| 1 | /* $Id: ClpQuadraticObjective.cpp 1753 2011-06-19 16:27:26Z stefan $ */ |
| 2 | // Copyright (C) 2003, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include "CoinPragma.hpp" |
| 7 | #include "CoinHelperFunctions.hpp" |
| 8 | #include "CoinIndexedVector.hpp" |
| 9 | #include "ClpFactorization.hpp" |
| 10 | #include "ClpSimplex.hpp" |
| 11 | #include "ClpQuadraticObjective.hpp" |
| 12 | //############################################################################# |
| 13 | // Constructors / Destructor / Assignment |
| 14 | //############################################################################# |
| 15 | //------------------------------------------------------------------- |
| 16 | // Default Constructor |
| 17 | //------------------------------------------------------------------- |
| 18 | ClpQuadraticObjective::ClpQuadraticObjective () |
| 19 | : ClpObjective() |
| 20 | { |
| 21 | type_ = 2; |
| 22 | objective_ = NULL; |
| 23 | quadraticObjective_ = NULL; |
| 24 | gradient_ = NULL; |
| 25 | numberColumns_ = 0; |
| 26 | numberExtendedColumns_ = 0; |
| 27 | activated_ = 0; |
| 28 | fullMatrix_ = false; |
| 29 | } |
| 30 | |
| 31 | //------------------------------------------------------------------- |
| 32 | // Useful Constructor |
| 33 | //------------------------------------------------------------------- |
| 34 | ClpQuadraticObjective::ClpQuadraticObjective (const double * objective , |
| 35 | int numberColumns, |
| 36 | const CoinBigIndex * start, |
| 37 | const int * column, const double * element, |
| 38 | int numberExtendedColumns) |
| 39 | : ClpObjective() |
| 40 | { |
| 41 | type_ = 2; |
| 42 | numberColumns_ = numberColumns; |
| 43 | if (numberExtendedColumns >= 0) |
| 44 | numberExtendedColumns_ = CoinMax(numberColumns_, numberExtendedColumns); |
| 45 | else |
| 46 | numberExtendedColumns_ = numberColumns_; |
| 47 | if (objective) { |
| 48 | objective_ = new double [numberExtendedColumns_]; |
| 49 | CoinMemcpyN(objective, numberColumns_, objective_); |
| 50 | memset(objective_ + numberColumns_, 0, (numberExtendedColumns_ - numberColumns_)*sizeof(double)); |
| 51 | } else { |
| 52 | objective_ = new double [numberExtendedColumns_]; |
| 53 | memset(objective_, 0, numberExtendedColumns_ * sizeof(double)); |
| 54 | } |
| 55 | if (start) |
| 56 | quadraticObjective_ = new CoinPackedMatrix(true, numberColumns, numberColumns, |
| 57 | start[numberColumns], element, column, start, NULL); |
| 58 | else |
| 59 | quadraticObjective_ = NULL; |
| 60 | gradient_ = NULL; |
| 61 | activated_ = 1; |
| 62 | fullMatrix_ = false; |
| 63 | } |
| 64 | |
| 65 | //------------------------------------------------------------------- |
| 66 | // Copy constructor |
| 67 | //------------------------------------------------------------------- |
| 68 | ClpQuadraticObjective::ClpQuadraticObjective (const ClpQuadraticObjective & rhs, |
| 69 | int type) |
| 70 | : ClpObjective(rhs) |
| 71 | { |
| 72 | numberColumns_ = rhs.numberColumns_; |
| 73 | numberExtendedColumns_ = rhs.numberExtendedColumns_; |
| 74 | fullMatrix_ = rhs.fullMatrix_; |
| 75 | if (rhs.objective_) { |
| 76 | objective_ = new double [numberExtendedColumns_]; |
| 77 | CoinMemcpyN(rhs.objective_, numberExtendedColumns_, objective_); |
| 78 | } else { |
| 79 | objective_ = NULL; |
| 80 | } |
| 81 | if (rhs.gradient_) { |
| 82 | gradient_ = new double [numberExtendedColumns_]; |
| 83 | CoinMemcpyN(rhs.gradient_, numberExtendedColumns_, gradient_); |
| 84 | } else { |
| 85 | gradient_ = NULL; |
| 86 | } |
| 87 | if (rhs.quadraticObjective_) { |
| 88 | // see what type of matrix wanted |
| 89 | if (type == 0) { |
| 90 | // just copy |
| 91 | quadraticObjective_ = new CoinPackedMatrix(*rhs.quadraticObjective_); |
| 92 | } else if (type == 1) { |
| 93 | // expand to full symmetric |
| 94 | fullMatrix_ = true; |
| 95 | const int * columnQuadratic1 = rhs.quadraticObjective_->getIndices(); |
| 96 | const CoinBigIndex * columnQuadraticStart1 = rhs.quadraticObjective_->getVectorStarts(); |
| 97 | const int * columnQuadraticLength1 = rhs.quadraticObjective_->getVectorLengths(); |
| 98 | const double * quadraticElement1 = rhs.quadraticObjective_->getElements(); |
| 99 | CoinBigIndex * columnQuadraticStart2 = new CoinBigIndex [numberExtendedColumns_+1]; |
| 100 | int * columnQuadraticLength2 = new int [numberExtendedColumns_]; |
| 101 | int iColumn; |
| 102 | int numberColumns = rhs.quadraticObjective_->getNumCols(); |
| 103 | int numberBelow = 0; |
| 104 | int numberAbove = 0; |
| 105 | int numberDiagonal = 0; |
| 106 | CoinZeroN(columnQuadraticLength2, numberExtendedColumns_); |
| 107 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 108 | for (CoinBigIndex j = columnQuadraticStart1[iColumn]; |
| 109 | j < columnQuadraticStart1[iColumn] + columnQuadraticLength1[iColumn]; j++) { |
| 110 | int jColumn = columnQuadratic1[j]; |
| 111 | if (jColumn > iColumn) { |
| 112 | numberBelow++; |
| 113 | columnQuadraticLength2[jColumn]++; |
| 114 | columnQuadraticLength2[iColumn]++; |
| 115 | } else if (jColumn == iColumn) { |
| 116 | numberDiagonal++; |
| 117 | columnQuadraticLength2[iColumn]++; |
| 118 | } else { |
| 119 | numberAbove++; |
| 120 | } |
| 121 | } |
| 122 | } |
