
2504 | costChange = -weight(iSet) * infeasibilityCost - oldCost; |
2505 | #ifdef CLP_DEBUG_PRINT |
2506 | printf("yy Value of key slack for set %d is %g - cost %g old cost %g\n" , iSet, value, |
2507 | weight(iSet)*infeasibilityCost, oldCost); |
2508 | #endif |
2509 | } |
2510 | if (costChange) { |
2511 | fromIndex_[numberChanged] = iSet; |
2512 | toIndex_[iSet] = numberChanged; |
2513 | changeCost_[numberChanged++] = costChange; |
2514 | } |
2515 | iSet = fromIndex_[++iLook]; |
2516 | } |
2517 | if (numberChanged || possiblePivotKey_ >= 0) { |
2518 | // first do those in list already |
2519 | int number = array->getNumElements(); |
2520 | array->setPacked(); |
2521 | int i; |
2522 | double * work = array->denseVector(); |
2523 | int * which = array->getIndices(); |
2524 | for (i = 0; i < number; i++) { |
2525 | int iRow = which[i]; |
2526 | int iPivot = pivotVariable[iRow]; |
2527 | if (iPivot < numberColumns) { |
2528 | int iSet = backward_[iPivot]; |
2529 | if (iSet >= 0 && toIndex_[iSet] >= 0) { |
2530 | double newValue = work[i] + changeCost_[toIndex_[iSet]]; |
2531 | if (!newValue) |
2532 | newValue = 1.0e-100; |
2533 | work[i] = newValue; |
2534 | // mark as done |
2535 | backward_[iPivot] = -1; |
2536 | } |
2537 | } |
2538 | if (possiblePivotKey_ == iRow) { |
2539 | double newValue = work[i] - model->dualIn(); |
2540 | if (!newValue) |
2541 | newValue = 1.0e-100; |
2542 | work[i] = newValue; |
2543 | possiblePivotKey_ = -1; |
2544 | } |
2545 | } |
2546 | // now do rest and clean up |
2547 | for (i = 0; i < numberChanged; i++) { |
2548 | int iSet = fromIndex_[i]; |
2549 | int key = keyVariable_[iSet]; |
2550 | int iColumn = next_[key]; |
2551 | double change = changeCost_[i]; |
2552 | while (iColumn >= 0) { |
2553 | if (backward_[iColumn] >= 0) { |
2554 | int iRow = backToPivotRow_[iColumn]; |
2555 | assert (iRow >= 0); |
2556 | work[number] = change; |
2557 | if (possiblePivotKey_ == iRow) { |
2558 | double newValue = work[number] - model->dualIn(); |
2559 | if (!newValue) |
2560 | newValue = 1.0e-100; |
2561 | work[number] = newValue; |
2562 | possiblePivotKey_ = -1; |
2563 | } |
2564 | which[number++] = iRow; |
2565 | } else { |
2566 | // reset |
2567 | backward_[iColumn] = iSet; |
2568 | } |
2569 | iColumn = next_[iColumn]; |
2570 | } |
2571 | toIndex_[iSet] = -1; |
2572 | } |
2573 | if (possiblePivotKey_ >= 0) { |
2574 | work[number] = -model->dualIn(); |
2575 | which[number++] = possiblePivotKey_; |
2576 | possiblePivotKey_ = -1; |
2577 | } |
2578 | fromIndex_[0] = -1; |
2579 | array->setNumElements(number); |
2580 | } |
2581 | } |
2582 | break; |
2583 | } |
2584 | } |
2585 | // This is local to Gub to allow synchronization when status is good |
2586 | int |
2587 | ClpGubMatrix::synchronize(ClpSimplex *, int) |
2588 | { |
2589 | return 0; |
2590 | } |
2591 | /* |
2592 | general utility function for dealing with dynamic constraints |
2593 | mode=n see ClpGubMatrix.hpp for definition |
2594 | Remember to update here when settled down |
2595 | */ |
2596 | int |
2597 | ClpGubMatrix::generalExpanded(ClpSimplex * model, int mode, int &number) |
2598 | { |
2599 | int returnCode = 0; |
2600 | int numberColumns = model->numberColumns(); |
2601 | switch (mode) { |
2602 | // Fill in pivotVariable but not for key variables |
2603 | case 0: { |
2604 | if (!next_ ) { |
2605 | // do ordering |
2606 | assert (!rhsOffset_); |
2607 | // create and do gub crash |
2608 | useEffectiveRhs(model, false); |
2609 | } |
2610 | int i; |
2611 | int numberBasic = number; |
2612 | // Use different array so can build from true pivotVariable_ |
2613 | //int * pivotVariable = model->pivotVariable(); |
2614 | int * pivotVariable = model->rowArray(0)->getIndices(); |
2615 | for (i = 0; i < numberColumns; i++) { |
2616 | if (model->getColumnStatus(i) == ClpSimplex::basic) { |
2617 | int iSet = backward_[i]; |
2618 | if (iSet < 0 || i != keyVariable_[iSet]) |
2619 | pivotVariable[numberBasic++] = i; |
2620 | } |
2621 | } |
2622 | number = numberBasic; |
2623 | if (model->numberIterations()) |
2624 | assert (number == model->numberRows()); |
2625 | } |
2626 | break; |
2627 | // Make all key variables basic |
2628 | case 1: { |
2629 | int i; |
2630 | for (i = 0; i < numberSets_; i++) { |
2631 | int iColumn = keyVariable_[i]; |
2632 | if (iColumn < numberColumns) |
2633 | model->setColumnStatus(iColumn, ClpSimplex::basic); |
2634 | } |
2635 | } |
2636 | break; |
2637 | // Do initial extra rows + maximum basic |
2638 | case 2: { |
2639 | returnCode = getNumRows() + 1; |
2640 | number = model->numberRows() + numberSets_; |
2641 | } |
2642 | break; |
2643 | // Before normal replaceColumn |
2644 | case 3: { |
2645 | int sequenceIn = model->sequenceIn(); |
2646 | int sequenceOut = model->sequenceOut(); |
2647 | int numberColumns = model->numberColumns(); |
2648 | int numberRows = model->numberRows(); |
2649 | int pivotRow = model->pivotRow(); |
2650 | if (gubSlackIn_ >= 0) |
2651 | assert (sequenceIn > numberRows + numberColumns); |
2652 | if (sequenceIn == sequenceOut) |
2653 | return -1; |
2654 | int iSetIn = -1; |
2655 | int iSetOut = -1; |
2656 | if (sequenceOut < numberColumns) { |
2657 | iSetOut = backward_[sequenceOut]; |
2658 | } else if (sequenceOut >= numberRows + numberColumns) { |
2659 | assert (pivotRow >= numberRows); |
2660 | int = pivotRow - numberRows; |
2661 | assert (iExtra >= 0); |
2662 | if (iSetOut < 0) |
2663 | iSetOut = fromIndex_[iExtra]; |
2664 | else |
2665 | assert(iSetOut == fromIndex_[iExtra]); |
2666 | } |
2667 | if (sequenceIn < numberColumns) { |
2668 | iSetIn = backward_[sequenceIn]; |
2669 | } else if (gubSlackIn_ >= 0) { |
2670 | iSetIn = gubSlackIn_; |
2671 | } |
2672 | possiblePivotKey_ = -1; |
2673 | number = 0; // say do ordinary |
2674 | int * pivotVariable = model->pivotVariable(); |
2675 | if (pivotRow >= numberRows) { |
2676 | int = pivotRow - numberRows; |
2677 | //const int * length = matrix_->getVectorLengths(); |
2678 | |
2679 | assert (sequenceOut >= numberRows + numberColumns || |
2680 | sequenceOut == keyVariable_[iSetOut]); |
2681 | int incomingColumn = sequenceIn; // to be used in updates |
2682 | if (iSetIn != iSetOut) { |
2683 | // We need to find a possible pivot for incoming |
2684 | // look through rowArray_[1] |
2685 | int n = model->rowArray(1)->getNumElements(); |
2686 | int * which = model->rowArray(1)->getIndices(); |
2687 | double * array = model->rowArray(1)->denseVector(); |
2688 | double bestAlpha = 1.0e-5; |
2689 | //int shortest=numberRows+1; |
2690 | for (int i = 0; i < n; i++) { |
2691 | int iRow = which[i]; |
2692 | int iPivot = pivotVariable[iRow]; |
2693 | if (iPivot < numberColumns && backward_[iPivot] == iSetOut) { |
2694 | if (fabs(array[i]) > fabs(bestAlpha)) { |
2695 | bestAlpha = array[i]; |
2696 | possiblePivotKey_ = iRow; |
2697 | } |
2698 | } |
2699 | } |
