1 | /* $Id: ClpSimplexPrimal.cpp 1870 2012-07-22 16:13:48Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | /* Notes on implementation of primal simplex algorithm. |
7 | |
8 | When primal feasible(A): |
9 | |
10 | If dual feasible, we are optimal. Otherwise choose an infeasible |
11 | basic variable to enter basis from a bound (B). We now need to find an |
12 | outgoing variable which will leave problem primal feasible so we get |
13 | the column of the tableau corresponding to the incoming variable |
14 | (with the correct sign depending if variable will go up or down). |
15 | |
16 | We now perform a ratio test to determine which outgoing variable will |
17 | preserve primal feasibility (C). If no variable found then problem |
18 | is unbounded (in primal sense). If there is a variable, we then |
19 | perform pivot and repeat. Trivial? |
20 | |
21 | ------------------------------------------- |
22 | |
23 | A) How do we get primal feasible? All variables have fake costs |
24 | outside their feasible region so it is trivial to declare problem |
25 | feasible. OSL did not have a phase 1/phase 2 approach but |
26 | instead effectively put an extra cost on infeasible basic variables |
27 | I am taking the same approach here, although it is generalized |
28 | to allow for non-linear costs and dual information. |
29 | |
30 | In OSL, this weight was changed heuristically, here at present |
31 | it is only increased if problem looks finished. If problem is |
32 | feasible I check for unboundedness. If not unbounded we |
33 | could play with going into dual. As long as weights increase |
34 | any algorithm would be finite. |
35 | |
36 | B) Which incoming variable to choose is a virtual base class. |
37 | For difficult problems steepest edge is preferred while for |
38 | very easy (large) problems we will need partial scan. |
39 | |
40 | C) Sounds easy, but this is hardest part of algorithm. |
41 | 1) Instead of stopping at first choice, we may be able |
42 | to allow that variable to go through bound and if objective |
43 | still improving choose again. These mini iterations can |
44 | increase speed by orders of magnitude but we may need to |
45 | go to more of a bucket choice of variable rather than looking |
46 | at them one by one (for speed). |
47 | 2) Accuracy. Basic infeasibilities may be less than |
48 | tolerance. Pivoting on these makes objective go backwards. |
49 | OSL modified cost so a zero move was made, Gill et al |
50 | modified so a strictly positive move was made. |
51 | The two problems are that re-factorizations can |
52 | change rinfeasibilities above and below tolerances and that when |
53 | finished we need to reset costs and try again. |
54 | 3) Degeneracy. Gill et al helps but may not be enough. We |
55 | may need more. Also it can improve speed a lot if we perturb |
56 | the rhs and bounds significantly. |
57 | |
58 | References: |
59 | Forrest and Goldfarb, Steepest-edge simplex algorithms for |
60 | linear programming - Mathematical Programming 1992 |
61 | Forrest and Tomlin, Implementing the simplex method for |
62 | the Optimization Subroutine Library - IBM Systems Journal 1992 |
63 | Gill, Murray, Saunders, Wright A Practical Anti-Cycling |
64 | Procedure for Linear and Nonlinear Programming SOL report 1988 |
65 | |
66 | |
67 | TODO: |
68 | |
69 | a) Better recovery procedures. At present I never check on forward |
70 | progress. There is checkpoint/restart with reducing |
71 | re-factorization frequency, but this is only on singular |
72 | factorizations. |
73 | b) Fast methods for large easy problems (and also the option for |
74 | the code to automatically choose which method). |
75 | c) We need to be able to stop in various ways for OSI - this |
76 | is fairly easy. |
77 | |
78 | */ |
79 | |
80 | |
81 | #include "CoinPragma.hpp" |
82 | |
83 | #include <math.h> |
84 | |
85 | #include "CoinHelperFunctions.hpp" |
86 | #include "ClpSimplexPrimal.hpp" |
87 | #include "ClpFactorization.hpp" |
88 | #include "ClpNonLinearCost.hpp" |
89 | #include "CoinPackedMatrix.hpp" |
90 | #include "CoinIndexedVector.hpp" |
91 | #include "ClpPrimalColumnPivot.hpp" |
92 | #include "ClpMessage.hpp" |
93 | #include "ClpEventHandler.hpp" |
94 | #include <cfloat> |
95 | #include <cassert> |
96 | #include <string> |
97 | #include <stdio.h> |
98 | #include <iostream> |
99 | #ifdef CLP_USER_DRIVEN1 |
100 | /* Returns true if variable sequenceOut can leave basis when |
101 | model->sequenceIn() enters. |
102 | This function may be entered several times for each sequenceOut. |
103 | The first time realAlpha will be positive if going to lower bound |
104 | and negative if going to upper bound (scaled bounds in lower,upper) - then will be zero. |
105 | currentValue is distance to bound. |
106 | currentTheta is current theta. |
107 | alpha is fabs(pivot element). |
108 | Variable will change theta if currentValue - currentTheta*alpha < 0.0 |
109 | */ |
110 | bool userChoiceValid1(const ClpSimplex * model, |
111 | int sequenceOut, |
112 | double currentValue, |
113 | double currentTheta, |
114 | double alpha, |
115 | double realAlpha); |
116 | /* This returns true if chosen in/out pair valid. |
117 | The main thing to check would be variable flipping bounds may be |
118 | OK. This would be signaled by reasonable theta_ and valueOut_. |
119 | If you return false sequenceIn_ will be flagged as ineligible. |
120 | */ |
121 | bool userChoiceValid2(const ClpSimplex * model); |
122 | /* If a good pivot then you may wish to unflag some variables. |
123 | */ |
124 | void userChoiceWasGood(ClpSimplex * model); |
125 | #endif |
126 | // primal |
127 | int ClpSimplexPrimal::primal (int ifValuesPass , int startFinishOptions) |
128 | { |
129 | |
130 | /* |
131 | Method |
132 | |
133 | It tries to be a single phase approach with a weight of 1.0 being |
134 | given to getting optimal and a weight of infeasibilityCost_ being |
135 | given to getting primal feasible. In this version I have tried to |
136 | be clever in a stupid way. The idea of fake bounds in dual |
137 | seems to work so the primal analogue would be that of getting |
138 | bounds on reduced costs (by a presolve approach) and using |
139 | these for being above or below feasible region. I decided to waste |
140 | memory and keep these explicitly. This allows for non-linear |
141 | costs! |
142 | |
143 | The code is designed to take advantage of sparsity so arrays are |
144 | seldom zeroed out from scratch or gone over in their entirety. |
145 | The only exception is a full scan to find incoming variable for |
146 | Dantzig row choice. For steepest edge we keep an updated list |
147 | of dual infeasibilities (actually squares). |
148 | On easy problems we don't need full scan - just |
149 | pick first reasonable. |
150 | |
151 | One problem is how to tackle degeneracy and accuracy. At present |
152 | I am using the modification of costs which I put in OSL and which was |
153 | extended by Gill et al. I am still not sure of the exact details. |
154 | |
155 | The flow of primal is three while loops as follows: |
156 | |
157 | while (not finished) { |
158 | |
159 | while (not clean solution) { |
160 | |
161 | Factorize and/or clean up solution by changing bounds so |
162 | primal feasible. If looks finished check fake primal bounds. |
163 | Repeat until status is iterating (-1) or finished (0,1,2) |
164 | |
165 | } |
166 | |
167 | while (status==-1) { |
168 | |
169 | Iterate until no pivot in or out or time to re-factorize. |
170 | |
171 | Flow is: |
172 | |
173 | choose pivot column (incoming variable). if none then |
174 | we are primal feasible so looks as if done but we need to |
175 | break and check bounds etc. |
176 | |
177 | Get pivot column in tableau |
178 | |
179 | Choose outgoing row. If we don't find one then we look |
180 | primal unbounded so break and check bounds etc. (Also the |
181 | pivot tolerance is larger after any iterations so that may be |
182 | reason) |
183 | |
184 | If we do find outgoing row, we may have to adjust costs to |
185 | keep going forwards (anti-degeneracy). Check pivot will be stable |
186 | and if unstable throw away iteration and break to re-factorize. |
187 | If minor error re-factorize after iteration. |
188 | |
189 | Update everything (this may involve changing bounds on |
190 | variables to stay primal feasible. |
191 | |
192 | } |
193 | |
194 | } |
195 | |
196 | At present we never check we are going forwards. I overdid that in |
197 | OSL so will try and make a last resort. |
198 | |
199 | Needs partial scan pivot in option. |
200 | |
201 | May need other anti-degeneracy measures, especially if we try and use |
202 | loose tolerances as a way to solve in fewer iterations. |
203 | |
204 | I like idea of dynamic scaling. This gives opportunity to decouple |
205 | different implications of scaling for accuracy, iteration count and |
206 | feasibility tolerance. |
207 | |
208 | */ |
209 | |
210 | algorithm_ = +1; |
211 | moreSpecialOptions_ &= ~16; // clear check replaceColumn accuracy |
212 | |
213 | // save data |
214 | ClpDataSave data = saveData(); |
215 | matrix_->refresh(this); // make sure matrix okay |
216 | |
217 | // Save so can see if doing after dual |
218 | int initialStatus = problemStatus_; |
219 | int initialIterations = numberIterations_; |
220 | int initialNegDjs = -1; |
221 | // initialize - maybe values pass and algorithm_ is +1 |
222 | #if 0 |
223 | // if so - put in any superbasic costed slacks |
224 | if (ifValuesPass && specialOptions_ < 0x01000000) { |
225 | // Get column copy |
226 | const CoinPackedMatrix * columnCopy = matrix(); |
227 | const int * row = columnCopy->getIndices(); |
228 | const CoinBigIndex * columnStart = columnCopy->getVectorStarts(); |
229 | const int * columnLength = columnCopy->getVectorLengths(); |
230 | //const double * element = columnCopy->getElements(); |
231 | int n = 0; |
232 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
233 | if (columnLength[iColumn] == 1) { |
234 | Status status = getColumnStatus(iColumn); |
235 | if (status != basic && status != isFree) { |
236 | double value = columnActivity_[iColumn]; |
237 | if (fabs(value - columnLower_[iColumn]) > primalTolerance_ && |
238 | fabs(value - columnUpper_[iColumn]) > primalTolerance_) { |
239 | int iRow = row[columnStart[iColumn]]; |
240 | if (getRowStatus(iRow) == basic) { |
241 | setRowStatus(iRow, superBasic); |
242 | setColumnStatus(iColumn, basic); |
243 | n++; |
244 | } |
245 | } |
246 | } |
247 | } |
248 | } |
249 | printf("%d costed slacks put in basis\n" , n); |
250 | } |
251 | #endif |
252 | // Start can skip some things in transposeTimes |
253 | specialOptions_ |= 131072; |
254 | if (!startup(ifValuesPass, startFinishOptions)) { |
255 | |
256 | // Set average theta |
257 | nonLinearCost_->setAverageTheta(1.0e3); |
258 | int lastCleaned = 0; // last time objective or bounds cleaned up |
259 | |
260 | // Say no pivot has occurred (for steepest edge and updates) |
261 | pivotRow_ = -2; |
262 | |
263 | // This says whether to restore things etc |
264 | int factorType = 0; |
265 | if (problemStatus_ < 0 && perturbation_ < 100 && !ifValuesPass) { |
266 | perturb(0); |
267 | // Can't get here if values pass |
268 | assert (!ifValuesPass); |
269 | gutsOfSolution(NULL, NULL); |
270 | if (handler_->logLevel() > 2) { |
271 | handler_->message(CLP_SIMPLEX_STATUS, messages_) |
272 | << numberIterations_ << objectiveValue(); |
273 | handler_->printing(sumPrimalInfeasibilities_ > 0.0) |
274 | << sumPrimalInfeasibilities_ << numberPrimalInfeasibilities_; |
275 | handler_->printing(sumDualInfeasibilities_ > 0.0) |
276 | << sumDualInfeasibilities_ << numberDualInfeasibilities_; |
277 | handler_->printing(numberDualInfeasibilitiesWithoutFree_ |
278 | < numberDualInfeasibilities_) |
279 | << numberDualInfeasibilitiesWithoutFree_; |
280 | handler_->message() << CoinMessageEol; |
281 | } |
282 | } |
283 | ClpSimplex * saveModel = NULL; |
284 | int stopSprint = -1; |
285 | int sprintPass = 0; |
286 | int reasonableSprintIteration = 0; |
287 | int lastSprintIteration = 0; |
288 | double lastObjectiveValue = COIN_DBL_MAX; |
289 | // Start check for cycles |
290 | progress_.fillFromModel(this); |
291 | progress_.startCheck(); |
292 | /* |
293 | Status of problem: |
294 | 0 - optimal |
295 | 1 - infeasible |
296 | 2 - unbounded |
297 | -1 - iterating |
298 | -2 - factorization wanted |
299 | -3 - redo checking without factorization |
300 | -4 - looks infeasible |
301 | -5 - looks unbounded |
302 | */ |
303 | while (problemStatus_ < 0) { |
304 | int iRow, iColumn; |
305 | // clear |
306 | for (iRow = 0; iRow < 4; iRow++) { |
307 | rowArray_[iRow]->clear(); |
308 | } |
309 | |
310 | for (iColumn = 0; iColumn < 2; iColumn++) { |
311 | columnArray_[iColumn]->clear(); |
312 | } |
313 | |
314 | // give matrix (and model costs and bounds a chance to be |
315 | // refreshed (normally null) |
316 | matrix_->refresh(this); |
317 | // If getting nowhere - why not give it a kick |
318 | #if 1 |
319 | if (perturbation_ < 101 && numberIterations_ > 2 * (numberRows_ + numberColumns_) && (specialOptions_ & 4) == 0 |
320 | && initialStatus != 10) { |
321 | perturb(1); |
322 | matrix_->rhsOffset(this, true, false); |
323 | } |
324 | #endif |
325 | // If we have done no iterations - special |
326 | if (lastGoodIteration_ == numberIterations_ && factorType) |
327 | factorType = 3; |
328 | if (saveModel) { |
329 | // Doing sprint |
330 | if (sequenceIn_ < 0 || numberIterations_ >= stopSprint) { |
331 | problemStatus_ = -1; |
332 | originalModel(saveModel); |
333 | saveModel = NULL; |
334 | if (sequenceIn_ < 0 && numberIterations_ < reasonableSprintIteration && |
335 | sprintPass > 100) |
336 | primalColumnPivot_->switchOffSprint(); |
337 | //lastSprintIteration=numberIterations_; |
338 | COIN_DETAIL_PRINT(printf("End small model\n" )); |
339 | } |
340 | } |
341 | |
342 | // may factorize, checks if problem finished |
343 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
344 | if (initialStatus == 10) { |
345 | // cleanup phase |
346 | if(initialIterations != numberIterations_) { |
347 | if (numberDualInfeasibilities_ > 10000 && numberDualInfeasibilities_ > 10 * initialNegDjs) { |
348 | // getting worse - try perturbing |
349 | if (perturbation_ < 101 && (specialOptions_ & 4) == 0) { |
350 | perturb(1); |
351 | matrix_->rhsOffset(this, true, false); |
352 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
353 | } |
354 | } |
355 | } else { |
356 | // save number of negative djs |
357 | if (!numberPrimalInfeasibilities_) |
358 | initialNegDjs = numberDualInfeasibilities_; |
359 | // make sure weight won't be changed |
360 | if (infeasibilityCost_ == 1.0e10) |
361 | infeasibilityCost_ = 1.000001e10; |
362 | } |
363 | } |
364 | // See if sprint says redo because of problems |
365 | if (numberDualInfeasibilities_ == -776) { |
366 | // Need new set of variables |
367 | problemStatus_ = -1; |
368 | originalModel(saveModel); |
369 | saveModel = NULL; |
370 | //lastSprintIteration=numberIterations_; |
371 | COIN_DETAIL_PRINT(printf("End small model after\n" )); |
372 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
373 | } |
374 | int numberSprintIterations = 0; |