| 123 | if (numberAbove > 0) { |
| 124 | if (numberAbove == numberBelow) { |
| 125 | // already done |
| 126 | quadraticObjective_ = new CoinPackedMatrix(*rhs.quadraticObjective_); |
| 127 | delete [] columnQuadraticStart2; |
| 128 | delete [] columnQuadraticLength2; |
| 129 | } else { |
| 130 | printf("number above = %d, number below = %d, error\n" , |
| 131 | numberAbove, numberBelow); |
| 132 | abort(); |
| 133 | } |
| 134 | } else { |
| 135 | int numberElements = numberDiagonal + 2 * numberBelow; |
| 136 | int * columnQuadratic2 = new int [numberElements]; |
| 137 | double * quadraticElement2 = new double [numberElements]; |
| 138 | columnQuadraticStart2[0] = 0; |
| 139 | numberElements = 0; |
| 140 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 141 | int n = columnQuadraticLength2[iColumn]; |
| 142 | columnQuadraticLength2[iColumn] = 0; |
| 143 | numberElements += n; |
| 144 | columnQuadraticStart2[iColumn+1] = numberElements; |
| 145 | } |
| 146 | for (iColumn = 0; iColumn < numberColumns; iColumn++) { |
| 147 | for (CoinBigIndex j = columnQuadraticStart1[iColumn]; |
| 148 | j < columnQuadraticStart1[iColumn] + columnQuadraticLength1[iColumn]; j++) { |
| 149 | int jColumn = columnQuadratic1[j]; |
| 150 | if (jColumn > iColumn) { |
| 151 | // put in two places |
| 152 | CoinBigIndex put = columnQuadraticLength2[jColumn] + columnQuadraticStart2[jColumn]; |
| 153 | columnQuadraticLength2[jColumn]++; |
| 154 | quadraticElement2[put] = quadraticElement1[j]; |
| 155 | columnQuadratic2[put] = iColumn; |
| 156 | put = columnQuadraticLength2[iColumn] + columnQuadraticStart2[iColumn]; |
| 157 | columnQuadraticLength2[iColumn]++; |
| 158 | quadraticElement2[put] = quadraticElement1[j]; |
| 159 | columnQuadratic2[put] = jColumn; |
| 160 | } else if (jColumn == iColumn) { |
| 161 | CoinBigIndex put = columnQuadraticLength2[iColumn] + columnQuadraticStart2[iColumn]; |
| 162 | columnQuadraticLength2[iColumn]++; |
| 163 | quadraticElement2[put] = quadraticElement1[j]; |
| 164 | columnQuadratic2[put] = iColumn; |
| 165 | } else { |
| 166 | abort(); |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | // Now create |
| 171 | quadraticObjective_ = |
| 172 | new CoinPackedMatrix (true, |
| 173 | rhs.numberExtendedColumns_, |
| 174 | rhs.numberExtendedColumns_, |
| 175 | numberElements, |
| 176 | quadraticElement2, |
| 177 | columnQuadratic2, |
| 178 | columnQuadraticStart2, |
| 179 | columnQuadraticLength2, 0.0, 0.0); |
| 180 | delete [] columnQuadraticStart2; |
| 181 | delete [] columnQuadraticLength2; |
| 182 | delete [] columnQuadratic2; |
| 183 | delete [] quadraticElement2; |
| 184 | } |
| 185 | } else { |
| 186 | fullMatrix_ = false; |
| 187 | abort(); // code when needed |
| 188 | } |
| 189 | |
| 190 | } else { |
| 191 | quadraticObjective_ = NULL; |
| 192 | } |
| 193 | } |
| 194 | /* Subset constructor. Duplicates are allowed |
| 195 | and order is as given. |
| 196 | */ |
| 197 | ClpQuadraticObjective::ClpQuadraticObjective (const ClpQuadraticObjective &rhs, |
| 198 | int numberColumns, |
| 199 | const int * whichColumn) |
| 200 | : ClpObjective(rhs) |
| 201 | { |
| 202 | fullMatrix_ = rhs.fullMatrix_; |
| 203 | objective_ = NULL; |
| 204 | int = rhs.numberExtendedColumns_ - rhs.numberColumns_; |
| 205 | numberColumns_ = 0; |
| 206 | numberExtendedColumns_ = numberColumns + extra; |
| 207 | if (numberColumns > 0) { |
| 208 | // check valid lists |
| 209 | int numberBad = 0; |
| 210 | int i; |
| 211 | for (i = 0; i < numberColumns; i++) |
| 212 | if (whichColumn[i] < 0 || whichColumn[i] >= rhs.numberColumns_) |
| 213 | numberBad++; |
| 214 | if (numberBad) |
| 215 | throw CoinError("bad column list" , "subset constructor" , |
| 216 | "ClpQuadraticObjective" ); |
| 217 | numberColumns_ = numberColumns; |
| 218 | objective_ = new double[numberExtendedColumns_]; |
| 219 | for (i = 0; i < numberColumns_; i++) |
| 220 | objective_[i] = rhs.objective_[whichColumn[i]]; |
| 221 | CoinMemcpyN(rhs.objective_ + rhs.numberColumns_, (numberExtendedColumns_ - numberColumns_), |
| 222 | objective_ + numberColumns_); |
| 223 | if (rhs.gradient_) { |
| 224 | gradient_ = new double[numberExtendedColumns_]; |
| 225 | for (i = 0; i < numberColumns_; i++) |
| 226 | gradient_[i] = rhs.gradient_[whichColumn[i]]; |
| 227 | CoinMemcpyN(rhs.gradient_ + rhs.numberColumns_, (numberExtendedColumns_ - numberColumns_), |
| 228 | gradient_ + numberColumns_); |
| 229 | } else { |
| 230 | gradient_ = NULL; |
| 231 | } |
| 232 | } else { |
| 233 | gradient_ = NULL; |
| 234 | objective_ = NULL; |
| 235 | } |
| 236 | if (rhs.quadraticObjective_) { |
| 237 | quadraticObjective_ = new CoinPackedMatrix(*rhs.quadraticObjective_, |
| 238 | numberColumns, whichColumn, |
| 239 | numberColumns, whichColumn); |
| 240 | } else { |
| 241 | quadraticObjective_ = NULL; |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | |
| 246 | //------------------------------------------------------------------- |
| 247 | // Destructor |
| 248 | //------------------------------------------------------------------- |
| 249 | ClpQuadraticObjective::~ClpQuadraticObjective () |
| 250 | { |
| 251 | delete [] objective_; |
| 252 | delete [] gradient_; |
| 253 | delete quadraticObjective_; |
