| 1 | /* $Id: ClpPrimalColumnSteepest.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinPragma.hpp" |
| 7 | |
| 8 | #include "ClpSimplex.hpp" |
| 9 | #include "ClpPrimalColumnSteepest.hpp" |
| 10 | #include "CoinIndexedVector.hpp" |
| 11 | #include "ClpFactorization.hpp" |
| 12 | #include "ClpNonLinearCost.hpp" |
| 13 | #include "ClpMessage.hpp" |
| 14 | #include "CoinHelperFunctions.hpp" |
| 15 | #include <stdio.h> |
| 16 | //#define CLP_DEBUG |
| 17 | //############################################################################# |
| 18 | // Constructors / Destructor / Assignment |
| 19 | //############################################################################# |
| 20 | |
| 21 | //------------------------------------------------------------------- |
| 22 | // Default Constructor |
| 23 | //------------------------------------------------------------------- |
| 24 | ClpPrimalColumnSteepest::ClpPrimalColumnSteepest (int mode) |
| 25 | : ClpPrimalColumnPivot(), |
| 26 | devex_(0.0), |
| 27 | weights_(NULL), |
| 28 | infeasible_(NULL), |
| 29 | alternateWeights_(NULL), |
| 30 | savedWeights_(NULL), |
| 31 | reference_(NULL), |
| 32 | state_(-1), |
| 33 | mode_(mode), |
| 34 | persistence_(normal), |
| 35 | numberSwitched_(0), |
| 36 | pivotSequence_(-1), |
| 37 | savedPivotSequence_(-1), |
| 38 | savedSequenceOut_(-1), |
| 39 | sizeFactorization_(0) |
| 40 | { |
| 41 | type_ = 2 + 64 * mode; |
| 42 | } |
| 43 | //------------------------------------------------------------------- |
| 44 | // Copy constructor |
| 45 | //------------------------------------------------------------------- |
| 46 | ClpPrimalColumnSteepest::ClpPrimalColumnSteepest (const ClpPrimalColumnSteepest & rhs) |
| 47 | : ClpPrimalColumnPivot(rhs) |
| 48 | { |
| 49 | state_ = rhs.state_; |
| 50 | mode_ = rhs.mode_; |
| 51 | persistence_ = rhs.persistence_; |
| 52 | numberSwitched_ = rhs.numberSwitched_; |
| 53 | model_ = rhs.model_; |
| 54 | pivotSequence_ = rhs.pivotSequence_; |
| 55 | savedPivotSequence_ = rhs.savedPivotSequence_; |
| 56 | savedSequenceOut_ = rhs.savedSequenceOut_; |
| 57 | sizeFactorization_ = rhs.sizeFactorization_; |
| 58 | devex_ = rhs.devex_; |
| 59 | if ((model_ && model_->whatsChanged() & 1) != 0) { |
| 60 | if (rhs.infeasible_) { |
| 61 | infeasible_ = new CoinIndexedVector(rhs.infeasible_); |
| 62 | } else { |
| 63 | infeasible_ = NULL; |
| 64 | } |
| 65 | reference_ = NULL; |
| 66 | if (rhs.weights_) { |
| 67 | assert(model_); |
| 68 | int number = model_->numberRows() + model_->numberColumns(); |
| 69 | assert (number == rhs.model_->numberRows() + rhs.model_->numberColumns()); |
| 70 | weights_ = new double[number]; |
| 71 | CoinMemcpyN(rhs.weights_, number, weights_); |
| 72 | savedWeights_ = new double[number]; |
| 73 | CoinMemcpyN(rhs.savedWeights_, number, savedWeights_); |
| 74 | if (mode_ != 1) { |
| 75 | reference_ = CoinCopyOfArray(rhs.reference_, (number + 31) >> 5); |
| 76 | } |
| 77 | } else { |
| 78 | weights_ = NULL; |
| 79 | savedWeights_ = NULL; |
| 80 | } |
| 81 | if (rhs.alternateWeights_) { |
| 82 | alternateWeights_ = new CoinIndexedVector(rhs.alternateWeights_); |
| 83 | } else { |
| 84 | alternateWeights_ = NULL; |
| 85 | } |
| 86 | } else { |
| 87 | infeasible_ = NULL; |
| 88 | reference_ = NULL; |
| 89 | weights_ = NULL; |
| 90 | savedWeights_ = NULL; |
| 91 | alternateWeights_ = NULL; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | //------------------------------------------------------------------- |
| 96 | // Destructor |
| 97 | //------------------------------------------------------------------- |
| 98 | ClpPrimalColumnSteepest::~ClpPrimalColumnSteepest () |
| 99 | { |
| 100 | delete [] weights_; |
| 101 | delete infeasible_; |
| 102 | delete alternateWeights_; |
| 103 | delete [] savedWeights_; |
| 104 | delete [] reference_; |
| 105 | } |
| 106 | |
| 107 | //---------------------------------------------------------------- |
| 108 | // Assignment operator |
| 109 | //------------------------------------------------------------------- |
| 110 | ClpPrimalColumnSteepest & |
| 111 | ClpPrimalColumnSteepest::operator=(const ClpPrimalColumnSteepest& rhs) |
| 112 | { |
| 113 | if (this != &rhs) { |
| 114 | ClpPrimalColumnPivot::operator=(rhs); |
| 115 | state_ = rhs.state_; |
| 116 | mode_ = rhs.mode_; |
| 117 | persistence_ = rhs.persistence_; |
| 118 | numberSwitched_ = rhs.numberSwitched_; |
| 119 | model_ = rhs.model_; |
| 120 | pivotSequence_ = rhs.pivotSequence_; |
| 121 | savedPivotSequence_ = rhs.savedPivotSequence_; |
| 122 | savedSequenceOut_ = rhs.savedSequenceOut_; |
| 123 | sizeFactorization_ = rhs.sizeFactorization_; |
| 124 | devex_ = rhs.devex_; |
| 125 | delete [] weights_; |
| 126 | delete [] reference_; |
| 127 | reference_ = NULL; |
| 128 | delete infeasible_; |
| 129 | delete alternateWeights_; |
| 130 | delete [] savedWeights_; |
| 131 | savedWeights_ = NULL; |
| 132 | if (rhs.infeasible_ != NULL) { |
| 133 | infeasible_ = new CoinIndexedVector(rhs.infeasible_); |
| 134 | } else { |
| 135 | infeasible_ = NULL; |
| 136 | } |
| 137 | if (rhs.weights_ != NULL) { |
| 138 | assert(model_); |
| 139 | int number = model_->numberRows() + model_->numberColumns(); |
| 140 | assert (number == rhs.model_->numberRows() + rhs.model_->numberColumns()); |
| 141 | weights_ = new double[number]; |
| 142 | CoinMemcpyN(rhs.weights_, number, weights_); |
| 143 | savedWeights_ = new double[number]; |
| 144 | CoinMemcpyN(rhs.savedWeights_, number, savedWeights_); |
| 145 | if (mode_ != 1) { |
| 146 | reference_ = CoinCopyOfArray(rhs.reference_, (number + 31) >> 5); |
| 147 | } |
| 148 | } else { |
| 149 | weights_ = NULL; |
| 150 | } |
| 151 | if (rhs.alternateWeights_ != NULL) { |
| 152 | alternateWeights_ = new CoinIndexedVector(rhs.alternateWeights_); |
| 153 | } else { |
| 154 | alternateWeights_ = NULL; |
| 155 | } |
| 156 | } |
| 157 | return *this; |
| 158 | } |
| 159 | // These have to match ClpPackedMatrix version |
| 160 | #define TRY_NORM 1.0e-4 |
| 161 | #define ADD_ONE 1.0 |
| 162 | // Returns pivot column, -1 if none |
| 163 | /* The Packed CoinIndexedVector updates has cost updates - for normal LP |
| 164 | that is just +-weight where a feasibility changed. It also has |
| 165 | reduced cost from last iteration in pivot row*/ |
| 166 | int |
| 167 | ClpPrimalColumnSteepest::pivotColumn(CoinIndexedVector * updates, |
| 168 | CoinIndexedVector * spareRow1, |
| 169 | CoinIndexedVector * spareRow2, |
| 170 | CoinIndexedVector * spareColumn1, |
| 171 | CoinIndexedVector * spareColumn2) |
| 172 | { |
| 173 | assert(model_); |
| 174 | if (model_->nonLinearCost()->lookBothWays() || model_->algorithm() == 2) { |
| 175 | // Do old way |
| 176 | updates->expand(); |
| 177 | return pivotColumnOldMethod(updates, spareRow1, spareRow2, |
| 178 | spareColumn1, spareColumn2); |
| 179 | } |
| 180 | int number = 0; |
| 181 | int * index; |
| 182 | double tolerance = model_->currentDualTolerance(); |
| 183 | // we can't really trust infeasibilities if there is dual error |
| 184 | // this coding has to mimic coding in checkDualSolution |
| 185 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 186 | // allow tolerance at least slightly bigger than standard |
| 187 | tolerance = tolerance + error; |
| 188 | int pivotRow = model_->pivotRow(); |
| 189 | int anyUpdates; |
| 190 | double * infeas = infeasible_->denseVector(); |
| 191 | |
| 192 | // Local copy of mode so can decide what to do |
| 193 | int switchType; |
| 194 | if (mode_ == 4) |
| 195 | switchType = 5 - numberSwitched_; |
| 196 | else if (mode_ >= 10) |
| 197 | switchType = 3; |
| 198 | else |
| 199 | switchType = mode_; |
| 200 | /* switchType - |
| 201 | 0 - all exact devex |
| 202 | 1 - all steepest |
| 203 | 2 - some exact devex |
| 204 | 3 - auto some exact devex |
| 205 | 4 - devex |
| 206 | 5 - dantzig |
| 207 | 10 - can go to mini-sprint |
| 208 | */ |
| 209 | // Look at gub |
| 210 | #if 1 |
| 211 | model_->clpMatrix()->dualExpanded(model_, updates, NULL, 4); |
| 212 | #else |
| 213 | updates->clear(); |
| 214 | model_->computeDuals(NULL); |
| 215 | #endif |
| 216 | if (updates->getNumElements() > 1) { |
| 217 | // would have to have two goes for devex, three for steepest |
| 218 | anyUpdates = 2; |
| 219 | } else if (updates->getNumElements()) { |
| 220 | if (updates->getIndices()[0] == pivotRow && fabs(updates->denseVector()[0]) > 1.0e-6) { |
| 221 | // reasonable size |
| 222 | anyUpdates = 1; |
| 223 | //if (fabs(model_->dualIn())<1.0e-4||fabs(fabs(model_->dualIn())-fabs(updates->denseVector()[0]))>1.0e-5) |
| 224 | //printf("dualin %g pivot %g\n",model_->dualIn(),updates->denseVector()[0]); |
| 225 | } else { |
| 226 | // too small |
| 227 | anyUpdates = 2; |
| 228 | } |
| 229 | } else if (pivotSequence_ >= 0) { |
| 230 | // just after re-factorization |
| 231 | anyUpdates = -1; |
| 232 | } else { |
| 233 | // sub flip - nothing to do |
| 234 | anyUpdates = 0; |
| 235 | } |
| 236 | int sequenceOut = model_->sequenceOut(); |
| 237 | if (switchType == 5) { |
| 238 | // If known matrix then we will do partial pricing |
| 239 | if (model_->clpMatrix()->canDoPartialPricing()) { |
| 240 | pivotSequence_ = -1; |
| 241 | pivotRow = -1; |
| 242 | // See if to switch |
| 243 | int numberRows = model_->numberRows(); |
| 244 | int numberWanted = 10; |
| 245 | int numberColumns = model_->numberColumns(); |
| 246 | int numberHiddenRows = model_->clpMatrix()->hiddenRows(); |
| 247 | double ratio = static_cast<double> (sizeFactorization_ + numberHiddenRows) / |
| 248 | static_cast<double> (numberRows + 2 * numberHiddenRows); |
| 249 | // Number of dual infeasibilities at last invert |
| 250 | int numberDual = model_->numberDualInfeasibilities(); |
| 251 | int numberLook = CoinMin(numberDual, numberColumns / 10); |
| 252 | if (ratio < 1.0) { |
| 253 | numberWanted = 100; |
| 254 | numberLook /= 20; |
| 255 | numberWanted = CoinMax(numberWanted, numberLook); |
| 256 | } else if (ratio < 3.0) { |
| 257 | numberWanted = 500; |
| 258 | numberLook /= 15; |
| 259 | numberWanted = CoinMax(numberWanted, numberLook); |
| 260 | } else if (ratio < 4.0 || mode_ == 5) { |
| 261 | numberWanted = 1000; |
| 262 | numberLook /= 10; |
| 263 | numberWanted = CoinMax(numberWanted, numberLook); |
| 264 | } else if (mode_ != 5) { |
| 265 | switchType = 4; |
| 266 | // initialize |
| 267 | numberSwitched_++; |
| 268 | // Make sure will re-do |
| 269 | delete [] weights_; |
| 270 | weights_ = NULL; |
| 271 | model_->computeDuals(NULL); |
| 272 | saveWeights(model_, 4); |
| 273 | anyUpdates = 0; |
| 274 | COIN_DETAIL_PRINT(printf("switching to devex %d nel ratio %g\n" , sizeFactorization_, ratio)); |
| 275 | } |
| 276 | if (switchType == 5) { |
| 277 | numberLook *= 5; // needs tuning for gub |
| 278 | if (model_->numberIterations() % 1000 == 0 && model_->logLevel() > 1) { |
| 279 | COIN_DETAIL_PRINT(printf("numels %d ratio %g wanted %d look %d\n" , |
| 280 | sizeFactorization_, ratio, numberWanted, numberLook)); |
| 281 | } |
| 282 | // Update duals and row djs |
| 283 | // Do partial pricing |
| 284 | return partialPricing(updates, spareRow2, |
| 285 | numberWanted, numberLook); |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | if (switchType == 5) { |
| 290 | if (anyUpdates > 0) { |
| 291 | justDjs(updates, spareRow2, |
| 292 | spareColumn1, spareColumn2); |
| 293 | } |
| 294 | } else if (anyUpdates == 1) { |
| 295 | if (switchType < 4) { |
| 296 | // exact etc when can use dj |
| 297 | djsAndSteepest(updates, spareRow2, |
| 298 | spareColumn1, spareColumn2); |
| 299 | } else { |
| 300 | // devex etc when can use dj |
| 301 | djsAndDevex(updates, spareRow2, |
| 302 | spareColumn1, spareColumn2); |
| 303 | } |
| 304 | } else if (anyUpdates == -1) { |
| 305 | if (switchType < 4) { |
| 306 | // exact etc when djs okay |
| 307 | justSteepest(updates, spareRow2, |
| 308 | spareColumn1, spareColumn2); |
| 309 | } else { |
| 310 | // devex etc when djs okay |
| 311 | justDevex(updates, spareRow2, |
| 312 | spareColumn1, spareColumn2); |
| 313 | } |
| 314 | } else if (anyUpdates == 2) { |
| 315 | if (switchType < 4) { |
| 316 | // exact etc when have to use pivot |
| 317 | djsAndSteepest2(updates, spareRow2, |
| 318 | spareColumn1, spareColumn2); |
| 319 | } else { |
| 320 | // devex etc when have to use pivot |
| 321 | djsAndDevex2(updates, spareRow2, |
| 322 | spareColumn1, spareColumn2); |
| 323 | } |
| 324 | } |
| 325 | #ifdef CLP_DEBUG |
| 326 | alternateWeights_->checkClear(); |
| 327 | #endif |
| 328 | // make sure outgoing from last iteration okay |
| 329 | if (sequenceOut >= 0) { |
| 330 | ClpSimplex::Status status = model_->getStatus(sequenceOut); |
| 331 | double value = model_->reducedCost(sequenceOut); |
| 332 | |
| 333 | switch(status) { |
| 334 | |
| 335 | case ClpSimplex::basic: |
| 336 | case ClpSimplex::isFixed: |
| 337 | break; |
| 338 | case ClpSimplex::isFree: |
| 339 | case ClpSimplex::superBasic: |
| 340 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 341 | // we are going to bias towards free (but only if reasonable) |
| 342 | value *= FREE_BIAS; |
| 343 | // store square in list |
| 344 | if (infeas[sequenceOut]) |
| 345 | infeas[sequenceOut] = value * value; // already there |
| 346 | else |
| 347 | infeasible_->quickAdd(sequenceOut, value * value); |
| 348 | } else { |
| 349 | infeasible_->zero(sequenceOut); |
| 350 | } |
| 351 | break; |
| 352 | case ClpSimplex::atUpperBound: |
| 353 | if (value > tolerance) { |
| 354 | // store square in list |
| 355 | if (infeas[sequenceOut]) |
| 356 | infeas[sequenceOut] = value * value; // already there |
| 357 | else |
| 358 | infeasible_->quickAdd(sequenceOut, value * value); |
| 359 | } else { |
| 360 | infeasible_->zero(sequenceOut); |
| 361 | } |
| 362 | break; |
| 363 | case ClpSimplex::atLowerBound: |
| 364 | if (value < -tolerance) { |
| 365 | // store square in list |
| 366 | if (infeas[sequenceOut]) |
| 367 | infeas[sequenceOut] = value * value; // already there |
| 368 | else |
| 369 | infeasible_->quickAdd(sequenceOut, value * value); |
| 370 | } else { |
| 371 | infeasible_->zero(sequenceOut); |
| 372 | } |
| 373 | } |
| 374 | } |
| 375 | // update of duals finished - now do pricing |
| 376 | // See what sort of pricing |
| 377 | int numberWanted = 10; |
| 378 | number = infeasible_->getNumElements(); |
| 379 | int numberColumns = model_->numberColumns(); |
| 380 | if (switchType == 5) { |
| 381 | pivotSequence_ = -1; |
| 382 | pivotRow = -1; |
| 383 | // See if to switch |
| 384 | int numberRows = model_->numberRows(); |
| 385 | // ratio is done on number of columns here |
| 386 | //double ratio = static_cast<double> sizeFactorization_/static_cast<double> numberColumns; |
| 387 | double ratio = static_cast<double> (sizeFactorization_) / static_cast<double> (numberRows); |
| 388 | //double ratio = static_cast<double> sizeFactorization_/static_cast<double> model_->clpMatrix()->getNumElements(); |
| 389 | if (ratio < 1.0) { |
| 390 | numberWanted = CoinMax(100, number / 200); |
| 391 | } else if (ratio < 2.0 - 1.0) { |
| 392 | numberWanted = CoinMax(500, number / 40); |
| 393 | } else if (ratio < 4.0 - 3.0 || mode_ == 5) { |
| 394 | numberWanted = CoinMax(2000, number / 10); |
| 395 | numberWanted = CoinMax(numberWanted, numberColumns / 30); |
| 396 | } else if (mode_ != 5) { |
| 397 | switchType = 4; |
| 398 | // initialize |
| 399 | numberSwitched_++; |
| 400 | // Make sure will re-do |
| 401 | delete [] weights_; |
| 402 | weights_ = NULL; |
| 403 | saveWeights(model_, 4); |
| 404 | COIN_DETAIL_PRINT(printf("switching to devex %d nel ratio %g\n" , sizeFactorization_, ratio)); |
| 405 | } |
| 406 | //if (model_->numberIterations()%1000==0) |
| 407 | //printf("numels %d ratio %g wanted %d\n",sizeFactorization_,ratio,numberWanted); |
| 408 | } |
| 409 | int numberRows = model_->numberRows(); |
| 410 | // ratio is done on number of rows here |
| 411 | double ratio = static_cast<double> (sizeFactorization_) / static_cast<double> (numberRows); |
| 412 | if(switchType == 4) { |
| 413 | // Still in devex mode |
| 414 | // Go to steepest if lot of iterations? |
| 415 | if (ratio < 5.0) { |
| 416 | numberWanted = CoinMax(2000, number / 10); |
| 417 | numberWanted = CoinMax(numberWanted, numberColumns / 20); |
| 418 | } else if (ratio < 7.0) { |
| 419 | numberWanted = CoinMax(2000, number / 5); |
| 420 | numberWanted = CoinMax(numberWanted, numberColumns / 10); |
| 421 | } else { |
| 422 | // we can zero out |
| 423 | updates->clear(); |
| 424 | spareColumn1->clear(); |
| 425 | switchType = 3; |
| 426 | // initialize |
| 427 | pivotSequence_ = -1; |
| 428 | pivotRow = -1; |
| 429 | numberSwitched_++; |
| 430 | // Make sure will re-do |
| 431 | delete [] weights_; |
| 432 | weights_ = NULL; |
| 433 | saveWeights(model_, 4); |
| 434 | COIN_DETAIL_PRINT(printf("switching to exact %d nel ratio %g\n" , sizeFactorization_, ratio)); |
| 435 | updates->clear(); |
| 436 | } |
| 437 | if (model_->numberIterations() % 1000 == 0) |
| 438 | COIN_DETAIL_PRINT(printf("numels %d ratio %g wanted %d type x\n" , sizeFactorization_, ratio, numberWanted)); |
| 439 | } |
| 440 | if (switchType < 4) { |
| 441 | if (switchType < 2 ) { |
| 442 | numberWanted = number + 1; |
| 443 | } else if (switchType == 2) { |
| 444 | numberWanted = CoinMax(2000, number / 8); |
| 445 | } else { |
| 446 | if (ratio < 1.0) { |
| 447 | numberWanted = CoinMax(2000, number / 20); |
| 448 | } else if (ratio < 5.0) { |
| 449 | numberWanted = CoinMax(2000, number / 10); |
| 450 | numberWanted = CoinMax(numberWanted, numberColumns / 40); |
| 451 | } else if (ratio < 10.0) { |
| 452 | numberWanted = CoinMax(2000, number / 8); |
| 453 | numberWanted = CoinMax(numberWanted, numberColumns / 20); |
| 454 | } else { |
| 455 | ratio = number * (ratio / 80.0); |
| 456 | if (ratio > number) { |
| 457 | numberWanted = number + 1; |
| 458 | } else { |
| 459 | numberWanted = CoinMax(2000, static_cast<int> (ratio)); |
| 460 | numberWanted = CoinMax(numberWanted, numberColumns / 10); |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | //if (model_->numberIterations()%1000==0) |
| 465 | //printf("numels %d ratio %g wanted %d type %d\n",sizeFactorization_,ratio,numberWanted, |
| 466 | //switchType); |
| 467 | } |
| 468 | |
| 469 | |
| 470 | double bestDj = 1.0e-30; |
| 471 | int bestSequence = -1; |
| 472 | |
| 473 | int i, iSequence; |
| 474 | index = infeasible_->getIndices(); |
| 475 | number = infeasible_->getNumElements(); |
| 476 | // Re-sort infeasible every 100 pivots |
| 477 | // Not a good idea |
| 478 | if (0 && model_->factorization()->pivots() > 0 && |
| 479 | (model_->factorization()->pivots() % 100) == 0) { |
| 480 | int nLook = model_->numberRows() + numberColumns; |
| 481 | number = 0; |
| 482 | for (i = 0; i < nLook; i++) { |