2700 | assert (possiblePivotKey_ >= 0); // could set returnCode=4 |
2701 | number = 1; |
2702 | if (sequenceIn >= numberRows + numberColumns) { |
2703 | number = 3; |
2704 | // need swap as gub slack in and must become key |
2705 | // is this best way |
2706 | int key = keyVariable_[iSetIn]; |
2707 | assert (key < numberColumns); |
2708 | // check other basic |
2709 | int iColumn = next_[key]; |
2710 | // set new key to be used by unpack |
2711 | keyVariable_[iSetIn] = iSetIn + numberColumns; |
2712 | // change cost in changeCost |
2713 | { |
2714 | int iLook = 0; |
2715 | int iSet = fromIndex_[0]; |
2716 | while (iSet >= 0) { |
2717 | if (iSet == iSetIn) { |
2718 | changeCost_[iLook] = 0.0; |
2719 | break; |
2720 | } |
2721 | iSet = fromIndex_[++iLook]; |
2722 | } |
2723 | } |
2724 | while (iColumn >= 0) { |
2725 | if (iColumn != sequenceOut) { |
2726 | // need partial ftran and skip accuracy check in replaceColumn |
2727 | #ifdef CLP_DEBUG_PRINT |
2728 | printf("TTTTTry 5\n" ); |
2729 | #endif |
2730 | int iRow = backToPivotRow_[iColumn]; |
2731 | assert (iRow >= 0); |
2732 | unpack(model, model->rowArray(3), iColumn); |
2733 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
2734 | double alpha = model->rowArray(3)->denseVector()[iRow]; |
2735 | //if (!alpha) |
2736 | //printf("zero alpha a\n"); |
2737 | int updateStatus = model->factorization()->replaceColumn(model, |
2738 | model->rowArray(2), |
2739 | model->rowArray(3), |
2740 | iRow, alpha); |
2741 | returnCode = CoinMax(updateStatus, returnCode); |
2742 | model->rowArray(3)->clear(); |
2743 | if (returnCode) |
2744 | break; |
2745 | } |
2746 | iColumn = next_[iColumn]; |
2747 | } |
2748 | if (!returnCode) { |
2749 | // now factorization looks as if key is out |
2750 | // pivot back in |
2751 | #ifdef CLP_DEBUG_PRINT |
2752 | printf("TTTTTry 6\n" ); |
2753 | #endif |
2754 | unpack(model, model->rowArray(3), key); |
2755 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
2756 | pivotRow = possiblePivotKey_; |
2757 | double alpha = model->rowArray(3)->denseVector()[pivotRow]; |
2758 | //if (!alpha) |
2759 | //printf("zero alpha b\n"); |
2760 | int updateStatus = model->factorization()->replaceColumn(model, |
2761 | model->rowArray(2), |
2762 | model->rowArray(3), |
2763 | pivotRow, alpha); |
2764 | returnCode = CoinMax(updateStatus, returnCode); |
2765 | model->rowArray(3)->clear(); |
2766 | } |
2767 | // restore key |
2768 | keyVariable_[iSetIn] = key; |
2769 | // now alternate column can replace key on out |
2770 | incomingColumn = pivotVariable[possiblePivotKey_]; |
2771 | } else { |
2772 | #ifdef CLP_DEBUG_PRINT |
2773 | printf("TTTTTTry 4 %d\n" , possiblePivotKey_); |
2774 | #endif |
2775 | int updateStatus = model->factorization()->replaceColumn(model, |
2776 | model->rowArray(2), |
2777 | model->rowArray(1), |
2778 | possiblePivotKey_, |
2779 | bestAlpha); |
2780 | returnCode = CoinMax(updateStatus, returnCode); |
2781 | incomingColumn = pivotVariable[possiblePivotKey_]; |
2782 | } |
2783 | |
2784 | //returnCode=4; // need swap |
2785 | } else { |
2786 | // key swap |
2787 | number = -1; |
2788 | } |
2789 | int key = keyVariable_[iSetOut]; |
2790 | if (key < numberColumns) |
2791 | assert(key == sequenceOut); |
2792 | // check if any other basic |
2793 | int iColumn = next_[key]; |
2794 | if (returnCode) |
2795 | iColumn = -1; // skip if error on previous |
2796 | // set new key to be used by unpack |
2797 | if (incomingColumn < numberColumns) |
2798 | keyVariable_[iSetOut] = incomingColumn; |
2799 | else |
2800 | keyVariable_[iSetOut] = iSetIn + numberColumns; |
2801 | double * cost = model->costRegion(); |
2802 | if (possiblePivotKey_ < 0) { |
2803 | double dj = model->djRegion()[sequenceIn] - cost[sequenceIn]; |
2804 | changeCost_[iExtra] = -dj; |
2805 | #ifdef CLP_DEBUG_PRINT |
2806 | printf("modifying changeCost %d by %g - cost %g\n" , iExtra, dj, cost[sequenceIn]); |
2807 | #endif |
2808 | } |
2809 | while (iColumn >= 0) { |
2810 | if (iColumn != incomingColumn) { |
2811 | number = -2; |
2812 | // need partial ftran and skip accuracy check in replaceColumn |
2813 | #ifdef CLP_DEBUG_PRINT |
2814 | printf("TTTTTTry 1\n" ); |
2815 | #endif |
2816 | int iRow = backToPivotRow_[iColumn]; |
2817 | assert (iRow >= 0 && iRow < numberRows); |
2818 | unpack(model, model->rowArray(3), iColumn); |
2819 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
2820 | double * array = model->rowArray(3)->denseVector(); |
2821 | double alpha = array[iRow]; |
2822 | //if (!alpha) |
2823 | //printf("zero alpha d\n"); |
2824 | int updateStatus = model->factorization()->replaceColumn(model, |
2825 | model->rowArray(2), |
2826 | model->rowArray(3), |
2827 | iRow, alpha); |
2828 | returnCode = CoinMax(updateStatus, returnCode); |
2829 | model->rowArray(3)->clear(); |
2830 | if (returnCode) |
2831 | break; |
2832 | } |
2833 | iColumn = next_[iColumn]; |
2834 | } |
2835 | // restore key |
2836 | keyVariable_[iSetOut] = key; |
2837 | } else if (sequenceIn >= numberRows + numberColumns) { |
2838 | number = 2; |
2839 | //returnCode=4; |
2840 | // need swap as gub slack in and must become key |
2841 | // is this best way |
2842 | int key = keyVariable_[iSetIn]; |
2843 | assert (key < numberColumns); |
2844 | // check other basic |
2845 | int iColumn = next_[key]; |
2846 | // set new key to be used by unpack |
2847 | keyVariable_[iSetIn] = iSetIn + numberColumns; |
2848 | // change cost in changeCost |
2849 | { |
2850 | int iLook = 0; |
2851 | int iSet = fromIndex_[0]; |
2852 | while (iSet >= 0) { |
2853 | if (iSet == iSetIn) { |
2854 | changeCost_[iLook] = 0.0; |
2855 | break; |
2856 | } |
2857 | iSet = fromIndex_[++iLook]; |
2858 | } |
2859 | } |
2860 | while (iColumn >= 0) { |
2861 | if (iColumn != sequenceOut) { |
2862 | // need partial ftran and skip accuracy check in replaceColumn |
2863 | #ifdef CLP_DEBUG_PRINT |
2864 | printf("TTTTTry 2\n" ); |
2865 | #endif |
2866 | int iRow = backToPivotRow_[iColumn]; |
2867 | assert (iRow >= 0); |
2868 | unpack(model, model->rowArray(3), iColumn); |
2869 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
2870 | double alpha = model->rowArray(3)->denseVector()[iRow]; |
2871 | //if (!alpha) |
2872 | //printf("zero alpha e\n"); |
2873 | int updateStatus = model->factorization()->replaceColumn(model, |
2874 | model->rowArray(2), |
2875 | model->rowArray(3), |
2876 | iRow, alpha); |
2877 | returnCode = CoinMax(updateStatus, returnCode); |
2878 | model->rowArray(3)->clear(); |
2879 | if (returnCode) |
2880 | break; |
2881 | } |
2882 | iColumn = next_[iColumn]; |
2883 | } |
2884 | if (!returnCode) { |
2885 | // now factorization looks as if key is out |
2886 | // pivot back in |
2887 | #ifdef CLP_DEBUG_PRINT |
2888 | printf("TTTTTry 3\n" ); |
2889 | #endif |
2890 | unpack(model, model->rowArray(3), key); |
2891 | model->factorization()->updateColumnFT(model->rowArray(2), model->rowArray(3)); |