375 | int numberSprintColumns = primalColumnPivot_->numberSprintColumns(numberSprintIterations); |
376 | if (problemStatus_ == 777) { |
377 | // problems so do one pass with normal |
378 | problemStatus_ = -1; |
379 | originalModel(saveModel); |
380 | saveModel = NULL; |
381 | // Skip factorization |
382 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,false,saveModel); |
383 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
384 | } else if (problemStatus_ < 0 && !saveModel && numberSprintColumns && firstFree_ < 0) { |
385 | int numberSort = 0; |
386 | int numberFixed = 0; |
387 | int numberBasic = 0; |
388 | reasonableSprintIteration = numberIterations_ + 100; |
389 | int * whichColumns = new int[numberColumns_]; |
390 | double * weight = new double[numberColumns_]; |
391 | int numberNegative = 0; |
392 | double sumNegative = 0.0; |
393 | // now massage weight so all basic in plus good djs |
394 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
395 | double dj = dj_[iColumn]; |
396 | switch(getColumnStatus(iColumn)) { |
397 | |
398 | case basic: |
399 | dj = -1.0e50; |
400 | numberBasic++; |
401 | break; |
402 | case atUpperBound: |
403 | dj = -dj; |
404 | break; |
405 | case isFixed: |
406 | dj = 1.0e50; |
407 | numberFixed++; |
408 | break; |
409 | case atLowerBound: |
410 | dj = dj; |
411 | break; |
412 | case isFree: |
413 | dj = -100.0 * fabs(dj); |
414 | break; |
415 | case superBasic: |
416 | dj = -100.0 * fabs(dj); |
417 | break; |
418 | } |
419 | if (dj < -dualTolerance_ && dj > -1.0e50) { |
420 | numberNegative++; |
421 | sumNegative -= dj; |
422 | } |
423 | weight[iColumn] = dj; |
424 | whichColumns[iColumn] = iColumn; |
425 | } |
426 | handler_->message(CLP_SPRINT, messages_) |
427 | << sprintPass << numberIterations_ - lastSprintIteration << objectiveValue() << sumNegative |
428 | << numberNegative |
429 | << CoinMessageEol; |
430 | sprintPass++; |
431 | lastSprintIteration = numberIterations_; |
432 | if (objectiveValue()*optimizationDirection_ > lastObjectiveValue - 1.0e-7 && sprintPass > 5) { |
433 | // switch off |
434 | COIN_DETAIL_PRINT(printf("Switching off sprint\n" )); |
435 | primalColumnPivot_->switchOffSprint(); |
436 | } else { |
437 | lastObjectiveValue = objectiveValue() * optimizationDirection_; |
438 | // sort |
439 | CoinSort_2(weight, weight + numberColumns_, whichColumns); |
440 | numberSort = CoinMin(numberColumns_ - numberFixed, numberBasic + numberSprintColumns); |
441 | // Sort to make consistent ? |
442 | std::sort(whichColumns, whichColumns + numberSort); |
443 | saveModel = new ClpSimplex(this, numberSort, whichColumns); |
444 | delete [] whichColumns; |
445 | delete [] weight; |
446 | // Skip factorization |
447 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,false,saveModel); |
448 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,true,saveModel); |
449 | stopSprint = numberIterations_ + numberSprintIterations; |
450 | COIN_DETAIL_PRINT(printf("Sprint with %d columns for %d iterations\n" , |
451 | numberSprintColumns, numberSprintIterations)); |
452 | } |
453 | } |
454 | |
455 | // Say good factorization |
456 | factorType = 1; |
457 | |
458 | // Say no pivot has occurred (for steepest edge and updates) |
459 | pivotRow_ = -2; |
460 | |
461 | // exit if victory declared |
462 | if (problemStatus_ >= 0) |
463 | break; |
464 | |
465 | // test for maximum iterations |
466 | if (hitMaximumIterations() || (ifValuesPass == 2 && firstFree_ < 0)) { |
467 | problemStatus_ = 3; |
468 | break; |
469 | } |
470 | |
471 | if (firstFree_ < 0) { |
472 | if (ifValuesPass) { |
473 | // end of values pass |
474 | ifValuesPass = 0; |
475 | int status = eventHandler_->event(ClpEventHandler::endOfValuesPass); |
476 | if (status >= 0) { |
477 | problemStatus_ = 5; |
478 | secondaryStatus_ = ClpEventHandler::endOfValuesPass; |
479 | break; |
480 | } |
481 | //#define FEB_TRY |
482 | #ifdef FEB_TRY |
483 | if (perturbation_ < 100) |
484 | perturb(0); |
485 | #endif |
486 | } |
487 | } |
488 | // Check event |
489 | { |
490 | int status = eventHandler_->event(ClpEventHandler::endOfFactorization); |
491 | if (status >= 0) { |
492 | problemStatus_ = 5; |
493 | secondaryStatus_ = ClpEventHandler::endOfFactorization; |
494 | break; |
495 | } |
496 | } |
497 | // Iterate |
498 | whileIterating(ifValuesPass ? 1 : 0); |
499 | } |
500 | } |
501 | // if infeasible get real values |
502 | //printf("XXXXY final cost %g\n",infeasibilityCost_); |
503 | progress_.initialWeight_ = 0.0; |
504 | if (problemStatus_ == 1 && secondaryStatus_ != 6) { |
505 | infeasibilityCost_ = 0.0; |
506 | createRim(1 + 4); |
507 | delete nonLinearCost_; |
508 | nonLinearCost_ = new ClpNonLinearCost(this); |
509 | nonLinearCost_->checkInfeasibilities(0.0); |
510 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
511 | numberPrimalInfeasibilities_ = nonLinearCost_->numberInfeasibilities(); |
512 | // and get good feasible duals |
513 | computeDuals(NULL); |
514 | } |
515 | // Stop can skip some things in transposeTimes |
516 | specialOptions_ &= ~131072; |
517 | // clean up |
518 | unflag(); |
519 | finish(startFinishOptions); |
520 | restoreData(data); |
521 | return problemStatus_; |
522 | } |
523 | /* |
524 | Reasons to come out: |
525 | -1 iterations etc |
526 | -2 inaccuracy |
527 | -3 slight inaccuracy (and done iterations) |
528 | -4 end of values pass and done iterations |
529 | +0 looks optimal (might be infeasible - but we will investigate) |
530 | +2 looks unbounded |
531 | +3 max iterations |
532 | */ |
533 | int |
534 | ClpSimplexPrimal::whileIterating(int valuesOption) |
535 | { |
536 | // Say if values pass |
537 | int ifValuesPass = (firstFree_ >= 0) ? 1 : 0; |
538 | int returnCode = -1; |
539 | int superBasicType = 1; |
540 | if (valuesOption > 1) |
541 | superBasicType = 3; |
542 | // status stays at -1 while iterating, >=0 finished, -2 to invert |
543 | // status -3 to go to top without an invert |
544 | while (problemStatus_ == -1) { |
545 | //#define CLP_DEBUG 1 |
546 | #ifdef CLP_DEBUG |
547 | { |
548 | int i; |
549 | // not [1] as has information |
550 | for (i = 0; i < 4; i++) { |
551 | if (i != 1) |
552 | rowArray_[i]->checkClear(); |
553 | } |
554 | for (i = 0; i < 2; i++) { |
555 | columnArray_[i]->checkClear(); |
556 | } |
557 | } |
558 | #endif |
559 | #if 0 |
560 | { |
561 | int iPivot; |
562 | double * array = rowArray_[3]->denseVector(); |
563 | int * index = rowArray_[3]->getIndices(); |
564 | int i; |
565 | for (iPivot = 0; iPivot < numberRows_; iPivot++) { |
566 | int iSequence = pivotVariable_[iPivot]; |
567 | unpackPacked(rowArray_[3], iSequence); |
568 | factorization_->updateColumn(rowArray_[2], rowArray_[3]); |
569 | int number = rowArray_[3]->getNumElements(); |
570 | for (i = 0; i < number; i++) { |
571 | int iRow = index[i]; |
572 | if (iRow == iPivot) |
573 | assert (fabs(array[i] - 1.0) < 1.0e-4); |
574 | else |
575 | assert (fabs(array[i]) < 1.0e-4); |
576 | } |
577 | rowArray_[3]->clear(); |
578 | } |
579 | } |
580 | #endif |
581 | #if 0 |
582 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
583 | printf("suminf %g number %d\n" , nonLinearCost_->sumInfeasibilities(), |
584 | nonLinearCost_->numberInfeasibilities()); |
585 | #endif |
586 | #if CLP_DEBUG>2 |
587 | // very expensive |
588 | if (numberIterations_ > 0 && numberIterations_ < 100 && !ifValuesPass) { |
589 | handler_->setLogLevel(63); |
590 | double saveValue = objectiveValue_; |
591 | double * saveRow1 = new double[numberRows_]; |
592 | double * saveRow2 = new double[numberRows_]; |
593 | CoinMemcpyN(rowReducedCost_, numberRows_, saveRow1); |
594 | CoinMemcpyN(rowActivityWork_, numberRows_, saveRow2); |
595 | double * saveColumn1 = new double[numberColumns_]; |
596 | double * saveColumn2 = new double[numberColumns_]; |
597 | CoinMemcpyN(reducedCostWork_, numberColumns_, saveColumn1); |
598 | CoinMemcpyN(columnActivityWork_, numberColumns_, saveColumn2); |
599 | gutsOfSolution(NULL, NULL, false); |
600 | printf("xxx %d old obj %g, recomputed %g, sum primal inf %g\n" , |
601 | numberIterations_, |
602 | saveValue, objectiveValue_, sumPrimalInfeasibilities_); |
603 | CoinMemcpyN(saveRow1, numberRows_, rowReducedCost_); |
604 | CoinMemcpyN(saveRow2, numberRows_, rowActivityWork_); |
605 | CoinMemcpyN(saveColumn1, numberColumns_, reducedCostWork_); |
606 | CoinMemcpyN(saveColumn2, numberColumns_, columnActivityWork_); |
607 | delete [] saveRow1; |
608 | delete [] saveRow2; |
609 | delete [] saveColumn1; |
610 | delete [] saveColumn2; |
611 | objectiveValue_ = saveValue; |
612 | } |
613 | #endif |
614 | if (!ifValuesPass) { |
615 | // choose column to come in |
616 | // can use pivotRow_ to update weights |
617 | // pass in list of cost changes so can do row updates (rowArray_[1]) |
618 | // NOTE rowArray_[0] is used by computeDuals which is a |
619 | // slow way of getting duals but might be used |
620 | primalColumn(rowArray_[1], rowArray_[2], rowArray_[3], |
621 | columnArray_[0], columnArray_[1]); |
622 | } else { |
623 | // in values pass |
624 | int sequenceIn = nextSuperBasic(superBasicType, columnArray_[0]); |
625 | if (valuesOption > 1) |
626 | superBasicType = 2; |
627 | if (sequenceIn < 0) { |
628 | // end of values pass - initialize weights etc |
629 | handler_->message(CLP_END_VALUES_PASS, messages_) |
630 | << numberIterations_; |
631 | primalColumnPivot_->saveWeights(this, 5); |
632 | problemStatus_ = -2; // factorize now |
633 | pivotRow_ = -1; // say no weights update |
634 | returnCode = -4; |
635 | // Clean up |
636 | int i; |
637 | for (i = 0; i < numberRows_ + numberColumns_; i++) { |
638 | if (getColumnStatus(i) == atLowerBound || getColumnStatus(i) == isFixed) |
639 | solution_[i] = lower_[i]; |
640 | else if (getColumnStatus(i) == atUpperBound) |
641 | solution_[i] = upper_[i]; |
642 | } |
643 | break; |
644 | } else { |
645 | // normal |
646 | sequenceIn_ = sequenceIn; |
647 | valueIn_ = solution_[sequenceIn_]; |
648 | lowerIn_ = lower_[sequenceIn_]; |
649 | upperIn_ = upper_[sequenceIn_]; |
650 | dualIn_ = dj_[sequenceIn_]; |
651 | } |
652 | } |
653 | pivotRow_ = -1; |
654 | sequenceOut_ = -1; |
655 | rowArray_[1]->clear(); |
656 | if (sequenceIn_ >= 0) { |
657 | // we found a pivot column |
658 | assert (!flagged(sequenceIn_)); |
659 | #ifdef CLP_DEBUG |
660 | if ((handler_->logLevel() & 32)) { |
661 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
662 | std::cout << "pivot column " << |
663 | x << sequenceWithin(sequenceIn_) << std::endl; |
664 | } |
665 | #endif |
666 | #ifdef CLP_DEBUG |
667 | { |
668 | int checkSequence = -2077; |
669 | if (checkSequence >= 0 && checkSequence < numberRows_ + numberColumns_ && !ifValuesPass) { |
670 | rowArray_[2]->checkClear(); |
671 | rowArray_[3]->checkClear(); |
672 | double * array = rowArray_[3]->denseVector(); |
673 | int * index = rowArray_[3]->getIndices(); |
674 | unpackPacked(rowArray_[3], checkSequence); |
675 | factorization_->updateColumnForDebug(rowArray_[2], rowArray_[3]); |
676 | int number = rowArray_[3]->getNumElements(); |
677 | double dualIn = cost_[checkSequence]; |
678 | int i; |
679 | for (i = 0; i < number; i++) { |
680 | int iRow = index[i]; |
681 | int iPivot = pivotVariable_[iRow]; |
682 | double alpha = array[i]; |
683 | dualIn -= alpha * cost_[iPivot]; |
684 | } |
685 | printf("old dj for %d was %g, recomputed %g\n" , checkSequence, |
686 | dj_[checkSequence], dualIn); |
687 | rowArray_[3]->clear(); |
688 | if (numberIterations_ > 2000) |
689 | exit(1); |
690 | } |
691 | } |
692 | #endif |
693 | // do second half of iteration |
694 | returnCode = pivotResult(ifValuesPass); |
695 | if (returnCode < -1 && returnCode > -5) { |
696 | problemStatus_ = -2; // |
697 | } else if (returnCode == -5) { |
698 | if ((moreSpecialOptions_ & 16) == 0 && factorization_->pivots()) { |
699 | moreSpecialOptions_ |= 16; |
700 | problemStatus_ = -2; |
701 | } |
702 | // otherwise something flagged - continue; |
703 | } else if (returnCode == 2) { |
704 | problemStatus_ = -5; // looks unbounded |
705 | } else if (returnCode == 4) { |
706 | problemStatus_ = -2; // looks unbounded but has iterated |
707 | } else if (returnCode != -1) { |
708 | assert(returnCode == 3); |
709 | if (problemStatus_ != 5) |
710 | problemStatus_ = 3; |
711 | } |
712 | } else { |
713 | // no pivot column |
714 | #ifdef CLP_DEBUG |
715 | if (handler_->logLevel() & 32) |
716 | printf("** no column pivot\n" ); |
717 | #endif |
718 | if (nonLinearCost_->numberInfeasibilities()) |
719 | problemStatus_ = -4; // might be infeasible |
720 | // Force to re-factorize early next time |
721 | int numberPivots = factorization_->pivots(); |
722 | forceFactorization_ = CoinMin(forceFactorization_, (numberPivots + 1) >> 1); |
723 | returnCode = 0; |
724 | break; |
725 | } |
726 | } |
727 | if (valuesOption > 1) |
728 | columnArray_[0]->setNumElements(0); |
729 | return returnCode; |
730 | } |
731 | /* Checks if finished. Updates status */ |
732 | void |
733 | ClpSimplexPrimal::statusOfProblemInPrimal(int & lastCleaned, int type, |
734 | ClpSimplexProgress * progress, |
735 | bool doFactorization, |
736 | int ifValuesPass, |
737 | ClpSimplex * originalModel) |
738 | { |
739 | int dummy; // for use in generalExpanded |
740 | int saveFirstFree = firstFree_; |
741 | // number of pivots done |
742 | int numberPivots = factorization_->pivots(); |
743 | if (type == 2) { |
744 | // trouble - restore solution |
745 | CoinMemcpyN(saveStatus_, numberColumns_ + numberRows_, status_); |
746 | CoinMemcpyN(savedSolution_ + numberColumns_ , |
747 | numberRows_, rowActivityWork_); |
748 | CoinMemcpyN(savedSolution_ , |
749 | numberColumns_, columnActivityWork_); |
750 | // restore extra stuff |
751 | matrix_->generalExpanded(this, 6, dummy); |
752 | forceFactorization_ = 1; // a bit drastic but .. |
753 | pivotRow_ = -1; // say no weights update |
754 | changeMade_++; // say change made |
755 | } |
756 | int saveThreshold = factorization_->sparseThreshold(); |
757 | int tentativeStatus = problemStatus_; |
758 | int numberThrownOut = 1; // to loop round on bad factorization in values pass |
759 | double lastSumInfeasibility = COIN_DBL_MAX; |
760 | if (numberIterations_) |
761 | lastSumInfeasibility = nonLinearCost_->sumInfeasibilities(); |
762 | int nPass = 0; |
763 | while (numberThrownOut) { |
764 | int nSlackBasic = 0; |
765 | if (nPass) { |
766 | for (int i = 0; i < numberRows_; i++) { |
767 | if (getRowStatus(i) == basic) |
768 | nSlackBasic++; |
769 | } |
770 | } |
771 | nPass++; |
772 | if (problemStatus_ > -3 || problemStatus_ == -4) { |
773 | // factorize |
774 | // later on we will need to recover from singularities |
775 | // also we could skip if first time |
776 | // do weights |
777 | // This may save pivotRow_ for use |
778 | if (doFactorization) |
779 | primalColumnPivot_->saveWeights(this, 1); |
780 | |
781 | if ((type && doFactorization) || nSlackBasic == numberRows_) { |
782 | // is factorization okay? |
783 | int factorStatus = internalFactorize(1); |
784 | if (factorStatus) { |
785 | if (solveType_ == 2 + 8) { |
786 | // say odd |
787 | problemStatus_ = 5; |
788 | return; |
789 | } |
790 | if (type != 1 || largestPrimalError_ > 1.0e3 |
791 | || largestDualError_ > 1.0e3) { |
792 | // switch off dense |
793 | int saveDense = factorization_->denseThreshold(); |