| 483 | if (infeas[i]) { |
| 484 | if (fabs(infeas[i]) > COIN_INDEXED_TINY_ELEMENT) |
| 485 | index[number++] = i; |
| 486 | else |
| 487 | infeas[i] = 0.0; |
| 488 | } |
| 489 | } |
| 490 | infeasible_->setNumElements(number); |
| 491 | } |
| 492 | if(model_->numberIterations() < model_->lastBadIteration() + 200 && |
| 493 | model_->factorization()->pivots() > 10) { |
| 494 | // we can't really trust infeasibilities if there is dual error |
| 495 | double checkTolerance = 1.0e-8; |
| 496 | if (model_->largestDualError() > checkTolerance) |
| 497 | tolerance *= model_->largestDualError() / checkTolerance; |
| 498 | // But cap |
| 499 | tolerance = CoinMin(1000.0, tolerance); |
| 500 | } |
| 501 | #ifdef CLP_DEBUG |
| 502 | if (model_->numberDualInfeasibilities() == 1) |
| 503 | printf("** %g %g %g %x %x %d\n" , tolerance, model_->dualTolerance(), |
| 504 | model_->largestDualError(), model_, model_->messageHandler(), |
| 505 | number); |
| 506 | #endif |
| 507 | // stop last one coming immediately |
| 508 | double saveOutInfeasibility = 0.0; |
| 509 | if (sequenceOut >= 0) { |
| 510 | saveOutInfeasibility = infeas[sequenceOut]; |
| 511 | infeas[sequenceOut] = 0.0; |
| 512 | } |
| 513 | if (model_->factorization()->pivots() && model_->numberPrimalInfeasibilities()) |
| 514 | tolerance = CoinMax(tolerance, 1.0e-10 * model_->infeasibilityCost()); |
| 515 | tolerance *= tolerance; // as we are using squares |
| 516 | |
| 517 | int iPass; |
| 518 | // Setup two passes |
| 519 | int start[4]; |
| 520 | start[1] = number; |
| 521 | start[2] = 0; |
| 522 | double dstart = static_cast<double> (number) * model_->randomNumberGenerator()->randomDouble(); |
| 523 | start[0] = static_cast<int> (dstart); |
| 524 | start[3] = start[0]; |
| 525 | //double largestWeight=0.0; |
| 526 | //double smallestWeight=1.0e100; |
| 527 | for (iPass = 0; iPass < 2; iPass++) { |
| 528 | int end = start[2*iPass+1]; |
| 529 | if (switchType < 5) { |
| 530 | for (i = start[2*iPass]; i < end; i++) { |
| 531 | iSequence = index[i]; |
| 532 | double value = infeas[iSequence]; |
| 533 | double weight = weights_[iSequence]; |
| 534 | if (value > tolerance) { |
| 535 | //weight=1.0; |
| 536 | if (value > bestDj * weight) { |
| 537 | // check flagged variable and correct dj |
| 538 | if (!model_->flagged(iSequence)) { |
| 539 | bestDj = value / weight; |
| 540 | bestSequence = iSequence; |
| 541 | } else { |
| 542 | // just to make sure we don't exit before got something |
| 543 | numberWanted++; |
| 544 | } |
| 545 | } |
| 546 | numberWanted--; |
| 547 | } |
| 548 | if (!numberWanted) |
| 549 | break; |
| 550 | } |
| 551 | } else { |
| 552 | // Dantzig |
| 553 | for (i = start[2*iPass]; i < end; i++) { |
| 554 | iSequence = index[i]; |
| 555 | double value = infeas[iSequence]; |
| 556 | if (value > tolerance) { |
| 557 | if (value > bestDj) { |
| 558 | // check flagged variable and correct dj |
| 559 | if (!model_->flagged(iSequence)) { |
| 560 | bestDj = value; |
| 561 | bestSequence = iSequence; |
| 562 | } else { |
| 563 | // just to make sure we don't exit before got something |
| 564 | numberWanted++; |
| 565 | } |
| 566 | } |
| 567 | numberWanted--; |
| 568 | } |
| 569 | if (!numberWanted) |
| 570 | break; |
| 571 | } |
| 572 | } |
| 573 | if (!numberWanted) |
| 574 | break; |
| 575 | } |
| 576 | model_->clpMatrix()->setSavedBestSequence(bestSequence); |
| 577 | if (bestSequence >= 0) |
| 578 | model_->clpMatrix()->setSavedBestDj(model_->djRegion()[bestSequence]); |
| 579 | if (sequenceOut >= 0) { |
| 580 | infeas[sequenceOut] = saveOutInfeasibility; |
| 581 | } |
| 582 | /*if (model_->numberIterations()%100==0) |
| 583 | printf("%d best %g\n",bestSequence,bestDj);*/ |
| 584 | |
| 585 | #ifndef NDEBUG |
| 586 | if (bestSequence >= 0) { |
| 587 | if (model_->getStatus(bestSequence) == ClpSimplex::atLowerBound) |
| 588 | assert(model_->reducedCost(bestSequence) < 0.0); |
| 589 | if (model_->getStatus(bestSequence) == ClpSimplex::atUpperBound) { |
| 590 | assert(model_->reducedCost(bestSequence) > 0.0); |
| 591 | } |
| 592 | } |
| 593 | #endif |
| 594 | return bestSequence; |
| 595 | } |
| 596 | // Just update djs |
| 597 | void |
| 598 | ClpPrimalColumnSteepest::justDjs(CoinIndexedVector * updates, |
| 599 | CoinIndexedVector * spareRow2, |
| 600 | CoinIndexedVector * spareColumn1, |
| 601 | CoinIndexedVector * spareColumn2) |
| 602 | { |
| 603 | int iSection, j; |
| 604 | int number = 0; |
| 605 | int * index; |
| 606 | double * updateBy; |
| 607 | double * reducedCost; |
| 608 | double tolerance = model_->currentDualTolerance(); |
| 609 | // we can't really trust infeasibilities if there is dual error |
| 610 | // this coding has to mimic coding in checkDualSolution |
| 611 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 612 | // allow tolerance at least slightly bigger than standard |
| 613 | tolerance = tolerance + error; |
| 614 | int pivotRow = model_->pivotRow(); |
| 615 | double * infeas = infeasible_->denseVector(); |
| 616 | //updates->scanAndPack(); |
| 617 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 618 | |
| 619 | // put row of tableau in rowArray and columnArray (packed mode) |
| 620 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 621 | updates, spareColumn2, spareColumn1); |
| 622 | // normal |
| 623 | for (iSection = 0; iSection < 2; iSection++) { |
| 624 | |
| 625 | reducedCost = model_->djRegion(iSection); |
| 626 | int addSequence; |
| 627 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 628 | double slack_multiplier; |
| 629 | #endif |
| 630 | |
| 631 | if (!iSection) { |
| 632 | number = updates->getNumElements(); |
| 633 | index = updates->getIndices(); |
| 634 | updateBy = updates->denseVector(); |
| 635 | addSequence = model_->numberColumns(); |
| 636 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 637 | slack_multiplier = CLP_PRIMAL_SLACK_MULTIPLIER; |
| 638 | #endif |
| 639 | } else { |
| 640 | number = spareColumn1->getNumElements(); |
| 641 | index = spareColumn1->getIndices(); |
| 642 | updateBy = spareColumn1->denseVector(); |
| 643 | addSequence = 0; |
| 644 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 645 | slack_multiplier = 1.0; |
| 646 | #endif |
| 647 | } |
| 648 | |
| 649 | for (j = 0; j < number; j++) { |
| 650 | int iSequence = index[j]; |
| 651 | double value = reducedCost[iSequence]; |
| 652 | value -= updateBy[j]; |
| 653 | updateBy[j] = 0.0; |
| 654 | reducedCost[iSequence] = value; |
| 655 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 656 | |
| 657 | switch(status) { |
| 658 | |
| 659 | case ClpSimplex::basic: |
| 660 | infeasible_->zero(iSequence + addSequence); |
| 661 | case ClpSimplex::isFixed: |
| 662 | break; |
| 663 | case ClpSimplex::isFree: |
| 664 | case ClpSimplex::superBasic: |
| 665 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 666 | // we are going to bias towards free (but only if reasonable) |
| 667 | value *= FREE_BIAS; |
| 668 | // store square in list |
| 669 | if (infeas[iSequence+addSequence]) |
| 670 | infeas[iSequence+addSequence] = value * value; // already there |
| 671 | else |
| 672 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 673 | } else { |
| 674 | infeasible_->zero(iSequence + addSequence); |
| 675 | } |
| 676 | break; |
| 677 | case ClpSimplex::atUpperBound: |
| 678 | iSequence += addSequence; |
| 679 | if (value > tolerance) { |
| 680 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 681 | value *= value*slack_multiplier; |
| 682 | #else |
| 683 | value *= value; |
| 684 | #endif |
| 685 | // store square in list |
| 686 | if (infeas[iSequence]) |
| 687 | infeas[iSequence] = value; // already there |
| 688 | else |
| 689 | infeasible_->quickAdd(iSequence, value); |
| 690 | } else { |
| 691 | infeasible_->zero(iSequence); |
| 692 | } |
| 693 | break; |
| 694 | case ClpSimplex::atLowerBound: |
| 695 | iSequence += addSequence; |
| 696 | if (value < -tolerance) { |
| 697 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 698 | value *= value*slack_multiplier; |
| 699 | #else |
| 700 | value *= value; |
| 701 | #endif |
| 702 | // store square in list |
| 703 | if (infeas[iSequence]) |
| 704 | infeas[iSequence] = value; // already there |
| 705 | else |
| 706 | infeasible_->quickAdd(iSequence, value); |
| 707 | } else { |
| 708 | infeasible_->zero(iSequence); |
| 709 | } |
| 710 | } |
| 711 | } |
| 712 | } |
| 713 | updates->setNumElements(0); |
| 714 | spareColumn1->setNumElements(0); |
| 715 | if (pivotRow >= 0) { |
| 716 | // make sure infeasibility on incoming is 0.0 |
| 717 | int sequenceIn = model_->sequenceIn(); |
| 718 | infeasible_->zero(sequenceIn); |
| 719 | } |
| 720 | } |
| 721 | // Update djs, weights for Devex |
| 722 | void |
| 723 | ClpPrimalColumnSteepest::djsAndDevex(CoinIndexedVector * updates, |
| 724 | CoinIndexedVector * spareRow2, |
| 725 | CoinIndexedVector * spareColumn1, |
| 726 | CoinIndexedVector * spareColumn2) |
| 727 | { |
| 728 | int j; |
| 729 | int number = 0; |
| 730 | int * index; |
| 731 | double * updateBy; |
| 732 | double * reducedCost; |
| 733 | double tolerance = model_->currentDualTolerance(); |
| 734 | // we can't really trust infeasibilities if there is dual error |
| 735 | // this coding has to mimic coding in checkDualSolution |
| 736 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 737 | // allow tolerance at least slightly bigger than standard |
| 738 | tolerance = tolerance + error; |
| 739 | // for weights update we use pivotSequence |
| 740 | // unset in case sub flip |
| 741 | assert (pivotSequence_ >= 0); |
| 742 | assert (model_->pivotVariable()[pivotSequence_] == model_->sequenceIn()); |
| 743 | pivotSequence_ = -1; |
| 744 | double * infeas = infeasible_->denseVector(); |
| 745 | //updates->scanAndPack(); |
| 746 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 747 | // and we can see if reference |
| 748 | //double referenceIn = 0.0; |
| 749 | int sequenceIn = model_->sequenceIn(); |
| 750 | //if (mode_ != 1 && reference(sequenceIn)) |
| 751 | // referenceIn = 1.0; |
| 752 | // save outgoing weight round update |
| 753 | double outgoingWeight = 0.0; |
| 754 | int sequenceOut = model_->sequenceOut(); |
| 755 | if (sequenceOut >= 0) |
| 756 | outgoingWeight = weights_[sequenceOut]; |
| 757 | |
| 758 | double scaleFactor = 1.0 / updates->denseVector()[0]; // as formula is with 1.0 |
| 759 | // put row of tableau in rowArray and columnArray (packed mode) |
| 760 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 761 | updates, spareColumn2, spareColumn1); |
| 762 | // update weights |
| 763 | double * weight; |
| 764 | int numberColumns = model_->numberColumns(); |
| 765 | // rows |
| 766 | reducedCost = model_->djRegion(0); |
| 767 | int addSequence = model_->numberColumns(); |
| 768 | |
| 769 | number = updates->getNumElements(); |
| 770 | index = updates->getIndices(); |
| 771 | updateBy = updates->denseVector(); |
| 772 | weight = weights_ + numberColumns; |
| 773 | // Devex |
| 774 | for (j = 0; j < number; j++) { |
| 775 | double thisWeight; |
| 776 | double pivot; |
| 777 | double value3; |
| 778 | int iSequence = index[j]; |
| 779 | double value = reducedCost[iSequence]; |
| 780 | double value2 = updateBy[j]; |
| 781 | updateBy[j] = 0.0; |
| 782 | value -= value2; |
| 783 | reducedCost[iSequence] = value; |
| 784 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 785 | |
| 786 | switch(status) { |
| 787 | |
| 788 | case ClpSimplex::basic: |
| 789 | infeasible_->zero(iSequence + addSequence); |
| 790 | case ClpSimplex::isFixed: |
| 791 | break; |
| 792 | case ClpSimplex::isFree: |
| 793 | case ClpSimplex::superBasic: |
| 794 | thisWeight = weight[iSequence]; |
| 795 | // row has -1 |
| 796 | pivot = value2 * scaleFactor; |
| 797 | value3 = pivot * pivot * devex_; |
| 798 | if (reference(iSequence + numberColumns)) |
| 799 | value3 += 1.0; |
| 800 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 801 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 802 | // we are going to bias towards free (but only if reasonable) |
| 803 | value *= FREE_BIAS; |
| 804 | // store square in list |
| 805 | if (infeas[iSequence+addSequence]) |
| 806 | infeas[iSequence+addSequence] = value * value; // already there |
| 807 | else |
| 808 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 809 | } else { |
| 810 | infeasible_->zero(iSequence + addSequence); |
| 811 | } |
| 812 | break; |
| 813 | case ClpSimplex::atUpperBound: |
| 814 | thisWeight = weight[iSequence]; |
| 815 | // row has -1 |
| 816 | pivot = value2 * scaleFactor; |
| 817 | value3 = pivot * pivot * devex_; |
| 818 | if (reference(iSequence + numberColumns)) |
| 819 | value3 += 1.0; |
| 820 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 821 | iSequence += addSequence; |
| 822 | if (value > tolerance) { |
| 823 | // store square in list |
| 824 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 825 | value *= value*CLP_PRIMAL_SLACK_MULTIPLIER; |
| 826 | #else |
| 827 | value *= value; |
| 828 | #endif |
| 829 | if (infeas[iSequence]) |
| 830 | infeas[iSequence] = value; // already there |
| 831 | else |
| 832 | infeasible_->quickAdd(iSequence , value); |
| 833 | } else { |
| 834 | infeasible_->zero(iSequence); |
| 835 | } |
| 836 | break; |
| 837 | case ClpSimplex::atLowerBound: |
| 838 | thisWeight = weight[iSequence]; |
| 839 | // row has -1 |
| 840 | pivot = value2 * scaleFactor; |
| 841 | value3 = pivot * pivot * devex_; |
| 842 | if (reference(iSequence + numberColumns)) |
| 843 | value3 += 1.0; |
| 844 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 845 | iSequence += addSequence; |
| 846 | if (value < -tolerance) { |
| 847 | // store square in list |
| 848 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 849 | value *= value*CLP_PRIMAL_SLACK_MULTIPLIER; |
| 850 | #else |
| 851 | value *= value; |
| 852 | #endif |
| 853 | if (infeas[iSequence]) |
| 854 | infeas[iSequence] = value; // already there |
| 855 | else |
| 856 | infeasible_->quickAdd(iSequence , value); |
| 857 | } else { |
| 858 | infeasible_->zero(iSequence); |
| 859 | } |
| 860 | } |
| 861 | } |
| 862 | |
| 863 | // columns |
| 864 | weight = weights_; |
| 865 | |
| 866 | scaleFactor = -scaleFactor; |
| 867 | reducedCost = model_->djRegion(1); |
| 868 | number = spareColumn1->getNumElements(); |
| 869 | index = spareColumn1->getIndices(); |
| 870 | updateBy = spareColumn1->denseVector(); |
| 871 | |
| 872 | // Devex |
| 873 | |
| 874 | for (j = 0; j < number; j++) { |
| 875 | double thisWeight; |
| 876 | double pivot; |
| 877 | double value3; |
| 878 | int iSequence = index[j]; |
| 879 | double value = reducedCost[iSequence]; |
| 880 | double value2 = updateBy[j]; |
| 881 | value -= value2; |
| 882 | updateBy[j] = 0.0; |
| 883 | reducedCost[iSequence] = value; |
| 884 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 885 | |
| 886 | switch(status) { |
| 887 | |
| 888 | case ClpSimplex::basic: |
| 889 | infeasible_->zero(iSequence); |
| 890 | case ClpSimplex::isFixed: |
| 891 | break; |
| 892 | case ClpSimplex::isFree: |
| 893 | case ClpSimplex::superBasic: |
| 894 | thisWeight = weight[iSequence]; |
| 895 | // row has -1 |
| 896 | pivot = value2 * scaleFactor; |
| 897 | value3 = pivot * pivot * devex_; |
| 898 | if (reference(iSequence)) |
| 899 | value3 += 1.0; |
| 900 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 901 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 902 | // we are going to bias towards free (but only if reasonable) |
| 903 | value *= FREE_BIAS; |
| 904 | // store square in list |
| 905 | if (infeas[iSequence]) |
| 906 | infeas[iSequence] = value * value; // already there |
| 907 | else |
| 908 | infeasible_->quickAdd(iSequence, value * value); |
| 909 | } else { |
| 910 | infeasible_->zero(iSequence); |
| 911 | } |
| 912 | break; |
| 913 | case ClpSimplex::atUpperBound: |
| 914 | thisWeight = weight[iSequence]; |
| 915 | // row has -1 |
| 916 | pivot = value2 * scaleFactor; |
| 917 | value3 = pivot * pivot * devex_; |
| 918 | if (reference(iSequence)) |
| 919 | value3 += 1.0; |
| 920 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 921 | if (value > tolerance) { |
| 922 | // store square in list |
| 923 | if (infeas[iSequence]) |
| 924 | infeas[iSequence] = value * value; // already there |
| 925 | else |
| 926 | infeasible_->quickAdd(iSequence, value * value); |
| 927 | } else { |
| 928 | infeasible_->zero(iSequence); |
| 929 | } |
| 930 | break; |
| 931 | case ClpSimplex::atLowerBound: |
| 932 | thisWeight = weight[iSequence]; |
| 933 | // row has -1 |
| 934 | pivot = value2 * scaleFactor; |
| 935 | value3 = pivot * pivot * devex_; |
| 936 | if (reference(iSequence)) |
| 937 | value3 += 1.0; |
| 938 | weight[iSequence] = CoinMax(0.99 * thisWeight, value3); |
| 939 | if (value < -tolerance) { |
| 940 | // store square in list |
| 941 | if (infeas[iSequence]) |
| 942 | infeas[iSequence] = value * value; // already there |
| 943 | else |
| 944 | infeasible_->quickAdd(iSequence, value * value); |
| 945 | } else { |
| 946 | infeasible_->zero(iSequence); |
| 947 | } |
| 948 | } |
| 949 | } |
| 950 | // restore outgoing weight |
| 951 | if (sequenceOut >= 0) |
| 952 | weights_[sequenceOut] = outgoingWeight; |
| 953 | // make sure infeasibility on incoming is 0.0 |
| 954 | infeasible_->zero(sequenceIn); |
| 955 | spareRow2->setNumElements(0); |
| 956 | //#define SOME_DEBUG_1 |
| 957 | #ifdef SOME_DEBUG_1 |
| 958 | // check for accuracy |
| 959 | int iCheck = 892; |
| 960 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 961 | int numberRows = model_->numberRows(); |
| 962 | //int numberColumns = model_->numberColumns(); |
| 963 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 964 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 965 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 966 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 967 | } |
| 968 | #endif |
| 969 | updates->setNumElements(0); |
| 970 | spareColumn1->setNumElements(0); |
| 971 | } |
| 972 | // Update djs, weights for Steepest |
| 973 | void |
| 974 | ClpPrimalColumnSteepest::djsAndSteepest(CoinIndexedVector * updates, |
| 975 | CoinIndexedVector * spareRow2, |
| 976 | CoinIndexedVector * spareColumn1, |
| 977 | CoinIndexedVector * spareColumn2) |
| 978 | { |
| 979 | int j; |
| 980 | int number = 0; |
| 981 | int * index; |
| 982 | double * updateBy; |
| 983 | double * reducedCost; |
| 984 | double tolerance = model_->currentDualTolerance(); |
| 985 | // we can't really trust infeasibilities if there is dual error |
| 986 | // this coding has to mimic coding in checkDualSolution |
| 987 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 988 | // allow tolerance at least slightly bigger than standard |
| 989 | tolerance = tolerance + error; |