| 254 | } |
| 255 | |
| 256 | //---------------------------------------------------------------- |
| 257 | // Assignment operator |
| 258 | //------------------------------------------------------------------- |
| 259 | ClpQuadraticObjective & |
| 260 | ClpQuadraticObjective::operator=(const ClpQuadraticObjective& rhs) |
| 261 | { |
| 262 | if (this != &rhs) { |
| 263 | fullMatrix_ = rhs.fullMatrix_; |
| 264 | delete quadraticObjective_; |
| 265 | quadraticObjective_ = NULL; |
| 266 | delete [] objective_; |
| 267 | delete [] gradient_; |
| 268 | ClpObjective::operator=(rhs); |
| 269 | numberColumns_ = rhs.numberColumns_; |
| 270 | numberExtendedColumns_ = rhs.numberExtendedColumns_; |
| 271 | if (rhs.objective_) { |
| 272 | objective_ = new double [numberExtendedColumns_]; |
| 273 | CoinMemcpyN(rhs.objective_, numberExtendedColumns_, objective_); |
| 274 | } else { |
| 275 | objective_ = NULL; |
| 276 | } |
| 277 | if (rhs.gradient_) { |
| 278 | gradient_ = new double [numberExtendedColumns_]; |
| 279 | CoinMemcpyN(rhs.gradient_, numberExtendedColumns_, gradient_); |
| 280 | } else { |
| 281 | gradient_ = NULL; |
| 282 | } |
| 283 | if (rhs.quadraticObjective_) { |
| 284 | quadraticObjective_ = new CoinPackedMatrix(*rhs.quadraticObjective_); |
| 285 | } else { |
| 286 | quadraticObjective_ = NULL; |
| 287 | } |
| 288 | } |
| 289 | return *this; |
| 290 | } |
| 291 | |
| 292 | // Returns gradient |
| 293 | double * |
| 294 | ClpQuadraticObjective::gradient(const ClpSimplex * model, |
| 295 | const double * solution, double & offset, bool refresh, |
| 296 | int includeLinear) |
| 297 | { |
| 298 | offset = 0.0; |
| 299 | bool scaling = false; |
| 300 | if (model && (model->rowScale() || |
| 301 | model->objectiveScale() != 1.0 || model->optimizationDirection() != 1.0)) |
| 302 | scaling = true; |
| 303 | const double * cost = NULL; |
| 304 | if (model) |
| 305 | cost = model->costRegion(); |
| 306 | if (!cost) { |
| 307 | // not in solve |
| 308 | cost = objective_; |
| 309 | scaling = false; |
| 310 | } |
| 311 | if (!scaling) { |
| 312 | if (!quadraticObjective_ || !solution || !activated_) { |
| 313 | return objective_; |
| 314 | } else { |
| 315 | if (refresh || !gradient_) { |
| 316 | if (!gradient_) |
| 317 | gradient_ = new double[numberExtendedColumns_]; |
| 318 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 319 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 320 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 321 | const double * quadraticElement = quadraticObjective_->getElements(); |
| 322 | offset = 0.0; |
| 323 | // use current linear cost region |
| 324 | if (includeLinear == 1) |
| 325 | CoinMemcpyN(cost, numberExtendedColumns_, gradient_); |
| 326 | else if (includeLinear == 2) |
| 327 | CoinMemcpyN(objective_, numberExtendedColumns_, gradient_); |
| 328 | else |
| 329 | memset(gradient_, 0, numberExtendedColumns_ * sizeof(double)); |
| 330 | if (activated_) { |
| 331 | if (!fullMatrix_) { |
| 332 | int iColumn; |
| 333 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 334 | double valueI = solution[iColumn]; |
| 335 | CoinBigIndex j; |
| 336 | for (j = columnQuadraticStart[iColumn]; |
| 337 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 338 | int jColumn = columnQuadratic[j]; |
| 339 | double valueJ = solution[jColumn]; |
| 340 | double elementValue = quadraticElement[j]; |
| 341 | if (iColumn != jColumn) { |
| 342 | offset += valueI * valueJ * elementValue; |
| 343 | //if (fabs(valueI*valueJ*elementValue)>1.0e-12) |
| 344 | //printf("%d %d %g %g %g -> %g\n", |
| 345 | // iColumn,jColumn,valueI,valueJ,elementValue, |
| 346 | // valueI*valueJ*elementValue); |
| 347 | double gradientI = valueJ * elementValue; |
| 348 | double gradientJ = valueI * elementValue; |
| 349 | gradient_[iColumn] += gradientI; |
| 350 | gradient_[jColumn] += gradientJ; |
| 351 | } else { |
| 352 | offset += 0.5 * valueI * valueI * elementValue; |
| 353 | //if (fabs(valueI*valueI*elementValue)>1.0e-12) |
| 354 | //printf("XX %d %g %g -> %g\n", |
| 355 | // iColumn,valueI,elementValue, |
| 356 | // 0.5*valueI*valueI*elementValue); |
| 357 | double gradientI = valueI * elementValue; |
| 358 | gradient_[iColumn] += gradientI; |
| 359 | } |
| 360 | } |
| 361 | } |
| 362 | } else { |
| 363 | // full matrix |
| 364 | int iColumn; |
| 365 | offset *= 2.0; |
| 366 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 367 | CoinBigIndex j; |
| 368 | double value = 0.0; |
| 369 | double current = gradient_[iColumn]; |
| 370 | for (j = columnQuadraticStart[iColumn]; |
| 371 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 372 | int jColumn = columnQuadratic[j]; |
| 373 | double valueJ = solution[jColumn] * quadraticElement[j]; |
| 374 | value += valueJ; |
| 375 | } |
| 376 | offset += value * solution[iColumn]; |
| 377 | gradient_[iColumn] = current + value; |
| 378 | } |
| 379 | offset *= 0.5; |
| 380 | } |
| 381 | } |
| 382 | } |
| 383 | if (model) |
| 384 | offset *= model->optimizationDirection() * model->objectiveScale(); |
| 385 | return gradient_; |
| 386 | } |
| 387 | } else { |
| 388 | // do scaling |
| 389 | assert (solution); |
| 390 | // for now only if half |