2892 | double alpha = model->rowArray(3)->denseVector()[pivotRow]; |
2893 | //if (!alpha) |
2894 | //printf("zero alpha f\n"); |
2895 | int updateStatus = model->factorization()->replaceColumn(model, |
2896 | model->rowArray(2), |
2897 | model->rowArray(3), |
2898 | pivotRow, alpha); |
2899 | returnCode = CoinMax(updateStatus, returnCode); |
2900 | model->rowArray(3)->clear(); |
2901 | } |
2902 | // restore key |
2903 | keyVariable_[iSetIn] = key; |
2904 | } else { |
2905 | // normal - but might as well do here |
2906 | returnCode = model->factorization()->replaceColumn(model, |
2907 | model->rowArray(2), |
2908 | model->rowArray(1), |
2909 | model->pivotRow(), |
2910 | model->alpha()); |
2911 | } |
2912 | } |
2913 | #ifdef CLP_DEBUG_PRINT |
2914 | printf("Update type after %d - status %d - pivot row %d\n" , |
2915 | number, returnCode, model->pivotRow()); |
2916 | #endif |
2917 | // see if column generation says time to re-factorize |
2918 | returnCode = CoinMax(returnCode, synchronize(model, 5)); |
2919 | number = -1; // say no need for normal replaceColumn |
2920 | break; |
2921 | // To see if can dual or primal |
2922 | case 4: { |
2923 | returnCode = 1; |
2924 | } |
2925 | break; |
2926 | // save status |
2927 | case 5: { |
2928 | synchronize(model, 0); |
2929 | CoinMemcpyN(status_, numberSets_, saveStatus_); |
2930 | CoinMemcpyN(keyVariable_, numberSets_, savedKeyVariable_); |
2931 | } |
2932 | break; |
2933 | // restore status |
2934 | case 6: { |
2935 | CoinMemcpyN(saveStatus_, numberSets_, status_); |
2936 | CoinMemcpyN(savedKeyVariable_, numberSets_, keyVariable_); |
2937 | // restore firstAvailable_ |
2938 | synchronize(model, 7); |
2939 | // redo next_ |
2940 | int i; |
2941 | int * last = new int[numberSets_]; |
2942 | for (i = 0; i < numberSets_; i++) { |
2943 | int iKey = keyVariable_[i]; |
2944 | assert(iKey >= numberColumns || backward_[iKey] == i); |
2945 | last[i] = iKey; |
2946 | // make sure basic |
2947 | //if (iKey<numberColumns) |
2948 | //model->setStatus(iKey,ClpSimplex::basic); |
2949 | } |
2950 | for (i = 0; i < numberColumns; i++) { |
2951 | int iSet = backward_[i]; |
2952 | if (iSet >= 0) { |
2953 | next_[last[iSet]] = i; |
2954 | last[iSet] = i; |
2955 | } |
2956 | } |
2957 | for (i = 0; i < numberSets_; i++) { |
2958 | next_[last[i]] = -(keyVariable_[i] + 1); |
2959 | redoSet(model, keyVariable_[i], keyVariable_[i], i); |
2960 | } |
2961 | delete [] last; |
2962 | // redo pivotVariable |
2963 | int * pivotVariable = model->pivotVariable(); |
2964 | int iRow; |
2965 | int numberBasic = 0; |
2966 | int numberRows = model->numberRows(); |
2967 | for (iRow = 0; iRow < numberRows; iRow++) { |
2968 | if (model->getRowStatus(iRow) == ClpSimplex::basic) { |
2969 | numberBasic++; |
2970 | pivotVariable[iRow] = iRow + numberColumns; |
2971 | } else { |
2972 | pivotVariable[iRow] = -1; |
2973 | } |
2974 | } |
2975 | i = 0; |
2976 | int iColumn; |
2977 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
2978 | if (model->getStatus(iColumn) == ClpSimplex::basic) { |
2979 | int iSet = backward_[iColumn]; |
2980 | if (iSet < 0 || keyVariable_[iSet] != iColumn) { |
2981 | while (pivotVariable[i] >= 0) { |
2982 | i++; |
2983 | assert (i < numberRows); |
2984 | } |
2985 | pivotVariable[i] = iColumn; |
2986 | backToPivotRow_[iColumn] = i; |
2987 | numberBasic++; |
2988 | } |
2989 | } |
2990 | } |
2991 | assert (numberBasic == numberRows); |
2992 | rhsOffset(model, true); |
2993 | } |
2994 | break; |
2995 | // flag a variable |
2996 | case 7: { |
2997 | assert (number == model->sequenceIn()); |
2998 | synchronize(model, 1); |
2999 | synchronize(model, 8); |
3000 | } |
3001 | break; |
3002 | // unflag all variables |
3003 | case 8: { |
3004 | returnCode = synchronize(model, 2); |
3005 | } |
3006 | break; |
3007 | // redo costs in primal |
3008 | case 9: { |
3009 | returnCode = synchronize(model, 3); |
3010 | } |
3011 | break; |
3012 | // return 1 if there may be changing bounds on variable (column generation) |
3013 | case 10: { |
3014 | returnCode = synchronize(model, 6); |
3015 | } |
3016 | break; |
3017 | // make sure set is clean |
3018 | case 11: { |
3019 | assert (number == model->sequenceIn()); |
3020 | returnCode = synchronize(model, 8); |
3021 | } |
3022 | break; |
3023 | default: |
3024 | break; |
3025 | } |
3026 | return returnCode; |
3027 | } |
3028 | // Sets up an effective RHS and does gub crash if needed |
3029 | void |
3030 | ClpGubMatrix::useEffectiveRhs(ClpSimplex * model, bool cheapest) |
3031 | { |
3032 | // Do basis - cheapest or slack if feasible (unless cheapest set) |
3033 | int longestSet = 0; |
3034 | int iSet; |
3035 | for (iSet = 0; iSet < numberSets_; iSet++) |
3036 | longestSet = CoinMax(longestSet, end_[iSet] - start_[iSet]); |
3037 | |
3038 | double * upper = new double[longestSet+1]; |
3039 | double * cost = new double[longestSet+1]; |
3040 | double * lower = new double[longestSet+1]; |
3041 | double * solution = new double[longestSet+1]; |
3042 | assert (!next_); |
3043 | int numberColumns = getNumCols(); |
3044 | const int * columnLength = matrix_->getVectorLengths(); |
3045 | const double * columnLower = model->lowerRegion(); |
3046 | const double * columnUpper = model->upperRegion(); |
3047 | double * columnSolution = model->solutionRegion(); |
3048 | const double * objective = model->costRegion(); |
3049 | int numberRows = getNumRows(); |
3050 | toIndex_ = new int[numberSets_]; |
3051 | for (iSet = 0; iSet < numberSets_; iSet++) |
3052 | toIndex_[iSet] = -1; |
3053 | fromIndex_ = new int [getNumRows()+1]; |
3054 | double tolerance = model->primalTolerance(); |
3055 | bool noNormalBounds = true; |
3056 | gubType_ &= ~8; |
3057 | bool gotBasis = false; |
3058 | for (iSet = 0; iSet < numberSets_; iSet++) { |
3059 | if (keyVariable_[iSet] < numberColumns) |
3060 | gotBasis = true; |
3061 | CoinBigIndex j; |
3062 | CoinBigIndex iStart = start_[iSet]; |
3063 | CoinBigIndex iEnd = end_[iSet]; |
3064 | for (j = iStart; j < iEnd; j++) { |
3065 | if (columnLower[j] && columnLower[j] > -1.0e20) |
3066 | noNormalBounds = false; |
3067 | if (columnUpper[j] && columnUpper[j] < 1.0e20) |
3068 | noNormalBounds = false; |
3069 | } |
3070 | } |
3071 | if (noNormalBounds) |
3072 | gubType_ |= 8; |
3073 | if (!gotBasis) { |
3074 | for (iSet = 0; iSet < numberSets_; iSet++) { |
3075 | CoinBigIndex j; |
3076 | int numberBasic = 0; |
3077 | int iBasic = -1; |
3078 | CoinBigIndex iStart = start_[iSet]; |
3079 | CoinBigIndex iEnd = end_[iSet]; |
3080 | // find one with smallest length |
3081 | int smallest = numberRows + 1; |
3082 | double value = 0.0; |
3083 | for (j = iStart; j < iEnd; j++) { |
3084 | if (model->getStatus(j) == ClpSimplex::basic) { |
3085 | if (columnLength[j] < smallest) { |
3086 | smallest = columnLength[j]; |
3087 | iBasic = j; |
3088 | } |
3089 | numberBasic++; |