| 990 | // for weights update we use pivotSequence |
| 991 | // unset in case sub flip |
| 992 | assert (pivotSequence_ >= 0); |
| 993 | assert (model_->pivotVariable()[pivotSequence_] == model_->sequenceIn()); |
| 994 | double * infeas = infeasible_->denseVector(); |
| 995 | double scaleFactor = 1.0 / updates->denseVector()[0]; // as formula is with 1.0 |
| 996 | assert (updates->getIndices()[0] == pivotSequence_); |
| 997 | pivotSequence_ = -1; |
| 998 | //updates->scanAndPack(); |
| 999 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1000 | //alternateWeights_->scanAndPack(); |
| 1001 | model_->factorization()->updateColumnTranspose(spareRow2, |
| 1002 | alternateWeights_); |
| 1003 | // and we can see if reference |
| 1004 | int sequenceIn = model_->sequenceIn(); |
| 1005 | double referenceIn; |
| 1006 | if (mode_ != 1) { |
| 1007 | if(reference(sequenceIn)) |
| 1008 | referenceIn = 1.0; |
| 1009 | else |
| 1010 | referenceIn = 0.0; |
| 1011 | } else { |
| 1012 | referenceIn = -1.0; |
| 1013 | } |
| 1014 | // save outgoing weight round update |
| 1015 | double outgoingWeight = 0.0; |
| 1016 | int sequenceOut = model_->sequenceOut(); |
| 1017 | if (sequenceOut >= 0) |
| 1018 | outgoingWeight = weights_[sequenceOut]; |
| 1019 | // update row weights here so we can scale alternateWeights_ |
| 1020 | // update weights |
| 1021 | double * weight; |
| 1022 | double * other = alternateWeights_->denseVector(); |
| 1023 | int numberColumns = model_->numberColumns(); |
| 1024 | // rows |
| 1025 | reducedCost = model_->djRegion(0); |
| 1026 | int addSequence = model_->numberColumns(); |
| 1027 | |
| 1028 | number = updates->getNumElements(); |
| 1029 | index = updates->getIndices(); |
| 1030 | updateBy = updates->denseVector(); |
| 1031 | weight = weights_ + numberColumns; |
| 1032 | |
| 1033 | for (j = 0; j < number; j++) { |
| 1034 | double thisWeight; |
| 1035 | double pivot; |
| 1036 | double modification; |
| 1037 | double pivotSquared; |
| 1038 | int iSequence = index[j]; |
| 1039 | double value2 = updateBy[j]; |
| 1040 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 1041 | double value; |
| 1042 | |
| 1043 | switch(status) { |
| 1044 | |
| 1045 | case ClpSimplex::basic: |
| 1046 | infeasible_->zero(iSequence + addSequence); |
| 1047 | reducedCost[iSequence] = 0.0; |
| 1048 | case ClpSimplex::isFixed: |
| 1049 | break; |
| 1050 | case ClpSimplex::isFree: |
| 1051 | case ClpSimplex::superBasic: |
| 1052 | value = reducedCost[iSequence] - value2; |
| 1053 | modification = other[iSequence]; |
| 1054 | thisWeight = weight[iSequence]; |
| 1055 | // row has -1 |
| 1056 | pivot = value2 * scaleFactor; |
| 1057 | pivotSquared = pivot * pivot; |
| 1058 | |
| 1059 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1060 | reducedCost[iSequence] = value; |
| 1061 | if (thisWeight < TRY_NORM) { |
| 1062 | if (mode_ == 1) { |
| 1063 | // steepest |
| 1064 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1065 | } else { |
| 1066 | // exact |
| 1067 | thisWeight = referenceIn * pivotSquared; |
| 1068 | if (reference(iSequence + numberColumns)) |
| 1069 | thisWeight += 1.0; |
| 1070 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 1071 | } |
| 1072 | } |
| 1073 | weight[iSequence] = thisWeight; |
| 1074 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 1075 | // we are going to bias towards free (but only if reasonable) |
| 1076 | value *= FREE_BIAS; |
| 1077 | // store square in list |
| 1078 | if (infeas[iSequence+addSequence]) |
| 1079 | infeas[iSequence+addSequence] = value * value; // already there |
| 1080 | else |
| 1081 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 1082 | } else { |
| 1083 | infeasible_->zero(iSequence + addSequence); |
| 1084 | } |
| 1085 | break; |
| 1086 | case ClpSimplex::atUpperBound: |
| 1087 | value = reducedCost[iSequence] - value2; |
| 1088 | modification = other[iSequence]; |
| 1089 | thisWeight = weight[iSequence]; |
| 1090 | // row has -1 |
| 1091 | pivot = value2 * scaleFactor; |
| 1092 | pivotSquared = pivot * pivot; |
| 1093 | |
| 1094 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1095 | reducedCost[iSequence] = value; |
| 1096 | if (thisWeight < TRY_NORM) { |
| 1097 | if (mode_ == 1) { |
| 1098 | // steepest |
| 1099 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1100 | } else { |
| 1101 | // exact |
| 1102 | thisWeight = referenceIn * pivotSquared; |
| 1103 | if (reference(iSequence + numberColumns)) |
| 1104 | thisWeight += 1.0; |
| 1105 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 1106 | } |
| 1107 | } |
| 1108 | weight[iSequence] = thisWeight; |
| 1109 | iSequence += addSequence; |
| 1110 | if (value > tolerance) { |
| 1111 | // store square in list |
| 1112 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1113 | value *= value*CLP_PRIMAL_SLACK_MULTIPLIER; |
| 1114 | #else |
| 1115 | value *= value; |
| 1116 | #endif |
| 1117 | if (infeas[iSequence]) |
| 1118 | infeas[iSequence] = value; // already there |
| 1119 | else |
| 1120 | infeasible_->quickAdd(iSequence , value); |
| 1121 | } else { |
| 1122 | infeasible_->zero(iSequence); |
| 1123 | } |
| 1124 | break; |
| 1125 | case ClpSimplex::atLowerBound: |
| 1126 | value = reducedCost[iSequence] - value2; |
| 1127 | modification = other[iSequence]; |
| 1128 | thisWeight = weight[iSequence]; |
| 1129 | // row has -1 |
| 1130 | pivot = value2 * scaleFactor; |
| 1131 | pivotSquared = pivot * pivot; |
| 1132 | |
| 1133 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1134 | reducedCost[iSequence] = value; |
| 1135 | if (thisWeight < TRY_NORM) { |
| 1136 | if (mode_ == 1) { |
| 1137 | // steepest |
| 1138 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1139 | } else { |
| 1140 | // exact |
| 1141 | thisWeight = referenceIn * pivotSquared; |
| 1142 | if (reference(iSequence + numberColumns)) |
| 1143 | thisWeight += 1.0; |
| 1144 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 1145 | } |
| 1146 | } |
| 1147 | weight[iSequence] = thisWeight; |
| 1148 | iSequence += addSequence; |
| 1149 | if (value < -tolerance) { |
| 1150 | // store square in list |
| 1151 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1152 | value *= value*CLP_PRIMAL_SLACK_MULTIPLIER; |
| 1153 | #else |
| 1154 | value *= value; |
| 1155 | #endif |
| 1156 | if (infeas[iSequence]) |
| 1157 | infeas[iSequence] = value; // already there |
| 1158 | else |
| 1159 | infeasible_->quickAdd(iSequence, value); |
| 1160 | } else { |
| 1161 | infeasible_->zero(iSequence); |
| 1162 | } |
| 1163 | } |
| 1164 | } |
| 1165 | // put row of tableau in rowArray and columnArray (packed) |
| 1166 | // get subset which have nonzero tableau elements |
| 1167 | transposeTimes2(updates, spareColumn1, alternateWeights_, spareColumn2, spareRow2, |
| 1168 | -scaleFactor); |
| 1169 | // zero updateBy |
| 1170 | CoinZeroN(updateBy, number); |
| 1171 | alternateWeights_->clear(); |
| 1172 | // columns |
| 1173 | assert (scaleFactor); |
| 1174 | reducedCost = model_->djRegion(1); |
| 1175 | number = spareColumn1->getNumElements(); |
| 1176 | index = spareColumn1->getIndices(); |
| 1177 | updateBy = spareColumn1->denseVector(); |
| 1178 | |
| 1179 | for (j = 0; j < number; j++) { |
| 1180 | int iSequence = index[j]; |
| 1181 | double value = reducedCost[iSequence]; |
| 1182 | double value2 = updateBy[j]; |
| 1183 | updateBy[j] = 0.0; |
| 1184 | value -= value2; |
| 1185 | reducedCost[iSequence] = value; |
| 1186 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 1187 | |
| 1188 | switch(status) { |
| 1189 | |
| 1190 | case ClpSimplex::basic: |
| 1191 | case ClpSimplex::isFixed: |
| 1192 | break; |
| 1193 | case ClpSimplex::isFree: |
| 1194 | case ClpSimplex::superBasic: |
| 1195 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 1196 | // we are going to bias towards free (but only if reasonable) |
| 1197 | value *= FREE_BIAS; |
| 1198 | // store square in list |
| 1199 | if (infeas[iSequence]) |
| 1200 | infeas[iSequence] = value * value; // already there |
| 1201 | else |
| 1202 | infeasible_->quickAdd(iSequence, value * value); |
| 1203 | } else { |
| 1204 | infeasible_->zero(iSequence); |
| 1205 | } |
| 1206 | break; |
| 1207 | case ClpSimplex::atUpperBound: |
| 1208 | if (value > tolerance) { |
| 1209 | // store square in list |
| 1210 | if (infeas[iSequence]) |
| 1211 | infeas[iSequence] = value * value; // already there |
| 1212 | else |
| 1213 | infeasible_->quickAdd(iSequence, value * value); |
| 1214 | } else { |
| 1215 | infeasible_->zero(iSequence); |
| 1216 | } |
| 1217 | break; |
| 1218 | case ClpSimplex::atLowerBound: |
| 1219 | if (value < -tolerance) { |
| 1220 | // store square in list |
| 1221 | if (infeas[iSequence]) |
| 1222 | infeas[iSequence] = value * value; // already there |
| 1223 | else |
| 1224 | infeasible_->quickAdd(iSequence, value * value); |
| 1225 | } else { |
| 1226 | infeasible_->zero(iSequence); |
| 1227 | } |
| 1228 | } |
| 1229 | } |
| 1230 | // restore outgoing weight |
| 1231 | if (sequenceOut >= 0) |
| 1232 | weights_[sequenceOut] = outgoingWeight; |
| 1233 | // make sure infeasibility on incoming is 0.0 |
| 1234 | infeasible_->zero(sequenceIn); |
| 1235 | spareColumn2->setNumElements(0); |
| 1236 | //#define SOME_DEBUG_1 |
| 1237 | #ifdef SOME_DEBUG_1 |
| 1238 | // check for accuracy |
| 1239 | int iCheck = 892; |
| 1240 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 1241 | int numberRows = model_->numberRows(); |
| 1242 | //int numberColumns = model_->numberColumns(); |
| 1243 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 1244 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 1245 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 1246 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 1247 | } |
| 1248 | #endif |
| 1249 | updates->setNumElements(0); |
| 1250 | spareColumn1->setNumElements(0); |
| 1251 | } |
| 1252 | // Update djs, weights for Devex |
| 1253 | void |
| 1254 | ClpPrimalColumnSteepest::djsAndDevex2(CoinIndexedVector * updates, |
| 1255 | CoinIndexedVector * spareRow2, |
| 1256 | CoinIndexedVector * spareColumn1, |
| 1257 | CoinIndexedVector * spareColumn2) |
| 1258 | { |
| 1259 | int iSection, j; |
| 1260 | int number = 0; |
| 1261 | int * index; |
| 1262 | double * updateBy; |
| 1263 | double * reducedCost; |
| 1264 | // dj could be very small (or even zero - take care) |
| 1265 | double dj = model_->dualIn(); |
| 1266 | double tolerance = model_->currentDualTolerance(); |
| 1267 | // we can't really trust infeasibilities if there is dual error |
| 1268 | // this coding has to mimic coding in checkDualSolution |
| 1269 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 1270 | // allow tolerance at least slightly bigger than standard |
| 1271 | tolerance = tolerance + error; |
| 1272 | int pivotRow = model_->pivotRow(); |
| 1273 | double * infeas = infeasible_->denseVector(); |
| 1274 | //updates->scanAndPack(); |
| 1275 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1276 | |
| 1277 | // put row of tableau in rowArray and columnArray |
| 1278 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1279 | updates, spareColumn2, spareColumn1); |
| 1280 | // normal |
| 1281 | for (iSection = 0; iSection < 2; iSection++) { |
| 1282 | |
| 1283 | reducedCost = model_->djRegion(iSection); |
| 1284 | int addSequence; |
| 1285 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1286 | double slack_multiplier; |
| 1287 | #endif |
| 1288 | |
| 1289 | if (!iSection) { |
| 1290 | number = updates->getNumElements(); |
| 1291 | index = updates->getIndices(); |
| 1292 | updateBy = updates->denseVector(); |
| 1293 | addSequence = model_->numberColumns(); |
| 1294 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1295 | slack_multiplier = CLP_PRIMAL_SLACK_MULTIPLIER; |
| 1296 | #endif |
| 1297 | } else { |
| 1298 | number = spareColumn1->getNumElements(); |
| 1299 | index = spareColumn1->getIndices(); |
| 1300 | updateBy = spareColumn1->denseVector(); |
| 1301 | addSequence = 0; |
| 1302 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1303 | slack_multiplier = 1.0; |
| 1304 | #endif |
| 1305 | } |
| 1306 | |
| 1307 | for (j = 0; j < number; j++) { |
| 1308 | int iSequence = index[j]; |
| 1309 | double value = reducedCost[iSequence]; |
| 1310 | value -= updateBy[j]; |
| 1311 | updateBy[j] = 0.0; |
| 1312 | reducedCost[iSequence] = value; |
| 1313 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 1314 | |
| 1315 | switch(status) { |
| 1316 | |
| 1317 | case ClpSimplex::basic: |
| 1318 | infeasible_->zero(iSequence + addSequence); |
| 1319 | case ClpSimplex::isFixed: |
| 1320 | break; |
| 1321 | case ClpSimplex::isFree: |
| 1322 | case ClpSimplex::superBasic: |
| 1323 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 1324 | // we are going to bias towards free (but only if reasonable) |
| 1325 | value *= FREE_BIAS; |
| 1326 | // store square in list |
| 1327 | if (infeas[iSequence+addSequence]) |
| 1328 | infeas[iSequence+addSequence] = value * value; // already there |
| 1329 | else |
| 1330 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 1331 | } else { |
| 1332 | infeasible_->zero(iSequence + addSequence); |
| 1333 | } |
| 1334 | break; |
| 1335 | case ClpSimplex::atUpperBound: |
| 1336 | iSequence += addSequence; |
| 1337 | if (value > tolerance) { |
| 1338 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1339 | value *= value*slack_multiplier; |
| 1340 | #else |
| 1341 | value *= value; |
| 1342 | #endif |
| 1343 | // store square in list |
| 1344 | if (infeas[iSequence]) |
| 1345 | infeas[iSequence] = value; // already there |
| 1346 | else |
| 1347 | infeasible_->quickAdd(iSequence, value); |
| 1348 | } else { |
| 1349 | infeasible_->zero(iSequence); |
| 1350 | } |
| 1351 | break; |
| 1352 | case ClpSimplex::atLowerBound: |
| 1353 | iSequence += addSequence; |
| 1354 | if (value < -tolerance) { |
| 1355 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1356 | value *= value*slack_multiplier; |
| 1357 | #else |
| 1358 | value *= value; |
| 1359 | #endif |
| 1360 | // store square in list |
| 1361 | if (infeas[iSequence]) |
| 1362 | infeas[iSequence] = value; // already there |
| 1363 | else |
| 1364 | infeasible_->quickAdd(iSequence, value); |
| 1365 | } else { |
| 1366 | infeasible_->zero(iSequence); |
| 1367 | } |
| 1368 | } |
| 1369 | } |
| 1370 | } |
| 1371 | // They are empty |
| 1372 | updates->setNumElements(0); |
| 1373 | spareColumn1->setNumElements(0); |
| 1374 | // make sure infeasibility on incoming is 0.0 |
| 1375 | int sequenceIn = model_->sequenceIn(); |
| 1376 | infeasible_->zero(sequenceIn); |
| 1377 | // for weights update we use pivotSequence |
| 1378 | if (pivotSequence_ >= 0) { |
| 1379 | pivotRow = pivotSequence_; |
| 1380 | // unset in case sub flip |
| 1381 | pivotSequence_ = -1; |
| 1382 | // make sure infeasibility on incoming is 0.0 |
| 1383 | const int * pivotVariable = model_->pivotVariable(); |
| 1384 | sequenceIn = pivotVariable[pivotRow]; |
| 1385 | infeasible_->zero(sequenceIn); |
| 1386 | // and we can see if reference |
| 1387 | //double referenceIn = 0.0; |
| 1388 | //if (mode_ != 1 && reference(sequenceIn)) |
| 1389 | // referenceIn = 1.0; |
| 1390 | // save outgoing weight round update |
| 1391 | double outgoingWeight = 0.0; |
| 1392 | int sequenceOut = model_->sequenceOut(); |
| 1393 | if (sequenceOut >= 0) |
| 1394 | outgoingWeight = weights_[sequenceOut]; |
| 1395 | // update weights |
| 1396 | updates->setNumElements(0); |
| 1397 | spareColumn1->setNumElements(0); |
| 1398 | // might as well set dj to 1 |
| 1399 | dj = 1.0; |
| 1400 | updates->insert(pivotRow, -dj); |
| 1401 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1402 | // put row of tableau in rowArray and columnArray |
| 1403 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1404 | updates, spareColumn2, spareColumn1); |
| 1405 | double * weight; |
| 1406 | int numberColumns = model_->numberColumns(); |
| 1407 | // rows |
| 1408 | number = updates->getNumElements(); |
| 1409 | index = updates->getIndices(); |
| 1410 | updateBy = updates->denseVector(); |
| 1411 | weight = weights_ + numberColumns; |
| 1412 | |
| 1413 | assert (devex_ > 0.0); |
| 1414 | for (j = 0; j < number; j++) { |
| 1415 | int iSequence = index[j]; |
| 1416 | double thisWeight = weight[iSequence]; |
| 1417 | // row has -1 |
| 1418 | double pivot = - updateBy[iSequence]; |
| 1419 | updateBy[iSequence] = 0.0; |
| 1420 | double value = pivot * pivot * devex_; |
| 1421 | if (reference(iSequence + numberColumns)) |
| 1422 | value += 1.0; |
| 1423 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1424 | } |
| 1425 | |
| 1426 | // columns |
| 1427 | weight = weights_; |
| 1428 | |
| 1429 | number = spareColumn1->getNumElements(); |
| 1430 | index = spareColumn1->getIndices(); |
| 1431 | updateBy = spareColumn1->denseVector(); |
| 1432 | for (j = 0; j < number; j++) { |
| 1433 | int iSequence = index[j]; |
| 1434 | double thisWeight = weight[iSequence]; |
| 1435 | // row has -1 |
| 1436 | double pivot = updateBy[iSequence]; |
| 1437 | updateBy[iSequence] = 0.0; |
| 1438 | double value = pivot * pivot * devex_; |
| 1439 | if (reference(iSequence)) |
| 1440 | value += 1.0; |
| 1441 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1442 | } |
| 1443 | // restore outgoing weight |
| 1444 | if (sequenceOut >= 0) |
| 1445 | weights_[sequenceOut] = outgoingWeight; |
| 1446 | spareColumn2->setNumElements(0); |
| 1447 | //#define SOME_DEBUG_1 |
| 1448 | #ifdef SOME_DEBUG_1 |
| 1449 | // check for accuracy |
| 1450 | int iCheck = 892; |
| 1451 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 1452 | int numberRows = model_->numberRows(); |
| 1453 | //int numberColumns = model_->numberColumns(); |
| 1454 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 1455 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 1456 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 1457 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 1458 | } |
| 1459 | #endif |
| 1460 | updates->setNumElements(0); |
| 1461 | spareColumn1->setNumElements(0); |
| 1462 | } |
| 1463 | } |
| 1464 | // Update djs, weights for Steepest |
| 1465 | void |
| 1466 | ClpPrimalColumnSteepest::djsAndSteepest2(CoinIndexedVector * updates, |
| 1467 | CoinIndexedVector * spareRow2, |
| 1468 | CoinIndexedVector * spareColumn1, |
| 1469 | CoinIndexedVector * spareColumn2) |
| 1470 | { |
| 1471 | int iSection, j; |
| 1472 | int number = 0; |
| 1473 | int * index; |
| 1474 | double * updateBy; |
| 1475 | double * reducedCost; |
| 1476 | // dj could be very small (or even zero - take care) |
| 1477 | double dj = model_->dualIn(); |
| 1478 | double tolerance = model_->currentDualTolerance(); |
| 1479 | // we can't really trust infeasibilities if there is dual error |