| 391 | assert (!fullMatrix_); |
| 392 | if (refresh || !gradient_) { |
| 393 | if (!gradient_) |
| 394 | gradient_ = new double[numberExtendedColumns_]; |
| 395 | double direction = model->optimizationDirection() * model->objectiveScale(); |
| 396 | // direction is actually scale out not scale in |
| 397 | //if (direction) |
| 398 | //direction = 1.0/direction; |
| 399 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 400 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 401 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 402 | const double * quadraticElement = quadraticObjective_->getElements(); |
| 403 | int iColumn; |
| 404 | const double * columnScale = model->columnScale(); |
| 405 | // use current linear cost region (already scaled) |
| 406 | if (includeLinear == 1) { |
| 407 | CoinMemcpyN(model->costRegion(), numberExtendedColumns_, gradient_); |
| 408 | } else if (includeLinear == 2) { |
| 409 | memset(gradient_ + numberColumns_, 0, (numberExtendedColumns_ - numberColumns_)*sizeof(double)); |
| 410 | if (!columnScale) { |
| 411 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 412 | gradient_[iColumn] = objective_[iColumn] * direction; |
| 413 | } |
| 414 | } else { |
| 415 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 416 | gradient_[iColumn] = objective_[iColumn] * direction * columnScale[iColumn]; |
| 417 | } |
| 418 | } |
| 419 | } else { |
| 420 | memset(gradient_, 0, numberExtendedColumns_ * sizeof(double)); |
| 421 | } |
| 422 | if (!columnScale) { |
| 423 | if (activated_) { |
| 424 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 425 | double valueI = solution[iColumn]; |
| 426 | CoinBigIndex j; |
| 427 | for (j = columnQuadraticStart[iColumn]; |
| 428 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 429 | int jColumn = columnQuadratic[j]; |
| 430 | double valueJ = solution[jColumn]; |
| 431 | double elementValue = quadraticElement[j]; |
| 432 | elementValue *= direction; |
| 433 | if (iColumn != jColumn) { |
| 434 | offset += valueI * valueJ * elementValue; |
| 435 | double gradientI = valueJ * elementValue; |
| 436 | double gradientJ = valueI * elementValue; |
| 437 | gradient_[iColumn] += gradientI; |
| 438 | gradient_[jColumn] += gradientJ; |
| 439 | } else { |
| 440 | offset += 0.5 * valueI * valueI * elementValue; |
| 441 | double gradientI = valueI * elementValue; |
| 442 | gradient_[iColumn] += gradientI; |
| 443 | } |
| 444 | } |
| 445 | } |
| 446 | } |
| 447 | } else { |
| 448 | // scaling |
| 449 | if (activated_) { |
| 450 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 451 | double valueI = solution[iColumn]; |
| 452 | double scaleI = columnScale[iColumn] * direction; |
| 453 | CoinBigIndex j; |
| 454 | for (j = columnQuadraticStart[iColumn]; |
| 455 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 456 | int jColumn = columnQuadratic[j]; |
| 457 | double valueJ = solution[jColumn]; |
| 458 | double elementValue = quadraticElement[j]; |
| 459 | double scaleJ = columnScale[jColumn]; |
| 460 | elementValue *= scaleI * scaleJ; |
| 461 | if (iColumn != jColumn) { |
| 462 | offset += valueI * valueJ * elementValue; |
| 463 | double gradientI = valueJ * elementValue; |
| 464 | double gradientJ = valueI * elementValue; |
| 465 | gradient_[iColumn] += gradientI; |
| 466 | gradient_[jColumn] += gradientJ; |
| 467 | } else { |
| 468 | offset += 0.5 * valueI * valueI * elementValue; |
| 469 | double gradientI = valueI * elementValue; |
| 470 | gradient_[iColumn] += gradientI; |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | } |
| 475 | } |
| 476 | } |
| 477 | if (model) |
| 478 | offset *= model->optimizationDirection(); |
| 479 | return gradient_; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | //------------------------------------------------------------------- |
| 484 | // Clone |
| 485 | //------------------------------------------------------------------- |
| 486 | ClpObjective * ClpQuadraticObjective::clone() const |
| 487 | { |
| 488 | return new ClpQuadraticObjective(*this); |
| 489 | } |
| 490 | /* Subset clone. Duplicates are allowed |
| 491 | and order is as given. |
| 492 | */ |
| 493 | ClpObjective * |
| 494 | ClpQuadraticObjective::subsetClone (int numberColumns, |
| 495 | const int * whichColumns) const |
| 496 | { |
| 497 | return new ClpQuadraticObjective(*this, numberColumns, whichColumns); |
| 498 | } |
| 499 | // Resize objective |
| 500 | void |
| 501 | ClpQuadraticObjective::resize(int newNumberColumns) |
| 502 | { |
| 503 | if (numberColumns_ != newNumberColumns) { |
| 504 | int newExtended = newNumberColumns + (numberExtendedColumns_ - numberColumns_); |
| 505 | int i; |
| 506 | double * newArray = new double[newExtended]; |
| 507 | if (objective_) |
| 508 | CoinMemcpyN(objective_, CoinMin(newExtended, numberExtendedColumns_), newArray); |
| 509 | delete [] objective_; |
| 510 | objective_ = newArray; |
| 511 | for (i = numberColumns_; i < newNumberColumns; i++) |
| 512 | objective_[i] = 0.0; |
| 513 | if (gradient_) { |
| 514 | newArray = new double[newExtended]; |
| 515 | if (gradient_) |
| 516 | CoinMemcpyN(gradient_, CoinMin(newExtended, numberExtendedColumns_), newArray); |
| 517 | delete [] gradient_; |