3090 | } |
3091 | value += columnSolution[j]; |
3092 | } |
3093 | bool done = false; |
3094 | if (numberBasic > 1 || (numberBasic == 1 && getStatus(iSet) == ClpSimplex::basic)) { |
3095 | if (getStatus(iSet) == ClpSimplex::basic) |
3096 | iBasic = iSet + numberColumns; // slack key - use |
3097 | done = true; |
3098 | } else if (numberBasic == 1) { |
3099 | // see if can be key |
3100 | double thisSolution = columnSolution[iBasic]; |
3101 | if (thisSolution > columnUpper[iBasic]) { |
3102 | value -= thisSolution - columnUpper[iBasic]; |
3103 | thisSolution = columnUpper[iBasic]; |
3104 | columnSolution[iBasic] = thisSolution; |
3105 | } |
3106 | if (thisSolution < columnLower[iBasic]) { |
3107 | value -= thisSolution - columnLower[iBasic]; |
3108 | thisSolution = columnLower[iBasic]; |
3109 | columnSolution[iBasic] = thisSolution; |
3110 | } |
3111 | // try setting slack to a bound |
3112 | assert (upper_[iSet] < 1.0e20 || lower_[iSet] > -1.0e20); |
3113 | double cost1 = COIN_DBL_MAX; |
3114 | int whichBound = -1; |
3115 | if (upper_[iSet] < 1.0e20) { |
3116 | // try slack at ub |
3117 | double newBasic = thisSolution + upper_[iSet] - value; |
3118 | if (newBasic >= columnLower[iBasic] - tolerance && |
3119 | newBasic <= columnUpper[iBasic] + tolerance) { |
3120 | // can go |
3121 | whichBound = 1; |
3122 | cost1 = newBasic * objective[iBasic]; |
3123 | // But if exact then may be good solution |
3124 | if (fabs(upper_[iSet] - value) < tolerance) |
3125 | cost1 = -COIN_DBL_MAX; |
3126 | } |
3127 | } |
3128 | if (lower_[iSet] > -1.0e20) { |
3129 | // try slack at lb |
3130 | double newBasic = thisSolution + lower_[iSet] - value; |
3131 | if (newBasic >= columnLower[iBasic] - tolerance && |
3132 | newBasic <= columnUpper[iBasic] + tolerance) { |
3133 | // can go but is it cheaper |
3134 | double cost2 = newBasic * objective[iBasic]; |
3135 | // But if exact then may be good solution |
3136 | if (fabs(lower_[iSet] - value) < tolerance) |
3137 | cost2 = -COIN_DBL_MAX; |
3138 | if (cost2 < cost1) |
3139 | whichBound = 0; |
3140 | } |
3141 | } |
3142 | if (whichBound != -1) { |
3143 | // key |
3144 | done = true; |
3145 | if (whichBound) { |
3146 | // slack to upper |
3147 | columnSolution[iBasic] = thisSolution + upper_[iSet] - value; |
3148 | setStatus(iSet, ClpSimplex::atUpperBound); |
3149 | } else { |
3150 | // slack to lower |
3151 | columnSolution[iBasic] = thisSolution + lower_[iSet] - value; |
3152 | setStatus(iSet, ClpSimplex::atLowerBound); |
3153 | } |
3154 | } |
3155 | } |
3156 | if (!done) { |
3157 | if (!cheapest) { |
3158 | // see if slack can be key |
3159 | if (value >= lower_[iSet] - tolerance && value <= upper_[iSet] + tolerance) { |
3160 | done = true; |
3161 | setStatus(iSet, ClpSimplex::basic); |
3162 | iBasic = iSet + numberColumns; |
3163 | } |
3164 | } |
3165 | if (!done) { |
3166 | // set non basic if there was one |
3167 | if (iBasic >= 0) |
3168 | model->setStatus(iBasic, ClpSimplex::atLowerBound); |
3169 | // find cheapest |
3170 | int numberInSet = iEnd - iStart; |
3171 | CoinMemcpyN(columnLower + iStart, numberInSet, lower); |
3172 | CoinMemcpyN(columnUpper + iStart, numberInSet, upper); |
3173 | CoinMemcpyN(columnSolution + iStart, numberInSet, solution); |
3174 | // and slack |
3175 | iBasic = numberInSet; |
3176 | solution[iBasic] = -value; |
3177 | lower[iBasic] = -upper_[iSet]; |
3178 | upper[iBasic] = -lower_[iSet]; |
3179 | int kphase; |
3180 | if (value >= lower_[iSet] - tolerance && value <= upper_[iSet] + tolerance) { |
3181 | // feasible |
3182 | kphase = 1; |
3183 | cost[iBasic] = 0.0; |
3184 | CoinMemcpyN(objective + iStart, numberInSet, cost); |
3185 | } else { |
3186 | // infeasible |
3187 | kphase = 0; |
3188 | // remember bounds are flipped so opposite to natural |
3189 | if (value < lower_[iSet] - tolerance) |
3190 | cost[iBasic] = 1.0; |
3191 | else |
3192 | cost[iBasic] = -1.0; |
3193 | CoinZeroN(cost, numberInSet); |
3194 | } |
3195 | double dualTolerance = model->dualTolerance(); |
3196 | for (int iphase = kphase; iphase < 2; iphase++) { |
3197 | if (iphase) { |
3198 | cost[numberInSet] = 0.0; |
3199 | CoinMemcpyN(objective + iStart, numberInSet, cost); |
3200 | } |
3201 | // now do one row lp |
3202 | bool improve = true; |
3203 | while (improve) { |
3204 | improve = false; |
3205 | double dual = cost[iBasic]; |
3206 | int chosen = -1; |
3207 | double best = dualTolerance; |
3208 | int way = 0; |
3209 | for (int i = 0; i <= numberInSet; i++) { |
3210 | double dj = cost[i] - dual; |
3211 | double improvement = 0.0; |
3212 | if (iphase || i < numberInSet) |
3213 | assert (solution[i] >= lower[i] && solution[i] <= upper[i]); |
3214 | if (dj > dualTolerance) |
3215 | improvement = dj * (solution[i] - lower[i]); |
3216 | else if (dj < -dualTolerance) |
3217 | improvement = dj * (solution[i] - upper[i]); |
3218 | if (improvement > best) { |
3219 | best = improvement; |
3220 | chosen = i; |
3221 | if (dj < 0.0) { |
3222 | way = 1; |
3223 | } else { |
3224 | way = -1; |
3225 | } |
3226 | } |
3227 | } |
3228 | if (chosen >= 0) { |
3229 | improve = true; |
3230 | // now see how far |
3231 | if (way > 0) { |
3232 | // incoming increasing so basic decreasing |
3233 | // if phase 0 then go to nearest bound |
3234 | double distance = upper[chosen] - solution[chosen]; |
3235 | double basicDistance; |
3236 | if (!iphase) { |
3237 | assert (iBasic == numberInSet); |
3238 | assert (solution[iBasic] > upper[iBasic]); |
3239 | basicDistance = solution[iBasic] - upper[iBasic]; |
3240 | } else { |
3241 | basicDistance = solution[iBasic] - lower[iBasic]; |
3242 | } |
3243 | // need extra coding for unbounded |
3244 | assert (CoinMin(distance, basicDistance) < 1.0e20); |
3245 | if (distance > basicDistance) { |
3246 | // incoming becomes basic |
3247 | solution[chosen] += basicDistance; |
3248 | if (!iphase) |
3249 | solution[iBasic] = upper[iBasic]; |
3250 | else |
3251 | solution[iBasic] = lower[iBasic]; |
3252 | iBasic = chosen; |
3253 | } else { |
3254 | // flip |
3255 | solution[chosen] = upper[chosen]; |
3256 | solution[iBasic] -= distance; |
3257 | } |
3258 | } else { |
3259 | // incoming decreasing so basic increasing |
3260 | // if phase 0 then go to nearest bound |
3261 | double distance = solution[chosen] - lower[chosen]; |
3262 | double basicDistance; |
3263 | if (!iphase) { |
3264 | assert (iBasic == numberInSet); |
3265 | assert (solution[iBasic] < lower[iBasic]); |
3266 | basicDistance = lower[iBasic] - solution[iBasic]; |
3267 | } else { |
3268 | basicDistance = upper[iBasic] - solution[iBasic]; |
3269 | } |
3270 | // need extra coding for unbounded - for now just exit |
3271 | if (CoinMin(distance, basicDistance) > 1.0e20) { |
3272 | printf("unbounded on set %d\n" , iSet); |
3273 | iphase = 1; |
3274 | iBasic = numberInSet; |
3275 | break; |
3276 | } |
3277 | if (distance > basicDistance) { |