| 1480 | // this coding has to mimic coding in checkDualSolution |
| 1481 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 1482 | // allow tolerance at least slightly bigger than standard |
| 1483 | tolerance = tolerance + error; |
| 1484 | int pivotRow = model_->pivotRow(); |
| 1485 | double * infeas = infeasible_->denseVector(); |
| 1486 | //updates->scanAndPack(); |
| 1487 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1488 | |
| 1489 | // put row of tableau in rowArray and columnArray |
| 1490 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1491 | updates, spareColumn2, spareColumn1); |
| 1492 | // normal |
| 1493 | for (iSection = 0; iSection < 2; iSection++) { |
| 1494 | |
| 1495 | reducedCost = model_->djRegion(iSection); |
| 1496 | int addSequence; |
| 1497 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1498 | double slack_multiplier; |
| 1499 | #endif |
| 1500 | |
| 1501 | if (!iSection) { |
| 1502 | number = updates->getNumElements(); |
| 1503 | index = updates->getIndices(); |
| 1504 | updateBy = updates->denseVector(); |
| 1505 | addSequence = model_->numberColumns(); |
| 1506 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1507 | slack_multiplier = CLP_PRIMAL_SLACK_MULTIPLIER; |
| 1508 | #endif |
| 1509 | } else { |
| 1510 | number = spareColumn1->getNumElements(); |
| 1511 | index = spareColumn1->getIndices(); |
| 1512 | updateBy = spareColumn1->denseVector(); |
| 1513 | addSequence = 0; |
| 1514 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1515 | slack_multiplier = 1.0; |
| 1516 | #endif |
| 1517 | } |
| 1518 | |
| 1519 | for (j = 0; j < number; j++) { |
| 1520 | int iSequence = index[j]; |
| 1521 | double value = reducedCost[iSequence]; |
| 1522 | value -= updateBy[j]; |
| 1523 | updateBy[j] = 0.0; |
| 1524 | reducedCost[iSequence] = value; |
| 1525 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 1526 | |
| 1527 | switch(status) { |
| 1528 | |
| 1529 | case ClpSimplex::basic: |
| 1530 | infeasible_->zero(iSequence + addSequence); |
| 1531 | case ClpSimplex::isFixed: |
| 1532 | break; |
| 1533 | case ClpSimplex::isFree: |
| 1534 | case ClpSimplex::superBasic: |
| 1535 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 1536 | // we are going to bias towards free (but only if reasonable) |
| 1537 | value *= FREE_BIAS; |
| 1538 | // store square in list |
| 1539 | if (infeas[iSequence+addSequence]) |
| 1540 | infeas[iSequence+addSequence] = value * value; // already there |
| 1541 | else |
| 1542 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 1543 | } else { |
| 1544 | infeasible_->zero(iSequence + addSequence); |
| 1545 | } |
| 1546 | break; |
| 1547 | case ClpSimplex::atUpperBound: |
| 1548 | iSequence += addSequence; |
| 1549 | if (value > tolerance) { |
| 1550 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1551 | value *= value*slack_multiplier; |
| 1552 | #else |
| 1553 | value *= value; |
| 1554 | #endif |
| 1555 | // store square in list |
| 1556 | if (infeas[iSequence]) |
| 1557 | infeas[iSequence] = value; // already there |
| 1558 | else |
| 1559 | infeasible_->quickAdd(iSequence, value); |
| 1560 | } else { |
| 1561 | infeasible_->zero(iSequence); |
| 1562 | } |
| 1563 | break; |
| 1564 | case ClpSimplex::atLowerBound: |
| 1565 | iSequence += addSequence; |
| 1566 | if (value < -tolerance) { |
| 1567 | #ifdef CLP_PRIMAL_SLACK_MULTIPLIER |
| 1568 | value *= value*slack_multiplier; |
| 1569 | #else |
| 1570 | value *= value; |
| 1571 | #endif |
| 1572 | // store square in list |
| 1573 | if (infeas[iSequence]) |
| 1574 | infeas[iSequence] = value; // already there |
| 1575 | else |
| 1576 | infeasible_->quickAdd(iSequence, value); |
| 1577 | } else { |
| 1578 | infeasible_->zero(iSequence); |
| 1579 | } |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | // we can zero out as will have to get pivot row |
| 1584 | // ***** move |
| 1585 | updates->setNumElements(0); |
| 1586 | spareColumn1->setNumElements(0); |
| 1587 | if (pivotRow >= 0) { |
| 1588 | // make sure infeasibility on incoming is 0.0 |
| 1589 | int sequenceIn = model_->sequenceIn(); |
| 1590 | infeasible_->zero(sequenceIn); |
| 1591 | } |
| 1592 | // for weights update we use pivotSequence |
| 1593 | pivotRow = pivotSequence_; |
| 1594 | // unset in case sub flip |
| 1595 | pivotSequence_ = -1; |
| 1596 | if (pivotRow >= 0) { |
| 1597 | // make sure infeasibility on incoming is 0.0 |
| 1598 | const int * pivotVariable = model_->pivotVariable(); |
| 1599 | int sequenceIn = pivotVariable[pivotRow]; |
| 1600 | assert (sequenceIn == model_->sequenceIn()); |
| 1601 | infeasible_->zero(sequenceIn); |
| 1602 | // and we can see if reference |
| 1603 | double referenceIn; |
| 1604 | if (mode_ != 1) { |
| 1605 | if(reference(sequenceIn)) |
| 1606 | referenceIn = 1.0; |
| 1607 | else |
| 1608 | referenceIn = 0.0; |
| 1609 | } else { |
| 1610 | referenceIn = -1.0; |
| 1611 | } |
| 1612 | // save outgoing weight round update |
| 1613 | double outgoingWeight = 0.0; |
| 1614 | int sequenceOut = model_->sequenceOut(); |
| 1615 | if (sequenceOut >= 0) |
| 1616 | outgoingWeight = weights_[sequenceOut]; |
| 1617 | // update weights |
| 1618 | updates->setNumElements(0); |
| 1619 | spareColumn1->setNumElements(0); |
| 1620 | // might as well set dj to 1 |
| 1621 | dj = -1.0; |
| 1622 | updates->createPacked(1, &pivotRow, &dj); |
| 1623 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1624 | bool needSubset = (mode_ < 4 || numberSwitched_ > 1 || mode_ >= 10); |
| 1625 | |
| 1626 | double * weight; |
| 1627 | double * other = alternateWeights_->denseVector(); |
| 1628 | int numberColumns = model_->numberColumns(); |
| 1629 | // rows |
| 1630 | number = updates->getNumElements(); |
| 1631 | index = updates->getIndices(); |
| 1632 | updateBy = updates->denseVector(); |
| 1633 | weight = weights_ + numberColumns; |
| 1634 | if (needSubset) { |
| 1635 | // now update weight update array |
| 1636 | model_->factorization()->updateColumnTranspose(spareRow2, |
| 1637 | alternateWeights_); |
| 1638 | // do alternateWeights_ here so can scale |
| 1639 | for (j = 0; j < number; j++) { |
| 1640 | int iSequence = index[j]; |
| 1641 | assert (iSequence >= 0 && iSequence < model_->numberRows()); |
| 1642 | double thisWeight = weight[iSequence]; |
| 1643 | // row has -1 |
| 1644 | double pivot = - updateBy[j]; |
| 1645 | double modification = other[iSequence]; |
| 1646 | double pivotSquared = pivot * pivot; |
| 1647 | |
| 1648 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1649 | if (thisWeight < TRY_NORM) { |
| 1650 | if (mode_ == 1) { |
| 1651 | // steepest |
| 1652 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1653 | } else { |
| 1654 | // exact |
| 1655 | thisWeight = referenceIn * pivotSquared; |
| 1656 | if (reference(iSequence + numberColumns)) |
| 1657 | thisWeight += 1.0; |
| 1658 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 1659 | } |
| 1660 | } |
| 1661 | weight[iSequence] = thisWeight; |
| 1662 | } |
| 1663 | transposeTimes2(updates, spareColumn1, alternateWeights_, spareColumn2, spareRow2, 0.0); |
| 1664 | } else { |
| 1665 | // put row of tableau in rowArray and columnArray |
| 1666 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1667 | updates, spareColumn2, spareColumn1); |
| 1668 | } |
| 1669 | |
| 1670 | if (needSubset) { |
| 1671 | CoinZeroN(updateBy, number); |
| 1672 | } else if (mode_ == 4) { |
| 1673 | // Devex |
| 1674 | assert (devex_ > 0.0); |
| 1675 | for (j = 0; j < number; j++) { |
| 1676 | int iSequence = index[j]; |
| 1677 | double thisWeight = weight[iSequence]; |
| 1678 | // row has -1 |
| 1679 | double pivot = -updateBy[j]; |
| 1680 | updateBy[j] = 0.0; |
| 1681 | double value = pivot * pivot * devex_; |
| 1682 | if (reference(iSequence + numberColumns)) |
| 1683 | value += 1.0; |
| 1684 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1685 | } |
| 1686 | } |
| 1687 | |
| 1688 | // columns |
| 1689 | weight = weights_; |
| 1690 | |
| 1691 | number = spareColumn1->getNumElements(); |
| 1692 | index = spareColumn1->getIndices(); |
| 1693 | updateBy = spareColumn1->denseVector(); |
| 1694 | if (needSubset) { |
| 1695 | // Exact - already done |
| 1696 | } else if (mode_ == 4) { |
| 1697 | // Devex |
| 1698 | for (j = 0; j < number; j++) { |
| 1699 | int iSequence = index[j]; |
| 1700 | double thisWeight = weight[iSequence]; |
| 1701 | // row has -1 |
| 1702 | double pivot = updateBy[j]; |
| 1703 | updateBy[j] = 0.0; |
| 1704 | double value = pivot * pivot * devex_; |
| 1705 | if (reference(iSequence)) |
| 1706 | value += 1.0; |
| 1707 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1708 | } |
| 1709 | } |
| 1710 | // restore outgoing weight |
| 1711 | if (sequenceOut >= 0) |
| 1712 | weights_[sequenceOut] = outgoingWeight; |
| 1713 | alternateWeights_->clear(); |
| 1714 | spareColumn2->setNumElements(0); |
| 1715 | //#define SOME_DEBUG_1 |
| 1716 | #ifdef SOME_DEBUG_1 |
| 1717 | // check for accuracy |
| 1718 | int iCheck = 892; |
| 1719 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 1720 | int numberRows = model_->numberRows(); |
| 1721 | //int numberColumns = model_->numberColumns(); |
| 1722 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 1723 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 1724 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 1725 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 1726 | } |
| 1727 | #endif |
| 1728 | } |
| 1729 | updates->setNumElements(0); |
| 1730 | spareColumn1->setNumElements(0); |
| 1731 | } |
| 1732 | // Updates two arrays for steepest |
| 1733 | void |
| 1734 | ClpPrimalColumnSteepest::transposeTimes2(const CoinIndexedVector * pi1, CoinIndexedVector * dj1, |
| 1735 | const CoinIndexedVector * pi2, CoinIndexedVector * dj2, |
| 1736 | CoinIndexedVector * spare, |
| 1737 | double scaleFactor) |
| 1738 | { |
| 1739 | // see if reference |
| 1740 | int sequenceIn = model_->sequenceIn(); |
| 1741 | double referenceIn; |
| 1742 | if (mode_ != 1) { |
| 1743 | if(reference(sequenceIn)) |
| 1744 | referenceIn = 1.0; |
| 1745 | else |
| 1746 | referenceIn = 0.0; |
| 1747 | } else { |
| 1748 | referenceIn = -1.0; |
| 1749 | } |
| 1750 | if (model_->clpMatrix()->canCombine(model_, pi1)) { |
| 1751 | // put row of tableau in rowArray and columnArray |
| 1752 | model_->clpMatrix()->transposeTimes2(model_, pi1, dj1, pi2, spare, referenceIn, devex_, |
| 1753 | reference_, |
| 1754 | weights_, scaleFactor); |
| 1755 | } else { |
| 1756 | // put row of tableau in rowArray and columnArray |
| 1757 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1758 | pi1, dj2, dj1); |
| 1759 | // get subset which have nonzero tableau elements |
| 1760 | model_->clpMatrix()->subsetTransposeTimes(model_, pi2, dj1, dj2); |
| 1761 | bool killDjs = (scaleFactor == 0.0); |
| 1762 | if (!scaleFactor) |
| 1763 | scaleFactor = 1.0; |
| 1764 | // columns |
| 1765 | double * weight = weights_; |
| 1766 | |
| 1767 | int number = dj1->getNumElements(); |
| 1768 | const int * index = dj1->getIndices(); |
| 1769 | double * updateBy = dj1->denseVector(); |
| 1770 | double * updateBy2 = dj2->denseVector(); |
| 1771 | |
| 1772 | for (int j = 0; j < number; j++) { |
| 1773 | double thisWeight; |
| 1774 | double pivot; |
| 1775 | double pivotSquared; |
| 1776 | int iSequence = index[j]; |
| 1777 | double value2 = updateBy[j]; |
| 1778 | if (killDjs) |
| 1779 | updateBy[j] = 0.0; |
| 1780 | double modification = updateBy2[j]; |
| 1781 | updateBy2[j] = 0.0; |
| 1782 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 1783 | |
| 1784 | if (status != ClpSimplex::basic && status != ClpSimplex::isFixed) { |
| 1785 | thisWeight = weight[iSequence]; |
| 1786 | pivot = value2 * scaleFactor; |
| 1787 | pivotSquared = pivot * pivot; |
| 1788 | |
| 1789 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1790 | if (thisWeight < TRY_NORM) { |
| 1791 | if (referenceIn < 0.0) { |
| 1792 | // steepest |
| 1793 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1794 | } else { |
| 1795 | // exact |
| 1796 | thisWeight = referenceIn * pivotSquared; |
| 1797 | if (reference(iSequence)) |
| 1798 | thisWeight += 1.0; |
| 1799 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 1800 | } |
| 1801 | } |
| 1802 | weight[iSequence] = thisWeight; |
| 1803 | } |
| 1804 | } |
| 1805 | } |
| 1806 | dj2->setNumElements(0); |
| 1807 | } |
| 1808 | // Update weights for Devex |
| 1809 | void |
| 1810 | ClpPrimalColumnSteepest::justDevex(CoinIndexedVector * updates, |
| 1811 | CoinIndexedVector * spareRow2, |
| 1812 | CoinIndexedVector * spareColumn1, |
| 1813 | CoinIndexedVector * spareColumn2) |
| 1814 | { |
| 1815 | int j; |
| 1816 | int number = 0; |
| 1817 | int * index; |
| 1818 | double * updateBy; |
| 1819 | // dj could be very small (or even zero - take care) |
| 1820 | double dj = model_->dualIn(); |
| 1821 | double tolerance = model_->currentDualTolerance(); |
| 1822 | // we can't really trust infeasibilities if there is dual error |
| 1823 | // this coding has to mimic coding in checkDualSolution |
| 1824 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 1825 | // allow tolerance at least slightly bigger than standard |
| 1826 | tolerance = tolerance + error; |
| 1827 | int pivotRow = model_->pivotRow(); |
| 1828 | // for weights update we use pivotSequence |
| 1829 | pivotRow = pivotSequence_; |
| 1830 | assert (pivotRow >= 0); |
| 1831 | // make sure infeasibility on incoming is 0.0 |
| 1832 | const int * pivotVariable = model_->pivotVariable(); |
| 1833 | int sequenceIn = pivotVariable[pivotRow]; |
| 1834 | infeasible_->zero(sequenceIn); |
| 1835 | // and we can see if reference |
| 1836 | //double referenceIn = 0.0; |
| 1837 | //if (mode_ != 1 && reference(sequenceIn)) |
| 1838 | // referenceIn = 1.0; |
| 1839 | // save outgoing weight round update |
| 1840 | double outgoingWeight = 0.0; |
| 1841 | int sequenceOut = model_->sequenceOut(); |
| 1842 | if (sequenceOut >= 0) |
| 1843 | outgoingWeight = weights_[sequenceOut]; |
| 1844 | assert (!updates->getNumElements()); |
| 1845 | assert (!spareColumn1->getNumElements()); |
| 1846 | // unset in case sub flip |
| 1847 | pivotSequence_ = -1; |
| 1848 | // might as well set dj to 1 |
| 1849 | dj = -1.0; |
| 1850 | updates->createPacked(1, &pivotRow, &dj); |
| 1851 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1852 | // put row of tableau in rowArray and columnArray |
| 1853 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1854 | updates, spareColumn2, spareColumn1); |
| 1855 | double * weight; |
| 1856 | int numberColumns = model_->numberColumns(); |
| 1857 | // rows |
| 1858 | number = updates->getNumElements(); |
| 1859 | index = updates->getIndices(); |
| 1860 | updateBy = updates->denseVector(); |
| 1861 | weight = weights_ + numberColumns; |
| 1862 | |
| 1863 | // Devex |
| 1864 | assert (devex_ > 0.0); |
| 1865 | for (j = 0; j < number; j++) { |
| 1866 | int iSequence = index[j]; |
| 1867 | double thisWeight = weight[iSequence]; |
| 1868 | // row has -1 |
| 1869 | double pivot = - updateBy[j]; |
| 1870 | updateBy[j] = 0.0; |
| 1871 | double value = pivot * pivot * devex_; |
| 1872 | if (reference(iSequence + numberColumns)) |
| 1873 | value += 1.0; |
| 1874 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1875 | } |
| 1876 | |
| 1877 | // columns |
| 1878 | weight = weights_; |
| 1879 | |
| 1880 | number = spareColumn1->getNumElements(); |
| 1881 | index = spareColumn1->getIndices(); |
| 1882 | updateBy = spareColumn1->denseVector(); |
| 1883 | // Devex |
| 1884 | for (j = 0; j < number; j++) { |
| 1885 | int iSequence = index[j]; |
| 1886 | double thisWeight = weight[iSequence]; |
| 1887 | // row has -1 |
| 1888 | double pivot = updateBy[j]; |
| 1889 | updateBy[j] = 0.0; |
| 1890 | double value = pivot * pivot * devex_; |
| 1891 | if (reference(iSequence)) |
| 1892 | value += 1.0; |
| 1893 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 1894 | } |
| 1895 | // restore outgoing weight |
| 1896 | if (sequenceOut >= 0) |
| 1897 | weights_[sequenceOut] = outgoingWeight; |
| 1898 | spareColumn2->setNumElements(0); |
| 1899 | //#define SOME_DEBUG_1 |
| 1900 | #ifdef SOME_DEBUG_1 |
| 1901 | // check for accuracy |
| 1902 | int iCheck = 892; |
| 1903 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 1904 | int numberRows = model_->numberRows(); |
| 1905 | //int numberColumns = model_->numberColumns(); |
| 1906 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 1907 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 1908 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 1909 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 1910 | } |
| 1911 | #endif |
| 1912 | updates->setNumElements(0); |
| 1913 | spareColumn1->setNumElements(0); |
| 1914 | } |
| 1915 | // Update weights for Steepest |
| 1916 | void |
| 1917 | ClpPrimalColumnSteepest::justSteepest(CoinIndexedVector * updates, |
| 1918 | CoinIndexedVector * spareRow2, |
| 1919 | CoinIndexedVector * spareColumn1, |
| 1920 | CoinIndexedVector * spareColumn2) |
| 1921 | { |
| 1922 | int j; |
| 1923 | int number = 0; |
| 1924 | int * index; |
| 1925 | double * updateBy; |
| 1926 | // dj could be very small (or even zero - take care) |
| 1927 | double dj = model_->dualIn(); |
| 1928 | double tolerance = model_->currentDualTolerance(); |
| 1929 | // we can't really trust infeasibilities if there is dual error |
| 1930 | // this coding has to mimic coding in checkDualSolution |
| 1931 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 1932 | // allow tolerance at least slightly bigger than standard |
| 1933 | tolerance = tolerance + error; |
| 1934 | int pivotRow = model_->pivotRow(); |
| 1935 | // for weights update we use pivotSequence |
| 1936 | pivotRow = pivotSequence_; |
| 1937 | // unset in case sub flip |
| 1938 | pivotSequence_ = -1; |
| 1939 | assert (pivotRow >= 0); |
| 1940 | // make sure infeasibility on incoming is 0.0 |
| 1941 | const int * pivotVariable = model_->pivotVariable(); |
| 1942 | int sequenceIn = pivotVariable[pivotRow]; |
| 1943 | infeasible_->zero(sequenceIn); |
| 1944 | // and we can see if reference |
| 1945 | double referenceIn = 0.0; |
| 1946 | if (mode_ != 1 && reference(sequenceIn)) |
| 1947 | referenceIn = 1.0; |
| 1948 | // save outgoing weight round update |
| 1949 | double outgoingWeight = 0.0; |
| 1950 | int sequenceOut = model_->sequenceOut(); |
| 1951 | if (sequenceOut >= 0) |
| 1952 | outgoingWeight = weights_[sequenceOut]; |
| 1953 | assert (!updates->getNumElements()); |
| 1954 | assert (!spareColumn1->getNumElements()); |
| 1955 | // update weights |
| 1956 | //updates->setNumElements(0); |
| 1957 | //spareColumn1->setNumElements(0); |
| 1958 | // might as well set dj to 1 |
| 1959 | dj = -1.0; |
| 1960 | updates->createPacked(1, &pivotRow, &dj); |