| 518 | gradient_ = newArray; |
| 519 | for (i = numberColumns_; i < newNumberColumns; i++) |
| 520 | gradient_[i] = 0.0; |
| 521 | } |
| 522 | if (quadraticObjective_) { |
| 523 | if (newNumberColumns < numberColumns_) { |
| 524 | int * which = new int[numberColumns_-newNumberColumns]; |
| 525 | int i; |
| 526 | for (i = newNumberColumns; i < numberColumns_; i++) |
| 527 | which[i-newNumberColumns] = i; |
| 528 | quadraticObjective_->deleteRows(numberColumns_ - newNumberColumns, which); |
| 529 | quadraticObjective_->deleteCols(numberColumns_ - newNumberColumns, which); |
| 530 | delete [] which; |
| 531 | } else { |
| 532 | quadraticObjective_->setDimensions(newNumberColumns, newNumberColumns); |
| 533 | } |
| 534 | } |
| 535 | numberColumns_ = newNumberColumns; |
| 536 | numberExtendedColumns_ = newExtended; |
| 537 | } |
| 538 | |
| 539 | } |
| 540 | // Delete columns in objective |
| 541 | void |
| 542 | ClpQuadraticObjective::deleteSome(int numberToDelete, const int * which) |
| 543 | { |
| 544 | int newNumberColumns = numberColumns_ - numberToDelete; |
| 545 | int newExtended = numberExtendedColumns_ - numberToDelete; |
| 546 | if (objective_) { |
| 547 | int i ; |
| 548 | char * deleted = new char[numberColumns_]; |
| 549 | int numberDeleted = 0; |
| 550 | memset(deleted, 0, numberColumns_ * sizeof(char)); |
| 551 | for (i = 0; i < numberToDelete; i++) { |
| 552 | int j = which[i]; |
| 553 | if (j >= 0 && j < numberColumns_ && !deleted[j]) { |
| 554 | numberDeleted++; |
| 555 | deleted[j] = 1; |
| 556 | } |
| 557 | } |
| 558 | newNumberColumns = numberColumns_ - numberDeleted; |
| 559 | newExtended = numberExtendedColumns_ - numberDeleted; |
| 560 | double * newArray = new double[newExtended]; |
| 561 | int put = 0; |
| 562 | for (i = 0; i < numberColumns_; i++) { |
| 563 | if (!deleted[i]) { |
| 564 | newArray[put++] = objective_[i]; |
| 565 | } |
| 566 | } |
| 567 | delete [] objective_; |
| 568 | objective_ = newArray; |
| 569 | delete [] deleted; |
| 570 | CoinMemcpyN(objective_ + numberColumns_, (numberExtendedColumns_ - numberColumns_), |
| 571 | objective_ + newNumberColumns); |
| 572 | } |
| 573 | if (gradient_) { |
| 574 | int i ; |
| 575 | char * deleted = new char[numberColumns_]; |
| 576 | int numberDeleted = 0; |
| 577 | memset(deleted, 0, numberColumns_ * sizeof(char)); |
| 578 | for (i = 0; i < numberToDelete; i++) { |
| 579 | int j = which[i]; |
| 580 | if (j >= 0 && j < numberColumns_ && !deleted[j]) { |
| 581 | numberDeleted++; |
| 582 | deleted[j] = 1; |
| 583 | } |
| 584 | } |
| 585 | newNumberColumns = numberColumns_ - numberDeleted; |
| 586 | newExtended = numberExtendedColumns_ - numberDeleted; |
| 587 | double * newArray = new double[newExtended]; |
| 588 | int put = 0; |
| 589 | for (i = 0; i < numberColumns_; i++) { |
| 590 | if (!deleted[i]) { |
| 591 | newArray[put++] = gradient_[i]; |
| 592 | } |
| 593 | } |
| 594 | delete [] gradient_; |
| 595 | gradient_ = newArray; |
| 596 | delete [] deleted; |
| 597 | CoinMemcpyN(gradient_ + numberColumns_, (numberExtendedColumns_ - numberColumns_), |
| 598 | gradient_ + newNumberColumns); |
| 599 | } |
| 600 | numberColumns_ = newNumberColumns; |
| 601 | numberExtendedColumns_ = newExtended; |
| 602 | if (quadraticObjective_) { |
| 603 | quadraticObjective_->deleteCols(numberToDelete, which); |
| 604 | quadraticObjective_->deleteRows(numberToDelete, which); |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | // Load up quadratic objective |
| 609 | void |
| 610 | ClpQuadraticObjective::loadQuadraticObjective(const int numberColumns, const CoinBigIndex * start, |
| 611 | const int * column, const double * element, int numberExtended) |
| 612 | { |
| 613 | fullMatrix_ = false; |
| 614 | delete quadraticObjective_; |
| 615 | quadraticObjective_ = new CoinPackedMatrix(true, numberColumns, numberColumns, |
| 616 | start[numberColumns], element, column, start, NULL); |
| 617 | numberColumns_ = numberColumns; |
| 618 | if (numberExtended > numberExtendedColumns_) { |
| 619 | if (objective_) { |
| 620 | // make correct size |
| 621 | double * newArray = new double[numberExtended]; |
| 622 | CoinMemcpyN(objective_, numberColumns_, newArray); |
| 623 | delete [] objective_; |
| 624 | objective_ = newArray; |
| 625 | memset(objective_ + numberColumns_, 0, (numberExtended - numberColumns_)*sizeof(double)); |
| 626 | } |
| 627 | if (gradient_) { |
| 628 | // make correct size |
| 629 | double * newArray = new double[numberExtended]; |
| 630 | CoinMemcpyN(gradient_, numberColumns_, newArray); |
| 631 | delete [] gradient_; |
| 632 | gradient_ = newArray; |
| 633 | memset(gradient_ + numberColumns_, 0, (numberExtended - numberColumns_)*sizeof(double)); |
| 634 | } |
| 635 | numberExtendedColumns_ = numberExtended; |
| 636 | } else { |
| 637 | numberExtendedColumns_ = numberColumns_; |
| 638 | } |
| 639 | } |
| 640 | void |
| 641 | ClpQuadraticObjective::loadQuadraticObjective ( const CoinPackedMatrix& matrix) |
| 642 | { |
| 643 | delete quadraticObjective_; |
| 644 | quadraticObjective_ = new CoinPackedMatrix(matrix); |
| 645 | } |
| 646 | // Get rid of quadratic objective |
| 647 | void |
| 648 | ClpQuadraticObjective::deleteQuadraticObjective() |
| 649 | { |