794 | factorization_->setDenseThreshold(0); |
795 | // Go to safe |
796 | factorization_->pivotTolerance(0.99); |
797 | // make sure will do safe factorization |
798 | pivotVariable_[0] = -1; |
799 | internalFactorize(2); |
800 | factorization_->setDenseThreshold(saveDense); |
801 | // restore extra stuff |
802 | matrix_->generalExpanded(this, 6, dummy); |
803 | } else { |
804 | // no - restore previous basis |
805 | // Keep any flagged variables |
806 | int i; |
807 | for (i = 0; i < numberRows_ + numberColumns_; i++) { |
808 | if (flagged(i)) |
809 | saveStatus_[i] |= 64; //say flagged |
810 | } |
811 | CoinMemcpyN(saveStatus_, numberColumns_ + numberRows_, status_); |
812 | if (numberPivots <= 1) { |
813 | // throw out something |
814 | if (sequenceIn_ >= 0 && getStatus(sequenceIn_) != basic) { |
815 | setFlagged(sequenceIn_); |
816 | } else if (sequenceOut_ >= 0 && getStatus(sequenceOut_) != basic) { |
817 | setFlagged(sequenceOut_); |
818 | } |
819 | double newTolerance = CoinMax(0.5 + 0.499 * randomNumberGenerator_.randomDouble(), factorization_->pivotTolerance()); |
820 | factorization_->pivotTolerance(newTolerance); |
821 | } else { |
822 | // Go to safe |
823 | factorization_->pivotTolerance(0.99); |
824 | } |
825 | CoinMemcpyN(savedSolution_ + numberColumns_ , |
826 | numberRows_, rowActivityWork_); |
827 | CoinMemcpyN(savedSolution_ , |
828 | numberColumns_, columnActivityWork_); |
829 | // restore extra stuff |
830 | matrix_->generalExpanded(this, 6, dummy); |
831 | matrix_->generalExpanded(this, 5, dummy); |
832 | forceFactorization_ = 1; // a bit drastic but .. |
833 | type = 2; |
834 | if (internalFactorize(2) != 0) { |
835 | largestPrimalError_ = 1.0e4; // force other type |
836 | } |
837 | } |
838 | changeMade_++; // say change made |
839 | } |
840 | } |
841 | if (problemStatus_ != -4) |
842 | problemStatus_ = -3; |
843 | } |
844 | // at this stage status is -3 or -5 if looks unbounded |
845 | // get primal and dual solutions |
846 | // put back original costs and then check |
847 | // createRim(4); // costs do not change |
848 | // May need to do more if column generation |
849 | dummy = 4; |
850 | matrix_->generalExpanded(this, 9, dummy); |
851 | #ifndef CLP_CAUTION |
852 | #define CLP_CAUTION 1 |
853 | #endif |
854 | #if CLP_CAUTION |
855 | double lastAverageInfeasibility = sumDualInfeasibilities_ / |
856 | static_cast<double>(numberDualInfeasibilities_ + 10); |
857 | #endif |
858 | numberThrownOut = gutsOfSolution(NULL, NULL, (firstFree_ >= 0)); |
859 | double sumInfeasibility = nonLinearCost_->sumInfeasibilities(); |
860 | int reason2 = 0; |
861 | #if CLP_CAUTION |
862 | #if CLP_CAUTION==2 |
863 | double test2 = 1.0e5; |
864 | #else |
865 | double test2 = 1.0e-1; |
866 | #endif |
867 | if (!lastSumInfeasibility && sumInfeasibility && |
868 | lastAverageInfeasibility < test2 && numberPivots > 10) |
869 | reason2 = 3; |
870 | if (lastSumInfeasibility < 1.0e-6 && sumInfeasibility > 1.0e-3 && |
871 | numberPivots > 10) |
872 | reason2 = 4; |
873 | #endif |
874 | if (numberThrownOut) |
875 | reason2 = 1; |
876 | if ((sumInfeasibility > 1.0e7 && sumInfeasibility > 100.0 * lastSumInfeasibility |
877 | && factorization_->pivotTolerance() < 0.11) || |
878 | (largestPrimalError_ > 1.0e10 && largestDualError_ > 1.0e10)) |
879 | reason2 = 2; |
880 | if (reason2) { |
881 | problemStatus_ = tentativeStatus; |
882 | doFactorization = true; |
883 | if (numberPivots) { |
884 | // go back |
885 | // trouble - restore solution |
886 | CoinMemcpyN(saveStatus_, numberColumns_ + numberRows_, status_); |
887 | CoinMemcpyN(savedSolution_ + numberColumns_ , |
888 | numberRows_, rowActivityWork_); |
889 | CoinMemcpyN(savedSolution_ , |
890 | numberColumns_, columnActivityWork_); |
891 | // restore extra stuff |
892 | matrix_->generalExpanded(this, 6, dummy); |
893 | if (reason2 < 3) { |
894 | // Go to safe |
895 | factorization_->pivotTolerance(CoinMin(0.99, 1.01 * factorization_->pivotTolerance())); |
896 | forceFactorization_ = 1; // a bit drastic but .. |
897 | } else if (forceFactorization_ < 0) { |
898 | forceFactorization_ = CoinMin(numberPivots / 2, 100); |
899 | } else { |
900 | forceFactorization_ = CoinMin(forceFactorization_, |
901 | CoinMax(3, numberPivots / 2)); |
902 | } |
903 | pivotRow_ = -1; // say no weights update |
904 | changeMade_++; // say change made |
905 | if (numberPivots == 1) { |
906 | // throw out something |
907 | if (sequenceIn_ >= 0 && getStatus(sequenceIn_) != basic) { |
908 | setFlagged(sequenceIn_); |
909 | } else if (sequenceOut_ >= 0 && getStatus(sequenceOut_) != basic) { |
910 | setFlagged(sequenceOut_); |
911 | } |
912 | } |
913 | type = 2; // so will restore weights |
914 | if (internalFactorize(2) != 0) { |
915 | largestPrimalError_ = 1.0e4; // force other type |
916 | } |
917 | numberPivots = 0; |
918 | numberThrownOut = gutsOfSolution(NULL, NULL, (firstFree_ >= 0)); |
919 | assert (!numberThrownOut); |
920 | sumInfeasibility = nonLinearCost_->sumInfeasibilities(); |
921 | } |
922 | } |
923 | } |
924 | // Double check reduced costs if no action |
925 | if (progress->lastIterationNumber(0) == numberIterations_) { |
926 | if (primalColumnPivot_->looksOptimal()) { |
927 | numberDualInfeasibilities_ = 0; |
928 | sumDualInfeasibilities_ = 0.0; |
929 | } |
930 | } |
931 | // If in primal and small dj give up |
932 | if ((specialOptions_ & 1024) != 0 && !numberPrimalInfeasibilities_ && numberDualInfeasibilities_) { |
933 | double average = sumDualInfeasibilities_ / (static_cast<double> (numberDualInfeasibilities_)); |
934 | if (numberIterations_ > 300 && average < 1.0e-4) { |
935 | numberDualInfeasibilities_ = 0; |
936 | sumDualInfeasibilities_ = 0.0; |
937 | } |
938 | } |
939 | // Check if looping |
940 | int loop; |
941 | if (type != 2 && !ifValuesPass) |
942 | loop = progress->looping(); |
943 | else |
944 | loop = -1; |
945 | if (loop >= 0) { |
946 | if (!problemStatus_) { |
947 | // declaring victory |
948 | numberPrimalInfeasibilities_ = 0; |
949 | sumPrimalInfeasibilities_ = 0.0; |
950 | } else { |
951 | problemStatus_ = loop; //exit if in loop |
952 | problemStatus_ = 10; // instead - try other algorithm |
953 | numberPrimalInfeasibilities_ = nonLinearCost_->numberInfeasibilities(); |
954 | } |
955 | problemStatus_ = 10; // instead - try other algorithm |
956 | return ; |
957 | } else if (loop < -1) { |
958 | // Is it time for drastic measures |
959 | if (nonLinearCost_->numberInfeasibilities() && progress->badTimes() > 5 && |
960 | progress->oddState() < 10 && progress->oddState() >= 0) { |
961 | progress->newOddState(); |
962 | nonLinearCost_->zapCosts(); |
963 | } |
964 | // something may have changed |
965 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
966 | } |
967 | // If progress then reset costs |
968 | if (loop == -1 && !nonLinearCost_->numberInfeasibilities() && progress->oddState() < 0) { |
969 | createRim(4, false); // costs back |
970 | delete nonLinearCost_; |
971 | nonLinearCost_ = new ClpNonLinearCost(this); |
972 | progress->endOddState(); |
973 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
974 | } |
975 | // Flag to say whether to go to dual to clean up |
976 | bool goToDual = false; |
977 | // really for free variables in |
978 | //if((progressFlag_&2)!=0) |
979 | //problemStatus_=-1; |
980 | progressFlag_ = 0; //reset progress flag |
981 | |
982 | handler_->message(CLP_SIMPLEX_STATUS, messages_) |
983 | << numberIterations_ << nonLinearCost_->feasibleReportCost(); |
984 | handler_->printing(nonLinearCost_->numberInfeasibilities() > 0) |
985 | << nonLinearCost_->sumInfeasibilities() << nonLinearCost_->numberInfeasibilities(); |
986 | handler_->printing(sumDualInfeasibilities_ > 0.0) |
987 | << sumDualInfeasibilities_ << numberDualInfeasibilities_; |
988 | handler_->printing(numberDualInfeasibilitiesWithoutFree_ |
989 | < numberDualInfeasibilities_) |
990 | << numberDualInfeasibilitiesWithoutFree_; |
991 | handler_->message() << CoinMessageEol; |
992 | if (!primalFeasible()) { |
993 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
994 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
995 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
996 | } |
997 | if (nonLinearCost_->numberInfeasibilities() > 0 && !progress->initialWeight_ && !ifValuesPass && infeasibilityCost_ == 1.0e10) { |
998 | // first time infeasible - start up weight computation |
999 | double * oldDj = dj_; |
1000 | double * oldCost = cost_; |
1001 | int numberRows2 = numberRows_ + numberExtraRows_; |
1002 | int numberTotal = numberRows2 + numberColumns_; |
1003 | dj_ = new double[numberTotal]; |
1004 | cost_ = new double[numberTotal]; |
1005 | reducedCostWork_ = dj_; |
1006 | rowReducedCost_ = dj_ + numberColumns_; |
1007 | objectiveWork_ = cost_; |
1008 | rowObjectiveWork_ = cost_ + numberColumns_; |
1009 | double direction = optimizationDirection_ * objectiveScale_; |
1010 | const double * obj = objective(); |
1011 | memset(rowObjectiveWork_, 0, numberRows_ * sizeof(double)); |
1012 | int iSequence; |
1013 | if (columnScale_) |
1014 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) |
1015 | cost_[iSequence] = obj[iSequence] * direction * columnScale_[iSequence]; |
1016 | else |
1017 | for (iSequence = 0; iSequence < numberColumns_; iSequence++) |
1018 | cost_[iSequence] = obj[iSequence] * direction; |
1019 | computeDuals(NULL); |
1020 | int numberSame = 0; |
1021 | int numberDifferent = 0; |
1022 | int numberZero = 0; |
1023 | int numberFreeSame = 0; |
1024 | int numberFreeDifferent = 0; |
1025 | int numberFreeZero = 0; |
1026 | int n = 0; |
1027 | for (iSequence = 0; iSequence < numberTotal; iSequence++) { |
1028 | if (getStatus(iSequence) != basic && !flagged(iSequence)) { |
1029 | // not basic |
1030 | double distanceUp = upper_[iSequence] - solution_[iSequence]; |
1031 | double distanceDown = solution_[iSequence] - lower_[iSequence]; |
1032 | double feasibleDj = dj_[iSequence]; |
1033 | double infeasibleDj = oldDj[iSequence] - feasibleDj; |
1034 | double value = feasibleDj * infeasibleDj; |
1035 | if (distanceUp > primalTolerance_) { |
1036 | // Check if "free" |
1037 | if (distanceDown > primalTolerance_) { |
1038 | // free |
1039 | if (value > dualTolerance_) { |
1040 | numberFreeSame++; |
1041 | } else if(value < -dualTolerance_) { |
1042 | numberFreeDifferent++; |
1043 | dj_[n++] = feasibleDj / infeasibleDj; |
1044 | } else { |
1045 | numberFreeZero++; |
1046 | } |
1047 | } else { |
1048 | // should not be negative |
1049 | if (value > dualTolerance_) { |
1050 | numberSame++; |
1051 | } else if(value < -dualTolerance_) { |
1052 | numberDifferent++; |
1053 | dj_[n++] = feasibleDj / infeasibleDj; |
1054 | } else { |
1055 | numberZero++; |
1056 | } |
1057 | } |
1058 | } else if (distanceDown > primalTolerance_) { |
1059 | // should not be positive |
1060 | if (value > dualTolerance_) { |
1061 | numberSame++; |
1062 | } else if(value < -dualTolerance_) { |
1063 | numberDifferent++; |
1064 | dj_[n++] = feasibleDj / infeasibleDj; |
1065 | } else { |
1066 | numberZero++; |
1067 | } |
1068 | } |
1069 | } |
1070 | progress->initialWeight_ = -1.0; |
1071 | } |
1072 | //printf("XXXX %d same, %d different, %d zero, -- free %d %d %d\n", |
1073 | // numberSame,numberDifferent,numberZero, |
1074 | // numberFreeSame,numberFreeDifferent,numberFreeZero); |
1075 | // we want most to be same |
1076 | if (n) { |
1077 | double most = 0.95; |
1078 | std::sort(dj_, dj_ + n); |
1079 | int which = static_cast<int> ((1.0 - most) * static_cast<double> (n)); |
1080 | double take = -dj_[which] * infeasibilityCost_; |
1081 | //printf("XXXXZ inf cost %g take %g (range %g %g)\n",infeasibilityCost_,take,-dj_[0]*infeasibilityCost_,-dj_[n-1]*infeasibilityCost_); |
1082 | take = -dj_[0] * infeasibilityCost_; |
1083 | infeasibilityCost_ = CoinMin(CoinMax(1000.0 * take, 1.0e8), 1.0000001e10); |
1084 | //printf("XXXX increasing weight to %g\n",infeasibilityCost_); |
1085 | } |
1086 | delete [] dj_; |
1087 | delete [] cost_; |
1088 | dj_ = oldDj; |
1089 | cost_ = oldCost; |
1090 | reducedCostWork_ = dj_; |
1091 | rowReducedCost_ = dj_ + numberColumns_; |
1092 | objectiveWork_ = cost_; |
1093 | rowObjectiveWork_ = cost_ + numberColumns_; |
1094 | if (n||matrix_->type()>=15) |
1095 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1096 | } |
1097 | double trueInfeasibility = nonLinearCost_->sumInfeasibilities(); |
1098 | if (!nonLinearCost_->numberInfeasibilities() && infeasibilityCost_ == 1.0e10 && !ifValuesPass && true) { |
1099 | // relax if default |
1100 | infeasibilityCost_ = CoinMin(CoinMax(100.0 * sumDualInfeasibilities_, 1.0e8), 1.00000001e10); |
1101 | // reset looping criterion |
1102 | progress->reset(); |
1103 | trueInfeasibility = 1.123456e10; |
1104 | } |
1105 | if (trueInfeasibility > 1.0) { |
1106 | // If infeasibility going up may change weights |
1107 | double testValue = trueInfeasibility - 1.0e-4 * (10.0 + trueInfeasibility); |
1108 | double lastInf = progress->lastInfeasibility(1); |
1109 | double lastInf3 = progress->lastInfeasibility(3); |
1110 | double thisObj = progress->lastObjective(0); |
1111 | double thisInf = progress->lastInfeasibility(0); |
1112 | thisObj += infeasibilityCost_ * 2.0 * thisInf; |
1113 | double lastObj = progress->lastObjective(1); |
1114 | lastObj += infeasibilityCost_ * 2.0 * lastInf; |
1115 | double lastObj3 = progress->lastObjective(3); |
1116 | lastObj3 += infeasibilityCost_ * 2.0 * lastInf3; |
1117 | if (lastObj < thisObj - 1.0e-5 * CoinMax(fabs(thisObj), fabs(lastObj)) - 1.0e-7 |
1118 | && firstFree_ < 0) { |
1119 | if (handler_->logLevel() == 63) |
1120 | printf("lastobj %g this %g force %d\n" , lastObj, thisObj, forceFactorization_); |
1121 | int maxFactor = factorization_->maximumPivots(); |
1122 | if (maxFactor > 10) { |
1123 | if (forceFactorization_ < 0) |
1124 | forceFactorization_ = maxFactor; |
1125 | forceFactorization_ = CoinMax(1, (forceFactorization_ >> 2)); |
1126 | if (handler_->logLevel() == 63) |
1127 | printf("Reducing factorization frequency to %d\n" , forceFactorization_); |
1128 | } |
1129 | } else if (lastObj3 < thisObj - 1.0e-5 * CoinMax(fabs(thisObj), fabs(lastObj3)) - 1.0e-7 |
1130 | && firstFree_ < 0) { |
1131 | if (handler_->logLevel() == 63) |
1132 | printf("lastobj3 %g this3 %g force %d\n" , lastObj3, thisObj, forceFactorization_); |
1133 | int maxFactor = factorization_->maximumPivots(); |
1134 | if (maxFactor > 10) { |
1135 | if (forceFactorization_ < 0) |
1136 | forceFactorization_ = maxFactor; |
1137 | forceFactorization_ = CoinMax(1, (forceFactorization_ * 2) / 3); |
1138 | if (handler_->logLevel() == 63) |
1139 | printf("Reducing factorization frequency to %d\n" , forceFactorization_); |
1140 | } |
1141 | } else if(lastInf < testValue || trueInfeasibility == 1.123456e10) { |
1142 | if (infeasibilityCost_ < 1.0e14) { |
1143 | infeasibilityCost_ *= 1.5; |
1144 | // reset looping criterion |
1145 | progress->reset(); |
1146 | if (handler_->logLevel() == 63) |
1147 | printf("increasing weight to %g\n" , infeasibilityCost_); |
1148 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1149 | } |
1150 | } |
1151 | } |
1152 | // we may wish to say it is optimal even if infeasible |
1153 | bool alwaysOptimal = (specialOptions_ & 1) != 0; |
1154 | // give code benefit of doubt |