| 1961 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 1962 | // put row of tableau in rowArray and columnArray |
| 1963 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 1964 | updates, spareColumn2, spareColumn1); |
| 1965 | double * weight; |
| 1966 | double * other = alternateWeights_->denseVector(); |
| 1967 | int numberColumns = model_->numberColumns(); |
| 1968 | // rows |
| 1969 | number = updates->getNumElements(); |
| 1970 | index = updates->getIndices(); |
| 1971 | updateBy = updates->denseVector(); |
| 1972 | weight = weights_ + numberColumns; |
| 1973 | |
| 1974 | // Exact |
| 1975 | // now update weight update array |
| 1976 | //alternateWeights_->scanAndPack(); |
| 1977 | model_->factorization()->updateColumnTranspose(spareRow2, |
| 1978 | alternateWeights_); |
| 1979 | // get subset which have nonzero tableau elements |
| 1980 | model_->clpMatrix()->subsetTransposeTimes(model_, alternateWeights_, |
| 1981 | spareColumn1, |
| 1982 | spareColumn2); |
| 1983 | for (j = 0; j < number; j++) { |
| 1984 | int iSequence = index[j]; |
| 1985 | double thisWeight = weight[iSequence]; |
| 1986 | // row has -1 |
| 1987 | double pivot = -updateBy[j]; |
| 1988 | updateBy[j] = 0.0; |
| 1989 | double modification = other[iSequence]; |
| 1990 | double pivotSquared = pivot * pivot; |
| 1991 | |
| 1992 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 1993 | if (thisWeight < TRY_NORM) { |
| 1994 | if (mode_ == 1) { |
| 1995 | // steepest |
| 1996 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 1997 | } else { |
| 1998 | // exact |
| 1999 | thisWeight = referenceIn * pivotSquared; |
| 2000 | if (reference(iSequence + numberColumns)) |
| 2001 | thisWeight += 1.0; |
| 2002 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 2003 | } |
| 2004 | } |
| 2005 | weight[iSequence] = thisWeight; |
| 2006 | } |
| 2007 | |
| 2008 | // columns |
| 2009 | weight = weights_; |
| 2010 | |
| 2011 | number = spareColumn1->getNumElements(); |
| 2012 | index = spareColumn1->getIndices(); |
| 2013 | updateBy = spareColumn1->denseVector(); |
| 2014 | // Exact |
| 2015 | double * updateBy2 = spareColumn2->denseVector(); |
| 2016 | for (j = 0; j < number; j++) { |
| 2017 | int iSequence = index[j]; |
| 2018 | double thisWeight = weight[iSequence]; |
| 2019 | double pivot = updateBy[j]; |
| 2020 | updateBy[j] = 0.0; |
| 2021 | double modification = updateBy2[j]; |
| 2022 | updateBy2[j] = 0.0; |
| 2023 | double pivotSquared = pivot * pivot; |
| 2024 | |
| 2025 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 2026 | if (thisWeight < TRY_NORM) { |
| 2027 | if (mode_ == 1) { |
| 2028 | // steepest |
| 2029 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 2030 | } else { |
| 2031 | // exact |
| 2032 | thisWeight = referenceIn * pivotSquared; |
| 2033 | if (reference(iSequence)) |
| 2034 | thisWeight += 1.0; |
| 2035 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 2036 | } |
| 2037 | } |
| 2038 | weight[iSequence] = thisWeight; |
| 2039 | } |
| 2040 | // restore outgoing weight |
| 2041 | if (sequenceOut >= 0) |
| 2042 | weights_[sequenceOut] = outgoingWeight; |
| 2043 | alternateWeights_->clear(); |
| 2044 | spareColumn2->setNumElements(0); |
| 2045 | //#define SOME_DEBUG_1 |
| 2046 | #ifdef SOME_DEBUG_1 |
| 2047 | // check for accuracy |
| 2048 | int iCheck = 892; |
| 2049 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 2050 | int numberRows = model_->numberRows(); |
| 2051 | //int numberColumns = model_->numberColumns(); |
| 2052 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 2053 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 2054 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 2055 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 2056 | } |
| 2057 | #endif |
| 2058 | updates->setNumElements(0); |
| 2059 | spareColumn1->setNumElements(0); |
| 2060 | } |
| 2061 | // Returns pivot column, -1 if none |
| 2062 | int |
| 2063 | ClpPrimalColumnSteepest::pivotColumnOldMethod(CoinIndexedVector * updates, |
| 2064 | CoinIndexedVector * , |
| 2065 | CoinIndexedVector * spareRow2, |
| 2066 | CoinIndexedVector * spareColumn1, |
| 2067 | CoinIndexedVector * spareColumn2) |
| 2068 | { |
| 2069 | assert(model_); |
| 2070 | int iSection, j; |
| 2071 | int number = 0; |
| 2072 | int * index; |
| 2073 | double * updateBy; |
| 2074 | double * reducedCost; |
| 2075 | // dj could be very small (or even zero - take care) |
| 2076 | double dj = model_->dualIn(); |
| 2077 | double tolerance = model_->currentDualTolerance(); |
| 2078 | // we can't really trust infeasibilities if there is dual error |
| 2079 | // this coding has to mimic coding in checkDualSolution |
| 2080 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 2081 | // allow tolerance at least slightly bigger than standard |
| 2082 | tolerance = tolerance + error; |
| 2083 | int pivotRow = model_->pivotRow(); |
| 2084 | int anyUpdates; |
| 2085 | double * infeas = infeasible_->denseVector(); |
| 2086 | |
| 2087 | // Local copy of mode so can decide what to do |
| 2088 | int switchType; |
| 2089 | if (mode_ == 4) |
| 2090 | switchType = 5 - numberSwitched_; |
| 2091 | else if (mode_ >= 10) |
| 2092 | switchType = 3; |
| 2093 | else |
| 2094 | switchType = mode_; |
| 2095 | /* switchType - |
| 2096 | 0 - all exact devex |
| 2097 | 1 - all steepest |
| 2098 | 2 - some exact devex |
| 2099 | 3 - auto some exact devex |
| 2100 | 4 - devex |
| 2101 | 5 - dantzig |
| 2102 | */ |
| 2103 | if (updates->getNumElements()) { |
| 2104 | // would have to have two goes for devex, three for steepest |
| 2105 | anyUpdates = 2; |
| 2106 | // add in pivot contribution |
| 2107 | if (pivotRow >= 0) |
| 2108 | updates->add(pivotRow, -dj); |
| 2109 | } else if (pivotRow >= 0) { |
| 2110 | if (fabs(dj) > 1.0e-15) { |
| 2111 | // some dj |
| 2112 | updates->insert(pivotRow, -dj); |
| 2113 | if (fabs(dj) > 1.0e-6) { |
| 2114 | // reasonable size |
| 2115 | anyUpdates = 1; |
| 2116 | } else { |
| 2117 | // too small |
| 2118 | anyUpdates = 2; |
| 2119 | } |
| 2120 | } else { |
| 2121 | // zero dj |
| 2122 | anyUpdates = -1; |
| 2123 | } |
| 2124 | } else if (pivotSequence_ >= 0) { |
| 2125 | // just after re-factorization |
| 2126 | anyUpdates = -1; |
| 2127 | } else { |
| 2128 | // sub flip - nothing to do |
| 2129 | anyUpdates = 0; |
| 2130 | } |
| 2131 | |
| 2132 | if (anyUpdates > 0) { |
| 2133 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 2134 | |
| 2135 | // put row of tableau in rowArray and columnArray |
| 2136 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 2137 | updates, spareColumn2, spareColumn1); |
| 2138 | // normal |
| 2139 | for (iSection = 0; iSection < 2; iSection++) { |
| 2140 | |
| 2141 | reducedCost = model_->djRegion(iSection); |
| 2142 | int addSequence; |
| 2143 | |
| 2144 | if (!iSection) { |
| 2145 | number = updates->getNumElements(); |
| 2146 | index = updates->getIndices(); |
| 2147 | updateBy = updates->denseVector(); |
| 2148 | addSequence = model_->numberColumns(); |
| 2149 | } else { |
| 2150 | number = spareColumn1->getNumElements(); |
| 2151 | index = spareColumn1->getIndices(); |
| 2152 | updateBy = spareColumn1->denseVector(); |
| 2153 | addSequence = 0; |
| 2154 | } |
| 2155 | if (!model_->nonLinearCost()->lookBothWays()) { |
| 2156 | |
| 2157 | for (j = 0; j < number; j++) { |
| 2158 | int iSequence = index[j]; |
| 2159 | double value = reducedCost[iSequence]; |
| 2160 | value -= updateBy[iSequence]; |
| 2161 | reducedCost[iSequence] = value; |
| 2162 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 2163 | |
| 2164 | switch(status) { |
| 2165 | |
| 2166 | case ClpSimplex::basic: |
| 2167 | infeasible_->zero(iSequence + addSequence); |
| 2168 | case ClpSimplex::isFixed: |
| 2169 | break; |
| 2170 | case ClpSimplex::isFree: |
| 2171 | case ClpSimplex::superBasic: |
| 2172 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 2173 | // we are going to bias towards free (but only if reasonable) |
| 2174 | value *= FREE_BIAS; |
| 2175 | // store square in list |
| 2176 | if (infeas[iSequence+addSequence]) |
| 2177 | infeas[iSequence+addSequence] = value * value; // already there |
| 2178 | else |
| 2179 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2180 | } else { |
| 2181 | infeasible_->zero(iSequence + addSequence); |
| 2182 | } |
| 2183 | break; |
| 2184 | case ClpSimplex::atUpperBound: |
| 2185 | if (value > tolerance) { |
| 2186 | // store square in list |
| 2187 | if (infeas[iSequence+addSequence]) |
| 2188 | infeas[iSequence+addSequence] = value * value; // already there |
| 2189 | else |
| 2190 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2191 | } else { |
| 2192 | infeasible_->zero(iSequence + addSequence); |
| 2193 | } |
| 2194 | break; |
| 2195 | case ClpSimplex::atLowerBound: |
| 2196 | if (value < -tolerance) { |
| 2197 | // store square in list |
| 2198 | if (infeas[iSequence+addSequence]) |
| 2199 | infeas[iSequence+addSequence] = value * value; // already there |
| 2200 | else |
| 2201 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2202 | } else { |
| 2203 | infeasible_->zero(iSequence + addSequence); |
| 2204 | } |
| 2205 | } |
| 2206 | } |
| 2207 | } else { |
| 2208 | ClpNonLinearCost * nonLinear = model_->nonLinearCost(); |
| 2209 | // We can go up OR down |
| 2210 | for (j = 0; j < number; j++) { |
| 2211 | int iSequence = index[j]; |
| 2212 | double value = reducedCost[iSequence]; |
| 2213 | value -= updateBy[iSequence]; |
| 2214 | reducedCost[iSequence] = value; |
| 2215 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 2216 | |
| 2217 | switch(status) { |
| 2218 | |
| 2219 | case ClpSimplex::basic: |
| 2220 | infeasible_->zero(iSequence + addSequence); |
| 2221 | case ClpSimplex::isFixed: |
| 2222 | break; |
| 2223 | case ClpSimplex::isFree: |
| 2224 | case ClpSimplex::superBasic: |
| 2225 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 2226 | // we are going to bias towards free (but only if reasonable) |
| 2227 | value *= FREE_BIAS; |
| 2228 | // store square in list |
| 2229 | if (infeas[iSequence+addSequence]) |
| 2230 | infeas[iSequence+addSequence] = value * value; // already there |
| 2231 | else |
| 2232 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2233 | } else { |
| 2234 | infeasible_->zero(iSequence + addSequence); |
| 2235 | } |
| 2236 | break; |
| 2237 | case ClpSimplex::atUpperBound: |
| 2238 | if (value > tolerance) { |
| 2239 | // store square in list |
| 2240 | if (infeas[iSequence+addSequence]) |
| 2241 | infeas[iSequence+addSequence] = value * value; // already there |
| 2242 | else |
| 2243 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2244 | } else { |
| 2245 | // look other way - change up should be negative |
| 2246 | value -= nonLinear->changeUpInCost(iSequence + addSequence); |
| 2247 | if (value > -tolerance) { |
| 2248 | infeasible_->zero(iSequence + addSequence); |
| 2249 | } else { |
| 2250 | // store square in list |
| 2251 | if (infeas[iSequence+addSequence]) |
| 2252 | infeas[iSequence+addSequence] = value * value; // already there |
| 2253 | else |
| 2254 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2255 | } |
| 2256 | } |
| 2257 | break; |
| 2258 | case ClpSimplex::atLowerBound: |
| 2259 | if (value < -tolerance) { |
| 2260 | // store square in list |
| 2261 | if (infeas[iSequence+addSequence]) |
| 2262 | infeas[iSequence+addSequence] = value * value; // already there |
| 2263 | else |
| 2264 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2265 | } else { |
| 2266 | // look other way - change down should be positive |
| 2267 | value -= nonLinear->changeDownInCost(iSequence + addSequence); |
| 2268 | if (value < tolerance) { |
| 2269 | infeasible_->zero(iSequence + addSequence); |
| 2270 | } else { |
| 2271 | // store square in list |
| 2272 | if (infeas[iSequence+addSequence]) |
| 2273 | infeas[iSequence+addSequence] = value * value; // already there |
| 2274 | else |
| 2275 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2276 | } |
| 2277 | } |
| 2278 | } |
| 2279 | } |
| 2280 | } |
| 2281 | } |
| 2282 | if (anyUpdates == 2) { |
| 2283 | // we can zero out as will have to get pivot row |
| 2284 | updates->clear(); |
| 2285 | spareColumn1->clear(); |
| 2286 | } |
| 2287 | if (pivotRow >= 0) { |
| 2288 | // make sure infeasibility on incoming is 0.0 |
| 2289 | int sequenceIn = model_->sequenceIn(); |
| 2290 | infeasible_->zero(sequenceIn); |
| 2291 | } |
| 2292 | } |
| 2293 | // make sure outgoing from last iteration okay |
| 2294 | int sequenceOut = model_->sequenceOut(); |
| 2295 | if (sequenceOut >= 0) { |
| 2296 | ClpSimplex::Status status = model_->getStatus(sequenceOut); |
| 2297 | double value = model_->reducedCost(sequenceOut); |
| 2298 | |
| 2299 | switch(status) { |
| 2300 | |
| 2301 | case ClpSimplex::basic: |
| 2302 | case ClpSimplex::isFixed: |
| 2303 | break; |
| 2304 | case ClpSimplex::isFree: |
| 2305 | case ClpSimplex::superBasic: |
| 2306 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 2307 | // we are going to bias towards free (but only if reasonable) |
| 2308 | value *= FREE_BIAS; |
| 2309 | // store square in list |
| 2310 | if (infeas[sequenceOut]) |
| 2311 | infeas[sequenceOut] = value * value; // already there |
| 2312 | else |
| 2313 | infeasible_->quickAdd(sequenceOut, value * value); |
| 2314 | } else { |
| 2315 | infeasible_->zero(sequenceOut); |
| 2316 | } |
| 2317 | break; |
| 2318 | case ClpSimplex::atUpperBound: |
| 2319 | if (value > tolerance) { |
| 2320 | // store square in list |
| 2321 | if (infeas[sequenceOut]) |
| 2322 | infeas[sequenceOut] = value * value; // already there |
| 2323 | else |
| 2324 | infeasible_->quickAdd(sequenceOut, value * value); |
| 2325 | } else { |
| 2326 | infeasible_->zero(sequenceOut); |
| 2327 | } |
| 2328 | break; |
| 2329 | case ClpSimplex::atLowerBound: |
| 2330 | if (value < -tolerance) { |
| 2331 | // store square in list |
| 2332 | if (infeas[sequenceOut]) |
| 2333 | infeas[sequenceOut] = value * value; // already there |
| 2334 | else |
| 2335 | infeasible_->quickAdd(sequenceOut, value * value); |
| 2336 | } else { |
| 2337 | infeasible_->zero(sequenceOut); |
| 2338 | } |
| 2339 | } |
| 2340 | } |
| 2341 | |
| 2342 | // If in quadratic re-compute all |
| 2343 | if (model_->algorithm() == 2) { |
| 2344 | for (iSection = 0; iSection < 2; iSection++) { |
| 2345 | |
| 2346 | reducedCost = model_->djRegion(iSection); |
| 2347 | int addSequence; |
| 2348 | int iSequence; |
| 2349 | |
| 2350 | if (!iSection) { |
| 2351 | number = model_->numberRows(); |
| 2352 | addSequence = model_->numberColumns(); |
| 2353 | } else { |
| 2354 | number = model_->numberColumns(); |
| 2355 | addSequence = 0; |
| 2356 | } |
| 2357 | |
| 2358 | if (!model_->nonLinearCost()->lookBothWays()) { |
| 2359 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 2360 | double value = reducedCost[iSequence]; |
| 2361 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 2362 | |
| 2363 | switch(status) { |
| 2364 | |
| 2365 | case ClpSimplex::basic: |
| 2366 | infeasible_->zero(iSequence + addSequence); |
| 2367 | case ClpSimplex::isFixed: |
| 2368 | break; |
| 2369 | case ClpSimplex::isFree: |
| 2370 | case ClpSimplex::superBasic: |
| 2371 | if (fabs(value) > tolerance) { |
| 2372 | // we are going to bias towards free (but only if reasonable) |
| 2373 | value *= FREE_BIAS; |
| 2374 | // store square in list |
| 2375 | if (infeas[iSequence+addSequence]) |
| 2376 | infeas[iSequence+addSequence] = value * value; // already there |
| 2377 | else |
| 2378 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2379 | } else { |
| 2380 | infeasible_->zero(iSequence + addSequence); |
| 2381 | } |
| 2382 | break; |
| 2383 | case ClpSimplex::atUpperBound: |
| 2384 | if (value > tolerance) { |
| 2385 | // store square in list |
| 2386 | if (infeas[iSequence+addSequence]) |
| 2387 | infeas[iSequence+addSequence] = value * value; // already there |
| 2388 | else |
| 2389 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2390 | } else { |
| 2391 | infeasible_->zero(iSequence + addSequence); |
| 2392 | } |
| 2393 | break; |
| 2394 | case ClpSimplex::atLowerBound: |
| 2395 | if (value < -tolerance) { |
| 2396 | // store square in list |
| 2397 | if (infeas[iSequence+addSequence]) |
| 2398 | infeas[iSequence+addSequence] = value * value; // already there |
| 2399 | else |
| 2400 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2401 | } else { |
| 2402 | infeasible_->zero(iSequence + addSequence); |
| 2403 | } |
| 2404 | } |
| 2405 | } |
| 2406 | } else { |
| 2407 | // we can go both ways |
| 2408 | ClpNonLinearCost * nonLinear = model_->nonLinearCost(); |
| 2409 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 2410 | double value = reducedCost[iSequence]; |
| 2411 | ClpSimplex::Status status = model_->getStatus(iSequence + addSequence); |
| 2412 | |
| 2413 | switch(status) { |
| 2414 | |
| 2415 | case ClpSimplex::basic: |
| 2416 | infeasible_->zero(iSequence + addSequence); |
| 2417 | case ClpSimplex::isFixed: |
| 2418 | break; |
| 2419 | case ClpSimplex::isFree: |
| 2420 | case ClpSimplex::superBasic: |
| 2421 | if (fabs(value) > tolerance) { |
| 2422 | // we are going to bias towards free (but only if reasonable) |
| 2423 | value *= FREE_BIAS; |
| 2424 | // store square in list |
| 2425 | if (infeas[iSequence+addSequence]) |
| 2426 | infeas[iSequence+addSequence] = value * value; // already there |
| 2427 | else |
| 2428 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2429 | } else { |
| 2430 | infeasible_->zero(iSequence + addSequence); |
| 2431 | } |
| 2432 | break; |
| 2433 | case ClpSimplex::atUpperBound: |
| 2434 | if (value > tolerance) { |
| 2435 | // store square in list |
| 2436 | if (infeas[iSequence+addSequence]) |
| 2437 | infeas[iSequence+addSequence] = value * value; // already there |
| 2438 | else |
| 2439 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2440 | } else { |
| 2441 | // look other way - change up should be negative |
| 2442 | value -= nonLinear->changeUpInCost(iSequence + addSequence); |
| 2443 | if (value > -tolerance) { |
| 2444 | infeasible_->zero(iSequence + addSequence); |
| 2445 | } else { |
| 2446 | // store square in list |
| 2447 | if (infeas[iSequence+addSequence]) |
| 2448 | infeas[iSequence+addSequence] = value * value; // already there |
| 2449 | else |
| 2450 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2451 | } |
| 2452 | } |
| 2453 | break; |
| 2454 | case ClpSimplex::atLowerBound: |
| 2455 | if (value < -tolerance) { |
| 2456 | // store square in list |
| 2457 | if (infeas[iSequence+addSequence]) |
| 2458 | infeas[iSequence+addSequence] = value * value; // already there |
| 2459 | else |
| 2460 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2461 | } else { |