| 650 | delete quadraticObjective_; |
| 651 | quadraticObjective_ = NULL; |
| 652 | } |
| 653 | /* Returns reduced gradient.Returns an offset (to be added to current one). |
| 654 | */ |
| 655 | double |
| 656 | ClpQuadraticObjective::reducedGradient(ClpSimplex * model, double * region, |
| 657 | bool useFeasibleCosts) |
| 658 | { |
| 659 | int numberRows = model->numberRows(); |
| 660 | int numberColumns = model->numberColumns(); |
| 661 | |
| 662 | //work space |
| 663 | CoinIndexedVector * workSpace = model->rowArray(0); |
| 664 | |
| 665 | CoinIndexedVector arrayVector; |
| 666 | arrayVector.reserve(numberRows + 1); |
| 667 | |
| 668 | int iRow; |
| 669 | #ifdef CLP_DEBUG |
| 670 | workSpace->checkClear(); |
| 671 | #endif |
| 672 | double * array = arrayVector.denseVector(); |
| 673 | int * index = arrayVector.getIndices(); |
| 674 | int number = 0; |
| 675 | const double * costNow = gradient(model, model->solutionRegion(), offset_, |
| 676 | true, useFeasibleCosts ? 2 : 1); |
| 677 | double * cost = model->costRegion(); |
| 678 | const int * pivotVariable = model->pivotVariable(); |
| 679 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 680 | int iPivot = pivotVariable[iRow]; |
| 681 | double value; |
| 682 | if (iPivot < numberColumns) |
| 683 | value = costNow[iPivot]; |
| 684 | else if (!useFeasibleCosts) |
| 685 | value = cost[iPivot]; |
| 686 | else |
| 687 | value = 0.0; |
| 688 | if (value) { |
| 689 | array[iRow] = value; |
| 690 | index[number++] = iRow; |
| 691 | } |
| 692 | } |
| 693 | arrayVector.setNumElements(number); |
| 694 | |
| 695 | // Btran basic costs |
| 696 | model->factorization()->updateColumnTranspose(workSpace, &arrayVector); |
| 697 | double * work = workSpace->denseVector(); |
| 698 | ClpFillN(work, numberRows, 0.0); |
| 699 | // now look at dual solution |
| 700 | double * rowReducedCost = region + numberColumns; |
| 701 | double * dual = rowReducedCost; |
| 702 | const double * rowCost = cost + numberColumns; |
| 703 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 704 | dual[iRow] = array[iRow]; |
| 705 | } |
| 706 | double * dj = region; |
| 707 | ClpDisjointCopyN(costNow, numberColumns, dj); |
| 708 | |
| 709 | model->transposeTimes(-1.0, dual, dj); |
| 710 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 711 | // slack |
| 712 | double value = dual[iRow]; |
| 713 | value += rowCost[iRow]; |
| 714 | rowReducedCost[iRow] = value; |
| 715 | } |
| 716 | return offset_; |
| 717 | } |
| 718 | /* Returns step length which gives minimum of objective for |
| 719 | solution + theta * change vector up to maximum theta. |
| 720 | |
| 721 | arrays are numberColumns+numberRows |
| 722 | */ |
| 723 | double |
| 724 | ClpQuadraticObjective::stepLength(ClpSimplex * model, |
| 725 | const double * solution, |
| 726 | const double * change, |
| 727 | double maximumTheta, |
| 728 | double & currentObj, |
| 729 | double & predictedObj, |
| 730 | double & thetaObj) |
| 731 | { |
| 732 | const double * cost = model->costRegion(); |
| 733 | bool inSolve = true; |
| 734 | if (!cost) { |
| 735 | // not in solve |
| 736 | cost = objective_; |
| 737 | inSolve = false; |
| 738 | } |
| 739 | double delta = 0.0; |
| 740 | double linearCost = 0.0; |
| 741 | int numberRows = model->numberRows(); |
| 742 | int numberColumns = model->numberColumns(); |
| 743 | int numberTotal = numberColumns; |
| 744 | if (inSolve) |
| 745 | numberTotal += numberRows; |
| 746 | currentObj = 0.0; |
| 747 | thetaObj = 0.0; |
| 748 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 749 | delta += cost[iColumn] * change[iColumn]; |
| 750 | linearCost += cost[iColumn] * solution[iColumn]; |
| 751 | } |
| 752 | if (!activated_ || !quadraticObjective_) { |
| 753 | currentObj = linearCost; |
| 754 | thetaObj = currentObj + delta * maximumTheta; |
| 755 | if (delta < 0.0) { |
| 756 | return maximumTheta; |
| 757 | } else { |
| 758 | COIN_DETAIL_PRINT(printf("odd linear direction %g\n" , delta)); |
| 759 | return 0.0; |
| 760 | } |
| 761 | } |
| 762 | assert (model); |
| 763 | bool scaling = false; |
| 764 | if ((model->rowScale() || |
| 765 | model->objectiveScale() != 1.0 || model->optimizationDirection() != 1.0) && inSolve) |
| 766 | scaling = true; |
| 767 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 768 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 769 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 770 | const double * quadraticElement = quadraticObjective_->getElements(); |
| 771 | double a = 0.0; |
| 772 | double b = delta; |
| 773 | double c = 0.0; |
| 774 | if (!scaling) { |
| 775 | if (!fullMatrix_) { |
| 776 | int iColumn; |
| 777 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 778 | double valueI = solution[iColumn]; |
| 779 | double changeI = change[iColumn]; |
| 780 | CoinBigIndex j; |
| 781 | for (j = columnQuadraticStart[iColumn]; |
| 782 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 783 | int jColumn = columnQuadratic[j]; |
| 784 | double valueJ = solution[jColumn]; |
| 785 | double changeJ = change[jColumn]; |
| 786 | double elementValue = quadraticElement[j]; |
| 787 | if (iColumn != jColumn) { |
| 788 | a += changeI * changeJ * elementValue; |