1155 | if (sumOfRelaxedDualInfeasibilities_ == 0.0 && |
1156 | sumOfRelaxedPrimalInfeasibilities_ == 0.0) { |
1157 | // say optimal (with these bounds etc) |
1158 | numberDualInfeasibilities_ = 0; |
1159 | sumDualInfeasibilities_ = 0.0; |
1160 | numberPrimalInfeasibilities_ = 0; |
1161 | sumPrimalInfeasibilities_ = 0.0; |
1162 | // But check if in sprint |
1163 | if (originalModel) { |
1164 | // Carry on and re-do |
1165 | numberDualInfeasibilities_ = -776; |
1166 | } |
1167 | // But if real primal infeasibilities nonzero carry on |
1168 | if (nonLinearCost_->numberInfeasibilities()) { |
1169 | // most likely to happen if infeasible |
1170 | double relaxedToleranceP = primalTolerance_; |
1171 | // we can't really trust infeasibilities if there is primal error |
1172 | double error = CoinMin(1.0e-2, largestPrimalError_); |
1173 | // allow tolerance at least slightly bigger than standard |
1174 | relaxedToleranceP = relaxedToleranceP + error; |
1175 | int ninfeas = nonLinearCost_->numberInfeasibilities(); |
1176 | double sum = nonLinearCost_->sumInfeasibilities(); |
1177 | double average = sum / static_cast<double> (ninfeas); |
1178 | #ifdef COIN_DEVELOP |
1179 | if (handler_->logLevel() > 0) |
1180 | printf("nonLinearCost says infeasible %d summing to %g\n" , |
1181 | ninfeas, sum); |
1182 | #endif |
1183 | if (average > relaxedToleranceP) { |
1184 | sumOfRelaxedPrimalInfeasibilities_ = sum; |
1185 | numberPrimalInfeasibilities_ = ninfeas; |
1186 | sumPrimalInfeasibilities_ = sum; |
1187 | #ifdef COIN_DEVELOP |
1188 | bool unflagged = |
1189 | #endif |
1190 | unflag(); |
1191 | #ifdef COIN_DEVELOP |
1192 | if (unflagged && handler_->logLevel() > 0) |
1193 | printf(" - but flagged variables\n" ); |
1194 | #endif |
1195 | } |
1196 | } |
1197 | } |
1198 | // had ||(type==3&&problemStatus_!=-5) -- ??? why ???? |
1199 | if ((dualFeasible() || problemStatus_ == -4) && !ifValuesPass) { |
1200 | // see if extra helps |
1201 | if (nonLinearCost_->numberInfeasibilities() && |
1202 | (nonLinearCost_->sumInfeasibilities() > 1.0e-3 || sumOfRelaxedPrimalInfeasibilities_) |
1203 | && !alwaysOptimal) { |
1204 | //may need infeasiblity cost changed |
1205 | // we can see if we can construct a ray |
1206 | // make up a new objective |
1207 | double saveWeight = infeasibilityCost_; |
1208 | // save nonlinear cost as we are going to switch off costs |
1209 | ClpNonLinearCost * nonLinear = nonLinearCost_; |
1210 | // do twice to make sure Primal solution has settled |
1211 | // put non-basics to bounds in case tolerance moved |
1212 | // put back original costs |
1213 | createRim(4); |
1214 | nonLinearCost_->checkInfeasibilities(0.0); |
1215 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1216 | |
1217 | infeasibilityCost_ = 1.0e100; |
1218 | // put back original costs |
1219 | createRim(4); |
1220 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
1221 | // may have fixed infeasibilities - double check |
1222 | if (nonLinearCost_->numberInfeasibilities() == 0) { |
1223 | // carry on |
1224 | problemStatus_ = -1; |
1225 | infeasibilityCost_ = saveWeight; |
1226 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
1227 | } else { |
1228 | nonLinearCost_ = NULL; |
1229 | // scale |
1230 | int i; |
1231 | for (i = 0; i < numberRows_ + numberColumns_; i++) |
1232 | cost_[i] *= 1.0e-95; |
1233 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1234 | nonLinearCost_ = nonLinear; |
1235 | infeasibilityCost_ = saveWeight; |
1236 | if ((infeasibilityCost_ >= 1.0e18 || |
1237 | numberDualInfeasibilities_ == 0) && perturbation_ == 101) { |
1238 | goToDual = unPerturb(); // stop any further perturbation |
1239 | if (nonLinearCost_->sumInfeasibilities() > 1.0e-1) |
1240 | goToDual = false; |
1241 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
1242 | numberDualInfeasibilities_ = 1; // carry on |
1243 | problemStatus_ = -1; |
1244 | } else if (numberDualInfeasibilities_ == 0 && largestDualError_ > 1.0e-2 && |
1245 | (moreSpecialOptions_ & (256|8192)) == 0) { |
1246 | goToDual = true; |
1247 | factorization_->pivotTolerance(CoinMax(0.9, factorization_->pivotTolerance())); |
1248 | } |
1249 | if (!goToDual) { |
1250 | if (infeasibilityCost_ >= 1.0e20 || |
1251 | numberDualInfeasibilities_ == 0) { |
1252 | // we are infeasible - use as ray |
1253 | delete [] ray_; |
1254 | ray_ = new double [numberRows_]; |
1255 | CoinMemcpyN(dual_, numberRows_, ray_); |
1256 | // and get feasible duals |
1257 | infeasibilityCost_ = 0.0; |
1258 | createRim(4); |
1259 | nonLinearCost_->checkInfeasibilities(primalTolerance_); |
1260 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1261 | // so will exit |
1262 | infeasibilityCost_ = 1.0e30; |
1263 | // reset infeasibilities |
1264 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
1265 | numberPrimalInfeasibilities_ = |
1266 | nonLinearCost_->numberInfeasibilities(); |
1267 | } |
1268 | if (infeasibilityCost_ < 1.0e20) { |
1269 | infeasibilityCost_ *= 5.0; |
1270 | // reset looping criterion |
1271 | progress->reset(); |
1272 | changeMade_++; // say change made |
1273 | handler_->message(CLP_PRIMAL_WEIGHT, messages_) |
1274 | << infeasibilityCost_ |
1275 | << CoinMessageEol; |
1276 | // put back original costs and then check |
1277 | createRim(4); |
1278 | nonLinearCost_->checkInfeasibilities(0.0); |
1279 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1280 | problemStatus_ = -1; //continue |
1281 | goToDual = false; |
1282 | } else { |
1283 | // say infeasible |
1284 | problemStatus_ = 1; |
1285 | } |
1286 | } |
1287 | } |
1288 | } else { |
1289 | // may be optimal |
1290 | if (perturbation_ == 101) { |
1291 | goToDual = unPerturb(); // stop any further perturbation |
1292 | if ((numberRows_ > 20000 || numberDualInfeasibilities_) && !numberTimesOptimal_) |
1293 | goToDual = false; // Better to carry on a bit longer |
1294 | lastCleaned = -1; // carry on |
1295 | } |
1296 | bool unflagged = (unflag() != 0); |
1297 | if ( lastCleaned != numberIterations_ || unflagged) { |
1298 | handler_->message(CLP_PRIMAL_OPTIMAL, messages_) |
1299 | << primalTolerance_ |
1300 | << CoinMessageEol; |
1301 | if (numberTimesOptimal_ < 4) { |
1302 | numberTimesOptimal_++; |
1303 | changeMade_++; // say change made |
1304 | if (numberTimesOptimal_ == 1) { |
1305 | // better to have small tolerance even if slower |
1306 | factorization_->zeroTolerance(CoinMin(factorization_->zeroTolerance(), 1.0e-15)); |
1307 | } |
1308 | lastCleaned = numberIterations_; |
1309 | if (primalTolerance_ != dblParam_[ClpPrimalTolerance]) |
1310 | handler_->message(CLP_PRIMAL_ORIGINAL, messages_) |
1311 | << CoinMessageEol; |
1312 | double oldTolerance = primalTolerance_; |
1313 | primalTolerance_ = dblParam_[ClpPrimalTolerance]; |
1314 | #if 0 |
1315 | double * xcost = new double[numberRows_+numberColumns_]; |
1316 | double * xlower = new double[numberRows_+numberColumns_]; |
1317 | double * xupper = new double[numberRows_+numberColumns_]; |
1318 | double * xdj = new double[numberRows_+numberColumns_]; |
1319 | double * xsolution = new double[numberRows_+numberColumns_]; |
1320 | CoinMemcpyN(cost_, (numberRows_ + numberColumns_), xcost); |
1321 | CoinMemcpyN(lower_, (numberRows_ + numberColumns_), xlower); |
1322 | CoinMemcpyN(upper_, (numberRows_ + numberColumns_), xupper); |
1323 | CoinMemcpyN(dj_, (numberRows_ + numberColumns_), xdj); |
1324 | CoinMemcpyN(solution_, (numberRows_ + numberColumns_), xsolution); |
1325 | #endif |
1326 | // put back original costs and then check |
1327 | createRim(4); |
1328 | nonLinearCost_->checkInfeasibilities(oldTolerance); |
1329 | #if 0 |
1330 | int i; |
1331 | for (i = 0; i < numberRows_ + numberColumns_; i++) { |
1332 | if (cost_[i] != xcost[i]) |
1333 | printf("** %d old cost %g new %g sol %g\n" , |
1334 | i, xcost[i], cost_[i], solution_[i]); |
1335 | if (lower_[i] != xlower[i]) |
1336 | printf("** %d old lower %g new %g sol %g\n" , |
1337 | i, xlower[i], lower_[i], solution_[i]); |
1338 | if (upper_[i] != xupper[i]) |
1339 | printf("** %d old upper %g new %g sol %g\n" , |
1340 | i, xupper[i], upper_[i], solution_[i]); |
1341 | if (dj_[i] != xdj[i]) |
1342 | printf("** %d old dj %g new %g sol %g\n" , |
1343 | i, xdj[i], dj_[i], solution_[i]); |
1344 | if (solution_[i] != xsolution[i]) |
1345 | printf("** %d old solution %g new %g sol %g\n" , |
1346 | i, xsolution[i], solution_[i], solution_[i]); |
1347 | } |
1348 | delete [] xcost; |
1349 | delete [] xupper; |
1350 | delete [] xlower; |
1351 | delete [] xdj; |
1352 | delete [] xsolution; |
1353 | #endif |
1354 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1355 | if (sumOfRelaxedDualInfeasibilities_ == 0.0 && |
1356 | sumOfRelaxedPrimalInfeasibilities_ == 0.0) { |
1357 | // say optimal (with these bounds etc) |
1358 | numberDualInfeasibilities_ = 0; |
1359 | sumDualInfeasibilities_ = 0.0; |
1360 | numberPrimalInfeasibilities_ = 0; |
1361 | sumPrimalInfeasibilities_ = 0.0; |
1362 | } |
1363 | if (dualFeasible() && !nonLinearCost_->numberInfeasibilities() && lastCleaned >= 0) |
1364 | problemStatus_ = 0; |
1365 | else |
1366 | problemStatus_ = -1; |
1367 | } else { |
1368 | problemStatus_ = 0; // optimal |
1369 | if (lastCleaned < numberIterations_) { |
1370 | handler_->message(CLP_SIMPLEX_GIVINGUP, messages_) |
1371 | << CoinMessageEol; |
1372 | } |
1373 | } |
1374 | } else { |
1375 | if (!alwaysOptimal || !sumOfRelaxedPrimalInfeasibilities_) |
1376 | problemStatus_ = 0; // optimal |
1377 | else |
1378 | problemStatus_ = 1; // infeasible |
1379 | } |
1380 | } |
1381 | } else { |
1382 | // see if looks unbounded |
1383 | if (problemStatus_ == -5) { |
1384 | if (nonLinearCost_->numberInfeasibilities()) { |
1385 | if (infeasibilityCost_ > 1.0e18 && perturbation_ == 101) { |
1386 | // back off weight |
1387 | infeasibilityCost_ = 1.0e13; |
1388 | // reset looping criterion |
1389 | progress->reset(); |
1390 | unPerturb(); // stop any further perturbation |
1391 | } |
1392 | //we need infeasiblity cost changed |
1393 | if (infeasibilityCost_ < 1.0e20) { |
1394 | infeasibilityCost_ *= 5.0; |
1395 | // reset looping criterion |
1396 | progress->reset(); |
1397 | changeMade_++; // say change made |
1398 | handler_->message(CLP_PRIMAL_WEIGHT, messages_) |
1399 | << infeasibilityCost_ |
1400 | << CoinMessageEol; |
1401 | // put back original costs and then check |
1402 | createRim(4); |
1403 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
1404 | problemStatus_ = -1; //continue |
1405 | } else { |
1406 | // say infeasible |
1407 | problemStatus_ = 1; |
1408 | // we are infeasible - use as ray |
1409 | delete [] ray_; |
1410 | ray_ = new double [numberRows_]; |
1411 | CoinMemcpyN(dual_, numberRows_, ray_); |
1412 | } |
1413 | } else { |
1414 | // say unbounded |
1415 | problemStatus_ = 2; |
1416 | } |
1417 | } else { |
1418 | // carry on |
1419 | problemStatus_ = -1; |
1420 | if(type == 3 && !ifValuesPass) { |
1421 | //bool unflagged = |
1422 | unflag(); |
1423 | if (sumDualInfeasibilities_ < 1.0e-3 || |
1424 | (sumDualInfeasibilities_ / static_cast<double> (numberDualInfeasibilities_)) < 1.0e-5 || |
1425 | progress->lastIterationNumber(0) == numberIterations_) { |
1426 | if (!numberPrimalInfeasibilities_) { |
1427 | if (numberTimesOptimal_ < 4) { |
1428 | numberTimesOptimal_++; |
1429 | changeMade_++; // say change made |
1430 | } else { |
1431 | problemStatus_ = 0; |
1432 | secondaryStatus_ = 5; |
1433 | } |
1434 | } |
1435 | } |
1436 | } |
1437 | } |
1438 | } |
1439 | if (problemStatus_ == 0) { |
1440 | double objVal = (nonLinearCost_->feasibleCost() |
1441 | + objective_->nonlinearOffset()); |
1442 | objVal /= (objectiveScale_ * rhsScale_); |
1443 | double tol = 1.0e-10 * CoinMax(fabs(objVal), fabs(objectiveValue_)) + 1.0e-8; |
1444 | if (fabs(objVal - objectiveValue_) > tol) { |
1445 | #ifdef COIN_DEVELOP |
1446 | if (handler_->logLevel() > 0) |
1447 | printf("nonLinearCost has feasible obj of %g, objectiveValue_ is %g\n" , |
1448 | objVal, objectiveValue_); |
1449 | #endif |
1450 | objectiveValue_ = objVal; |
1451 | } |
1452 | } |
1453 | // save extra stuff |
1454 | matrix_->generalExpanded(this, 5, dummy); |
1455 | if (type == 0 || type == 1) { |
1456 | if (type != 1 || !saveStatus_) { |
1457 | // create save arrays |
1458 | delete [] saveStatus_; |
1459 | delete [] savedSolution_; |
1460 | saveStatus_ = new unsigned char [numberRows_+numberColumns_]; |
1461 | savedSolution_ = new double [numberRows_+numberColumns_]; |
1462 | } |
1463 | // save arrays |
1464 | CoinMemcpyN(status_, numberColumns_ + numberRows_, saveStatus_); |
1465 | CoinMemcpyN(rowActivityWork_, |
1466 | numberRows_, savedSolution_ + numberColumns_); |
1467 | CoinMemcpyN(columnActivityWork_, numberColumns_, savedSolution_); |
1468 | } |
1469 | // see if in Cbc etc |
1470 | bool inCbcOrOther = (specialOptions_ & 0x03000000) != 0; |
1471 | bool disaster = false; |
1472 | if (disasterArea_ && inCbcOrOther && disasterArea_->check()) { |
1473 | disasterArea_->saveInfo(); |
1474 | disaster = true; |
1475 | } |
1476 | if (disaster) |
1477 | problemStatus_ = 3; |
1478 | if (problemStatus_ < 0 && !changeMade_) { |
1479 | problemStatus_ = 4; // unknown |
1480 | } |
1481 | lastGoodIteration_ = numberIterations_; |
1482 | if (numberIterations_ > lastBadIteration_ + 100) |
1483 | moreSpecialOptions_ &= ~16; // clear check accuracy flag |
1484 | if (goToDual || (numberIterations_ > 1000 && largestPrimalError_ > 1.0e6 |
1485 | && largestDualError_ > 1.0e6)) { |
1486 | problemStatus_ = 10; // try dual |
1487 | // See if second call |
1488 | if ((moreSpecialOptions_ & 256) != 0||nonLinearCost_->sumInfeasibilities()>1.0e2) { |
1489 | numberPrimalInfeasibilities_ = nonLinearCost_->numberInfeasibilities(); |
1490 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
1491 | // say infeasible |
1492 | if (numberPrimalInfeasibilities_) |
1493 | problemStatus_ = 1; |
1494 | } |
1495 | } |
1496 | // make sure first free monotonic |
1497 | if (firstFree_ >= 0 && saveFirstFree >= 0) { |
1498 | firstFree_ = (numberIterations_) ? saveFirstFree : -1; |
1499 | nextSuperBasic(1, NULL); |
1500 | } |
1501 | if (doFactorization) { |
1502 | // restore weights (if saved) - also recompute infeasibility list |
1503 | if (tentativeStatus > -3) |
1504 | primalColumnPivot_->saveWeights(this, (type < 2) ? 2 : 4); |
1505 | else |
1506 | primalColumnPivot_->saveWeights(this, 3); |
1507 | if (saveThreshold) { |
1508 | // use default at present |
1509 | factorization_->sparseThreshold(0); |
1510 | factorization_->goSparse(); |
1511 | } |
1512 | } |
1513 | // Allow matrices to be sorted etc |
1514 | int fake = -999; // signal sort |
1515 | matrix_->correctSequence(this, fake, fake); |
1516 | } |
1517 | /* |
1518 | Row array has pivot column |
1519 | This chooses pivot row. |
1520 | For speed, we may need to go to a bucket approach when many |
1521 | variables go through bounds |
1522 | On exit rhsArray will have changes in costs of basic variables |
1523 | */ |
1524 | void |
1525 | ClpSimplexPrimal::primalRow(CoinIndexedVector * rowArray, |
1526 | CoinIndexedVector * rhsArray, |
1527 | CoinIndexedVector * spareArray, |
1528 | int valuesPass) |
1529 | { |
1530 | double saveDj = dualIn_; |
1531 | if (valuesPass && objective_->type() < 2) { |
1532 | dualIn_ = cost_[sequenceIn_]; |