3278 | // incoming becomes basic |
3279 | solution[chosen] -= basicDistance; |
3280 | if (!iphase) |
3281 | solution[iBasic] = lower[iBasic]; |
3282 | else |
3283 | solution[iBasic] = upper[iBasic]; |
3284 | iBasic = chosen; |
3285 | } else { |
3286 | // flip |
3287 | solution[chosen] = lower[chosen]; |
3288 | solution[iBasic] += distance; |
3289 | } |
3290 | } |
3291 | if (!iphase) { |
3292 | if(iBasic < numberInSet) |
3293 | break; // feasible |
3294 | else if (solution[iBasic] >= lower[iBasic] && |
3295 | solution[iBasic] <= upper[iBasic]) |
3296 | break; // feasible (on flip) |
3297 | } |
3298 | } |
3299 | } |
3300 | } |
3301 | // convert iBasic back and do bounds |
3302 | if (iBasic == numberInSet) { |
3303 | // slack basic |
3304 | setStatus(iSet, ClpSimplex::basic); |
3305 | iBasic = iSet + numberColumns; |
3306 | } else { |
3307 | iBasic += start_[iSet]; |
3308 | model->setStatus(iBasic, ClpSimplex::basic); |
3309 | // remember bounds flipped |
3310 | if (upper[numberInSet] == lower[numberInSet]) |
3311 | setStatus(iSet, ClpSimplex::isFixed); |
3312 | else if (solution[numberInSet] == upper[numberInSet]) |
3313 | setStatus(iSet, ClpSimplex::atLowerBound); |
3314 | else if (solution[numberInSet] == lower[numberInSet]) |
3315 | setStatus(iSet, ClpSimplex::atUpperBound); |
3316 | else |
3317 | abort(); |
3318 | } |
3319 | for (j = iStart; j < iEnd; j++) { |
3320 | if (model->getStatus(j) != ClpSimplex::basic) { |
3321 | int inSet = j - iStart; |
3322 | columnSolution[j] = solution[inSet]; |
3323 | if (upper[inSet] == lower[inSet]) |
3324 | model->setStatus(j, ClpSimplex::isFixed); |
3325 | else if (solution[inSet] == upper[inSet]) |
3326 | model->setStatus(j, ClpSimplex::atUpperBound); |
3327 | else if (solution[inSet] == lower[inSet]) |
3328 | model->setStatus(j, ClpSimplex::atLowerBound); |
3329 | } |
3330 | } |
3331 | } |
3332 | } |
3333 | keyVariable_[iSet] = iBasic; |
3334 | } |
3335 | } |
3336 | delete [] lower; |
3337 | delete [] solution; |
3338 | delete [] upper; |
3339 | delete [] cost; |
3340 | // make sure matrix is in good shape |
3341 | matrix_->orderMatrix(); |
3342 | // create effective rhs |
3343 | delete [] rhsOffset_; |
3344 | rhsOffset_ = new double[numberRows]; |
3345 | delete [] next_; |
3346 | next_ = new int[numberColumns+numberSets_+2*longestSet]; |
3347 | char * mark = new char[numberColumns]; |
3348 | memset(mark, 0, numberColumns); |
3349 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) |
3350 | next_[iColumn] = COIN_INT_MAX; |
3351 | int i; |
3352 | int * keys = new int[numberSets_]; |
3353 | for (i = 0; i < numberSets_; i++) |
3354 | keys[i] = COIN_INT_MAX; |
3355 | // set up chains |
3356 | for (i = 0; i < numberColumns; i++) { |
3357 | if (model->getStatus(i) == ClpSimplex::basic) |
3358 | mark[i] = 1; |
3359 | int iSet = backward_[i]; |
3360 | if (iSet >= 0) { |
3361 | int iNext = keys[iSet]; |
3362 | next_[i] = iNext; |
3363 | keys[iSet] = i; |
3364 | } |
3365 | } |
3366 | for (i = 0; i < numberSets_; i++) { |
3367 | int j; |
3368 | if (getStatus(i) != ClpSimplex::basic) { |
3369 | // make sure fixed if it is |
3370 | if (upper_[i] == lower_[i]) |
3371 | setStatus(i, ClpSimplex::isFixed); |
3372 | // slack not key - choose one with smallest length |
3373 | int smallest = numberRows + 1; |
3374 | int key = -1; |
3375 | j = keys[i]; |
3376 | if (j != COIN_INT_MAX) { |
3377 | while (1) { |
3378 | if (mark[j] && columnLength[j] < smallest && !gotBasis) { |
3379 | key = j; |
3380 | smallest = columnLength[j]; |
3381 | } |
3382 | if (next_[j] != COIN_INT_MAX) { |
3383 | j = next_[j]; |
3384 | } else { |
3385 | // correct end |
3386 | next_[j] = -(keys[i] + 1); |
3387 | break; |
3388 | } |
3389 | } |
3390 | } else { |
3391 | next_[i+numberColumns] = -(numberColumns + i + 1); |
3392 | } |
3393 | if (gotBasis) |
3394 | key = keyVariable_[i]; |
3395 | if (key >= 0) { |
3396 | keyVariable_[i] = key; |
3397 | } else { |
3398 | // nothing basic - make slack key |
3399 | //((ClpGubMatrix *)this)->setStatus(i,ClpSimplex::basic); |
3400 | // fudge to avoid const problem |
3401 | status_[i] = 1; |
3402 | } |
3403 | } else { |
3404 | // slack key |
3405 | keyVariable_[i] = numberColumns + i; |
3406 | int j; |
3407 | double sol = 0.0; |
3408 | j = keys[i]; |
3409 | if (j != COIN_INT_MAX) { |
3410 | while (1) { |
3411 | sol += columnSolution[j]; |
3412 | if (next_[j] != COIN_INT_MAX) { |
3413 | j = next_[j]; |
3414 | } else { |
3415 | // correct end |
3416 | next_[j] = -(keys[i] + 1); |
3417 | break; |
3418 | } |
3419 | } |
3420 | } else { |
3421 | next_[i+numberColumns] = -(numberColumns + i + 1); |
3422 | } |
3423 | if (sol > upper_[i] + tolerance) { |
3424 | setAbove(i); |
3425 | } else if (sol < lower_[i] - tolerance) { |
3426 | setBelow(i); |
3427 | } else { |
3428 | setFeasible(i); |
3429 | } |
3430 | } |
3431 | // Create next_ |
3432 | int key = keyVariable_[i]; |
3433 | redoSet(model, key, keys[i], i); |
3434 | } |
3435 | delete [] keys; |
3436 | delete [] mark; |
3437 | rhsOffset(model, true); |
3438 | } |
3439 | // redoes next_ for a set. |
3440 | void |
3441 | ClpGubMatrix::redoSet(ClpSimplex * model, int newKey, int oldKey, int iSet) |
3442 | { |
3443 | int numberColumns = model->numberColumns(); |
3444 | int * save = next_ + numberColumns + numberSets_; |
3445 | int number = 0; |
3446 | int stop = -(oldKey + 1); |
3447 | int j = next_[oldKey]; |
3448 | while (j != stop) { |
3449 | if (j < 0) |
3450 | j = -j - 1; |
3451 | if (j != newKey) |
3452 | save[number++] = j; |
3453 | j = next_[j]; |
3454 | } |
3455 | // and add oldkey |
3456 | if (newKey != oldKey) |
3457 | save[number++] = oldKey; |
3458 | // now do basic |
3459 | int lastMarker = -(newKey + 1); |
3460 | keyVariable_[iSet] = newKey; |
3461 | next_[newKey] = lastMarker; |
3462 | int last = newKey; |
3463 | for ( j = 0; j < number; j++) { |
3464 | int iColumn = save[j]; |
3465 | if (iColumn < numberColumns) { |
3466 | if (model->getStatus(iColumn) == ClpSimplex::basic) { |
3467 | next_[last] = iColumn; |
3468 | next_[iColumn] = lastMarker; |
3469 | last = iColumn; |
3470 | } |
3471 | } |
3472 | } |
3473 | // now add in non-basic |
3474 | for ( j = 0; j < number; j++) { |
3475 | int iColumn = save[j]; |
3476 | if (iColumn < numberColumns) { |
3477 | if (model->getStatus(iColumn) != ClpSimplex::basic) { |
3478 | next_[last] = -(iColumn + 1); |
3479 | next_[iColumn] = lastMarker; |
3480 | last = iColumn; |
3481 | } |
3482 | } |
3483 | } |
3484 | |
3485 | } |
3486 | /* Returns effective RHS if it is being used. This is used for long problems |
3487 | or big gub or anywhere where going through full columns is |
3488 | expensive. This may re-compute */ |
3489 | double * |
3490 | ClpGubMatrix::rhsOffset(ClpSimplex * model, bool forceRefresh, bool |
3491 | #ifdef CLP_DEBUG |
3492 | check |
3493 | #endif |
3494 | ) |
3495 | { |
3496 | //forceRefresh=true; |