| 2462 | // look other way - change down should be positive |
| 2463 | value -= nonLinear->changeDownInCost(iSequence + addSequence); |
| 2464 | if (value < tolerance) { |
| 2465 | infeasible_->zero(iSequence + addSequence); |
| 2466 | } else { |
| 2467 | // store square in list |
| 2468 | if (infeas[iSequence+addSequence]) |
| 2469 | infeas[iSequence+addSequence] = value * value; // already there |
| 2470 | else |
| 2471 | infeasible_->quickAdd(iSequence + addSequence, value * value); |
| 2472 | } |
| 2473 | } |
| 2474 | } |
| 2475 | } |
| 2476 | } |
| 2477 | } |
| 2478 | } |
| 2479 | // See what sort of pricing |
| 2480 | int numberWanted = 10; |
| 2481 | number = infeasible_->getNumElements(); |
| 2482 | int numberColumns = model_->numberColumns(); |
| 2483 | if (switchType == 5) { |
| 2484 | // we can zero out |
| 2485 | updates->clear(); |
| 2486 | spareColumn1->clear(); |
| 2487 | pivotSequence_ = -1; |
| 2488 | pivotRow = -1; |
| 2489 | // See if to switch |
| 2490 | int numberRows = model_->numberRows(); |
| 2491 | // ratio is done on number of columns here |
| 2492 | //double ratio = static_cast<double> sizeFactorization_/static_cast<double> numberColumns; |
| 2493 | double ratio = static_cast<double> (sizeFactorization_) / static_cast<double> (numberRows); |
| 2494 | //double ratio = static_cast<double> sizeFactorization_/static_cast<double> model_->clpMatrix()->getNumElements(); |
| 2495 | if (ratio < 0.1) { |
| 2496 | numberWanted = CoinMax(100, number / 200); |
| 2497 | } else if (ratio < 0.3) { |
| 2498 | numberWanted = CoinMax(500, number / 40); |
| 2499 | } else if (ratio < 0.5 || mode_ == 5) { |
| 2500 | numberWanted = CoinMax(2000, number / 10); |
| 2501 | numberWanted = CoinMax(numberWanted, numberColumns / 30); |
| 2502 | } else if (mode_ != 5) { |
| 2503 | switchType = 4; |
| 2504 | // initialize |
| 2505 | numberSwitched_++; |
| 2506 | // Make sure will re-do |
| 2507 | delete [] weights_; |
| 2508 | weights_ = NULL; |
| 2509 | saveWeights(model_, 4); |
| 2510 | COIN_DETAIL_PRINT(printf("switching to devex %d nel ratio %g\n" , sizeFactorization_, ratio)); |
| 2511 | updates->clear(); |
| 2512 | } |
| 2513 | if (model_->numberIterations() % 1000 == 0) |
| 2514 | COIN_DETAIL_PRINT(printf("numels %d ratio %g wanted %d\n" , sizeFactorization_, ratio, numberWanted)); |
| 2515 | } |
| 2516 | if(switchType == 4) { |
| 2517 | // Still in devex mode |
| 2518 | int numberRows = model_->numberRows(); |
| 2519 | // ratio is done on number of rows here |
| 2520 | double ratio = static_cast<double> (sizeFactorization_) / static_cast<double> (numberRows); |
| 2521 | // Go to steepest if lot of iterations? |
| 2522 | if (ratio < 1.0) { |
| 2523 | numberWanted = CoinMax(2000, number / 20); |
| 2524 | } else if (ratio < 5.0) { |
| 2525 | numberWanted = CoinMax(2000, number / 10); |
| 2526 | numberWanted = CoinMax(numberWanted, numberColumns / 20); |
| 2527 | } else { |
| 2528 | // we can zero out |
| 2529 | updates->clear(); |
| 2530 | spareColumn1->clear(); |
| 2531 | switchType = 3; |
| 2532 | // initialize |
| 2533 | pivotSequence_ = -1; |
| 2534 | pivotRow = -1; |
| 2535 | numberSwitched_++; |
| 2536 | // Make sure will re-do |
| 2537 | delete [] weights_; |
| 2538 | weights_ = NULL; |
| 2539 | saveWeights(model_, 4); |
| 2540 | COIN_DETAIL_PRINT(printf("switching to exact %d nel ratio %g\n" , sizeFactorization_, ratio)); |
| 2541 | updates->clear(); |
| 2542 | } |
| 2543 | if (model_->numberIterations() % 1000 == 0) |
| 2544 | COIN_DETAIL_PRINT(printf("numels %d ratio %g wanted %d\n" , sizeFactorization_, ratio, numberWanted)); |
| 2545 | } |
| 2546 | if (switchType < 4) { |
| 2547 | if (switchType < 2 ) { |
| 2548 | numberWanted = number + 1; |
| 2549 | } else if (switchType == 2) { |
| 2550 | numberWanted = CoinMax(2000, number / 8); |
| 2551 | } else { |
| 2552 | double ratio = static_cast<double> (sizeFactorization_) / static_cast<double> (model_->numberRows()); |
| 2553 | if (ratio < 1.0) { |
| 2554 | numberWanted = CoinMax(2000, number / 20); |
| 2555 | } else if (ratio < 5.0) { |
| 2556 | numberWanted = CoinMax(2000, number / 10); |
| 2557 | numberWanted = CoinMax(numberWanted, numberColumns / 20); |
| 2558 | } else if (ratio < 10.0) { |
| 2559 | numberWanted = CoinMax(2000, number / 8); |
| 2560 | numberWanted = CoinMax(numberWanted, numberColumns / 20); |
| 2561 | } else { |
| 2562 | ratio = number * (ratio / 80.0); |
| 2563 | if (ratio > number) { |
| 2564 | numberWanted = number + 1; |
| 2565 | } else { |
| 2566 | numberWanted = CoinMax(2000, static_cast<int> (ratio)); |
| 2567 | numberWanted = CoinMax(numberWanted, numberColumns / 10); |
| 2568 | } |
| 2569 | } |
| 2570 | } |
| 2571 | } |
| 2572 | // for weights update we use pivotSequence |
| 2573 | pivotRow = pivotSequence_; |
| 2574 | // unset in case sub flip |
| 2575 | pivotSequence_ = -1; |
| 2576 | if (pivotRow >= 0) { |
| 2577 | // make sure infeasibility on incoming is 0.0 |
| 2578 | const int * pivotVariable = model_->pivotVariable(); |
| 2579 | int sequenceIn = pivotVariable[pivotRow]; |
| 2580 | infeasible_->zero(sequenceIn); |
| 2581 | // and we can see if reference |
| 2582 | double referenceIn = 0.0; |
| 2583 | if (switchType != 1 && reference(sequenceIn)) |
| 2584 | referenceIn = 1.0; |
| 2585 | // save outgoing weight round update |
| 2586 | double outgoingWeight = 0.0; |
| 2587 | if (sequenceOut >= 0) |
| 2588 | outgoingWeight = weights_[sequenceOut]; |
| 2589 | // update weights |
| 2590 | if (anyUpdates != 1) { |
| 2591 | updates->setNumElements(0); |
| 2592 | spareColumn1->setNumElements(0); |
| 2593 | // might as well set dj to 1 |
| 2594 | dj = 1.0; |
| 2595 | updates->insert(pivotRow, -dj); |
| 2596 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 2597 | // put row of tableau in rowArray and columnArray |
| 2598 | model_->clpMatrix()->transposeTimes(model_, -1.0, |
| 2599 | updates, spareColumn2, spareColumn1); |
| 2600 | } |
| 2601 | double * weight; |
| 2602 | double * other = alternateWeights_->denseVector(); |
| 2603 | int numberColumns = model_->numberColumns(); |
| 2604 | double scaleFactor = -1.0 / dj; // as formula is with 1.0 |
| 2605 | // rows |
| 2606 | number = updates->getNumElements(); |
| 2607 | index = updates->getIndices(); |
| 2608 | updateBy = updates->denseVector(); |
| 2609 | weight = weights_ + numberColumns; |
| 2610 | |
| 2611 | if (switchType < 4) { |
| 2612 | // Exact |
| 2613 | // now update weight update array |
| 2614 | model_->factorization()->updateColumnTranspose(spareRow2, |
| 2615 | alternateWeights_); |
| 2616 | for (j = 0; j < number; j++) { |
| 2617 | int iSequence = index[j]; |
| 2618 | double thisWeight = weight[iSequence]; |
| 2619 | // row has -1 |
| 2620 | double pivot = updateBy[iSequence] * scaleFactor; |
| 2621 | updateBy[iSequence] = 0.0; |
| 2622 | double modification = other[iSequence]; |
| 2623 | double pivotSquared = pivot * pivot; |
| 2624 | |
| 2625 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 2626 | if (thisWeight < TRY_NORM) { |
| 2627 | if (switchType == 1) { |
| 2628 | // steepest |
| 2629 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 2630 | } else { |
| 2631 | // exact |
| 2632 | thisWeight = referenceIn * pivotSquared; |
| 2633 | if (reference(iSequence + numberColumns)) |
| 2634 | thisWeight += 1.0; |
| 2635 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 2636 | } |
| 2637 | } |
| 2638 | weight[iSequence] = thisWeight; |
| 2639 | } |
| 2640 | } else if (switchType == 4) { |
| 2641 | // Devex |
| 2642 | assert (devex_ > 0.0); |
| 2643 | for (j = 0; j < number; j++) { |
| 2644 | int iSequence = index[j]; |
| 2645 | double thisWeight = weight[iSequence]; |
| 2646 | // row has -1 |
| 2647 | double pivot = updateBy[iSequence] * scaleFactor; |
| 2648 | updateBy[iSequence] = 0.0; |
| 2649 | double value = pivot * pivot * devex_; |
| 2650 | if (reference(iSequence + numberColumns)) |
| 2651 | value += 1.0; |
| 2652 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 2653 | } |
| 2654 | } |
| 2655 | |
| 2656 | // columns |
| 2657 | weight = weights_; |
| 2658 | |
| 2659 | scaleFactor = -scaleFactor; |
| 2660 | |
| 2661 | number = spareColumn1->getNumElements(); |
| 2662 | index = spareColumn1->getIndices(); |
| 2663 | updateBy = spareColumn1->denseVector(); |
| 2664 | if (switchType < 4) { |
| 2665 | // Exact |
| 2666 | // get subset which have nonzero tableau elements |
| 2667 | model_->clpMatrix()->subsetTransposeTimes(model_, alternateWeights_, |
| 2668 | spareColumn1, |
| 2669 | spareColumn2); |
| 2670 | double * updateBy2 = spareColumn2->denseVector(); |
| 2671 | for (j = 0; j < number; j++) { |
| 2672 | int iSequence = index[j]; |
| 2673 | double thisWeight = weight[iSequence]; |
| 2674 | double pivot = updateBy[iSequence] * scaleFactor; |
| 2675 | updateBy[iSequence] = 0.0; |
| 2676 | double modification = updateBy2[j]; |
| 2677 | updateBy2[j] = 0.0; |
| 2678 | double pivotSquared = pivot * pivot; |
| 2679 | |
| 2680 | thisWeight += pivotSquared * devex_ + pivot * modification; |
| 2681 | if (thisWeight < TRY_NORM) { |
| 2682 | if (switchType == 1) { |
| 2683 | // steepest |
| 2684 | thisWeight = CoinMax(TRY_NORM, ADD_ONE + pivotSquared); |
| 2685 | } else { |
| 2686 | // exact |
| 2687 | thisWeight = referenceIn * pivotSquared; |
| 2688 | if (reference(iSequence)) |
| 2689 | thisWeight += 1.0; |
| 2690 | thisWeight = CoinMax(thisWeight, TRY_NORM); |
| 2691 | } |
| 2692 | } |
| 2693 | weight[iSequence] = thisWeight; |
| 2694 | } |
| 2695 | } else if (switchType == 4) { |
| 2696 | // Devex |
| 2697 | for (j = 0; j < number; j++) { |
| 2698 | int iSequence = index[j]; |
| 2699 | double thisWeight = weight[iSequence]; |
| 2700 | // row has -1 |
| 2701 | double pivot = updateBy[iSequence] * scaleFactor; |
| 2702 | updateBy[iSequence] = 0.0; |
| 2703 | double value = pivot * pivot * devex_; |
| 2704 | if (reference(iSequence)) |
| 2705 | value += 1.0; |
| 2706 | weight[iSequence] = CoinMax(0.99 * thisWeight, value); |
| 2707 | } |
| 2708 | } |
| 2709 | // restore outgoing weight |
| 2710 | if (sequenceOut >= 0) |
| 2711 | weights_[sequenceOut] = outgoingWeight; |
| 2712 | alternateWeights_->clear(); |
| 2713 | spareColumn2->setNumElements(0); |
| 2714 | //#define SOME_DEBUG_1 |
| 2715 | #ifdef SOME_DEBUG_1 |
| 2716 | // check for accuracy |
| 2717 | int iCheck = 892; |
| 2718 | //printf("weight for iCheck is %g\n",weights_[iCheck]); |
| 2719 | int numberRows = model_->numberRows(); |
| 2720 | //int numberColumns = model_->numberColumns(); |
| 2721 | for (iCheck = 0; iCheck < numberRows + numberColumns; iCheck++) { |
| 2722 | if (model_->getStatus(iCheck) != ClpSimplex::basic && |
| 2723 | !model_->getStatus(iCheck) != ClpSimplex::isFixed) |
| 2724 | checkAccuracy(iCheck, 1.0e-1, updates, spareRow2); |
| 2725 | } |
| 2726 | #endif |
| 2727 | updates->setNumElements(0); |
| 2728 | spareColumn1->setNumElements(0); |
| 2729 | } |
| 2730 | |
| 2731 | // update of duals finished - now do pricing |
| 2732 | |
| 2733 | |
| 2734 | double bestDj = 1.0e-30; |
| 2735 | int bestSequence = -1; |
| 2736 | |
| 2737 | int i, iSequence; |
| 2738 | index = infeasible_->getIndices(); |
| 2739 | number = infeasible_->getNumElements(); |
| 2740 | if(model_->numberIterations() < model_->lastBadIteration() + 200) { |
| 2741 | // we can't really trust infeasibilities if there is dual error |
| 2742 | double checkTolerance = 1.0e-8; |
| 2743 | if (!model_->factorization()->pivots()) |
| 2744 | checkTolerance = 1.0e-6; |
| 2745 | if (model_->largestDualError() > checkTolerance) |
| 2746 | tolerance *= model_->largestDualError() / checkTolerance; |
| 2747 | // But cap |
| 2748 | tolerance = CoinMin(1000.0, tolerance); |
| 2749 | } |
| 2750 | #ifdef CLP_DEBUG |
| 2751 | if (model_->numberDualInfeasibilities() == 1) |
| 2752 | printf("** %g %g %g %x %x %d\n" , tolerance, model_->dualTolerance(), |
| 2753 | model_->largestDualError(), model_, model_->messageHandler(), |
| 2754 | number); |
| 2755 | #endif |
| 2756 | // stop last one coming immediately |
| 2757 | double saveOutInfeasibility = 0.0; |
| 2758 | if (sequenceOut >= 0) { |
| 2759 | saveOutInfeasibility = infeas[sequenceOut]; |
| 2760 | infeas[sequenceOut] = 0.0; |
| 2761 | } |
| 2762 | tolerance *= tolerance; // as we are using squares |
| 2763 | |
| 2764 | int iPass; |
| 2765 | // Setup two passes |
| 2766 | int start[4]; |
| 2767 | start[1] = number; |
| 2768 | start[2] = 0; |
| 2769 | double dstart = static_cast<double> (number) * model_->randomNumberGenerator()->randomDouble(); |
| 2770 | start[0] = static_cast<int> (dstart); |
| 2771 | start[3] = start[0]; |
| 2772 | //double largestWeight=0.0; |
| 2773 | //double smallestWeight=1.0e100; |
| 2774 | for (iPass = 0; iPass < 2; iPass++) { |
| 2775 | int end = start[2*iPass+1]; |
| 2776 | if (switchType < 5) { |
| 2777 | for (i = start[2*iPass]; i < end; i++) { |
| 2778 | iSequence = index[i]; |
| 2779 | double value = infeas[iSequence]; |
| 2780 | if (value > tolerance) { |
| 2781 | double weight = weights_[iSequence]; |
| 2782 | //weight=1.0; |
| 2783 | if (value > bestDj * weight) { |
| 2784 | // check flagged variable and correct dj |
| 2785 | if (!model_->flagged(iSequence)) { |
| 2786 | bestDj = value / weight; |
| 2787 | bestSequence = iSequence; |
| 2788 | } else { |
| 2789 | // just to make sure we don't exit before got something |
| 2790 | numberWanted++; |
| 2791 | } |
| 2792 | } |
| 2793 | } |
| 2794 | numberWanted--; |
| 2795 | if (!numberWanted) |
| 2796 | break; |
| 2797 | } |
| 2798 | } else { |
| 2799 | // Dantzig |
| 2800 | for (i = start[2*iPass]; i < end; i++) { |
| 2801 | iSequence = index[i]; |
| 2802 | double value = infeas[iSequence]; |
| 2803 | if (value > tolerance) { |
| 2804 | if (value > bestDj) { |
| 2805 | // check flagged variable and correct dj |
| 2806 | if (!model_->flagged(iSequence)) { |
| 2807 | bestDj = value; |
| 2808 | bestSequence = iSequence; |
| 2809 | } else { |
| 2810 | // just to make sure we don't exit before got something |
| 2811 | numberWanted++; |
| 2812 | } |
| 2813 | } |
| 2814 | } |
| 2815 | numberWanted--; |
| 2816 | if (!numberWanted) |
| 2817 | break; |
| 2818 | } |
| 2819 | } |
| 2820 | if (!numberWanted) |
| 2821 | break; |
| 2822 | } |
| 2823 | if (sequenceOut >= 0) { |
| 2824 | infeas[sequenceOut] = saveOutInfeasibility; |
| 2825 | } |
| 2826 | /*if (model_->numberIterations()%100==0) |
| 2827 | printf("%d best %g\n",bestSequence,bestDj);*/ |
| 2828 | reducedCost = model_->djRegion(); |
| 2829 | model_->clpMatrix()->setSavedBestSequence(bestSequence); |
| 2830 | if (bestSequence >= 0) |
| 2831 | model_->clpMatrix()->setSavedBestDj(reducedCost[bestSequence]); |
| 2832 | |
| 2833 | #ifdef CLP_DEBUG |
| 2834 | if (bestSequence >= 0) { |
| 2835 | if (model_->getStatus(bestSequence) == ClpSimplex::atLowerBound) |
| 2836 | assert(model_->reducedCost(bestSequence) < 0.0); |
| 2837 | if (model_->getStatus(bestSequence) == ClpSimplex::atUpperBound) |
| 2838 | assert(model_->reducedCost(bestSequence) > 0.0); |
| 2839 | } |
| 2840 | #endif |
| 2841 | return bestSequence; |
| 2842 | } |
| 2843 | // Called when maximum pivots changes |
| 2844 | void |
| 2845 | ClpPrimalColumnSteepest::maximumPivotsChanged() |
| 2846 | { |
| 2847 | if (alternateWeights_ && |
| 2848 | alternateWeights_->capacity() != model_->numberRows() + |
| 2849 | model_->factorization()->maximumPivots()) { |
| 2850 | delete alternateWeights_; |
| 2851 | alternateWeights_ = new CoinIndexedVector(); |
| 2852 | // enough space so can use it for factorization |
| 2853 | alternateWeights_->reserve(model_->numberRows() + |
| 2854 | model_->factorization()->maximumPivots()); |
| 2855 | } |
| 2856 | } |
| 2857 | /* |
| 2858 | 1) before factorization |
| 2859 | 2) after factorization |
| 2860 | 3) just redo infeasibilities |
| 2861 | 4) restore weights |
| 2862 | 5) at end of values pass (so need initialization) |
| 2863 | */ |
| 2864 | void |
| 2865 | ClpPrimalColumnSteepest::saveWeights(ClpSimplex * model, int mode) |
| 2866 | { |
| 2867 | model_ = model; |
| 2868 | if (mode_ == 4 || mode_ == 5) { |
| 2869 | if (mode == 1 && !weights_) |
| 2870 | numberSwitched_ = 0; // Reset |
| 2871 | } |
| 2872 | // alternateWeights_ is defined as indexed but is treated oddly |
| 2873 | // at times |
| 2874 | int numberRows = model_->numberRows(); |
| 2875 | int numberColumns = model_->numberColumns(); |
| 2876 | const int * pivotVariable = model_->pivotVariable(); |
| 2877 | bool doInfeasibilities = true; |
| 2878 | if (mode == 1) { |
| 2879 | if(weights_) { |
| 2880 | // Check if size has changed |
| 2881 | if (infeasible_->capacity() == numberRows + numberColumns && |
| 2882 | alternateWeights_->capacity() == numberRows + |
| 2883 | model_->factorization()->maximumPivots()) { |
| 2884 | //alternateWeights_->clear(); |
| 2885 | if (pivotSequence_ >= 0 && pivotSequence_ < numberRows) { |
| 2886 | // save pivot order |
| 2887 | CoinMemcpyN(pivotVariable, |
| 2888 | numberRows, alternateWeights_->getIndices()); |
| 2889 | // change from pivot row number to sequence number |
| 2890 | pivotSequence_ = pivotVariable[pivotSequence_]; |
| 2891 | } else { |
| 2892 | pivotSequence_ = -1; |
| 2893 | } |
| 2894 | state_ = 1; |
| 2895 | } else { |
| 2896 | // size has changed - clear everything |
| 2897 | delete [] weights_; |
| 2898 | weights_ = NULL; |
| 2899 | delete infeasible_; |
| 2900 | infeasible_ = NULL; |
| 2901 | delete alternateWeights_; |
| 2902 | alternateWeights_ = NULL; |
| 2903 | delete [] savedWeights_; |
| 2904 | savedWeights_ = NULL; |
| 2905 | delete [] reference_; |
| 2906 | reference_ = NULL; |
| 2907 | state_ = -1; |
| 2908 | pivotSequence_ = -1; |
| 2909 | } |
| 2910 | } |
| 2911 | } else if (mode == 2 || mode == 4 || mode == 5) { |
| 2912 | // restore |
| 2913 | if (!weights_ || state_ == -1 || mode == 5) { |
| 2914 | // Partial is only allowed with certain types of matrix |
| 2915 | if ((mode_ != 4 && mode_ != 5) || numberSwitched_ || !model_->clpMatrix()->canDoPartialPricing()) { |
| 2916 | // initialize weights |
| 2917 | delete [] weights_; |
| 2918 | delete alternateWeights_; |
| 2919 | weights_ = new double[numberRows+numberColumns]; |
| 2920 | alternateWeights_ = new CoinIndexedVector(); |
| 2921 | // enough space so can use it for factorization |
| 2922 | alternateWeights_->reserve(numberRows + |
| 2923 | model_->factorization()->maximumPivots()); |
| 2924 | initializeWeights(); |
| 2925 | // create saved weights |
| 2926 | delete [] savedWeights_; |
| 2927 | savedWeights_ = CoinCopyOfArray(weights_, numberRows + numberColumns); |
| 2928 | // just do initialization |
| 2929 | mode = 3; |
| 2930 | } else { |
| 2931 | // Partial pricing |
| 2932 | // use region as somewhere to save non-fixed slacks |
| 2933 | // set up infeasibilities |
| 2934 | if (!infeasible_) { |