1533 | |
1534 | double * work = rowArray->denseVector(); |
1535 | int number = rowArray->getNumElements(); |
1536 | int * which = rowArray->getIndices(); |
1537 | |
1538 | int iIndex; |
1539 | for (iIndex = 0; iIndex < number; iIndex++) { |
1540 | |
1541 | int iRow = which[iIndex]; |
1542 | double alpha = work[iIndex]; |
1543 | int iPivot = pivotVariable_[iRow]; |
1544 | dualIn_ -= alpha * cost_[iPivot]; |
1545 | } |
1546 | // determine direction here |
1547 | if (dualIn_ < -dualTolerance_) { |
1548 | directionIn_ = 1; |
1549 | } else if (dualIn_ > dualTolerance_) { |
1550 | directionIn_ = -1; |
1551 | } else { |
1552 | // towards nearest bound |
1553 | if (valueIn_ - lowerIn_ < upperIn_ - valueIn_) { |
1554 | directionIn_ = -1; |
1555 | dualIn_ = dualTolerance_; |
1556 | } else { |
1557 | directionIn_ = 1; |
1558 | dualIn_ = -dualTolerance_; |
1559 | } |
1560 | } |
1561 | } |
1562 | |
1563 | // sequence stays as row number until end |
1564 | pivotRow_ = -1; |
1565 | int numberRemaining = 0; |
1566 | |
1567 | double totalThru = 0.0; // for when variables flip |
1568 | // Allow first few iterations to take tiny |
1569 | double acceptablePivot = 1.0e-1 * acceptablePivot_; |
1570 | if (numberIterations_ > 100) |
1571 | acceptablePivot = acceptablePivot_; |
1572 | if (factorization_->pivots() > 10) |
1573 | acceptablePivot = 1.0e+3 * acceptablePivot_; // if we have iterated be more strict |
1574 | else if (factorization_->pivots() > 5) |
1575 | acceptablePivot = 1.0e+2 * acceptablePivot_; // if we have iterated be slightly more strict |
1576 | else if (factorization_->pivots()) |
1577 | acceptablePivot = acceptablePivot_; // relax |
1578 | double bestEverPivot = acceptablePivot; |
1579 | int lastPivotRow = -1; |
1580 | double lastPivot = 0.0; |
1581 | double lastTheta = 1.0e50; |
1582 | |
1583 | // use spareArrays to put ones looked at in |
1584 | // First one is list of candidates |
1585 | // We could compress if we really know we won't need any more |
1586 | // Second array has current set of pivot candidates |
1587 | // with a backup list saved in double * part of indexed vector |
1588 | |
1589 | // pivot elements |
1590 | double * spare; |
1591 | // indices |
1592 | int * index; |
1593 | spareArray->clear(); |
1594 | spare = spareArray->denseVector(); |
1595 | index = spareArray->getIndices(); |
1596 | |
1597 | // we also need somewhere for effective rhs |
1598 | double * rhs = rhsArray->denseVector(); |
1599 | // and we can use indices to point to alpha |
1600 | // that way we can store fabs(alpha) |
1601 | int * indexPoint = rhsArray->getIndices(); |
1602 | //int numberFlip=0; // Those which may change if flips |
1603 | |
1604 | /* |
1605 | First we get a list of possible pivots. We can also see if the |
1606 | problem looks unbounded. |
1607 | |
1608 | At first we increase theta and see what happens. We start |
1609 | theta at a reasonable guess. If in right area then we do bit by bit. |
1610 | We save possible pivot candidates |
1611 | |
1612 | */ |
1613 | |
1614 | // do first pass to get possibles |
1615 | // We can also see if unbounded |
1616 | |
1617 | double * work = rowArray->denseVector(); |
1618 | int number = rowArray->getNumElements(); |
1619 | int * which = rowArray->getIndices(); |
1620 | |
1621 | // we need to swap sign if coming in from ub |
1622 | double way = directionIn_; |
1623 | double maximumMovement; |
1624 | if (way > 0.0) |
1625 | maximumMovement = CoinMin(1.0e30, upperIn_ - valueIn_); |
1626 | else |
1627 | maximumMovement = CoinMin(1.0e30, valueIn_ - lowerIn_); |
1628 | |
1629 | double averageTheta = nonLinearCost_->averageTheta(); |
1630 | double tentativeTheta = CoinMin(10.0 * averageTheta, maximumMovement); |
1631 | double upperTheta = maximumMovement; |
1632 | if (tentativeTheta > 0.5 * maximumMovement) |
1633 | tentativeTheta = maximumMovement; |
1634 | bool thetaAtMaximum = tentativeTheta == maximumMovement; |
1635 | // In case tiny bounds increase |
1636 | if (maximumMovement < 1.0) |
1637 | tentativeTheta *= 1.1; |
1638 | double dualCheck = fabs(dualIn_); |
1639 | // but make a bit more pessimistic |
1640 | dualCheck = CoinMax(dualCheck - 100.0 * dualTolerance_, 0.99 * dualCheck); |
1641 | |
1642 | int iIndex; |
1643 | int pivotOne = -1; |
1644 | //#define CLP_DEBUG |
1645 | #ifdef CLP_DEBUG |
1646 | if (numberIterations_ == -3839 || numberIterations_ == -3840) { |
1647 | double dj = cost_[sequenceIn_]; |
1648 | printf("cost in on %d is %g, dual in %g\n" , sequenceIn_, dj, dualIn_); |
1649 | for (iIndex = 0; iIndex < number; iIndex++) { |
1650 | |
1651 | int iRow = which[iIndex]; |
1652 | double alpha = work[iIndex]; |
1653 | int iPivot = pivotVariable_[iRow]; |
1654 | dj -= alpha * cost_[iPivot]; |
1655 | printf("row %d var %d current %g %g %g, alpha %g so sol => %g (cost %g, dj %g)\n" , |
1656 | iRow, iPivot, lower_[iPivot], solution_[iPivot], upper_[iPivot], |
1657 | alpha, solution_[iPivot] - 1.0e9 * alpha, cost_[iPivot], dj); |
1658 | } |
1659 | } |
1660 | #endif |
1661 | while (true) { |
1662 | pivotOne = -1; |
1663 | totalThru = 0.0; |
1664 | // We also re-compute reduced cost |
1665 | numberRemaining = 0; |
1666 | dualIn_ = cost_[sequenceIn_]; |
1667 | #ifndef NDEBUG |
1668 | double tolerance = primalTolerance_ * 1.002; |
1669 | #endif |
1670 | for (iIndex = 0; iIndex < number; iIndex++) { |
1671 | |
1672 | int iRow = which[iIndex]; |
1673 | double alpha = work[iIndex]; |
1674 | int iPivot = pivotVariable_[iRow]; |
1675 | if (cost_[iPivot]) |
1676 | dualIn_ -= alpha * cost_[iPivot]; |
1677 | alpha *= way; |
1678 | double oldValue = solution_[iPivot]; |
1679 | // get where in bound sequence |
1680 | // note that after this alpha is actually fabs(alpha) |
1681 | bool possible; |
1682 | // do computation same way as later on in primal |
1683 | if (alpha > 0.0) { |
1684 | // basic variable going towards lower bound |
1685 | double bound = lower_[iPivot]; |
1686 | // must be exactly same as when used |
1687 | double change = tentativeTheta * alpha; |
1688 | possible = (oldValue - change) <= bound + primalTolerance_; |
1689 | oldValue -= bound; |
1690 | } else { |
1691 | // basic variable going towards upper bound |
1692 | double bound = upper_[iPivot]; |
1693 | // must be exactly same as when used |
1694 | double change = tentativeTheta * alpha; |
1695 | possible = (oldValue - change) >= bound - primalTolerance_; |
1696 | oldValue = bound - oldValue; |
1697 | alpha = - alpha; |
1698 | } |
1699 | double value; |
1700 | assert (oldValue >= -tolerance); |
1701 | if (possible) { |
1702 | value = oldValue - upperTheta * alpha; |
1703 | #ifdef CLP_USER_DRIVEN1 |
1704 | if(!userChoiceValid1(this,iPivot,oldValue, |
1705 | upperTheta,alpha,work[iIndex]*way)) |
1706 | value =0.0; // say can't use |
1707 | #endif |
1708 | if (value < -primalTolerance_ && alpha >= acceptablePivot) { |
1709 | upperTheta = (oldValue + primalTolerance_) / alpha; |
1710 | pivotOne = numberRemaining; |
1711 | } |
1712 | // add to list |
1713 | spare[numberRemaining] = alpha; |
1714 | rhs[numberRemaining] = oldValue; |
1715 | indexPoint[numberRemaining] = iIndex; |
1716 | index[numberRemaining++] = iRow; |
1717 | totalThru += alpha; |
1718 | setActive(iRow); |
1719 | //} else if (value<primalTolerance_*1.002) { |
1720 | // May change if is a flip |
1721 | //indexRhs[numberFlip++]=iRow; |
1722 | } |
1723 | } |
1724 | if (upperTheta < maximumMovement && totalThru*infeasibilityCost_ >= 1.0001 * dualCheck) { |
1725 | // Can pivot here |
1726 | break; |
1727 | } else if (!thetaAtMaximum) { |
1728 | //printf("Going round with average theta of %g\n",averageTheta); |
1729 | tentativeTheta = maximumMovement; |
1730 | thetaAtMaximum = true; // seems to be odd compiler error |
1731 | } else { |
1732 | break; |
1733 | } |
1734 | } |
1735 | totalThru = 0.0; |
1736 | |
1737 | theta_ = maximumMovement; |
1738 | |
1739 | bool goBackOne = false; |
1740 | if (objective_->type() > 1) |
1741 | dualIn_ = saveDj; |
1742 | |
1743 | //printf("%d remain out of %d\n",numberRemaining,number); |
1744 | int iTry = 0; |
1745 | #define MAXTRY 1000 |
1746 | if (numberRemaining && upperTheta < maximumMovement) { |
1747 | // First check if previously chosen one will work |
1748 | if (pivotOne >= 0 && 0) { |
1749 | double thruCost = infeasibilityCost_ * spare[pivotOne]; |
1750 | if (thruCost >= 0.99 * fabs(dualIn_)) |
1751 | COIN_DETAIL_PRINT(printf("Could pivot on %d as change %g dj %g\n" , |
1752 | index[pivotOne], thruCost, dualIn_)); |
1753 | double alpha = spare[pivotOne]; |
1754 | double oldValue = rhs[pivotOne]; |
1755 | theta_ = oldValue / alpha; |
1756 | pivotRow_ = pivotOne; |
1757 | // Stop loop |
1758 | iTry = MAXTRY; |
1759 | } |
1760 | |
1761 | // first get ratio with tolerance |
1762 | for ( ; iTry < MAXTRY; iTry++) { |
1763 | |
1764 | upperTheta = maximumMovement; |
1765 | int iBest = -1; |
1766 | for (iIndex = 0; iIndex < numberRemaining; iIndex++) { |
1767 | |
1768 | double alpha = spare[iIndex]; |
1769 | double oldValue = rhs[iIndex]; |
1770 | double value = oldValue - upperTheta * alpha; |
1771 | |
1772 | #ifdef CLP_USER_DRIVEN1 |
1773 | int sequenceOut=pivotVariable_[index[iIndex]]; |
1774 | if(!userChoiceValid1(this,sequenceOut,oldValue, |
1775 | upperTheta,alpha, 0.0)) |
1776 | value =0.0; // say can't use |
1777 | #endif |
1778 | if (value < -primalTolerance_ && alpha >= acceptablePivot) { |
1779 | upperTheta = (oldValue + primalTolerance_) / alpha; |
1780 | iBest = iIndex; // just in case weird numbers |
1781 | } |
1782 | } |
1783 | |
1784 | // now look at best in this lot |
1785 | // But also see how infeasible small pivots will make |
1786 | double sumInfeasibilities = 0.0; |
1787 | double bestPivot = acceptablePivot; |
1788 | pivotRow_ = -1; |
1789 | for (iIndex = 0; iIndex < numberRemaining; iIndex++) { |
1790 | |
1791 | int iRow = index[iIndex]; |
1792 | double alpha = spare[iIndex]; |
1793 | double oldValue = rhs[iIndex]; |
1794 | double value = oldValue - upperTheta * alpha; |
1795 | |
1796 | if (value <= 0 || iBest == iIndex) { |
1797 | // how much would it cost to go thru and modify bound |
1798 | double trueAlpha = way * work[indexPoint[iIndex]]; |
1799 | totalThru += nonLinearCost_->changeInCost(pivotVariable_[iRow], trueAlpha, rhs[iIndex]); |
1800 | setActive(iRow); |
1801 | if (alpha > bestPivot) { |
1802 | bestPivot = alpha; |
1803 | theta_ = oldValue / bestPivot; |
1804 | pivotRow_ = iIndex; |
1805 | } else if (alpha < acceptablePivot |
1806 | #ifdef CLP_USER_DRIVEN1 |
1807 | ||!userChoiceValid1(this,pivotVariable_[index[iIndex]], |
1808 | oldValue,upperTheta,alpha,0.0) |
1809 | #endif |
1810 | ) { |
1811 | if (value < -primalTolerance_) |
1812 | sumInfeasibilities += -value - primalTolerance_; |
1813 | } |
1814 | } |
1815 | } |
1816 | if (bestPivot < 0.1 * bestEverPivot && |
1817 | bestEverPivot > 1.0e-6 && bestPivot < 1.0e-3) { |
1818 | // back to previous one |
1819 | goBackOne = true; |
1820 | break; |
1821 | } else if (pivotRow_ == -1 && upperTheta > largeValue_) { |
1822 | if (lastPivot > acceptablePivot) { |
1823 | // back to previous one |
1824 | goBackOne = true; |
1825 | } else { |
1826 | // can only get here if all pivots so far too small |
1827 | } |
1828 | break; |
1829 | } else if (totalThru >= dualCheck) { |
1830 | if (sumInfeasibilities > primalTolerance_ && !nonLinearCost_->numberInfeasibilities()) { |
1831 | // Looks a bad choice |
1832 | if (lastPivot > acceptablePivot) { |
1833 | goBackOne = true; |
1834 | } else { |
1835 | // say no good |
1836 | dualIn_ = 0.0; |
1837 | } |
1838 | } |
1839 | break; // no point trying another loop |
1840 | } else { |
1841 | lastPivotRow = pivotRow_; |
1842 | lastTheta = theta_; |
1843 | if (bestPivot > bestEverPivot) |
1844 | bestEverPivot = bestPivot; |
1845 | } |
1846 | } |
1847 | // can get here without pivotRow_ set but with lastPivotRow |
1848 | if (goBackOne || (pivotRow_ < 0 && lastPivotRow >= 0)) { |
1849 | // back to previous one |
1850 | pivotRow_ = lastPivotRow; |
1851 | theta_ = lastTheta; |
1852 | } |
1853 | } else if (pivotRow_ < 0 && maximumMovement > 1.0e20) { |
1854 | // looks unbounded |
1855 | valueOut_ = COIN_DBL_MAX; // say odd |
1856 | if (nonLinearCost_->numberInfeasibilities()) { |
1857 | // but infeasible?? |
1858 | // move variable but don't pivot |
1859 | tentativeTheta = 1.0e50; |
1860 | for (iIndex = 0; iIndex < number; iIndex++) { |
1861 | int iRow = which[iIndex]; |
1862 | double alpha = work[iIndex]; |
1863 | int iPivot = pivotVariable_[iRow]; |
1864 | alpha *= way; |
1865 | double oldValue = solution_[iPivot]; |
1866 | // get where in bound sequence |
1867 | // note that after this alpha is actually fabs(alpha) |
1868 | if (alpha > 0.0) { |
1869 | // basic variable going towards lower bound |
1870 | double bound = lower_[iPivot]; |
1871 | oldValue -= bound; |
1872 | } else { |
1873 | // basic variable going towards upper bound |
1874 | double bound = upper_[iPivot]; |
1875 | oldValue = bound - oldValue; |
1876 | alpha = - alpha; |
1877 | } |
1878 | if (oldValue - tentativeTheta * alpha < 0.0) { |
1879 | tentativeTheta = oldValue / alpha; |
1880 | } |
1881 | } |
1882 | // If free in then see if we can get to 0.0 |
1883 | if (lowerIn_ < -1.0e20 && upperIn_ > 1.0e20) { |
1884 | if (dualIn_ * valueIn_ > 0.0) { |
1885 | if (fabs(valueIn_) < 1.0e-2 && (tentativeTheta < fabs(valueIn_) || tentativeTheta > 1.0e20)) { |
1886 | tentativeTheta = fabs(valueIn_); |
1887 | } |
1888 | } |
1889 | } |
1890 | if (tentativeTheta < 1.0e10) |
1891 | valueOut_ = valueIn_ + way * tentativeTheta; |
1892 | } |
1893 | } |
1894 | //if (iTry>50) |
1895 | //printf("** %d tries\n",iTry); |
1896 | if (pivotRow_ >= 0) { |
1897 | int position = pivotRow_; // position in list |
1898 | pivotRow_ = index[position]; |
1899 | alpha_ = work[indexPoint[position]]; |
1900 | // translate to sequence |
1901 | sequenceOut_ = pivotVariable_[pivotRow_]; |
1902 | valueOut_ = solution(sequenceOut_); |
1903 | lowerOut_ = lower_[sequenceOut_]; |
1904 | upperOut_ = upper_[sequenceOut_]; |
1905 | #define MINIMUMTHETA 1.0e-12 |
1906 | // Movement should be minimum for anti-degeneracy - unless |
1907 | // fixed variable out |
1908 | double minimumTheta; |
1909 | if (upperOut_ > lowerOut_) |
1910 | minimumTheta = MINIMUMTHETA; |
1911 | else |
1912 | minimumTheta = 0.0; |
1913 | // But can't go infeasible |
1914 | double distance; |
1915 | if (alpha_ * way > 0.0) |
1916 | distance = valueOut_ - lowerOut_; |
1917 | else |
1918 | distance = upperOut_ - valueOut_; |
1919 | if (distance - minimumTheta * fabs(alpha_) < -primalTolerance_) |
1920 | minimumTheta = CoinMax(0.0, (distance + 0.5 * primalTolerance_) / fabs(alpha_)); |
1921 | // will we need to increase tolerance |
1922 | //#define CLP_DEBUG |
1923 | double largestInfeasibility = primalTolerance_; |
1924 | if (theta_ < minimumTheta && (specialOptions_ & 4) == 0 && !valuesPass) { |
1925 | theta_ = minimumTheta; |
1926 | for (iIndex = 0; iIndex < numberRemaining - numberRemaining; iIndex++) { |
1927 | largestInfeasibility = CoinMax(largestInfeasibility, |
1928 | -(rhs[iIndex] - spare[iIndex] * theta_)); |
1929 | } |
1930 | //#define CLP_DEBUG |
1931 | #ifdef CLP_DEBUG |
1932 | if (largestInfeasibility > primalTolerance_ && (handler_->logLevel() & 32) > -1) |