| 789 | b += (changeI * valueJ + changeJ * valueI) * elementValue; |
| 790 | c += valueI * valueJ * elementValue; |
| 791 | } else { |
| 792 | a += 0.5 * changeI * changeI * elementValue; |
| 793 | b += changeI * valueI * elementValue; |
| 794 | c += 0.5 * valueI * valueI * elementValue; |
| 795 | } |
| 796 | } |
| 797 | } |
| 798 | } else { |
| 799 | // full matrix stored |
| 800 | int iColumn; |
| 801 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 802 | double valueI = solution[iColumn]; |
| 803 | double changeI = change[iColumn]; |
| 804 | CoinBigIndex j; |
| 805 | for (j = columnQuadraticStart[iColumn]; |
| 806 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 807 | int jColumn = columnQuadratic[j]; |
| 808 | double valueJ = solution[jColumn]; |
| 809 | double changeJ = change[jColumn]; |
| 810 | double elementValue = quadraticElement[j]; |
| 811 | valueJ *= elementValue; |
| 812 | a += changeI * changeJ * elementValue; |
| 813 | b += changeI * valueJ; |
| 814 | c += valueI * valueJ; |
| 815 | } |
| 816 | } |
| 817 | a *= 0.5; |
| 818 | c *= 0.5; |
| 819 | } |
| 820 | } else { |
| 821 | // scaling |
| 822 | // for now only if half |
| 823 | assert (!fullMatrix_); |
| 824 | const double * columnScale = model->columnScale(); |
| 825 | double direction = model->optimizationDirection() * model->objectiveScale(); |
| 826 | // direction is actually scale out not scale in |
| 827 | if (direction) |
| 828 | direction = 1.0 / direction; |
| 829 | if (!columnScale) { |
| 830 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 831 | double valueI = solution[iColumn]; |
| 832 | double changeI = change[iColumn]; |
| 833 | CoinBigIndex j; |
| 834 | for (j = columnQuadraticStart[iColumn]; |
| 835 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 836 | int jColumn = columnQuadratic[j]; |
| 837 | double valueJ = solution[jColumn]; |
| 838 | double changeJ = change[jColumn]; |
| 839 | double elementValue = quadraticElement[j]; |
| 840 | elementValue *= direction; |
| 841 | if (iColumn != jColumn) { |
| 842 | a += changeI * changeJ * elementValue; |
| 843 | b += (changeI * valueJ + changeJ * valueI) * elementValue; |
| 844 | c += valueI * valueJ * elementValue; |
| 845 | } else { |
| 846 | a += 0.5 * changeI * changeI * elementValue; |
| 847 | b += changeI * valueI * elementValue; |
| 848 | c += 0.5 * valueI * valueI * elementValue; |
| 849 | } |
| 850 | } |
| 851 | } |
| 852 | } else { |
| 853 | // scaling |
| 854 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 855 | double valueI = solution[iColumn]; |
| 856 | double changeI = change[iColumn]; |
| 857 | double scaleI = columnScale[iColumn] * direction; |
| 858 | CoinBigIndex j; |
| 859 | for (j = columnQuadraticStart[iColumn]; |
| 860 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 861 | int jColumn = columnQuadratic[j]; |
| 862 | double valueJ = solution[jColumn]; |
| 863 | double changeJ = change[jColumn]; |
| 864 | double elementValue = quadraticElement[j]; |
| 865 | elementValue *= scaleI * columnScale[jColumn]; |
| 866 | if (iColumn != jColumn) { |
| 867 | a += changeI * changeJ * elementValue; |
| 868 | b += (changeI * valueJ + changeJ * valueI) * elementValue; |
| 869 | c += valueI * valueJ * elementValue; |
| 870 | } else { |
| 871 | a += 0.5 * changeI * changeI * elementValue; |
| 872 | b += changeI * valueI * elementValue; |
| 873 | c += 0.5 * valueI * valueI * elementValue; |
| 874 | } |
| 875 | } |
| 876 | } |
| 877 | } |
| 878 | } |
| 879 | double theta; |
| 880 | //printf("Current cost %g\n",c+linearCost); |
| 881 | currentObj = c + linearCost; |
| 882 | thetaObj = currentObj + a * maximumTheta * maximumTheta + b * maximumTheta; |
| 883 | // minimize a*x*x + b*x + c |
| 884 | if (a <= 0.0) { |
| 885 | theta = maximumTheta; |
| 886 | } else { |
| 887 | theta = -0.5 * b / a; |
| 888 | } |
| 889 | predictedObj = currentObj + a * theta * theta + b * theta; |
| 890 | if (b > 0.0) { |
| 891 | if (model->messageHandler()->logLevel() & 32) |
| 892 | printf("a %g b %g c %g => %g\n" , a, b, c, theta); |
| 893 | b = 0.0; |
| 894 | } |
| 895 | return CoinMin(theta, maximumTheta); |
| 896 | } |
| 897 | // Return objective value (without any ClpModel offset) (model may be NULL) |
| 898 | double |
| 899 | ClpQuadraticObjective::objectiveValue(const ClpSimplex * model, const double * solution) const |
| 900 | { |
| 901 | bool scaling = false; |
| 902 | if (model && (model->rowScale() || |
| 903 | model->objectiveScale() != 1.0)) |
| 904 | scaling = true; |
| 905 | const double * cost = NULL; |
| 906 | if (model) |
| 907 | cost = model->costRegion(); |
| 908 | if (!cost) { |
| 909 | // not in solve |
| 910 | cost = objective_; |
| 911 | scaling = false; |
| 912 | } |
| 913 | double linearCost = 0.0; |
| 914 | int numberColumns = model->numberColumns(); |
| 915 | int numberTotal = numberColumns; |
| 916 | double currentObj = 0.0; |
| 917 | for (int iColumn = 0; iColumn < numberTotal; iColumn++) { |
| 918 | linearCost += cost[iColumn] * solution[iColumn]; |
| 919 | } |
| 920 | if (!activated_ || !quadraticObjective_) { |
| 921 | currentObj = linearCost; |
| 922 | return currentObj; |
| 923 | } |
| 924 | assert (model); |