| 2935 | infeasible_ = new CoinIndexedVector(); |
| 2936 | infeasible_->reserve(numberColumns + numberRows); |
| 2937 | } |
| 2938 | infeasible_->clear(); |
| 2939 | int number = model_->numberRows() + model_->numberColumns(); |
| 2940 | int iSequence; |
| 2941 | int numberLook = 0; |
| 2942 | int * which = infeasible_->getIndices(); |
| 2943 | for (iSequence = model_->numberColumns(); iSequence < number; iSequence++) { |
| 2944 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 2945 | if (status != ClpSimplex::isFixed) |
| 2946 | which[numberLook++] = iSequence; |
| 2947 | } |
| 2948 | infeasible_->setNumElements(numberLook); |
| 2949 | doInfeasibilities = false; |
| 2950 | } |
| 2951 | savedPivotSequence_ = -2; |
| 2952 | savedSequenceOut_ = -2; |
| 2953 | |
| 2954 | } else { |
| 2955 | if (mode != 4) { |
| 2956 | // save |
| 2957 | CoinMemcpyN(weights_, (numberRows + numberColumns), savedWeights_); |
| 2958 | savedPivotSequence_ = pivotSequence_; |
| 2959 | savedSequenceOut_ = model_->sequenceOut(); |
| 2960 | } else { |
| 2961 | // restore |
| 2962 | CoinMemcpyN(savedWeights_, (numberRows + numberColumns), weights_); |
| 2963 | // was - but I think should not be |
| 2964 | //pivotSequence_= savedPivotSequence_; |
| 2965 | //model_->setSequenceOut(savedSequenceOut_); |
| 2966 | pivotSequence_ = -1; |
| 2967 | model_->setSequenceOut(-1); |
| 2968 | // indices are wrong so clear by hand |
| 2969 | //alternateWeights_->clear(); |
| 2970 | CoinZeroN(alternateWeights_->denseVector(), |
| 2971 | alternateWeights_->capacity()); |
| 2972 | alternateWeights_->setNumElements(0); |
| 2973 | } |
| 2974 | } |
| 2975 | state_ = 0; |
| 2976 | // set up infeasibilities |
| 2977 | if (!infeasible_) { |
| 2978 | infeasible_ = new CoinIndexedVector(); |
| 2979 | infeasible_->reserve(numberColumns + numberRows); |
| 2980 | } |
| 2981 | } |
| 2982 | if (mode >= 2 && mode != 5) { |
| 2983 | if (mode != 3) { |
| 2984 | if (pivotSequence_ >= 0) { |
| 2985 | // restore pivot row |
| 2986 | int iRow; |
| 2987 | // permute alternateWeights |
| 2988 | double * temp = model_->rowArray(3)->denseVector(); |
| 2989 | double * work = alternateWeights_->denseVector(); |
| 2990 | int * savePivotOrder = model_->rowArray(3)->getIndices(); |
| 2991 | int * oldPivotOrder = alternateWeights_->getIndices(); |
| 2992 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 2993 | int iPivot = oldPivotOrder[iRow]; |
| 2994 | temp[iPivot] = work[iRow]; |
| 2995 | savePivotOrder[iRow] = iPivot; |
| 2996 | } |
| 2997 | int number = 0; |
| 2998 | int found = -1; |
| 2999 | int * which = oldPivotOrder; |
| 3000 | // find pivot row and re-create alternateWeights |
| 3001 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 3002 | int iPivot = pivotVariable[iRow]; |
| 3003 | if (iPivot == pivotSequence_) |
| 3004 | found = iRow; |
| 3005 | work[iRow] = temp[iPivot]; |
| 3006 | if (work[iRow]) |
| 3007 | which[number++] = iRow; |
| 3008 | } |
| 3009 | alternateWeights_->setNumElements(number); |
| 3010 | #ifdef CLP_DEBUG |
| 3011 | // Can happen but I should clean up |
| 3012 | assert(found >= 0); |
| 3013 | #endif |
| 3014 | pivotSequence_ = found; |
| 3015 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 3016 | int iPivot = savePivotOrder[iRow]; |
| 3017 | temp[iPivot] = 0.0; |
| 3018 | } |
| 3019 | } else { |
| 3020 | // Just clean up |
| 3021 | if (alternateWeights_) |
| 3022 | alternateWeights_->clear(); |
| 3023 | } |
| 3024 | } |
| 3025 | // Save size of factorization |
| 3026 | if (!model->factorization()->pivots()) |
| 3027 | sizeFactorization_ = model_->factorization()->numberElements(); |
| 3028 | if(!doInfeasibilities) |
| 3029 | return; // don't disturb infeasibilities |
| 3030 | infeasible_->clear(); |
| 3031 | double tolerance = model_->currentDualTolerance(); |
| 3032 | int number = model_->numberRows() + model_->numberColumns(); |
| 3033 | int iSequence; |
| 3034 | |
| 3035 | double * reducedCost = model_->djRegion(); |
| 3036 | |
| 3037 | if (!model_->nonLinearCost()->lookBothWays()) { |
| 3038 | #ifndef CLP_PRIMAL_SLACK_MULTIPLIER |
| 3039 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3040 | double value = reducedCost[iSequence]; |
| 3041 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3042 | |
| 3043 | switch(status) { |
| 3044 | |
| 3045 | case ClpSimplex::basic: |
| 3046 | case ClpSimplex::isFixed: |
| 3047 | break; |
| 3048 | case ClpSimplex::isFree: |
| 3049 | case ClpSimplex::superBasic: |
| 3050 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 3051 | // we are going to bias towards free (but only if reasonable) |
| 3052 | value *= FREE_BIAS; |
| 3053 | // store square in list |
| 3054 | infeasible_->quickAdd(iSequence, value * value); |
| 3055 | } |
| 3056 | break; |
| 3057 | case ClpSimplex::atUpperBound: |
| 3058 | if (value > tolerance) { |
| 3059 | infeasible_->quickAdd(iSequence, value * value); |
| 3060 | } |
| 3061 | break; |
| 3062 | case ClpSimplex::atLowerBound: |
| 3063 | if (value < -tolerance) { |
| 3064 | infeasible_->quickAdd(iSequence, value * value); |
| 3065 | } |
| 3066 | } |
| 3067 | } |
| 3068 | #else |
| 3069 | // Columns |
| 3070 | int numberColumns = model_->numberColumns(); |
| 3071 | for (iSequence = 0; iSequence < numberColumns; iSequence++) { |
| 3072 | double value = reducedCost[iSequence]; |
| 3073 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3074 | |
| 3075 | switch(status) { |
| 3076 | |
| 3077 | case ClpSimplex::basic: |
| 3078 | case ClpSimplex::isFixed: |
| 3079 | break; |
| 3080 | case ClpSimplex::isFree: |
| 3081 | case ClpSimplex::superBasic: |
| 3082 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 3083 | // we are going to bias towards free (but only if reasonable) |
| 3084 | value *= FREE_BIAS; |
| 3085 | // store square in list |
| 3086 | infeasible_->quickAdd(iSequence, value * value); |
| 3087 | } |
| 3088 | break; |
| 3089 | case ClpSimplex::atUpperBound: |
| 3090 | if (value > tolerance) { |
| 3091 | infeasible_->quickAdd(iSequence, value * value); |
| 3092 | } |
| 3093 | break; |
| 3094 | case ClpSimplex::atLowerBound: |
| 3095 | if (value < -tolerance) { |
| 3096 | infeasible_->quickAdd(iSequence, value * value); |
| 3097 | } |
| 3098 | } |
| 3099 | } |
| 3100 | // Rows |
| 3101 | for ( ; iSequence < number; iSequence++) { |
| 3102 | double value = reducedCost[iSequence]; |
| 3103 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3104 | |
| 3105 | switch(status) { |
| 3106 | |
| 3107 | case ClpSimplex::basic: |
| 3108 | case ClpSimplex::isFixed: |
| 3109 | break; |
| 3110 | case ClpSimplex::isFree: |
| 3111 | case ClpSimplex::superBasic: |
| 3112 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 3113 | // we are going to bias towards free (but only if reasonable) |
| 3114 | value *= FREE_BIAS; |
| 3115 | // store square in list |
| 3116 | infeasible_->quickAdd(iSequence, value * value); |
| 3117 | } |
| 3118 | break; |
| 3119 | case ClpSimplex::atUpperBound: |
| 3120 | if (value > tolerance) { |
| 3121 | infeasible_->quickAdd(iSequence, value * value * CLP_PRIMAL_SLACK_MULTIPLIER); |
| 3122 | } |
| 3123 | break; |
| 3124 | case ClpSimplex::atLowerBound: |
| 3125 | if (value < -tolerance) { |
| 3126 | infeasible_->quickAdd(iSequence, value * value * CLP_PRIMAL_SLACK_MULTIPLIER); |
| 3127 | } |
| 3128 | } |
| 3129 | } |
| 3130 | #endif |
| 3131 | } else { |
| 3132 | ClpNonLinearCost * nonLinear = model_->nonLinearCost(); |
| 3133 | // can go both ways |
| 3134 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3135 | double value = reducedCost[iSequence]; |
| 3136 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3137 | |
| 3138 | switch(status) { |
| 3139 | |
| 3140 | case ClpSimplex::basic: |
| 3141 | case ClpSimplex::isFixed: |
| 3142 | break; |
| 3143 | case ClpSimplex::isFree: |
| 3144 | case ClpSimplex::superBasic: |
| 3145 | if (fabs(value) > FREE_ACCEPT * tolerance) { |
| 3146 | // we are going to bias towards free (but only if reasonable) |
| 3147 | value *= FREE_BIAS; |
| 3148 | // store square in list |
| 3149 | infeasible_->quickAdd(iSequence, value * value); |
| 3150 | } |
| 3151 | break; |
| 3152 | case ClpSimplex::atUpperBound: |
| 3153 | if (value > tolerance) { |
| 3154 | infeasible_->quickAdd(iSequence, value * value); |
| 3155 | } else { |
| 3156 | // look other way - change up should be negative |
| 3157 | value -= nonLinear->changeUpInCost(iSequence); |
| 3158 | if (value < -tolerance) { |
| 3159 | // store square in list |
| 3160 | infeasible_->quickAdd(iSequence, value * value); |
| 3161 | } |
| 3162 | } |
| 3163 | break; |
| 3164 | case ClpSimplex::atLowerBound: |
| 3165 | if (value < -tolerance) { |
| 3166 | infeasible_->quickAdd(iSequence, value * value); |
| 3167 | } else { |
| 3168 | // look other way - change down should be positive |
| 3169 | value -= nonLinear->changeDownInCost(iSequence); |
| 3170 | if (value > tolerance) { |
| 3171 | // store square in list |
| 3172 | infeasible_->quickAdd(iSequence, value * value); |
| 3173 | } |
| 3174 | } |
| 3175 | } |
| 3176 | } |
| 3177 | } |
| 3178 | } |
| 3179 | } |
| 3180 | // Gets rid of last update |
| 3181 | void |
| 3182 | ClpPrimalColumnSteepest::unrollWeights() |
| 3183 | { |
| 3184 | if ((mode_ == 4 || mode_ == 5) && !numberSwitched_) |
| 3185 | return; |
| 3186 | double * saved = alternateWeights_->denseVector(); |
| 3187 | int number = alternateWeights_->getNumElements(); |
| 3188 | int * which = alternateWeights_->getIndices(); |
| 3189 | int i; |
| 3190 | for (i = 0; i < number; i++) { |
| 3191 | int iRow = which[i]; |
| 3192 | weights_[iRow] = saved[iRow]; |
| 3193 | saved[iRow] = 0.0; |
| 3194 | } |
| 3195 | alternateWeights_->setNumElements(0); |
| 3196 | } |
| 3197 | |
| 3198 | //------------------------------------------------------------------- |
| 3199 | // Clone |
| 3200 | //------------------------------------------------------------------- |
| 3201 | ClpPrimalColumnPivot * ClpPrimalColumnSteepest::clone(bool CopyData) const |
| 3202 | { |
| 3203 | if (CopyData) { |
| 3204 | return new ClpPrimalColumnSteepest(*this); |
| 3205 | } else { |
| 3206 | return new ClpPrimalColumnSteepest(); |
| 3207 | } |
| 3208 | } |
| 3209 | void |
| 3210 | ClpPrimalColumnSteepest::updateWeights(CoinIndexedVector * input) |
| 3211 | { |
| 3212 | // Local copy of mode so can decide what to do |
| 3213 | int switchType = mode_; |
| 3214 | if (mode_ == 4 && numberSwitched_) |
| 3215 | switchType = 3; |
| 3216 | else if (mode_ == 4 || mode_ == 5) |
| 3217 | return; |
| 3218 | int number = input->getNumElements(); |
| 3219 | int * which = input->getIndices(); |
| 3220 | double * work = input->denseVector(); |
| 3221 | int newNumber = 0; |
| 3222 | int * newWhich = alternateWeights_->getIndices(); |
| 3223 | double * newWork = alternateWeights_->denseVector(); |
| 3224 | int i; |
| 3225 | int sequenceIn = model_->sequenceIn(); |
| 3226 | int sequenceOut = model_->sequenceOut(); |
| 3227 | const int * pivotVariable = model_->pivotVariable(); |
| 3228 | |
| 3229 | int pivotRow = model_->pivotRow(); |
| 3230 | pivotSequence_ = pivotRow; |
| 3231 | |
| 3232 | devex_ = 0.0; |
| 3233 | // Can't create alternateWeights_ as packed as needed unpacked |
| 3234 | if (!input->packedMode()) { |
| 3235 | if (pivotRow >= 0) { |
| 3236 | if (switchType == 1) { |
| 3237 | for (i = 0; i < number; i++) { |
| 3238 | int iRow = which[i]; |
| 3239 | devex_ += work[iRow] * work[iRow]; |
| 3240 | newWork[iRow] = -2.0 * work[iRow]; |
| 3241 | } |
| 3242 | newWork[pivotRow] = -2.0 * CoinMax(devex_, 0.0); |
| 3243 | devex_ += ADD_ONE; |
| 3244 | weights_[sequenceOut] = 1.0 + ADD_ONE; |
| 3245 | CoinMemcpyN(which, number, newWhich); |
| 3246 | alternateWeights_->setNumElements(number); |
| 3247 | } else { |
| 3248 | if ((mode_ != 4 && mode_ != 5) || numberSwitched_ > 1) { |
| 3249 | for (i = 0; i < number; i++) { |
| 3250 | int iRow = which[i]; |
| 3251 | int iPivot = pivotVariable[iRow]; |
| 3252 | if (reference(iPivot)) { |
| 3253 | devex_ += work[iRow] * work[iRow]; |
| 3254 | newWork[iRow] = -2.0 * work[iRow]; |
| 3255 | newWhich[newNumber++] = iRow; |
| 3256 | } |
| 3257 | } |
| 3258 | if (!newWork[pivotRow] && devex_ > 0.0) |
| 3259 | newWhich[newNumber++] = pivotRow; // add if not already in |
| 3260 | newWork[pivotRow] = -2.0 * CoinMax(devex_, 0.0); |
| 3261 | } else { |
| 3262 | for (i = 0; i < number; i++) { |
| 3263 | int iRow = which[i]; |
| 3264 | int iPivot = pivotVariable[iRow]; |
| 3265 | if (reference(iPivot)) |
| 3266 | devex_ += work[iRow] * work[iRow]; |
| 3267 | } |
| 3268 | } |
| 3269 | if (reference(sequenceIn)) { |
| 3270 | devex_ += 1.0; |
| 3271 | } else { |
| 3272 | } |
| 3273 | if (reference(sequenceOut)) { |
| 3274 | weights_[sequenceOut] = 1.0 + 1.0; |
| 3275 | } else { |
| 3276 | weights_[sequenceOut] = 1.0; |
| 3277 | } |
| 3278 | alternateWeights_->setNumElements(newNumber); |
| 3279 | } |
| 3280 | } else { |
| 3281 | if (switchType == 1) { |
| 3282 | for (i = 0; i < number; i++) { |
| 3283 | int iRow = which[i]; |
| 3284 | devex_ += work[iRow] * work[iRow]; |
| 3285 | } |
| 3286 | devex_ += ADD_ONE; |
| 3287 | } else { |
| 3288 | for (i = 0; i < number; i++) { |
| 3289 | int iRow = which[i]; |
| 3290 | int iPivot = pivotVariable[iRow]; |
| 3291 | if (reference(iPivot)) { |
| 3292 | devex_ += work[iRow] * work[iRow]; |
| 3293 | } |
| 3294 | } |
| 3295 | if (reference(sequenceIn)) |
| 3296 | devex_ += 1.0; |
| 3297 | } |
| 3298 | } |
| 3299 | } else { |
| 3300 | // packed input |
| 3301 | if (pivotRow >= 0) { |
| 3302 | if (switchType == 1) { |
| 3303 | for (i = 0; i < number; i++) { |
| 3304 | int iRow = which[i]; |
| 3305 | devex_ += work[i] * work[i]; |
| 3306 | newWork[iRow] = -2.0 * work[i]; |
| 3307 | } |
| 3308 | newWork[pivotRow] = -2.0 * CoinMax(devex_, 0.0); |
| 3309 | devex_ += ADD_ONE; |
| 3310 | weights_[sequenceOut] = 1.0 + ADD_ONE; |
| 3311 | CoinMemcpyN(which, number, newWhich); |
| 3312 | alternateWeights_->setNumElements(number); |
| 3313 | } else { |
| 3314 | if ((mode_ != 4 && mode_ != 5) || numberSwitched_ > 1) { |
| 3315 | for (i = 0; i < number; i++) { |
| 3316 | int iRow = which[i]; |
| 3317 | int iPivot = pivotVariable[iRow]; |
| 3318 | if (reference(iPivot)) { |
| 3319 | devex_ += work[i] * work[i]; |
| 3320 | newWork[iRow] = -2.0 * work[i]; |
| 3321 | newWhich[newNumber++] = iRow; |
| 3322 | } |
| 3323 | } |
| 3324 | if (!newWork[pivotRow] && devex_ > 0.0) |
| 3325 | newWhich[newNumber++] = pivotRow; // add if not already in |
| 3326 | newWork[pivotRow] = -2.0 * CoinMax(devex_, 0.0); |
| 3327 | } else { |
| 3328 | for (i = 0; i < number; i++) { |
| 3329 | int iRow = which[i]; |
| 3330 | int iPivot = pivotVariable[iRow]; |
| 3331 | if (reference(iPivot)) |
| 3332 | devex_ += work[i] * work[i]; |
| 3333 | } |
| 3334 | } |
| 3335 | if (reference(sequenceIn)) { |
| 3336 | devex_ += 1.0; |
| 3337 | } else { |
| 3338 | } |
| 3339 | if (reference(sequenceOut)) { |
| 3340 | weights_[sequenceOut] = 1.0 + 1.0; |
| 3341 | } else { |
| 3342 | weights_[sequenceOut] = 1.0; |
| 3343 | } |
| 3344 | alternateWeights_->setNumElements(newNumber); |
| 3345 | } |
| 3346 | } else { |
| 3347 | if (switchType == 1) { |
| 3348 | for (i = 0; i < number; i++) { |
| 3349 | devex_ += work[i] * work[i]; |
| 3350 | } |
| 3351 | devex_ += ADD_ONE; |
| 3352 | } else { |
| 3353 | for (i = 0; i < number; i++) { |
| 3354 | int iRow = which[i]; |
| 3355 | int iPivot = pivotVariable[iRow]; |
| 3356 | if (reference(iPivot)) { |
| 3357 | devex_ += work[i] * work[i]; |
| 3358 | } |
| 3359 | } |
| 3360 | if (reference(sequenceIn)) |
| 3361 | devex_ += 1.0; |
| 3362 | } |
| 3363 | } |
| 3364 | } |
| 3365 | double oldDevex = weights_[sequenceIn]; |
| 3366 | #ifdef CLP_DEBUG |
| 3367 | if ((model_->messageHandler()->logLevel() & 32)) |
| 3368 | printf("old weight %g, new %g\n" , oldDevex, devex_); |
| 3369 | #endif |
| 3370 | double check = CoinMax(devex_, oldDevex) + 0.1; |
| 3371 | weights_[sequenceIn] = devex_; |
| 3372 | double testValue = 0.1; |
| 3373 | if (mode_ == 4 && numberSwitched_ == 1) |
| 3374 | testValue = 0.5; |
| 3375 | if ( fabs ( devex_ - oldDevex ) > testValue * check ) { |
| 3376 | #ifdef CLP_DEBUG |
| 3377 | if ((model_->messageHandler()->logLevel() & 48) == 16) |
| 3378 | printf("old weight %g, new %g\n" , oldDevex, devex_); |
| 3379 | #endif |
| 3380 | //printf("old weight %g, new %g\n",oldDevex,devex_); |
| 3381 | testValue = 0.99; |
| 3382 | if (mode_ == 1) |
| 3383 | testValue = 1.01e1; // make unlikely to do if steepest |
| 3384 | else if (mode_ == 4 && numberSwitched_ == 1) |
| 3385 | testValue = 0.9; |
| 3386 | double difference = fabs(devex_ - oldDevex); |
| 3387 | if ( difference > testValue * check ) { |
| 3388 | // need to redo |
| 3389 | model_->messageHandler()->message(CLP_INITIALIZE_STEEP, |
| 3390 | *model_->messagesPointer()) |
| 3391 | << oldDevex << devex_ |
| 3392 | << CoinMessageEol; |
| 3393 | initializeWeights(); |
| 3394 | } |
| 3395 | } |
| 3396 | if (pivotRow >= 0) { |
| 3397 | // set outgoing weight here |
| 3398 | weights_[model_->sequenceOut()] = devex_ / (model_->alpha() * model_->alpha()); |
| 3399 | } |
| 3400 | } |
| 3401 | // Checks accuracy - just for debug |
| 3402 | void |
| 3403 | ClpPrimalColumnSteepest::checkAccuracy(int sequence, |
| 3404 | double relativeTolerance, |
| 3405 | CoinIndexedVector * rowArray1, |
| 3406 | CoinIndexedVector * rowArray2) |
| 3407 | { |
| 3408 | if ((mode_ == 4 || mode_ == 5) && !numberSwitched_) |
| 3409 | return; |
| 3410 | model_->unpack(rowArray1, sequence); |
| 3411 | model_->factorization()->updateColumn(rowArray2, rowArray1); |
| 3412 | int number = rowArray1->getNumElements(); |
| 3413 | int * which = rowArray1->getIndices(); |
| 3414 | double * work = rowArray1->denseVector(); |
| 3415 | const int * pivotVariable = model_->pivotVariable(); |
| 3416 | |
| 3417 | double devex = 0.0; |
| 3418 | int i; |
| 3419 | |
| 3420 | if (mode_ == 1) { |
| 3421 | for (i = 0; i < number; i++) { |
| 3422 | int iRow = which[i]; |
| 3423 | devex += work[iRow] * work[iRow]; |
| 3424 | work[iRow] = 0.0; |
| 3425 | } |
| 3426 | devex += ADD_ONE; |
| 3427 | } else { |
| 3428 | for (i = 0; i < number; i++) { |
| 3429 | int iRow = which[i]; |
| 3430 | int iPivot = pivotVariable[iRow]; |
| 3431 | if (reference(iPivot)) { |
| 3432 | devex += work[iRow] * work[iRow]; |
| 3433 | } |
| 3434 | work[iRow] = 0.0; |
| 3435 | } |
| 3436 | if (reference(sequence)) |
| 3437 | devex += 1.0; |
| 3438 | } |
| 3439 | |
| 3440 | double oldDevex = weights_[sequence]; |
| 3441 | double check = CoinMax(devex, oldDevex); |
| 3442 | if ( fabs ( devex - oldDevex ) > relativeTolerance * check ) { |
| 3443 | COIN_DETAIL_PRINT(printf("check %d old weight %g, new %g\n" , sequence, oldDevex, devex)); |
| 3444 | // update so won't print again |