1933 | printf("Primal tolerance increased from %g to %g\n" , |
1934 | primalTolerance_, largestInfeasibility); |
1935 | #endif |
1936 | //#undef CLP_DEBUG |
1937 | primalTolerance_ = CoinMax(primalTolerance_, largestInfeasibility); |
1938 | } |
1939 | // Need to look at all in some cases |
1940 | if (theta_ > tentativeTheta) { |
1941 | for (iIndex = 0; iIndex < number; iIndex++) |
1942 | setActive(which[iIndex]); |
1943 | } |
1944 | if (way < 0.0) |
1945 | theta_ = - theta_; |
1946 | double newValue = valueOut_ - theta_ * alpha_; |
1947 | // If 4 bit set - Force outgoing variables to exact bound (primal) |
1948 | if (alpha_ * way < 0.0) { |
1949 | directionOut_ = -1; // to upper bound |
1950 | if (fabs(theta_) > 1.0e-6 || (specialOptions_ & 4) != 0) { |
1951 | upperOut_ = nonLinearCost_->nearest(sequenceOut_, newValue); |
1952 | } else { |
1953 | upperOut_ = newValue; |
1954 | } |
1955 | } else { |
1956 | directionOut_ = 1; // to lower bound |
1957 | if (fabs(theta_) > 1.0e-6 || (specialOptions_ & 4) != 0) { |
1958 | lowerOut_ = nonLinearCost_->nearest(sequenceOut_, newValue); |
1959 | } else { |
1960 | lowerOut_ = newValue; |
1961 | } |
1962 | } |
1963 | dualOut_ = reducedCost(sequenceOut_); |
1964 | } else if (maximumMovement < 1.0e20) { |
1965 | // flip |
1966 | pivotRow_ = -2; // so we can tell its a flip |
1967 | sequenceOut_ = sequenceIn_; |
1968 | valueOut_ = valueIn_; |
1969 | dualOut_ = dualIn_; |
1970 | lowerOut_ = lowerIn_; |
1971 | upperOut_ = upperIn_; |
1972 | alpha_ = 0.0; |
1973 | if (way < 0.0) { |
1974 | directionOut_ = 1; // to lower bound |
1975 | theta_ = lowerOut_ - valueOut_; |
1976 | } else { |
1977 | directionOut_ = -1; // to upper bound |
1978 | theta_ = upperOut_ - valueOut_; |
1979 | } |
1980 | } |
1981 | |
1982 | double theta1 = CoinMax(theta_, 1.0e-12); |
1983 | double theta2 = numberIterations_ * nonLinearCost_->averageTheta(); |
1984 | // Set average theta |
1985 | nonLinearCost_->setAverageTheta((theta1 + theta2) / (static_cast<double> (numberIterations_ + 1))); |
1986 | //if (numberIterations_%1000==0) |
1987 | //printf("average theta is %g\n",nonLinearCost_->averageTheta()); |
1988 | |
1989 | // clear arrays |
1990 | |
1991 | CoinZeroN(spare, numberRemaining); |
1992 | |
1993 | // put back original bounds etc |
1994 | CoinMemcpyN(index, numberRemaining, rhsArray->getIndices()); |
1995 | rhsArray->setNumElements(numberRemaining); |
1996 | rhsArray->setPacked(); |
1997 | nonLinearCost_->goBackAll(rhsArray); |
1998 | rhsArray->clear(); |
1999 | |
2000 | } |
2001 | /* |
2002 | Chooses primal pivot column |
2003 | updateArray has cost updates (also use pivotRow_ from last iteration) |
2004 | Would be faster with separate region to scan |
2005 | and will have this (with square of infeasibility) when steepest |
2006 | For easy problems we can just choose one of the first columns we look at |
2007 | */ |
2008 | void |
2009 | ClpSimplexPrimal::primalColumn(CoinIndexedVector * updates, |
2010 | CoinIndexedVector * spareRow1, |
2011 | CoinIndexedVector * spareRow2, |
2012 | CoinIndexedVector * spareColumn1, |
2013 | CoinIndexedVector * spareColumn2) |
2014 | { |
2015 | |
2016 | ClpMatrixBase * saveMatrix = matrix_; |
2017 | double * saveRowScale = rowScale_; |
2018 | if (scaledMatrix_) { |
2019 | rowScale_ = NULL; |
2020 | matrix_ = scaledMatrix_; |
2021 | } |
2022 | sequenceIn_ = primalColumnPivot_->pivotColumn(updates, spareRow1, |
2023 | spareRow2, spareColumn1, |
2024 | spareColumn2); |
2025 | if (scaledMatrix_) { |
2026 | matrix_ = saveMatrix; |
2027 | rowScale_ = saveRowScale; |
2028 | } |
2029 | if (sequenceIn_ >= 0) { |
2030 | valueIn_ = solution_[sequenceIn_]; |
2031 | dualIn_ = dj_[sequenceIn_]; |
2032 | if (nonLinearCost_->lookBothWays()) { |
2033 | // double check |
2034 | ClpSimplex::Status status = getStatus(sequenceIn_); |
2035 | |
2036 | switch(status) { |
2037 | case ClpSimplex::atUpperBound: |
2038 | if (dualIn_ < 0.0) { |
2039 | // move to other side |
2040 | COIN_DETAIL_PRINT(printf("For %d U (%g, %g, %g) dj changed from %g" , |
2041 | sequenceIn_, lower_[sequenceIn_], solution_[sequenceIn_], |
2042 | upper_[sequenceIn_], dualIn_)); |
2043 | dualIn_ -= nonLinearCost_->changeUpInCost(sequenceIn_); |
2044 | COIN_DETAIL_PRINT(printf(" to %g\n" , dualIn_)); |
2045 | nonLinearCost_->setOne(sequenceIn_, upper_[sequenceIn_] + 2.0 * currentPrimalTolerance()); |
2046 | setStatus(sequenceIn_, ClpSimplex::atLowerBound); |
2047 | } |
2048 | break; |
2049 | case ClpSimplex::atLowerBound: |
2050 | if (dualIn_ > 0.0) { |
2051 | // move to other side |
2052 | COIN_DETAIL_PRINT(printf("For %d L (%g, %g, %g) dj changed from %g" , |
2053 | sequenceIn_, lower_[sequenceIn_], solution_[sequenceIn_], |
2054 | upper_[sequenceIn_], dualIn_)); |
2055 | dualIn_ -= nonLinearCost_->changeDownInCost(sequenceIn_); |
2056 | COIN_DETAIL_PRINT(printf(" to %g\n" , dualIn_)); |
2057 | nonLinearCost_->setOne(sequenceIn_, lower_[sequenceIn_] - 2.0 * currentPrimalTolerance()); |
2058 | setStatus(sequenceIn_, ClpSimplex::atUpperBound); |
2059 | } |
2060 | break; |
2061 | default: |
2062 | break; |
2063 | } |
2064 | } |
2065 | lowerIn_ = lower_[sequenceIn_]; |
2066 | upperIn_ = upper_[sequenceIn_]; |
2067 | if (dualIn_ > 0.0) |
2068 | directionIn_ = -1; |
2069 | else |
2070 | directionIn_ = 1; |
2071 | } else { |
2072 | sequenceIn_ = -1; |
2073 | } |
2074 | } |
2075 | /* The primals are updated by the given array. |
2076 | Returns number of infeasibilities. |
2077 | After rowArray will have list of cost changes |
2078 | */ |
2079 | int |
2080 | ClpSimplexPrimal::updatePrimalsInPrimal(CoinIndexedVector * rowArray, |
2081 | double theta, |
2082 | double & objectiveChange, |
2083 | int valuesPass) |
2084 | { |
2085 | // Cost on pivot row may change - may need to change dualIn |
2086 | double oldCost = 0.0; |
2087 | if (pivotRow_ >= 0) |
2088 | oldCost = cost_[sequenceOut_]; |
2089 | //rowArray->scanAndPack(); |
2090 | double * work = rowArray->denseVector(); |
2091 | int number = rowArray->getNumElements(); |
2092 | int * which = rowArray->getIndices(); |
2093 | |
2094 | int newNumber = 0; |
2095 | int pivotPosition = -1; |
2096 | nonLinearCost_->setChangeInCost(0.0); |
2097 | //printf("XX 4138 sol %g lower %g upper %g cost %g status %d\n", |
2098 | // solution_[4138],lower_[4138],upper_[4138],cost_[4138],status_[4138]); |
2099 | // allow for case where bound+tolerance == bound |
2100 | //double tolerance = 0.999999*primalTolerance_; |
2101 | double relaxedTolerance = 1.001 * primalTolerance_; |
2102 | int iIndex; |
2103 | if (!valuesPass) { |
2104 | for (iIndex = 0; iIndex < number; iIndex++) { |
2105 | |
2106 | int iRow = which[iIndex]; |
2107 | double alpha = work[iIndex]; |
2108 | work[iIndex] = 0.0; |
2109 | int iPivot = pivotVariable_[iRow]; |
2110 | double change = theta * alpha; |
2111 | double value = solution_[iPivot] - change; |
2112 | solution_[iPivot] = value; |
2113 | #ifndef NDEBUG |
2114 | // check if not active then okay |
2115 | if (!active(iRow) && (specialOptions_ & 4) == 0 && pivotRow_ != -1) { |
2116 | // But make sure one going out is feasible |
2117 | if (change > 0.0) { |
2118 | // going down |
2119 | if (value <= lower_[iPivot] + primalTolerance_) { |
2120 | if (iPivot == sequenceOut_ && value > lower_[iPivot] - relaxedTolerance) |
2121 | value = lower_[iPivot]; |
2122 | //double difference = nonLinearCost_->setOne(iPivot, value); |
2123 | //assert (!difference || fabs(change) > 1.0e9); |
2124 | } |
2125 | } else { |
2126 | // going up |
2127 | if (value >= upper_[iPivot] - primalTolerance_) { |
2128 | if (iPivot == sequenceOut_ && value < upper_[iPivot] + relaxedTolerance) |
2129 | value = upper_[iPivot]; |
2130 | //double difference = nonLinearCost_->setOne(iPivot, value); |
2131 | //assert (!difference || fabs(change) > 1.0e9); |
2132 | } |
2133 | } |
2134 | } |
2135 | #endif |
2136 | if (active(iRow) || theta_ < 0.0) { |
2137 | clearActive(iRow); |
2138 | // But make sure one going out is feasible |
2139 | if (change > 0.0) { |
2140 | // going down |
2141 | if (value <= lower_[iPivot] + primalTolerance_) { |
2142 | if (iPivot == sequenceOut_ && value >= lower_[iPivot] - relaxedTolerance) |
2143 | value = lower_[iPivot]; |
2144 | double difference = nonLinearCost_->setOne(iPivot, value); |
2145 | if (difference) { |
2146 | if (iRow == pivotRow_) |
2147 | pivotPosition = newNumber; |
2148 | work[newNumber] = difference; |
2149 | //change reduced cost on this |
2150 | dj_[iPivot] = -difference; |
2151 | which[newNumber++] = iRow; |
2152 | } |
2153 | } |
2154 | } else { |
2155 | // going up |
2156 | if (value >= upper_[iPivot] - primalTolerance_) { |
2157 | if (iPivot == sequenceOut_ && value < upper_[iPivot] + relaxedTolerance) |
2158 | value = upper_[iPivot]; |
2159 | double difference = nonLinearCost_->setOne(iPivot, value); |
2160 | if (difference) { |
2161 | if (iRow == pivotRow_) |
2162 | pivotPosition = newNumber; |
2163 | work[newNumber] = difference; |
2164 | //change reduced cost on this |
2165 | dj_[iPivot] = -difference; |
2166 | which[newNumber++] = iRow; |
2167 | } |
2168 | } |
2169 | } |
2170 | } |
2171 | } |
2172 | } else { |
2173 | // values pass so look at all |
2174 | for (iIndex = 0; iIndex < number; iIndex++) { |
2175 | |
2176 | int iRow = which[iIndex]; |
2177 | double alpha = work[iIndex]; |
2178 | work[iIndex] = 0.0; |
2179 | int iPivot = pivotVariable_[iRow]; |
2180 | double change = theta * alpha; |
2181 | double value = solution_[iPivot] - change; |
2182 | solution_[iPivot] = value; |
2183 | clearActive(iRow); |
2184 | // But make sure one going out is feasible |
2185 | if (change > 0.0) { |
2186 | // going down |
2187 | if (value <= lower_[iPivot] + primalTolerance_) { |
2188 | if (iPivot == sequenceOut_ && value > lower_[iPivot] - relaxedTolerance) |
2189 | value = lower_[iPivot]; |
2190 | double difference = nonLinearCost_->setOne(iPivot, value); |
2191 | if (difference) { |
2192 | if (iRow == pivotRow_) |
2193 | pivotPosition = newNumber; |
2194 | work[newNumber] = difference; |
2195 | //change reduced cost on this |
2196 | dj_[iPivot] = -difference; |
2197 | which[newNumber++] = iRow; |
2198 | } |
2199 | } |
2200 | } else { |
2201 | // going up |
2202 | if (value >= upper_[iPivot] - primalTolerance_) { |
2203 | if (iPivot == sequenceOut_ && value < upper_[iPivot] + relaxedTolerance) |
2204 | value = upper_[iPivot]; |
2205 | double difference = nonLinearCost_->setOne(iPivot, value); |
2206 | if (difference) { |
2207 | if (iRow == pivotRow_) |
2208 | pivotPosition = newNumber; |
2209 | work[newNumber] = difference; |
2210 | //change reduced cost on this |
2211 | dj_[iPivot] = -difference; |
2212 | which[newNumber++] = iRow; |
2213 | } |
2214 | } |
2215 | } |
2216 | } |
2217 | } |
2218 | objectiveChange += nonLinearCost_->changeInCost(); |
2219 | rowArray->setPacked(); |
2220 | #if 0 |
2221 | rowArray->setNumElements(newNumber); |
2222 | rowArray->expand(); |
2223 | if (pivotRow_ >= 0) { |
2224 | dualIn_ += (oldCost - cost_[sequenceOut_]); |
2225 | // update change vector to include pivot |
2226 | rowArray->add(pivotRow_, -dualIn_); |
2227 | // and convert to packed |
2228 | rowArray->scanAndPack(); |
2229 | } else { |
2230 | // and convert to packed |
2231 | rowArray->scanAndPack(); |
2232 | } |
2233 | #else |
2234 | if (pivotRow_ >= 0) { |
2235 | double dualIn = dualIn_ + (oldCost - cost_[sequenceOut_]); |
2236 | // update change vector to include pivot |
2237 | if (pivotPosition >= 0) { |
2238 | work[pivotPosition] -= dualIn; |
2239 | } else { |
2240 | work[newNumber] = -dualIn; |
2241 | which[newNumber++] = pivotRow_; |
2242 | } |
2243 | } |
2244 | rowArray->setNumElements(newNumber); |
2245 | #endif |
2246 | return 0; |
2247 | } |
2248 | // Perturbs problem |
2249 | void |
2250 | ClpSimplexPrimal::perturb(int type) |
2251 | { |
2252 | if (perturbation_ > 100) |
2253 | return; //perturbed already |
2254 | if (perturbation_ == 100) |
2255 | perturbation_ = 50; // treat as normal |
2256 | int savePerturbation = perturbation_; |
2257 | int i; |
2258 | if (!numberIterations_) |
2259 | cleanStatus(); // make sure status okay |
2260 | // Make sure feasible bounds |
2261 | if (nonLinearCost_) |
2262 | nonLinearCost_->feasibleBounds(); |
2263 | // look at element range |
2264 | double smallestNegative; |
2265 | double largestNegative; |
2266 | double smallestPositive; |
2267 | double largestPositive; |
2268 | matrix_->rangeOfElements(smallestNegative, largestNegative, |
2269 | smallestPositive, largestPositive); |
2270 | smallestPositive = CoinMin(fabs(smallestNegative), smallestPositive); |
2271 | largestPositive = CoinMax(fabs(largestNegative), largestPositive); |
2272 | double elementRatio = largestPositive / smallestPositive; |
2273 | if (!numberIterations_ && perturbation_ == 50) { |
2274 | // See if we need to perturb |
2275 | int numberTotal = CoinMax(numberRows_, numberColumns_); |
2276 | double * sort = new double[numberTotal]; |
2277 | int nFixed = 0; |
2278 | for (i = 0; i < numberRows_; i++) { |
2279 | double lo = fabs(rowLower_[i]); |
2280 | double up = fabs(rowUpper_[i]); |
2281 | double value = 0.0; |
2282 | if (lo && lo < 1.0e20) { |
2283 | if (up && up < 1.0e20) { |
2284 | value = 0.5 * (lo + up); |
2285 | if (lo == up) |
2286 | nFixed++; |
2287 | } else { |
2288 | value = lo; |
2289 | } |
2290 | } else { |
2291 | if (up && up < 1.0e20) |
2292 | value = up; |
2293 | } |
2294 | sort[i] = value; |
2295 | } |
2296 | std::sort(sort, sort + numberRows_); |
2297 | int number = 1; |
2298 | double last = sort[0]; |
2299 | for (i = 1; i < numberRows_; i++) { |
2300 | if (last != sort[i]) |
2301 | number++; |
2302 | last = sort[i]; |
2303 | } |
2304 | #ifdef KEEP_GOING_IF_FIXED |
2305 | //printf("ratio number diff rhs %g (%d %d fixed), element ratio %g\n",((double)number)/((double) numberRows_), |
2306 | // numberRows_,nFixed,elementRatio); |
2307 | #endif |
2308 | if (number * 4 > numberRows_ || elementRatio > 1.0e12) { |
2309 | perturbation_ = 100; |
2310 | delete [] sort; |
2311 | return; // good enough |
2312 | } |
2313 | number = 0; |
2314 | #ifdef KEEP_GOING_IF_FIXED |
2315 | if (!integerType_) { |
2316 | // look at columns |
2317 | nFixed = 0; |
2318 | for (i = 0; i < numberColumns_; i++) { |
2319 | double lo = fabs(columnLower_[i]); |
2320 | double up = fabs(columnUpper_[i]); |
2321 | double value = 0.0; |
2322 | if (lo && lo < 1.0e20) { |
2323 | if (up && up < 1.0e20) { |
2324 | value = 0.5 * (lo + up); |
2325 | if (lo == up) |
2326 | nFixed++; |
2327 | } else { |
2328 | value = lo; |
2329 | } |
2330 | } else { |
2331 | if (up && up < 1.0e20) |
2332 | value = up; |
2333 | } |
2334 | sort[i] = value; |
2335 | } |
2336 | std::sort(sort, sort + numberColumns_); |
2337 | number = 1; |
2338 | last = sort[0]; |
2339 | for (i = 1; i < numberColumns_; i++) { |
2340 | if (last != sort[i]) |
2341 | number++; |
2342 | last = sort[i]; |
2343 | } |
2344 | //printf("cratio number diff bounds %g (%d %d fixed)\n",((double)number)/((double) numberColumns_), |
2345 | // numberColumns_,nFixed); |
2346 | } |
2347 | #endif |
2348 | delete [] sort; |
2349 | if (number * 4 > numberColumns_) { |
2350 | perturbation_ = 100; |
2351 | return; // good enough |
2352 | } |
2353 | } |
2354 | // primal perturbation |
2355 | double perturbation = 1.0e-20; |