3497 | if (rhsOffset_) { |
3498 | #ifdef CLP_DEBUG |
3499 | if (check) { |
3500 | // no need - but check anyway |
3501 | // zero out basic |
3502 | int numberRows = model->numberRows(); |
3503 | int numberColumns = model->numberColumns(); |
3504 | double * solution = new double [numberColumns]; |
3505 | double * rhs = new double[numberRows]; |
3506 | CoinMemcpyN(model->solutionRegion(), numberColumns, solution); |
3507 | CoinZeroN(rhs, numberRows); |
3508 | int iRow; |
3509 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
3510 | if (model->getColumnStatus(iColumn) == ClpSimplex::basic) |
3511 | solution[iColumn] = 0.0; |
3512 | } |
3513 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
3514 | int iColumn = keyVariable_[iSet]; |
3515 | if (iColumn < numberColumns) |
3516 | solution[iColumn] = 0.0; |
3517 | } |
3518 | times(-1.0, solution, rhs); |
3519 | delete [] solution; |
3520 | const double * columnSolution = model->solutionRegion(); |
3521 | // and now subtract out non basic |
3522 | ClpSimplex::Status iStatus; |
3523 | for (int iSet = 0; iSet < numberSets_; iSet++) { |
3524 | int iColumn = keyVariable_[iSet]; |
3525 | if (iColumn < numberColumns) { |
3526 | double b = 0.0; |
3527 | // key is structural - where is slack |
3528 | iStatus = getStatus(iSet); |
3529 | assert (iStatus != ClpSimplex::basic); |
3530 | if (iStatus == ClpSimplex::atLowerBound) |
3531 | b = lower_[iSet]; |
3532 | else |
3533 | b = upper_[iSet]; |
3534 | // subtract out others at bounds |
3535 | if ((gubType_ & 8) == 0) { |
3536 | int stop = -(iColumn + 1); |
3537 | int jColumn = next_[iColumn]; |
3538 | // sum all non-basic variables - first skip basic |
3539 | while(jColumn >= 0) |
3540 | jColumn = next_[jColumn]; |
3541 | while(jColumn != stop) { |
3542 | assert (jColumn < 0); |
3543 | jColumn = -jColumn - 1; |
3544 | b -= columnSolution[jColumn]; |
3545 | jColumn = next_[jColumn]; |
3546 | } |
3547 | } |
3548 | // subtract out |
3549 | ClpPackedMatrix::add(model, rhs, iColumn, -b); |
3550 | } |
3551 | } |
3552 | for (iRow = 0; iRow < numberRows; iRow++) { |
3553 | if (fabs(rhs[iRow] - rhsOffset_[iRow]) > 1.0e-3) |
3554 | printf("** bad effective %d - true %g old %g\n" , iRow, rhs[iRow], rhsOffset_[iRow]); |
3555 | } |
3556 | delete [] rhs; |
3557 | } |
3558 | #endif |
3559 | if (forceRefresh || (refreshFrequency_ && model->numberIterations() >= |
3560 | lastRefresh_ + refreshFrequency_)) { |
3561 | // zero out basic |
3562 | int numberRows = model->numberRows(); |
3563 | int numberColumns = model->numberColumns(); |
3564 | double * solution = new double [numberColumns]; |
3565 | CoinMemcpyN(model->solutionRegion(), numberColumns, solution); |
3566 | CoinZeroN(rhsOffset_, numberRows); |
3567 | for (int iColumn = 0; iColumn < numberColumns; iColumn++) { |
3568 | if (model->getColumnStatus(iColumn) == ClpSimplex::basic) |
3569 | solution[iColumn] = 0.0; |
3570 | } |
3571 | int iSet; |
3572 | for ( iSet = 0; iSet < numberSets_; iSet++) { |
3573 | int iColumn = keyVariable_[iSet]; |
3574 | if (iColumn < numberColumns) |
3575 | solution[iColumn] = 0.0; |
3576 | } |
3577 | times(-1.0, solution, rhsOffset_); |
3578 | delete [] solution; |
3579 | lastRefresh_ = model->numberIterations(); |
3580 | const double * columnSolution = model->solutionRegion(); |
3581 | // and now subtract out non basic |
3582 | ClpSimplex::Status iStatus; |
3583 | for ( iSet = 0; iSet < numberSets_; iSet++) { |
3584 | int iColumn = keyVariable_[iSet]; |
3585 | if (iColumn < numberColumns) { |
3586 | double b = 0.0; |
3587 | // key is structural - where is slack |
3588 | iStatus = getStatus(iSet); |
3589 | assert (iStatus != ClpSimplex::basic); |
3590 | if (iStatus == ClpSimplex::atLowerBound) |
3591 | b = lower_[iSet]; |
3592 | else |
3593 | b = upper_[iSet]; |
3594 | // subtract out others at bounds |
3595 | if ((gubType_ & 8) == 0) { |
3596 | int stop = -(iColumn + 1); |
3597 | int jColumn = next_[iColumn]; |
3598 | // sum all non-basic variables - first skip basic |
3599 | while(jColumn >= 0) |
3600 | jColumn = next_[jColumn]; |
3601 | while(jColumn != stop) { |
3602 | assert (jColumn < 0); |
3603 | jColumn = -jColumn - 1; |
3604 | b -= columnSolution[jColumn]; |
3605 | jColumn = next_[jColumn]; |
3606 | } |
3607 | } |
3608 | // subtract out |
3609 | if (b) |
3610 | ClpPackedMatrix::add(model, rhsOffset_, iColumn, -b); |
3611 | } |
3612 | } |
3613 | } |
3614 | } |
3615 | return rhsOffset_; |
3616 | } |
3617 | /* |
3618 | update information for a pivot (and effective rhs) |
3619 | */ |
3620 | int |
3621 | ClpGubMatrix::updatePivot(ClpSimplex * model, double oldInValue, double /*oldOutValue*/) |
3622 | { |
3623 | int sequenceIn = model->sequenceIn(); |
3624 | int sequenceOut = model->sequenceOut(); |
3625 | double * solution = model->solutionRegion(); |
3626 | int numberColumns = model->numberColumns(); |
3627 | int numberRows = model->numberRows(); |
3628 | int pivotRow = model->pivotRow(); |
3629 | int iSetIn; |
3630 | // Correct sequence in |
3631 | trueSequenceIn_ = sequenceIn; |
3632 | if (sequenceIn < numberColumns) { |
3633 | iSetIn = backward_[sequenceIn]; |
3634 | } else if (sequenceIn < numberColumns + numberRows) { |
3635 | iSetIn = -1; |
3636 | } else { |
3637 | iSetIn = gubSlackIn_; |
3638 | trueSequenceIn_ = numberColumns + numberRows + iSetIn; |
3639 | } |
3640 | int iSetOut = -1; |
3641 | trueSequenceOut_ = sequenceOut; |
3642 | if (sequenceOut < numberColumns) { |
3643 | iSetOut = backward_[sequenceOut]; |
3644 | } else if (sequenceOut >= numberRows + numberColumns) { |
3645 | assert (pivotRow >= numberRows); |
3646 | int = pivotRow - numberRows; |
3647 | assert (iExtra >= 0); |
3648 | if (iSetOut < 0) |
3649 | iSetOut = fromIndex_[iExtra]; |
3650 | else |
3651 | assert(iSetOut == fromIndex_[iExtra]); |
3652 | trueSequenceOut_ = numberColumns + numberRows + iSetOut; |
3653 | } |
3654 | if (rhsOffset_) { |
3655 | // update effective rhs |
3656 | if (sequenceIn == sequenceOut) { |
3657 | assert (sequenceIn < numberRows + numberColumns); // should be easy to deal with |
3658 | if (sequenceIn < numberColumns) |
3659 | add(model, rhsOffset_, sequenceIn, oldInValue - solution[sequenceIn]); |
3660 | } else { |
3661 | if (sequenceIn < numberColumns) { |
3662 | // we need to test if WILL be key |
3663 | ClpPackedMatrix::add(model, rhsOffset_, sequenceIn, oldInValue); |
3664 | if (iSetIn >= 0) { |
3665 | // old contribution to rhsOffset_ |
3666 | int key = keyVariable_[iSetIn]; |
3667 | if (key < numberColumns) { |
3668 | double oldB = 0.0; |
3669 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
3670 | if (iStatus == ClpSimplex::atLowerBound) |
3671 | oldB = lower_[iSetIn]; |
3672 | else |
3673 | oldB = upper_[iSetIn]; |
3674 | // subtract out others at bounds |
3675 | if ((gubType_ & 8) == 0) { |
3676 | int stop = -(key + 1); |
3677 | int iColumn = next_[key]; |