| 925 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 926 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 927 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 928 | const double * quadraticElement = quadraticObjective_->getElements(); |
| 929 | double c = 0.0; |
| 930 | if (!scaling) { |
| 931 | if (!fullMatrix_) { |
| 932 | int iColumn; |
| 933 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 934 | double valueI = solution[iColumn]; |
| 935 | CoinBigIndex j; |
| 936 | for (j = columnQuadraticStart[iColumn]; |
| 937 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 938 | int jColumn = columnQuadratic[j]; |
| 939 | double valueJ = solution[jColumn]; |
| 940 | double elementValue = quadraticElement[j]; |
| 941 | if (iColumn != jColumn) { |
| 942 | c += valueI * valueJ * elementValue; |
| 943 | } else { |
| 944 | c += 0.5 * valueI * valueI * elementValue; |
| 945 | } |
| 946 | } |
| 947 | } |
| 948 | } else { |
| 949 | // full matrix stored |
| 950 | int iColumn; |
| 951 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 952 | double valueI = solution[iColumn]; |
| 953 | CoinBigIndex j; |
| 954 | for (j = columnQuadraticStart[iColumn]; |
| 955 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 956 | int jColumn = columnQuadratic[j]; |
| 957 | double valueJ = solution[jColumn]; |
| 958 | double elementValue = quadraticElement[j]; |
| 959 | valueJ *= elementValue; |
| 960 | c += valueI * valueJ; |
| 961 | } |
| 962 | } |
| 963 | c *= 0.5; |
| 964 | } |
| 965 | } else { |
| 966 | // scaling |
| 967 | // for now only if half |
| 968 | assert (!fullMatrix_); |
| 969 | const double * columnScale = model->columnScale(); |
| 970 | double direction = model->objectiveScale(); |
| 971 | // direction is actually scale out not scale in |
| 972 | if (direction) |
| 973 | direction = 1.0 / direction; |
| 974 | if (!columnScale) { |
| 975 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 976 | double valueI = solution[iColumn]; |
| 977 | CoinBigIndex j; |
| 978 | for (j = columnQuadraticStart[iColumn]; |
| 979 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 980 | int jColumn = columnQuadratic[j]; |
| 981 | double valueJ = solution[jColumn]; |
| 982 | double elementValue = quadraticElement[j]; |
| 983 | elementValue *= direction; |
| 984 | if (iColumn != jColumn) { |
| 985 | c += valueI * valueJ * elementValue; |
| 986 | } else { |
| 987 | c += 0.5 * valueI * valueI * elementValue; |
| 988 | } |
| 989 | } |
| 990 | } |
| 991 | } else { |
| 992 | // scaling |
| 993 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 994 | double valueI = solution[iColumn]; |
| 995 | double scaleI = columnScale[iColumn] * direction; |
| 996 | CoinBigIndex j; |
| 997 | for (j = columnQuadraticStart[iColumn]; |
| 998 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 999 | int jColumn = columnQuadratic[j]; |
| 1000 | double valueJ = solution[jColumn]; |
| 1001 | double elementValue = quadraticElement[j]; |
| 1002 | elementValue *= scaleI * columnScale[jColumn]; |
| 1003 | if (iColumn != jColumn) { |
| 1004 | c += valueI * valueJ * elementValue; |
| 1005 | } else { |
| 1006 | c += 0.5 * valueI * valueI * elementValue; |
| 1007 | } |
| 1008 | } |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | currentObj = c + linearCost; |
| 1013 | return currentObj; |
| 1014 | } |
| 1015 | // Scale objective |
| 1016 | void |
| 1017 | ClpQuadraticObjective::reallyScale(const double * columnScale) |
| 1018 | { |
| 1019 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 1020 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 1021 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 1022 | double * quadraticElement = quadraticObjective_->getMutableElements(); |
| 1023 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1024 | double scaleI = columnScale[iColumn]; |
| 1025 | objective_[iColumn] *= scaleI; |
| 1026 | CoinBigIndex j; |
| 1027 | for (j = columnQuadraticStart[iColumn]; |
| 1028 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1029 | int jColumn = columnQuadratic[j]; |
| 1030 | quadraticElement[j] *= scaleI * columnScale[jColumn]; |
| 1031 | } |
| 1032 | } |
| 1033 | } |
| 1034 | /* Given a zeroed array sets nonlinear columns to 1. |
| 1035 | Returns number of nonlinear columns |
| 1036 | */ |
| 1037 | int |
| 1038 | ClpQuadraticObjective::markNonlinear(char * which) |
| 1039 | { |
| 1040 | int iColumn; |
| 1041 | const int * columnQuadratic = quadraticObjective_->getIndices(); |
| 1042 | const CoinBigIndex * columnQuadraticStart = quadraticObjective_->getVectorStarts(); |
| 1043 | const int * columnQuadraticLength = quadraticObjective_->getVectorLengths(); |
| 1044 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1045 | CoinBigIndex j; |
| 1046 | for (j = columnQuadraticStart[iColumn]; |
| 1047 | j < columnQuadraticStart[iColumn] + columnQuadraticLength[iColumn]; j++) { |
| 1048 | int jColumn = columnQuadratic[j]; |
| 1049 | which[jColumn] = 1; |
| 1050 | which[iColumn] = 1; |
| 1051 | } |
| 1052 | } |
| 1053 | int numberNonLinearColumns = 0; |
| 1054 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
| 1055 | if(which[iColumn]) |
| 1056 | numberNonLinearColumns++; |
| 1057 | } |
| 1058 | return numberNonLinearColumns; |
| 1059 | } |
| 1060 | |