2356 | double bias = 1.0; |
2357 | int numberNonZero = 0; |
2358 | // maximum fraction of rhs/bounds to perturb |
2359 | double maximumFraction = 1.0e-5; |
2360 | if (perturbation_ >= 50) { |
2361 | perturbation = 1.0e-4; |
2362 | for (i = 0; i < numberColumns_ + numberRows_; i++) { |
2363 | if (upper_[i] > lower_[i] + primalTolerance_) { |
2364 | double lowerValue, upperValue; |
2365 | if (lower_[i] > -1.0e20) |
2366 | lowerValue = fabs(lower_[i]); |
2367 | else |
2368 | lowerValue = 0.0; |
2369 | if (upper_[i] < 1.0e20) |
2370 | upperValue = fabs(upper_[i]); |
2371 | else |
2372 | upperValue = 0.0; |
2373 | double value = CoinMax(fabs(lowerValue), fabs(upperValue)); |
2374 | value = CoinMin(value, upper_[i] - lower_[i]); |
2375 | #if 1 |
2376 | if (value) { |
2377 | perturbation += value; |
2378 | numberNonZero++; |
2379 | } |
2380 | #else |
2381 | perturbation = CoinMax(perturbation, value); |
2382 | #endif |
2383 | } |
2384 | } |
2385 | if (numberNonZero) |
2386 | perturbation /= static_cast<double> (numberNonZero); |
2387 | else |
2388 | perturbation = 1.0e-1; |
2389 | if (perturbation_ > 50 && perturbation_ < 55) { |
2390 | // reduce |
2391 | while (perturbation_ > 50) { |
2392 | perturbation_--; |
2393 | perturbation *= 0.25; |
2394 | bias *= 0.25; |
2395 | } |
2396 | } else if (perturbation_ >= 55 && perturbation_ < 60) { |
2397 | // increase |
2398 | while (perturbation_ > 55) { |
2399 | perturbation_--; |
2400 | perturbation *= 4.0; |
2401 | } |
2402 | perturbation_ = 50; |
2403 | } |
2404 | } else if (perturbation_ < 100) { |
2405 | perturbation = pow(10.0, perturbation_); |
2406 | // user is in charge |
2407 | maximumFraction = 1.0; |
2408 | } |
2409 | double largestZero = 0.0; |
2410 | double largest = 0.0; |
2411 | double largestPerCent = 0.0; |
2412 | bool printOut = (handler_->logLevel() == 63); |
2413 | printOut = false; //off |
2414 | // Check if all slack |
2415 | int number = 0; |
2416 | int iSequence; |
2417 | for (iSequence = 0; iSequence < numberRows_; iSequence++) { |
2418 | if (getRowStatus(iSequence) == basic) |
2419 | number++; |
2420 | } |
2421 | if (rhsScale_ > 100.0) { |
2422 | // tone down perturbation |
2423 | maximumFraction *= 0.1; |
2424 | } |
2425 | if (number != numberRows_) |
2426 | type = 1; |
2427 | // modify bounds |
2428 | // Change so at least 1.0e-5 and no more than 0.1 |
2429 | // For now just no more than 0.1 |
2430 | // printf("Pert type %d perturbation %g, maxF %g\n",type,perturbation,maximumFraction); |
2431 | // seems much slower???#define SAVE_PERT |
2432 | #ifdef SAVE_PERT |
2433 | if (2 * numberColumns_ > maximumPerturbationSize_) { |
2434 | delete [] perturbationArray_; |
2435 | maximumPerturbationSize_ = 2 * numberColumns_; |
2436 | perturbationArray_ = new double [maximumPerturbationSize_]; |
2437 | for (int iColumn = 0; iColumn < maximumPerturbationSize_; iColumn++) { |
2438 | perturbationArray_[iColumn] = randomNumberGenerator_.randomDouble(); |
2439 | } |
2440 | } |
2441 | #endif |
2442 | if (type == 1) { |
2443 | double tolerance = 100.0 * primalTolerance_; |
2444 | //double multiplier = perturbation*maximumFraction; |
2445 | for (iSequence = 0; iSequence < numberRows_ + numberColumns_; iSequence++) { |
2446 | if (getStatus(iSequence) == basic) { |
2447 | double lowerValue = lower_[iSequence]; |
2448 | double upperValue = upper_[iSequence]; |
2449 | if (upperValue > lowerValue + tolerance) { |
2450 | double solutionValue = solution_[iSequence]; |
2451 | double difference = upperValue - lowerValue; |
2452 | difference = CoinMin(difference, perturbation); |
2453 | difference = CoinMin(difference, fabs(solutionValue) + 1.0); |
2454 | double value = maximumFraction * (difference + bias); |
2455 | value = CoinMin(value, 0.1); |
2456 | #ifndef SAVE_PERT |
2457 | value *= randomNumberGenerator_.randomDouble(); |
2458 | #else |
2459 | value *= perturbationArray_[2*iSequence]; |
2460 | #endif |
2461 | if (solutionValue - lowerValue <= primalTolerance_) { |
2462 | lower_[iSequence] -= value; |
2463 | } else if (upperValue - solutionValue <= primalTolerance_) { |
2464 | upper_[iSequence] += value; |
2465 | } else { |
2466 | #if 0 |
2467 | if (iSequence >= numberColumns_) { |
2468 | // may not be at bound - but still perturb (unless free) |
2469 | if (upperValue > 1.0e30 && lowerValue < -1.0e30) |
2470 | value = 0.0; |
2471 | else |
2472 | value = - value; // as -1.0 in matrix |
2473 | } else { |
2474 | value = 0.0; |
2475 | } |
2476 | #else |
2477 | value = 0.0; |
2478 | #endif |
2479 | } |
2480 | if (value) { |
2481 | if (printOut) |
2482 | printf("col %d lower from %g to %g, upper from %g to %g\n" , |
2483 | iSequence, lower_[iSequence], lowerValue, upper_[iSequence], upperValue); |
2484 | if (solutionValue) { |
2485 | largest = CoinMax(largest, value); |
2486 | if (value > (fabs(solutionValue) + 1.0)*largestPerCent) |
2487 | largestPerCent = value / (fabs(solutionValue) + 1.0); |
2488 | } else { |
2489 | largestZero = CoinMax(largestZero, value); |
2490 | } |
2491 | } |
2492 | } |
2493 | } |
2494 | } |
2495 | } else { |
2496 | double tolerance = 100.0 * primalTolerance_; |
2497 | for (i = 0; i < numberColumns_; i++) { |
2498 | double lowerValue = lower_[i], upperValue = upper_[i]; |
2499 | if (upperValue > lowerValue + primalTolerance_) { |
2500 | double value = perturbation * maximumFraction; |
2501 | value = CoinMin(value, 0.1); |
2502 | #ifndef SAVE_PERT |
2503 | value *= randomNumberGenerator_.randomDouble(); |
2504 | #else |
2505 | value *= perturbationArray_[2*i+1]; |
2506 | #endif |
2507 | value *= randomNumberGenerator_.randomDouble(); |
2508 | if (savePerturbation != 50) { |
2509 | if (fabs(value) <= primalTolerance_) |
2510 | value = 0.0; |
2511 | if (lowerValue > -1.0e20 && lowerValue) |
2512 | lowerValue -= value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2513 | if (upperValue < 1.0e20 && upperValue) |
2514 | upperValue += value * (CoinMax(1.0e-2, 1.0e-5 * fabs(upperValue))); |
2515 | } else if (value) { |
2516 | double valueL = value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2517 | // get in range |
2518 | if (valueL <= tolerance) { |
2519 | valueL *= 10.0; |
2520 | while (valueL <= tolerance) |
2521 | valueL *= 10.0; |
2522 | } else if (valueL > 1.0) { |
2523 | valueL *= 0.1; |
2524 | while (valueL > 1.0) |
2525 | valueL *= 0.1; |
2526 | } |
2527 | if (lowerValue > -1.0e20 && lowerValue) |
2528 | lowerValue -= valueL; |
2529 | double valueU = value * (CoinMax(1.0e-2, 1.0e-5 * fabs(upperValue))); |
2530 | // get in range |
2531 | if (valueU <= tolerance) { |
2532 | valueU *= 10.0; |
2533 | while (valueU <= tolerance) |
2534 | valueU *= 10.0; |
2535 | } else if (valueU > 1.0) { |
2536 | valueU *= 0.1; |
2537 | while (valueU > 1.0) |
2538 | valueU *= 0.1; |
2539 | } |
2540 | if (upperValue < 1.0e20 && upperValue) |
2541 | upperValue += valueU; |
2542 | } |
2543 | if (lowerValue != lower_[i]) { |
2544 | double difference = fabs(lowerValue - lower_[i]); |
2545 | largest = CoinMax(largest, difference); |
2546 | if (difference > fabs(lower_[i])*largestPerCent) |
2547 | largestPerCent = fabs(difference / lower_[i]); |
2548 | } |
2549 | if (upperValue != upper_[i]) { |
2550 | double difference = fabs(upperValue - upper_[i]); |
2551 | largest = CoinMax(largest, difference); |
2552 | if (difference > fabs(upper_[i])*largestPerCent) |
2553 | largestPerCent = fabs(difference / upper_[i]); |
2554 | } |
2555 | if (printOut) |
2556 | printf("col %d lower from %g to %g, upper from %g to %g\n" , |
2557 | i, lower_[i], lowerValue, upper_[i], upperValue); |
2558 | } |
2559 | lower_[i] = lowerValue; |
2560 | upper_[i] = upperValue; |
2561 | } |
2562 | for (; i < numberColumns_ + numberRows_; i++) { |
2563 | double lowerValue = lower_[i], upperValue = upper_[i]; |
2564 | double value = perturbation * maximumFraction; |
2565 | value = CoinMin(value, 0.1); |
2566 | value *= randomNumberGenerator_.randomDouble(); |
2567 | if (upperValue > lowerValue + tolerance) { |
2568 | if (savePerturbation != 50) { |
2569 | if (fabs(value) <= primalTolerance_) |
2570 | value = 0.0; |
2571 | if (lowerValue > -1.0e20 && lowerValue) |
2572 | lowerValue -= value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2573 | if (upperValue < 1.0e20 && upperValue) |
2574 | upperValue += value * (CoinMax(1.0e-2, 1.0e-5 * fabs(upperValue))); |
2575 | } else if (value) { |
2576 | double valueL = value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2577 | // get in range |
2578 | if (valueL <= tolerance) { |
2579 | valueL *= 10.0; |
2580 | while (valueL <= tolerance) |
2581 | valueL *= 10.0; |
2582 | } else if (valueL > 1.0) { |
2583 | valueL *= 0.1; |
2584 | while (valueL > 1.0) |
2585 | valueL *= 0.1; |
2586 | } |
2587 | if (lowerValue > -1.0e20 && lowerValue) |
2588 | lowerValue -= valueL; |
2589 | double valueU = value * (CoinMax(1.0e-2, 1.0e-5 * fabs(upperValue))); |
2590 | // get in range |
2591 | if (valueU <= tolerance) { |
2592 | valueU *= 10.0; |
2593 | while (valueU <= tolerance) |
2594 | valueU *= 10.0; |
2595 | } else if (valueU > 1.0) { |
2596 | valueU *= 0.1; |
2597 | while (valueU > 1.0) |
2598 | valueU *= 0.1; |
2599 | } |
2600 | if (upperValue < 1.0e20 && upperValue) |
2601 | upperValue += valueU; |
2602 | } |
2603 | } else if (upperValue > 0.0) { |
2604 | upperValue -= value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2605 | lowerValue -= value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2606 | } else if (upperValue < 0.0) { |
2607 | upperValue += value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2608 | lowerValue += value * (CoinMax(1.0e-2, 1.0e-5 * fabs(lowerValue))); |
2609 | } else { |
2610 | } |
2611 | if (lowerValue != lower_[i]) { |
2612 | double difference = fabs(lowerValue - lower_[i]); |
2613 | largest = CoinMax(largest, difference); |
2614 | if (difference > fabs(lower_[i])*largestPerCent) |
2615 | largestPerCent = fabs(difference / lower_[i]); |
2616 | } |
2617 | if (upperValue != upper_[i]) { |
2618 | double difference = fabs(upperValue - upper_[i]); |
2619 | largest = CoinMax(largest, difference); |
2620 | if (difference > fabs(upper_[i])*largestPerCent) |
2621 | largestPerCent = fabs(difference / upper_[i]); |
2622 | } |
2623 | if (printOut) |
2624 | printf("row %d lower from %g to %g, upper from %g to %g\n" , |
2625 | i - numberColumns_, lower_[i], lowerValue, upper_[i], upperValue); |
2626 | lower_[i] = lowerValue; |
2627 | upper_[i] = upperValue; |
2628 | } |
2629 | } |
2630 | // Clean up |
2631 | for (i = 0; i < numberColumns_ + numberRows_; i++) { |
2632 | switch(getStatus(i)) { |
2633 | |
2634 | case basic: |
2635 | break; |
2636 | case atUpperBound: |
2637 | solution_[i] = upper_[i]; |
2638 | break; |
2639 | case isFixed: |
2640 | case atLowerBound: |
2641 | solution_[i] = lower_[i]; |
2642 | break; |
2643 | case isFree: |
2644 | break; |
2645 | case superBasic: |
2646 | break; |
2647 | } |
2648 | } |
2649 | handler_->message(CLP_SIMPLEX_PERTURB, messages_) |
2650 | << 100.0 * maximumFraction << perturbation << largest << 100.0 * largestPerCent << largestZero |
2651 | << CoinMessageEol; |
2652 | // redo nonlinear costs |
2653 | // say perturbed |
2654 | perturbation_ = 101; |
2655 | } |
2656 | // un perturb |
2657 | bool |
2658 | ClpSimplexPrimal::unPerturb() |
2659 | { |
2660 | if (perturbation_ != 101) |
2661 | return false; |
2662 | // put back original bounds and costs |
2663 | createRim(1 + 4); |
2664 | sanityCheck(); |
2665 | // unflag |
2666 | unflag(); |
2667 | // get a valid nonlinear cost function |
2668 | delete nonLinearCost_; |
2669 | nonLinearCost_ = new ClpNonLinearCost(this); |
2670 | perturbation_ = 102; // stop any further perturbation |
2671 | // move non basic variables to new bounds |
2672 | nonLinearCost_->checkInfeasibilities(0.0); |
2673 | #if 1 |
2674 | // Try using dual |
2675 | return true; |
2676 | #else |
2677 | gutsOfSolution(NULL, NULL, ifValuesPass != 0); |
2678 | return false; |
2679 | #endif |
2680 | |
2681 | } |
2682 | // Unflag all variables and return number unflagged |
2683 | int |
2684 | ClpSimplexPrimal::unflag() |
2685 | { |
2686 | int i; |
2687 | int number = numberRows_ + numberColumns_; |
2688 | int numberFlagged = 0; |
2689 | // we can't really trust infeasibilities if there is dual error |
2690 | // allow tolerance bigger than standard to check on duals |
2691 | double relaxedToleranceD = dualTolerance_ + CoinMin(1.0e-2, 10.0 * largestDualError_); |
2692 | for (i = 0; i < number; i++) { |
2693 | if (flagged(i)) { |
2694 | clearFlagged(i); |
2695 | // only say if reasonable dj |
2696 | if (fabs(dj_[i]) > relaxedToleranceD) |
2697 | numberFlagged++; |
2698 | } |
2699 | } |
2700 | numberFlagged += matrix_->generalExpanded(this, 8, i); |
2701 | if (handler_->logLevel() > 2 && numberFlagged && objective_->type() > 1) |
2702 | printf("%d unflagged\n" , numberFlagged); |
2703 | return numberFlagged; |
2704 | } |
2705 | // Do not change infeasibility cost and always say optimal |
2706 | void |
2707 | ClpSimplexPrimal::alwaysOptimal(bool onOff) |
2708 | { |
2709 | if (onOff) |
2710 | specialOptions_ |= 1; |
2711 | else |
2712 | specialOptions_ &= ~1; |
2713 | } |
2714 | bool |
2715 | ClpSimplexPrimal::alwaysOptimal() const |
2716 | { |
2717 | return (specialOptions_ & 1) != 0; |
2718 | } |
2719 | // Flatten outgoing variables i.e. - always to exact bound |
2720 | void |
2721 | ClpSimplexPrimal::exactOutgoing(bool onOff) |
2722 | { |
2723 | if (onOff) |
2724 | specialOptions_ |= 4; |
2725 | else |
2726 | specialOptions_ &= ~4; |
2727 | } |
2728 | bool |
2729 | ClpSimplexPrimal::exactOutgoing() const |
2730 | { |
2731 | return (specialOptions_ & 4) != 0; |
2732 | } |
2733 | /* |
2734 | Reasons to come out (normal mode/user mode): |
2735 | -1 normal |
2736 | -2 factorize now - good iteration/ NA |
2737 | -3 slight inaccuracy - refactorize - iteration done/ same but factor done |
2738 | -4 inaccuracy - refactorize - no iteration/ NA |
2739 | -5 something flagged - go round again/ pivot not possible |
2740 | +2 looks unbounded |
2741 | +3 max iterations (iteration done) |
2742 | */ |
2743 | int |
2744 | ClpSimplexPrimal::pivotResult(int ifValuesPass) |
2745 | { |
2746 | |
2747 | bool roundAgain = true; |
2748 | int returnCode = -1; |
2749 | |
2750 | // loop round if user setting and doing refactorization |
2751 | while (roundAgain) { |
2752 | roundAgain = false; |
2753 | returnCode = -1; |
2754 | pivotRow_ = -1; |
2755 | sequenceOut_ = -1; |
2756 | rowArray_[1]->clear(); |
2757 | #if 0 |
2758 | { |
2759 | int seq[] = {612, 643}; |
2760 | int k; |
2761 | for (k = 0; k < sizeof(seq) / sizeof(int); k++) { |
2762 | int iSeq = seq[k]; |
2763 | if (getColumnStatus(iSeq) != basic) { |
2764 | double djval; |
2765 | double * work; |
2766 | int number; |
2767 | int * which; |
2768 | |
2769 | int iIndex; |
2770 | unpack(rowArray_[1], iSeq); |
2771 | factorization_->updateColumn(rowArray_[2], rowArray_[1]); |
2772 | djval = cost_[iSeq]; |
2773 | work = rowArray_[1]->denseVector(); |
2774 | number = rowArray_[1]->getNumElements(); |
2775 | which = rowArray_[1]->getIndices(); |
2776 | |
2777 | for (iIndex = 0; iIndex < number; iIndex++) { |
2778 | |
2779 | int iRow = which[iIndex]; |
2780 | double alpha = work[iRow]; |
2781 | int iPivot = pivotVariable_[iRow]; |