3678 | // skip basic |
3679 | while (iColumn >= 0) |
3680 | iColumn = next_[iColumn]; |
3681 | // sum all non-key variables |
3682 | while(iColumn != stop) { |
3683 | assert (iColumn < 0); |
3684 | iColumn = -iColumn - 1; |
3685 | if (iColumn == sequenceIn) |
3686 | oldB -= oldInValue; |
3687 | else if ( iColumn != sequenceOut ) |
3688 | oldB -= solution[iColumn]; |
3689 | iColumn = next_[iColumn]; |
3690 | } |
3691 | } |
3692 | if (oldB) |
3693 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
3694 | } |
3695 | } |
3696 | } else if (sequenceIn < numberRows + numberColumns) { |
3697 | //rhsOffset_[sequenceIn-numberColumns] -= oldInValue; |
3698 | } else { |
3699 | #ifdef CLP_DEBUG_PRINT |
3700 | printf("** in is key slack %d\n" , sequenceIn); |
3701 | #endif |
3702 | // old contribution to rhsOffset_ |
3703 | int key = keyVariable_[iSetIn]; |
3704 | if (key < numberColumns) { |
3705 | double oldB = 0.0; |
3706 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
3707 | if (iStatus == ClpSimplex::atLowerBound) |
3708 | oldB = lower_[iSetIn]; |
3709 | else |
3710 | oldB = upper_[iSetIn]; |
3711 | // subtract out others at bounds |
3712 | if ((gubType_ & 8) == 0) { |
3713 | int stop = -(key + 1); |
3714 | int iColumn = next_[key]; |
3715 | // skip basic |
3716 | while (iColumn >= 0) |
3717 | iColumn = next_[iColumn]; |
3718 | // sum all non-key variables |
3719 | while(iColumn != stop) { |
3720 | assert (iColumn < 0); |
3721 | iColumn = -iColumn - 1; |
3722 | if ( iColumn != sequenceOut ) |
3723 | oldB -= solution[iColumn]; |
3724 | iColumn = next_[iColumn]; |
3725 | } |
3726 | } |
3727 | if (oldB) |
3728 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
3729 | } |
3730 | } |
3731 | if (sequenceOut < numberColumns) { |
3732 | ClpPackedMatrix::add(model, rhsOffset_, sequenceOut, -solution[sequenceOut]); |
3733 | if (iSetOut >= 0) { |
3734 | // old contribution to rhsOffset_ |
3735 | int key = keyVariable_[iSetOut]; |
3736 | if (key < numberColumns && iSetIn != iSetOut) { |
3737 | double oldB = 0.0; |
3738 | ClpSimplex::Status iStatus = getStatus(iSetOut); |
3739 | if (iStatus == ClpSimplex::atLowerBound) |
3740 | oldB = lower_[iSetOut]; |
3741 | else |
3742 | oldB = upper_[iSetOut]; |
3743 | // subtract out others at bounds |
3744 | if ((gubType_ & 8) == 0) { |
3745 | int stop = -(key + 1); |
3746 | int iColumn = next_[key]; |
3747 | // skip basic |
3748 | while (iColumn >= 0) |
3749 | iColumn = next_[iColumn]; |
3750 | // sum all non-key variables |
3751 | while(iColumn != stop) { |
3752 | assert (iColumn < 0); |
3753 | iColumn = -iColumn - 1; |
3754 | if (iColumn == sequenceIn) |
3755 | oldB -= oldInValue; |
3756 | else if ( iColumn != sequenceOut ) |
3757 | oldB -= solution[iColumn]; |
3758 | iColumn = next_[iColumn]; |
3759 | } |
3760 | } |
3761 | if (oldB) |
3762 | ClpPackedMatrix::add(model, rhsOffset_, key, oldB); |
3763 | } |
3764 | } |
3765 | } else if (sequenceOut < numberRows + numberColumns) { |
3766 | //rhsOffset_[sequenceOut-numberColumns] -= -solution[sequenceOut]; |
3767 | } else { |
3768 | #ifdef CLP_DEBUG_PRINT |
3769 | printf("** out is key slack %d\n" , sequenceOut); |
3770 | #endif |
3771 | assert (pivotRow >= numberRows); |
3772 | } |
3773 | } |
3774 | } |
3775 | int * pivotVariable = model->pivotVariable(); |
3776 | // may need to deal with key |
3777 | // Also need coding to mark/allow key slack entering |
3778 | if (pivotRow >= numberRows) { |
3779 | assert (sequenceOut >= numberRows + numberColumns || sequenceOut == keyVariable_[iSetOut]); |
3780 | #ifdef CLP_DEBUG_PRINT |
3781 | if (sequenceIn >= numberRows + numberColumns) |
3782 | printf("key slack %d in, set out %d\n" , gubSlackIn_, iSetOut); |
3783 | printf("** danger - key out for set %d in %d (set %d)\n" , iSetOut, sequenceIn, |
3784 | iSetIn); |
3785 | #endif |
3786 | // if slack out mark correctly |
3787 | if (sequenceOut >= numberRows + numberColumns) { |
3788 | double value = model->valueOut(); |
3789 | if (value == upper_[iSetOut]) { |
3790 | setStatus(iSetOut, ClpSimplex::atUpperBound); |
3791 | } else if (value == lower_[iSetOut]) { |
3792 | setStatus(iSetOut, ClpSimplex::atLowerBound); |
3793 | } else { |
3794 | if (fabs(value - upper_[iSetOut]) < |
3795 | fabs(value - lower_[iSetOut])) { |
3796 | setStatus(iSetOut, ClpSimplex::atUpperBound); |
3797 | } else { |
3798 | setStatus(iSetOut, ClpSimplex::atLowerBound); |
3799 | } |
3800 | } |
3801 | if (upper_[iSetOut] == lower_[iSetOut]) |
3802 | setStatus(iSetOut, ClpSimplex::isFixed); |
3803 | setFeasible(iSetOut); |
3804 | } |
3805 | if (iSetOut == iSetIn) { |
3806 | // key swap |
3807 | int key; |
3808 | if (sequenceIn >= numberRows + numberColumns) { |
3809 | key = numberColumns + iSetIn; |
3810 | setStatus(iSetIn, ClpSimplex::basic); |
3811 | } else { |
3812 | key = sequenceIn; |
3813 | } |
3814 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
3815 | } else { |
3816 | // key was chosen |
3817 | assert (possiblePivotKey_ >= 0 && possiblePivotKey_ < numberRows); |
3818 | int key = pivotVariable[possiblePivotKey_]; |
3819 | // and set incoming here |
3820 | if (sequenceIn >= numberRows + numberColumns) { |
3821 | // slack in - so use old key |
3822 | sequenceIn = keyVariable_[iSetIn]; |
3823 | model->setStatus(sequenceIn, ClpSimplex::basic); |
3824 | setStatus(iSetIn, ClpSimplex::basic); |
3825 | redoSet(model, iSetIn + numberColumns, keyVariable_[iSetIn], iSetIn); |
3826 | } |
3827 | //? do not do if iSetIn<0 ? as will be done later |
3828 | pivotVariable[possiblePivotKey_] = sequenceIn; |
3829 | if (sequenceIn < numberColumns) |
3830 | backToPivotRow_[sequenceIn] = possiblePivotKey_; |
3831 | redoSet(model, key, keyVariable_[iSetOut], iSetOut); |
3832 | } |
3833 | } else { |
3834 | if (sequenceOut < numberColumns) { |
3835 | if (iSetIn >= 0 && iSetOut == iSetIn) { |
3836 | // key not out - only problem is if slack in |
3837 | int key; |
3838 | if (sequenceIn >= numberRows + numberColumns) { |
3839 | key = numberColumns + iSetIn; |
3840 | setStatus(iSetIn, ClpSimplex::basic); |
3841 | assert (pivotRow < numberRows); |
3842 | // must swap with current key |
3843 | int key = keyVariable_[iSetIn]; |
3844 | model->setStatus(key, ClpSimplex::basic); |
3845 | pivotVariable[pivotRow] = key; |
3846 | backToPivotRow_[key] = pivotRow; |
3847 | } else { |
3848 | key = keyVariable_[iSetIn]; |
3849 | } |
3850 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
3851 | } else if (iSetOut >= 0) { |
3852 | // just redo set |
3853 | int key = keyVariable_[iSetOut]; |
3854 | redoSet(model, key, keyVariable_[iSetOut], iSetOut); |
3855 | } |
3856 | } |
3857 | } |
3858 | if (iSetIn >= 0 && iSetIn != iSetOut) { |
3859 | int key = keyVariable_[iSetIn]; |
3860 | if (sequenceIn == numberColumns + 2 * numberRows) { |
3861 | // key slack in |
3862 | assert (pivotRow < numberRows); |