| 3445 | weights_[sequence] = devex; |
| 3446 | } |
| 3447 | rowArray1->setNumElements(0); |
| 3448 | } |
| 3449 | |
| 3450 | // Initialize weights |
| 3451 | void |
| 3452 | ClpPrimalColumnSteepest::initializeWeights() |
| 3453 | { |
| 3454 | int numberRows = model_->numberRows(); |
| 3455 | int numberColumns = model_->numberColumns(); |
| 3456 | int number = numberRows + numberColumns; |
| 3457 | int iSequence; |
| 3458 | if (mode_ != 1) { |
| 3459 | // initialize to 1.0 |
| 3460 | // and set reference framework |
| 3461 | if (!reference_) { |
| 3462 | int nWords = (number + 31) >> 5; |
| 3463 | reference_ = new unsigned int[nWords]; |
| 3464 | CoinZeroN(reference_, nWords); |
| 3465 | } |
| 3466 | |
| 3467 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3468 | weights_[iSequence] = 1.0; |
| 3469 | if (model_->getStatus(iSequence) == ClpSimplex::basic) { |
| 3470 | setReference(iSequence, false); |
| 3471 | } else { |
| 3472 | setReference(iSequence, true); |
| 3473 | } |
| 3474 | } |
| 3475 | } else { |
| 3476 | CoinIndexedVector * temp = new CoinIndexedVector(); |
| 3477 | temp->reserve(numberRows + |
| 3478 | model_->factorization()->maximumPivots()); |
| 3479 | double * array = alternateWeights_->denseVector(); |
| 3480 | int * which = alternateWeights_->getIndices(); |
| 3481 | |
| 3482 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3483 | weights_[iSequence] = 1.0 + ADD_ONE; |
| 3484 | if (model_->getStatus(iSequence) != ClpSimplex::basic && |
| 3485 | model_->getStatus(iSequence) != ClpSimplex::isFixed) { |
| 3486 | model_->unpack(alternateWeights_, iSequence); |
| 3487 | double value = ADD_ONE; |
| 3488 | model_->factorization()->updateColumn(temp, alternateWeights_); |
| 3489 | int number = alternateWeights_->getNumElements(); |
| 3490 | int j; |
| 3491 | for (j = 0; j < number; j++) { |
| 3492 | int iRow = which[j]; |
| 3493 | value += array[iRow] * array[iRow]; |
| 3494 | array[iRow] = 0.0; |
| 3495 | } |
| 3496 | alternateWeights_->setNumElements(0); |
| 3497 | weights_[iSequence] = value; |
| 3498 | } |
| 3499 | } |
| 3500 | delete temp; |
| 3501 | } |
| 3502 | } |
| 3503 | // Gets rid of all arrays |
| 3504 | void |
| 3505 | ClpPrimalColumnSteepest::clearArrays() |
| 3506 | { |
| 3507 | if (persistence_ == normal) { |
| 3508 | delete [] weights_; |
| 3509 | weights_ = NULL; |
| 3510 | delete infeasible_; |
| 3511 | infeasible_ = NULL; |
| 3512 | delete alternateWeights_; |
| 3513 | alternateWeights_ = NULL; |
| 3514 | delete [] savedWeights_; |
| 3515 | savedWeights_ = NULL; |
| 3516 | delete [] reference_; |
| 3517 | reference_ = NULL; |
| 3518 | } |
| 3519 | pivotSequence_ = -1; |
| 3520 | state_ = -1; |
| 3521 | savedPivotSequence_ = -1; |
| 3522 | savedSequenceOut_ = -1; |
| 3523 | devex_ = 0.0; |
| 3524 | } |
| 3525 | // Returns true if would not find any column |
| 3526 | bool |
| 3527 | ClpPrimalColumnSteepest::looksOptimal() const |
| 3528 | { |
| 3529 | if (looksOptimal_) |
| 3530 | return true; // user overrode |
| 3531 | //**** THIS MUST MATCH the action coding above |
| 3532 | double tolerance = model_->currentDualTolerance(); |
| 3533 | // we can't really trust infeasibilities if there is dual error |
| 3534 | // this coding has to mimic coding in checkDualSolution |
| 3535 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 3536 | // allow tolerance at least slightly bigger than standard |
| 3537 | tolerance = tolerance + error; |
| 3538 | if(model_->numberIterations() < model_->lastBadIteration() + 200) { |
| 3539 | // we can't really trust infeasibilities if there is dual error |
| 3540 | double checkTolerance = 1.0e-8; |
| 3541 | if (!model_->factorization()->pivots()) |
| 3542 | checkTolerance = 1.0e-6; |
| 3543 | if (model_->largestDualError() > checkTolerance) |
| 3544 | tolerance *= model_->largestDualError() / checkTolerance; |
| 3545 | // But cap |
| 3546 | tolerance = CoinMin(1000.0, tolerance); |
| 3547 | } |
| 3548 | int number = model_->numberRows() + model_->numberColumns(); |
| 3549 | int iSequence; |
| 3550 | |
| 3551 | double * reducedCost = model_->djRegion(); |
| 3552 | int numberInfeasible = 0; |
| 3553 | if (!model_->nonLinearCost()->lookBothWays()) { |
| 3554 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3555 | double value = reducedCost[iSequence]; |
| 3556 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3557 | |
| 3558 | switch(status) { |
| 3559 | |
| 3560 | case ClpSimplex::basic: |
| 3561 | case ClpSimplex::isFixed: |
| 3562 | break; |
| 3563 | case ClpSimplex::isFree: |
| 3564 | case ClpSimplex::superBasic: |
| 3565 | if (fabs(value) > FREE_ACCEPT * tolerance) |
| 3566 | numberInfeasible++; |
| 3567 | break; |
| 3568 | case ClpSimplex::atUpperBound: |
| 3569 | if (value > tolerance) |
| 3570 | numberInfeasible++; |
| 3571 | break; |
| 3572 | case ClpSimplex::atLowerBound: |
| 3573 | if (value < -tolerance) |
| 3574 | numberInfeasible++; |
| 3575 | } |
| 3576 | } |
| 3577 | } else { |
| 3578 | ClpNonLinearCost * nonLinear = model_->nonLinearCost(); |
| 3579 | // can go both ways |
| 3580 | for (iSequence = 0; iSequence < number; iSequence++) { |
| 3581 | double value = reducedCost[iSequence]; |
| 3582 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3583 | |
| 3584 | switch(status) { |
| 3585 | |
| 3586 | case ClpSimplex::basic: |
| 3587 | case ClpSimplex::isFixed: |
| 3588 | break; |
| 3589 | case ClpSimplex::isFree: |
| 3590 | case ClpSimplex::superBasic: |
| 3591 | if (fabs(value) > FREE_ACCEPT * tolerance) |
| 3592 | numberInfeasible++; |
| 3593 | break; |
| 3594 | case ClpSimplex::atUpperBound: |
| 3595 | if (value > tolerance) { |
| 3596 | numberInfeasible++; |
| 3597 | } else { |
| 3598 | // look other way - change up should be negative |
| 3599 | value -= nonLinear->changeUpInCost(iSequence); |
| 3600 | if (value < -tolerance) |
| 3601 | numberInfeasible++; |
| 3602 | } |
| 3603 | break; |
| 3604 | case ClpSimplex::atLowerBound: |
| 3605 | if (value < -tolerance) { |
| 3606 | numberInfeasible++; |
| 3607 | } else { |
| 3608 | // look other way - change down should be positive |
| 3609 | value -= nonLinear->changeDownInCost(iSequence); |
| 3610 | if (value > tolerance) |
| 3611 | numberInfeasible++; |
| 3612 | } |
| 3613 | } |
| 3614 | } |
| 3615 | } |
| 3616 | return numberInfeasible == 0; |
| 3617 | } |
| 3618 | /* Returns number of extra columns for sprint algorithm - 0 means off. |
| 3619 | Also number of iterations before recompute |
| 3620 | */ |
| 3621 | int |
| 3622 | ClpPrimalColumnSteepest::numberSprintColumns(int & numberIterations) const |
| 3623 | { |
| 3624 | numberIterations = 0; |
| 3625 | int numberAdd = 0; |
| 3626 | if (!numberSwitched_ && mode_ >= 10) { |
| 3627 | numberIterations = CoinMin(2000, model_->numberRows() / 5); |
| 3628 | numberIterations = CoinMax(numberIterations, model_->factorizationFrequency()); |
| 3629 | numberIterations = CoinMax(numberIterations, 500); |
| 3630 | if (mode_ == 10) { |
| 3631 | numberAdd = CoinMax(300, model_->numberColumns() / 10); |
| 3632 | numberAdd = CoinMax(numberAdd, model_->numberRows() / 5); |
| 3633 | // fake all |
| 3634 | //numberAdd=1000000; |
| 3635 | numberAdd = CoinMin(numberAdd, model_->numberColumns()); |
| 3636 | } else { |
| 3637 | abort(); |
| 3638 | } |
| 3639 | } |
| 3640 | return numberAdd; |
| 3641 | } |
| 3642 | // Switch off sprint idea |
| 3643 | void |
| 3644 | ClpPrimalColumnSteepest::switchOffSprint() |
| 3645 | { |
| 3646 | numberSwitched_ = 10; |
| 3647 | } |
| 3648 | // Update djs doing partial pricing (dantzig) |
| 3649 | int |
| 3650 | ClpPrimalColumnSteepest::partialPricing(CoinIndexedVector * updates, |
| 3651 | CoinIndexedVector * spareRow2, |
| 3652 | int numberWanted, |
| 3653 | int numberLook) |
| 3654 | { |
| 3655 | int number = 0; |
| 3656 | int * index; |
| 3657 | double * updateBy; |
| 3658 | double * reducedCost; |
| 3659 | double saveTolerance = model_->currentDualTolerance(); |
| 3660 | double tolerance = model_->currentDualTolerance(); |
| 3661 | // we can't really trust infeasibilities if there is dual error |
| 3662 | // this coding has to mimic coding in checkDualSolution |
| 3663 | double error = CoinMin(1.0e-2, model_->largestDualError()); |
| 3664 | // allow tolerance at least slightly bigger than standard |
| 3665 | tolerance = tolerance + error; |
| 3666 | if(model_->numberIterations() < model_->lastBadIteration() + 200) { |
| 3667 | // we can't really trust infeasibilities if there is dual error |
| 3668 | double checkTolerance = 1.0e-8; |
| 3669 | if (!model_->factorization()->pivots()) |
| 3670 | checkTolerance = 1.0e-6; |
| 3671 | if (model_->largestDualError() > checkTolerance) |
| 3672 | tolerance *= model_->largestDualError() / checkTolerance; |
| 3673 | // But cap |
| 3674 | tolerance = CoinMin(1000.0, tolerance); |
| 3675 | } |
| 3676 | if (model_->factorization()->pivots() && model_->numberPrimalInfeasibilities()) |
| 3677 | tolerance = CoinMax(tolerance, 1.0e-10 * model_->infeasibilityCost()); |
| 3678 | // So partial pricing can use |
| 3679 | model_->setCurrentDualTolerance(tolerance); |
| 3680 | model_->factorization()->updateColumnTranspose(spareRow2, updates); |
| 3681 | int numberColumns = model_->numberColumns(); |
| 3682 | |
| 3683 | // Rows |
| 3684 | reducedCost = model_->djRegion(0); |
| 3685 | |
| 3686 | number = updates->getNumElements(); |
| 3687 | index = updates->getIndices(); |
| 3688 | updateBy = updates->denseVector(); |
| 3689 | int j; |
| 3690 | double * duals = model_->dualRowSolution(); |
| 3691 | for (j = 0; j < number; j++) { |
| 3692 | int iSequence = index[j]; |
| 3693 | double value = duals[iSequence]; |
| 3694 | value -= updateBy[j]; |
| 3695 | updateBy[j] = 0.0; |
| 3696 | duals[iSequence] = value; |
| 3697 | } |
| 3698 | //#define CLP_DEBUG |
| 3699 | #ifdef CLP_DEBUG |
| 3700 | // check duals |
| 3701 | { |
| 3702 | int numberRows = model_->numberRows(); |
| 3703 | //work space |
| 3704 | CoinIndexedVector arrayVector; |
| 3705 | arrayVector.reserve(numberRows + 1000); |
| 3706 | CoinIndexedVector workSpace; |
| 3707 | workSpace.reserve(numberRows + 1000); |
| 3708 | |
| 3709 | |
| 3710 | int iRow; |
| 3711 | double * array = arrayVector.denseVector(); |
| 3712 | int * index = arrayVector.getIndices(); |
| 3713 | int number = 0; |
| 3714 | int * pivotVariable = model_->pivotVariable(); |
| 3715 | double * cost = model_->costRegion(); |
| 3716 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 3717 | int iPivot = pivotVariable[iRow]; |
| 3718 | double value = cost[iPivot]; |
| 3719 | if (value) { |
| 3720 | array[iRow] = value; |
| 3721 | index[number++] = iRow; |
| 3722 | } |
| 3723 | } |
| 3724 | arrayVector.setNumElements(number); |
| 3725 | // Extended duals before "updateTranspose" |
| 3726 | model_->clpMatrix()->dualExpanded(model_, &arrayVector, NULL, 0); |
| 3727 | |
| 3728 | // Btran basic costs |
| 3729 | model_->factorization()->updateColumnTranspose(&workSpace, &arrayVector); |
| 3730 | |
| 3731 | // now look at dual solution |
| 3732 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 3733 | // slack |
| 3734 | double value = array[iRow]; |
| 3735 | if (fabs(duals[iRow] - value) > 1.0e-3) |
| 3736 | printf("bad row %d old dual %g new %g\n" , iRow, duals[iRow], value); |
| 3737 | //duals[iRow]=value; |
| 3738 | } |
| 3739 | } |
| 3740 | #endif |
| 3741 | #undef CLP_DEBUG |
| 3742 | double bestDj = tolerance; |
| 3743 | int bestSequence = -1; |
| 3744 | |
| 3745 | const double * cost = model_->costRegion(1); |
| 3746 | |
| 3747 | model_->clpMatrix()->setOriginalWanted(numberWanted); |
| 3748 | model_->clpMatrix()->setCurrentWanted(numberWanted); |
| 3749 | int iPassR = 0, iPassC = 0; |
| 3750 | // Setup two passes |
| 3751 | // This biases towards picking row variables |
| 3752 | // This probably should be fixed |
| 3753 | int startR[4]; |
| 3754 | const int * which = infeasible_->getIndices(); |
| 3755 | int nSlacks = infeasible_->getNumElements(); |
| 3756 | startR[1] = nSlacks; |
| 3757 | startR[2] = 0; |
| 3758 | double randomR = model_->randomNumberGenerator()->randomDouble(); |
| 3759 | double dstart = static_cast<double> (nSlacks) * randomR; |
| 3760 | startR[0] = static_cast<int> (dstart); |
| 3761 | startR[3] = startR[0]; |
| 3762 | double startC[4]; |
| 3763 | startC[1] = 1.0; |
| 3764 | startC[2] = 0; |
| 3765 | double randomC = model_->randomNumberGenerator()->randomDouble(); |
| 3766 | startC[0] = randomC; |
| 3767 | startC[3] = randomC; |
| 3768 | reducedCost = model_->djRegion(1); |
| 3769 | int sequenceOut = model_->sequenceOut(); |
| 3770 | double * duals2 = duals - numberColumns; |
| 3771 | int chunk = CoinMin(1024, (numberColumns + nSlacks) / 32); |
| 3772 | #ifdef COIN_DETAIL |
| 3773 | if (model_->numberIterations() % 1000 == 0 && model_->logLevel() > 1) { |
| 3774 | printf("%d wanted, nSlacks %d, chunk %d\n" , numberWanted, nSlacks, chunk); |
| 3775 | int i; |
| 3776 | for (i = 0; i < 4; i++) |
| 3777 | printf("start R %d C %g " , startR[i], startC[i]); |
| 3778 | printf("\n" ); |
| 3779 | } |
| 3780 | #endif |
| 3781 | chunk = CoinMax(chunk, 256); |
| 3782 | bool finishedR = false, finishedC = false; |
| 3783 | bool doingR = randomR > randomC; |
| 3784 | //doingR=false; |
| 3785 | int saveNumberWanted = numberWanted; |
| 3786 | while (!finishedR || !finishedC) { |
| 3787 | if (finishedR) |
| 3788 | doingR = false; |
| 3789 | if (doingR) { |
| 3790 | int saveSequence = bestSequence; |
| 3791 | int start = startR[iPassR]; |
| 3792 | int end = CoinMin(startR[iPassR+1], start + chunk / 2); |
| 3793 | int jSequence; |
| 3794 | for (jSequence = start; jSequence < end; jSequence++) { |
| 3795 | int iSequence = which[jSequence]; |
| 3796 | if (iSequence != sequenceOut) { |
| 3797 | double value; |
| 3798 | ClpSimplex::Status status = model_->getStatus(iSequence); |
| 3799 | |
| 3800 | switch(status) { |
| 3801 | |
| 3802 | case ClpSimplex::basic: |
| 3803 | case ClpSimplex::isFixed: |
| 3804 | break; |
| 3805 | case ClpSimplex::isFree: |
| 3806 | case ClpSimplex::superBasic: |
| 3807 | value = fabs(cost[iSequence] + duals2[iSequence]); |
| 3808 | if (value > FREE_ACCEPT * tolerance) { |
| 3809 | numberWanted--; |
| 3810 | // we are going to bias towards free (but only if reasonable) |
| 3811 | value *= FREE_BIAS; |
| 3812 | if (value > bestDj) { |
| 3813 | // check flagged variable and correct dj |
| 3814 | if (!model_->flagged(iSequence)) { |
| 3815 | bestDj = value; |
| 3816 | bestSequence = iSequence; |
| 3817 | } else { |
| 3818 | // just to make sure we don't exit before got something |
| 3819 | numberWanted++; |
| 3820 | } |
| 3821 | } |
| 3822 | } |
| 3823 | break; |
| 3824 | case ClpSimplex::atUpperBound: |
| 3825 | value = cost[iSequence] + duals2[iSequence]; |
| 3826 | if (value > tolerance) { |
| 3827 | numberWanted--; |
| 3828 | if (value > bestDj) { |
| 3829 | // check flagged variable and correct dj |
| 3830 | if (!model_->flagged(iSequence)) { |
| 3831 | bestDj = value; |
| 3832 | bestSequence = iSequence; |
| 3833 | } else { |
| 3834 | // just to make sure we don't exit before got something |
| 3835 | numberWanted++; |
| 3836 | } |
| 3837 | } |
| 3838 | } |
| 3839 | break; |
| 3840 | case ClpSimplex::atLowerBound: |
| 3841 | value = -(cost[iSequence] + duals2[iSequence]); |
| 3842 | if (value > tolerance) { |
| 3843 | numberWanted--; |
| 3844 | if (value > bestDj) { |
| 3845 | // check flagged variable and correct dj |
| 3846 | if (!model_->flagged(iSequence)) { |
| 3847 | bestDj = value; |
| 3848 | bestSequence = iSequence; |
| 3849 | } else { |
| 3850 | // just to make sure we don't exit before got something |
| 3851 | numberWanted++; |
| 3852 | } |
| 3853 | } |
| 3854 | } |
| 3855 | break; |
| 3856 | } |
| 3857 | } |
| 3858 | if (!numberWanted) |
| 3859 | break; |
| 3860 | } |
| 3861 | numberLook -= (end - start); |
| 3862 | if (numberLook < 0 && (10 * (saveNumberWanted - numberWanted) > saveNumberWanted)) |
| 3863 | numberWanted = 0; // give up |
| 3864 | if (saveSequence != bestSequence) { |
| 3865 | // dj |
| 3866 | reducedCost[bestSequence] = cost[bestSequence] + duals[bestSequence-numberColumns]; |
| 3867 | bestDj = fabs(reducedCost[bestSequence]); |
| 3868 | model_->clpMatrix()->setSavedBestSequence(bestSequence); |
| 3869 | model_->clpMatrix()->setSavedBestDj(reducedCost[bestSequence]); |
| 3870 | } |
| 3871 | model_->clpMatrix()->setCurrentWanted(numberWanted); |
| 3872 | if (!numberWanted) |
| 3873 | break; |
| 3874 | doingR = false; |
| 3875 | // update start |
| 3876 | startR[iPassR] = jSequence; |
| 3877 | if (jSequence >= startR[iPassR+1]) { |
| 3878 | if (iPassR) |
| 3879 | finishedR = true; |
| 3880 | else |
| 3881 | iPassR = 2; |
| 3882 | } |
| 3883 | } |
| 3884 | if (finishedC) |
| 3885 | doingR = true; |
| 3886 | if (!doingR) { |
| 3887 | int saveSequence = bestSequence; |
| 3888 | // Columns |
| 3889 | double start = startC[iPassC]; |
| 3890 | // If we put this idea back then each function needs to update endFraction ** |
| 3891 | #if 0 |
| 3892 | double dchunk = (static_cast<double> chunk) / (static_cast<double> numberColumns); |
| 3893 | double end = CoinMin(startC[iPassC+1], start + dchunk); |
| 3894 | #else |
| 3895 | double end = startC[iPassC+1]; // force end |
| 3896 | #endif |
| 3897 | model_->clpMatrix()->partialPricing(model_, start, end, bestSequence, numberWanted); |
| 3898 | numberWanted = model_->clpMatrix()->currentWanted(); |
| 3899 | numberLook -= static_cast<int> ((end - start) * numberColumns); |
| 3900 | if (numberLook < 0 && (10 * (saveNumberWanted - numberWanted) > saveNumberWanted)) |
| 3901 | numberWanted = 0; // give up |
| 3902 | if (saveSequence != bestSequence) { |
| 3903 | // dj |
| 3904 | bestDj = fabs(model_->clpMatrix()->reducedCost(model_, bestSequence)); |
| 3905 | } |
| 3906 | if (!numberWanted) |
| 3907 | break; |
| 3908 | doingR = true; |
| 3909 | // update start |
| 3910 | startC[iPassC] = end; |
| 3911 | if (end >= startC[iPassC+1] - 1.0e-8) { |
| 3912 | if (iPassC) |
| 3913 | finishedC = true; |
| 3914 | else |
| 3915 | iPassC = 2; |
| 3916 | } |
| 3917 | } |
| 3918 | } |
| 3919 | updates->setNumElements(0); |
| 3920 | |
| 3921 | // Restore tolerance |
| 3922 | model_->setCurrentDualTolerance(saveTolerance); |
| 3923 | // Now create variable if column generation |
| 3924 | model_->clpMatrix()->createVariable(model_, bestSequence); |
| 3925 | #ifndef NDEBUG |
| 3926 | if (bestSequence >= 0) { |
| 3927 | if (model_->getStatus(bestSequence) == ClpSimplex::atLowerBound) |
| 3928 | assert(model_->reducedCost(bestSequence) < 0.0); |
| 3929 | if (model_->getStatus(bestSequence) == ClpSimplex::atUpperBound) |
| 3930 | assert(model_->reducedCost(bestSequence) > 0.0); |
| 3931 | } |
| 3932 | #endif |
| 3933 | return bestSequence; |
| 3934 | } |
| 3935 | |