3863 | // must swap with current key |
3864 | model->setStatus(key, ClpSimplex::basic); |
3865 | pivotVariable[pivotRow] = key; |
3866 | backToPivotRow_[key] = pivotRow; |
3867 | setStatus(iSetIn, ClpSimplex::basic); |
3868 | key = iSetIn + numberColumns; |
3869 | } |
3870 | // redo set to allow for new one |
3871 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
3872 | } |
3873 | // update pivot |
3874 | if (sequenceIn < numberColumns) { |
3875 | if (pivotRow < numberRows) { |
3876 | backToPivotRow_[sequenceIn] = pivotRow; |
3877 | } else { |
3878 | if (possiblePivotKey_ >= 0) { |
3879 | assert (possiblePivotKey_ < numberRows); |
3880 | backToPivotRow_[sequenceIn] = possiblePivotKey_; |
3881 | pivotVariable[possiblePivotKey_] = sequenceIn; |
3882 | } |
3883 | } |
3884 | } else if (sequenceIn >= numberRows + numberColumns) { |
3885 | // key in - something should have been done before |
3886 | int key = keyVariable_[iSetIn]; |
3887 | assert (key == numberColumns + iSetIn); |
3888 | //pivotVariable[pivotRow]=key; |
3889 | //backToPivotRow_[key]=pivotRow; |
3890 | //model->setStatus(key,ClpSimplex::basic); |
3891 | //key=numberColumns+iSetIn; |
3892 | setStatus(iSetIn, ClpSimplex::basic); |
3893 | redoSet(model, key, keyVariable_[iSetIn], iSetIn); |
3894 | } |
3895 | #ifdef CLP_DEBUG |
3896 | { |
3897 | char * xx = new char[numberColumns+numberRows]; |
3898 | memset(xx, 0, numberRows + numberColumns); |
3899 | for (int i = 0; i < numberRows; i++) { |
3900 | int iPivot = pivotVariable[i]; |
3901 | assert (iPivot < numberRows + numberColumns); |
3902 | assert (!xx[iPivot]); |
3903 | xx[iPivot] = 1; |
3904 | if (iPivot < numberColumns) { |
3905 | int iBack = backToPivotRow_[iPivot]; |
3906 | assert (i == iBack); |
3907 | } |
3908 | } |
3909 | delete [] xx; |
3910 | } |
3911 | #endif |
3912 | if (rhsOffset_) { |
3913 | // update effective rhs |
3914 | if (sequenceIn != sequenceOut) { |
3915 | if (sequenceIn < numberColumns) { |
3916 | if (iSetIn >= 0) { |
3917 | // new contribution to rhsOffset_ |
3918 | int key = keyVariable_[iSetIn]; |
3919 | if (key < numberColumns) { |
3920 | double newB = 0.0; |
3921 | ClpSimplex::Status iStatus = getStatus(iSetIn); |
3922 | if (iStatus == ClpSimplex::atLowerBound) |
3923 | newB = lower_[iSetIn]; |
3924 | else |
3925 | newB = upper_[iSetIn]; |
3926 | // subtract out others at bounds |
3927 | if ((gubType_ & 8) == 0) { |
3928 | int stop = -(key + 1); |
3929 | int iColumn = next_[key]; |
3930 | // skip basic |
3931 | while (iColumn >= 0) |
3932 | iColumn = next_[iColumn]; |
3933 | // sum all non-key variables |
3934 | while(iColumn != stop) { |
3935 | assert (iColumn < 0); |
3936 | iColumn = -iColumn - 1; |
3937 | newB -= solution[iColumn]; |
3938 | iColumn = next_[iColumn]; |
3939 | } |
3940 | } |
3941 | if (newB) |
3942 | ClpPackedMatrix::add(model, rhsOffset_, key, -newB); |
3943 | } |
3944 | } |
3945 | } |
3946 | if (iSetOut >= 0) { |
3947 | // new contribution to rhsOffset_ |
3948 | int key = keyVariable_[iSetOut]; |
3949 | if (key < numberColumns && iSetIn != iSetOut) { |
3950 | double newB = 0.0; |
3951 | ClpSimplex::Status iStatus = getStatus(iSetOut); |
3952 | if (iStatus == ClpSimplex::atLowerBound) |
3953 | newB = lower_[iSetOut]; |
3954 | else |
3955 | newB = upper_[iSetOut]; |
3956 | // subtract out others at bounds |
3957 | if ((gubType_ & 8) == 0) { |
3958 | int stop = -(key + 1); |
3959 | int iColumn = next_[key]; |
3960 | // skip basic |
3961 | while (iColumn >= 0) |
3962 | iColumn = next_[iColumn]; |
3963 | // sum all non-key variables |
3964 | while(iColumn != stop) { |
3965 | assert (iColumn < 0); |
3966 | iColumn = -iColumn - 1; |
3967 | newB -= solution[iColumn]; |
3968 | iColumn = next_[iColumn]; |
3969 | } |
3970 | } |
3971 | if (newB) |
3972 | ClpPackedMatrix::add(model, rhsOffset_, key, -newB); |
3973 | } |
3974 | } |
3975 | } |
3976 | } |
3977 | #ifdef CLP_DEBUG |
3978 | // debug |
3979 | { |
3980 | int i; |
3981 | char * xxxx = new char[numberColumns]; |
3982 | memset(xxxx, 0, numberColumns); |
3983 | for (i = 0; i < numberRows; i++) { |
3984 | int iPivot = pivotVariable[i]; |
3985 | assert (model->getStatus(iPivot) == ClpSimplex::basic); |
3986 | if (iPivot < numberColumns && backward_[iPivot] >= 0) |
3987 | xxxx[iPivot] = 1; |
3988 | } |
3989 | double primalTolerance = model->primalTolerance(); |
3990 | for (i = 0; i < numberSets_; i++) { |
3991 | int key = keyVariable_[i]; |
3992 | double value = 0.0; |
3993 | // sum over all except key |
3994 | int iColumn = next_[key]; |
3995 | // sum all non-key variables |
3996 | int k = 0; |
3997 | int stop = -(key + 1); |
3998 | while (iColumn != stop) { |
3999 | if (iColumn < 0) |
4000 | iColumn = -iColumn - 1; |
4001 | value += solution[iColumn]; |
4002 | k++; |
4003 | assert (k < 100); |
4004 | assert (backward_[iColumn] == i); |
4005 | iColumn = next_[iColumn]; |
4006 | } |
4007 | iColumn = next_[key]; |
4008 | if (key < numberColumns) { |
4009 | // feasibility will be done later |
4010 | assert (getStatus(i) != ClpSimplex::basic); |
4011 | double sol; |
4012 | if (getStatus(i) == ClpSimplex::atUpperBound) |
4013 | sol = upper_[i] - value; |
4014 | else |
4015 | sol = lower_[i] - value; |
4016 | //printf("xx Value of key structural %d for set %d is %g - cost %g\n",key,i,sol, |
4017 | // cost[key]); |
4018 | //if (fabs(sol-solution[key])>1.0e-3) |
4019 | //printf("** stored value was %g\n",solution[key]); |
4020 | } else { |
4021 | // slack is key |
4022 | double infeasibility = 0.0; |
4023 | if (value > upper_[i] + primalTolerance) { |
4024 | infeasibility = value - upper_[i] - primalTolerance; |
4025 | //setAbove(i); |
4026 | } else if (value < lower_[i] - primalTolerance) { |
4027 | infeasibility = lower_[i] - value - primalTolerance ; |
4028 | //setBelow(i); |
4029 | } else { |
4030 | //setFeasible(i); |
4031 | } |
4032 | //printf("xx Value of key slack for set %d is %g\n",i,value); |
4033 | } |
4034 | while (iColumn >= 0) { |
4035 | assert (xxxx[iColumn]); |
4036 | xxxx[iColumn] = 0; |
4037 | iColumn = next_[iColumn]; |
4038 | } |
4039 | } |
4040 | for (i = 0; i < numberColumns; i++) { |
4041 | if (i < numberColumns && backward_[i] >= 0) { |
4042 | assert (!xxxx[i] || i == keyVariable_[backward_[i]]); |
4043 | } |
4044 | } |
4045 | delete [] xxxx; |
4046 | } |
4047 | #endif |
4048 | return 0; |
4049 | } |
4050 | // Switches off dj checking each factorization (for BIG models) |
4051 | void |
4052 | ClpGubMatrix::switchOffCheck() |
4053 | { |
4054 | noCheck_ = 0; |
4055 | infeasibilityWeight_ = 0.0; |
4056 | } |
4057 | // Correct sequence in and out to give true value |
4058 | void |
4059 | ClpGubMatrix::correctSequence(const ClpSimplex * /*model*/, int & sequenceIn, int & sequenceOut) |
4060 | { |
4061 | if (sequenceIn != -999) { |
4062 | sequenceIn = trueSequenceIn_; |
4063 | sequenceOut = trueSequenceOut_; |
4064 | } |
4065 | } |
4066 | |