2782 | djval -= alpha * cost_[iPivot]; |
2783 | } |
2784 | double comp = 1.0e-8 + 1.0e-7 * (CoinMax(fabs(dj_[iSeq]), fabs(djval))); |
2785 | if (fabs(djval - dj_[iSeq]) > comp) |
2786 | printf("Bad dj %g for %d - true is %g\n" , |
2787 | dj_[iSeq], iSeq, djval); |
2788 | assert (fabs(djval) < 1.0e-3 || djval * dj_[iSeq] > 0.0); |
2789 | rowArray_[1]->clear(); |
2790 | } |
2791 | } |
2792 | } |
2793 | #endif |
2794 | |
2795 | // we found a pivot column |
2796 | // update the incoming column |
2797 | unpackPacked(rowArray_[1]); |
2798 | // save reduced cost |
2799 | double saveDj = dualIn_; |
2800 | factorization_->updateColumnFT(rowArray_[2], rowArray_[1]); |
2801 | // Get extra rows |
2802 | matrix_->extendUpdated(this, rowArray_[1], 0); |
2803 | // do ratio test and re-compute dj |
2804 | #ifdef CLP_USER_DRIVEN |
2805 | if (solveType_ != 2 || (moreSpecialOptions_ & 512) == 0) { |
2806 | #endif |
2807 | primalRow(rowArray_[1], rowArray_[3], rowArray_[2], |
2808 | ifValuesPass); |
2809 | #ifdef CLP_USER_DRIVEN |
2810 | } else { |
2811 | int status = eventHandler_->event(ClpEventHandler::pivotRow); |
2812 | if (status >= 0) { |
2813 | problemStatus_ = 5; |
2814 | secondaryStatus_ = ClpEventHandler::pivotRow; |
2815 | break; |
2816 | } |
2817 | } |
2818 | #endif |
2819 | if (ifValuesPass) { |
2820 | saveDj = dualIn_; |
2821 | //assert (fabs(alpha_)>=1.0e-5||(objective_->type()<2||!objective_->activated())||pivotRow_==-2); |
2822 | if (pivotRow_ == -1 || (pivotRow_ >= 0 && fabs(alpha_) < 1.0e-5)) { |
2823 | if(fabs(dualIn_) < 1.0e2 * dualTolerance_ && objective_->type() < 2) { |
2824 | // try other way |
2825 | directionIn_ = -directionIn_; |
2826 | primalRow(rowArray_[1], rowArray_[3], rowArray_[2], |
2827 | 0); |
2828 | } |
2829 | if (pivotRow_ == -1 || (pivotRow_ >= 0 && fabs(alpha_) < 1.0e-5)) { |
2830 | if (solveType_ == 1) { |
2831 | // reject it |
2832 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
2833 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
2834 | << x << sequenceWithin(sequenceIn_) |
2835 | << CoinMessageEol; |
2836 | setFlagged(sequenceIn_); |
2837 | progress_.clearBadTimes(); |
2838 | lastBadIteration_ = numberIterations_; // say be more cautious |
2839 | clearAll(); |
2840 | pivotRow_ = -1; |
2841 | } |
2842 | returnCode = -5; |
2843 | break; |
2844 | } |
2845 | } |
2846 | } |
2847 | // need to clear toIndex_ in gub |
2848 | // ? when can I clear stuff |
2849 | // Clean up any gub stuff |
2850 | matrix_->extendUpdated(this, rowArray_[1], 1); |
2851 | double checkValue = 1.0e-2; |
2852 | if (largestDualError_ > 1.0e-5) |
2853 | checkValue = 1.0e-1; |
2854 | double test2 = dualTolerance_; |
2855 | double test1 = 1.0e-20; |
2856 | #if 0 //def FEB_TRY |
2857 | if (factorization_->pivots() < 1) { |
2858 | test1 = -1.0e-4; |
2859 | if ((saveDj < 0.0 && dualIn_ < -1.0e-5 * dualTolerance_) || |
2860 | (saveDj > 0.0 && dualIn_ > 1.0e-5 * dualTolerance_)) |
2861 | test2 = 0.0; // allow through |
2862 | } |
2863 | #endif |
2864 | if (!ifValuesPass && solveType_ == 1 && (saveDj * dualIn_ < test1 || |
2865 | fabs(saveDj - dualIn_) > checkValue*(1.0 + fabs(saveDj)) || |
2866 | fabs(dualIn_) < test2)) { |
2867 | if (!(saveDj * dualIn_ > 0.0 && CoinMin(fabs(saveDj), fabs(dualIn_)) > |
2868 | 1.0e5)) { |
2869 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
2870 | handler_->message(CLP_PRIMAL_DJ, messages_) |
2871 | << x << sequenceWithin(sequenceIn_) |
2872 | << saveDj << dualIn_ |
2873 | << CoinMessageEol; |
2874 | if(lastGoodIteration_ != numberIterations_) { |
2875 | clearAll(); |
2876 | pivotRow_ = -1; // say no weights update |
2877 | returnCode = -4; |
2878 | if(lastGoodIteration_ + 1 == numberIterations_) { |
2879 | // not looking wonderful - try cleaning bounds |
2880 | // put non-basics to bounds in case tolerance moved |
2881 | nonLinearCost_->checkInfeasibilities(0.0); |
2882 | } |
2883 | sequenceOut_ = -1; |
2884 | break; |
2885 | } else { |
2886 | // take on more relaxed criterion |
2887 | if (saveDj * dualIn_ < test1 || |
2888 | fabs(saveDj - dualIn_) > 2.0e-1 * (1.0 + fabs(dualIn_)) || |
2889 | fabs(dualIn_) < test2) { |
2890 | // need to reject something |
2891 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
2892 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
2893 | << x << sequenceWithin(sequenceIn_) |
2894 | << CoinMessageEol; |
2895 | setFlagged(sequenceIn_); |
2896 | #if 1 //def FEB_TRY |
2897 | // Make safer? |
2898 | factorization_->saferTolerances (-0.99, -1.03); |
2899 | #endif |
2900 | progress_.clearBadTimes(); |
2901 | lastBadIteration_ = numberIterations_; // say be more cautious |
2902 | clearAll(); |
2903 | pivotRow_ = -1; |
2904 | returnCode = -5; |
2905 | sequenceOut_ = -1; |
2906 | break; |
2907 | } |
2908 | } |
2909 | } else { |
2910 | //printf("%d %g %g\n",numberIterations_,saveDj,dualIn_); |
2911 | } |
2912 | } |
2913 | if (pivotRow_ >= 0) { |
2914 | #ifdef CLP_USER_DRIVEN1 |
2915 | // Got good pivot - may need to unflag stuff |
2916 | userChoiceWasGood(this); |
2917 | #endif |
2918 | if (solveType_ == 2 && (moreSpecialOptions_ & 512) == 0) { |
2919 | // **** Coding for user interface |
2920 | // do ray |
2921 | primalRay(rowArray_[1]); |
2922 | // update duals |
2923 | // as packed need to find pivot row |
2924 | //assert (rowArray_[1]->packedMode()); |
2925 | //int i; |
2926 | |
2927 | //alpha_ = rowArray_[1]->denseVector()[pivotRow_]; |
2928 | CoinAssert (fabs(alpha_) > 1.0e-12); |
2929 | double multiplier = dualIn_ / alpha_; |
2930 | rowArray_[0]->insert(pivotRow_, multiplier); |
2931 | factorization_->updateColumnTranspose(rowArray_[2], rowArray_[0]); |
2932 | // put row of tableau in rowArray[0] and columnArray[0] |
2933 | matrix_->transposeTimes(this, -1.0, |
2934 | rowArray_[0], columnArray_[1], columnArray_[0]); |
2935 | // update column djs |
2936 | int i; |
2937 | int * index = columnArray_[0]->getIndices(); |
2938 | int number = columnArray_[0]->getNumElements(); |
2939 | double * element = columnArray_[0]->denseVector(); |
2940 | for (i = 0; i < number; i++) { |
2941 | int ii = index[i]; |
2942 | dj_[ii] += element[ii]; |
2943 | reducedCost_[ii] = dj_[ii]; |
2944 | element[ii] = 0.0; |
2945 | } |
2946 | columnArray_[0]->setNumElements(0); |
2947 | // and row djs |
2948 | index = rowArray_[0]->getIndices(); |
2949 | number = rowArray_[0]->getNumElements(); |
2950 | element = rowArray_[0]->denseVector(); |
2951 | for (i = 0; i < number; i++) { |
2952 | int ii = index[i]; |
2953 | dj_[ii+numberColumns_] += element[ii]; |
2954 | dual_[ii] = dj_[ii+numberColumns_]; |
2955 | element[ii] = 0.0; |
2956 | } |
2957 | rowArray_[0]->setNumElements(0); |
2958 | // check incoming |
2959 | CoinAssert (fabs(dj_[sequenceIn_]) < 1.0e-1); |
2960 | } |
2961 | // if stable replace in basis |
2962 | // If gub or odd then alpha and pivotRow may change |
2963 | int updateType = 0; |
2964 | int updateStatus = matrix_->generalExpanded(this, 3, updateType); |
2965 | if (updateType >= 0) |
2966 | updateStatus = factorization_->replaceColumn(this, |
2967 | rowArray_[2], |
2968 | rowArray_[1], |
2969 | pivotRow_, |
2970 | alpha_, |
2971 | (moreSpecialOptions_ & 16) != 0); |
2972 | |
2973 | // if no pivots, bad update but reasonable alpha - take and invert |
2974 | if (updateStatus == 2 && |
2975 | lastGoodIteration_ == numberIterations_ && fabs(alpha_) > 1.0e-5) |
2976 | updateStatus = 4; |
2977 | if (updateStatus == 1 || updateStatus == 4) { |
2978 | // slight error |
2979 | if (factorization_->pivots() > 5 || updateStatus == 4) { |
2980 | returnCode = -3; |
2981 | } |
2982 | } else if (updateStatus == 2) { |
2983 | // major error |
2984 | // better to have small tolerance even if slower |
2985 | factorization_->zeroTolerance(CoinMin(factorization_->zeroTolerance(), 1.0e-15)); |
2986 | int maxFactor = factorization_->maximumPivots(); |
2987 | if (maxFactor > 10) { |
2988 | if (forceFactorization_ < 0) |
2989 | forceFactorization_ = maxFactor; |
2990 | forceFactorization_ = CoinMax(1, (forceFactorization_ >> 1)); |
2991 | } |
2992 | // later we may need to unwind more e.g. fake bounds |
2993 | if(lastGoodIteration_ != numberIterations_) { |
2994 | clearAll(); |
2995 | pivotRow_ = -1; |
2996 | if (solveType_ == 1 || (moreSpecialOptions_ & 512) != 0) { |
2997 | returnCode = -4; |
2998 | break; |
2999 | } else { |
3000 | // user in charge - re-factorize |
3001 | int lastCleaned = 0; |
3002 | ClpSimplexProgress dummyProgress; |
3003 | if (saveStatus_) |
3004 | statusOfProblemInPrimal(lastCleaned, 1, &dummyProgress, true, ifValuesPass); |
3005 | else |
3006 | statusOfProblemInPrimal(lastCleaned, 0, &dummyProgress, true, ifValuesPass); |
3007 | roundAgain = true; |
3008 | continue; |
3009 | } |
3010 | } else { |
3011 | // need to reject something |
3012 | if (solveType_ == 1) { |
3013 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
3014 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
3015 | << x << sequenceWithin(sequenceIn_) |
3016 | << CoinMessageEol; |
3017 | setFlagged(sequenceIn_); |
3018 | progress_.clearBadTimes(); |
3019 | } |
3020 | lastBadIteration_ = numberIterations_; // say be more cautious |
3021 | clearAll(); |
3022 | pivotRow_ = -1; |
3023 | sequenceOut_ = -1; |
3024 | returnCode = -5; |
3025 | break; |
3026 | |
3027 | } |
3028 | } else if (updateStatus == 3) { |
3029 | // out of memory |
3030 | // increase space if not many iterations |
3031 | if (factorization_->pivots() < |
3032 | 0.5 * factorization_->maximumPivots() && |
3033 | factorization_->pivots() < 200) |
3034 | factorization_->areaFactor( |
3035 | factorization_->areaFactor() * 1.1); |
3036 | returnCode = -2; // factorize now |
3037 | } else if (updateStatus == 5) { |
3038 | problemStatus_ = -2; // factorize now |
3039 | } |
3040 | // here do part of steepest - ready for next iteration |
3041 | if (!ifValuesPass) |
3042 | primalColumnPivot_->updateWeights(rowArray_[1]); |
3043 | } else { |
3044 | if (pivotRow_ == -1) { |
3045 | // no outgoing row is valid |
3046 | if (valueOut_ != COIN_DBL_MAX) { |
3047 | double objectiveChange = 0.0; |
3048 | theta_ = valueOut_ - valueIn_; |
3049 | updatePrimalsInPrimal(rowArray_[1], theta_, objectiveChange, ifValuesPass); |
3050 | solution_[sequenceIn_] += theta_; |
3051 | } |
3052 | rowArray_[0]->clear(); |
3053 | #ifdef CLP_USER_DRIVEN1 |
3054 | /* Note if valueOut_ < COIN_DBL_MAX and |
3055 | theta_ reasonable then this may be a valid sub flip */ |
3056 | if(!userChoiceValid2(this)) { |
3057 | if (factorization_->pivots()<5) { |
3058 | // flag variable |
3059 | char x = isColumn(sequenceIn_) ? 'C' : 'R'; |
3060 | handler_->message(CLP_SIMPLEX_FLAG, messages_) |
3061 | << x << sequenceWithin(sequenceIn_) |
3062 | << CoinMessageEol; |
3063 | setFlagged(sequenceIn_); |
3064 | progress_.clearBadTimes(); |
3065 | roundAgain = true; |
3066 | continue; |
3067 | } else { |
3068 | // try refactorizing first |
3069 | returnCode = 4; //say looks odd but has iterated |
3070 | break; |
3071 | } |
3072 | } |
3073 | #endif |
3074 | if (!factorization_->pivots() && acceptablePivot_ <= 1.0e-8) { |
3075 | returnCode = 2; //say looks unbounded |
3076 | // do ray |
3077 | primalRay(rowArray_[1]); |
3078 | } else if (solveType_ == 2 && (moreSpecialOptions_ & 512) == 0) { |
3079 | // refactorize |
3080 | int lastCleaned = 0; |
3081 | ClpSimplexProgress dummyProgress; |
3082 | if (saveStatus_) |
3083 | statusOfProblemInPrimal(lastCleaned, 1, &dummyProgress, true, ifValuesPass); |
3084 | else |
3085 | statusOfProblemInPrimal(lastCleaned, 0, &dummyProgress, true, ifValuesPass); |
3086 | roundAgain = true; |
3087 | continue; |
3088 | } else { |
3089 | acceptablePivot_ = 1.0e-8; |
3090 | returnCode = 4; //say looks unbounded but has iterated |
3091 | } |
3092 | break; |
3093 | } else { |
3094 | // flipping from bound to bound |
3095 | } |
3096 | } |
3097 | |
3098 | double oldCost = 0.0; |
3099 | if (sequenceOut_ >= 0) |
3100 | oldCost = cost_[sequenceOut_]; |
3101 | // update primal solution |
3102 | |
3103 | double objectiveChange = 0.0; |
3104 | // after this rowArray_[1] is not empty - used to update djs |
3105 | // If pivot row >= numberRows then may be gub |
3106 | int savePivot = pivotRow_; |
3107 | if (pivotRow_ >= numberRows_) |
3108 | pivotRow_ = -1; |
3109 | updatePrimalsInPrimal(rowArray_[1], theta_, objectiveChange, ifValuesPass); |
3110 | pivotRow_ = savePivot; |
3111 | |
3112 | double oldValue = valueIn_; |
3113 | if (directionIn_ == -1) { |
3114 | // as if from upper bound |
3115 | if (sequenceIn_ != sequenceOut_) { |
3116 | // variable becoming basic |
3117 | valueIn_ -= fabs(theta_); |
3118 | } else { |
3119 | valueIn_ = lowerIn_; |
3120 | } |
3121 | } else { |
3122 | // as if from lower bound |
3123 | if (sequenceIn_ != sequenceOut_) { |
3124 | // variable becoming basic |
3125 | valueIn_ += fabs(theta_); |
3126 | } else { |
3127 | valueIn_ = upperIn_; |
3128 | } |
3129 | } |
3130 | objectiveChange += dualIn_ * (valueIn_ - oldValue); |
3131 | // outgoing |
3132 | if (sequenceIn_ != sequenceOut_) { |
3133 | if (directionOut_ > 0) { |
3134 | valueOut_ = lowerOut_; |
3135 | } else { |
3136 | valueOut_ = upperOut_; |
3137 | } |
3138 | if(valueOut_ < lower_[sequenceOut_] - primalTolerance_) |
3139 | valueOut_ = lower_[sequenceOut_] - 0.9 * primalTolerance_; |
3140 | else if (valueOut_ > upper_[sequenceOut_] + primalTolerance_) |
3141 | valueOut_ = upper_[sequenceOut_] + 0.9 * primalTolerance_; |
3142 | // may not be exactly at bound and bounds may have changed |
3143 | // Make sure outgoing looks feasible |
3144 | directionOut_ = nonLinearCost_->setOneOutgoing(sequenceOut_, valueOut_); |
3145 | // May have got inaccurate |
3146 | //if (oldCost!=cost_[sequenceOut_]) |
3147 | //printf("costchange on %d from %g to %g\n",sequenceOut_, |
3148 | // oldCost,cost_[sequenceOut_]); |
3149 | if (solveType_ != 2) |
3150 | dj_[sequenceOut_] = cost_[sequenceOut_] - oldCost; // normally updated next iteration |
3151 | solution_[sequenceOut_] = valueOut_; |
3152 | } |
3153 | // change cost and bounds on incoming if primal |
3154 | nonLinearCost_->setOne(sequenceIn_, valueIn_); |
3155 | int whatNext = housekeeping(objectiveChange); |
3156 | //nonLinearCost_->validate(); |
3157 | #if CLP_DEBUG >1 |
3158 | { |
3159 | double sum; |
3160 | int ninf = matrix_->checkFeasible(this, sum); |
3161 | if (ninf) |
3162 | printf("infeas %d\n" , ninf); |
3163 | } |
3164 | #endif |
3165 | if (whatNext == 1) { |
3166 | returnCode = -2; // refactorize |
3167 | } else if (whatNext == 2) { |
3168 | // maximum iterations or equivalent |
3169 | returnCode = 3; |
3170 | } else if(numberIterations_ == lastGoodIteration_ |
3171 | + 2 * factorization_->maximumPivots()) { |
3172 | // done a lot of flips - be safe |
3173 | returnCode = -2; // refactorize |
3174 | } |
3175 | // Check event |
3176 | { |
3177 | int status = eventHandler_->event(ClpEventHandler::endOfIteration); |
3178 | if (status >= 0) { |
3179 | problemStatus_ = 5; |
3180 | secondaryStatus_ = ClpEventHandler::endOfIteration; |
3181 | returnCode = 3; |
3182 | } |
3183 | } |
3184 | } |
3185 | if ((solveType_ == 2 && (moreSpecialOptions_ & 512) == 0) && |
3186 | (returnCode == -2 || returnCode == -3)) { |
3187 | // refactorize here |
3188 | int lastCleaned = 0; |
3189 | ClpSimplexProgress dummyProgress; |
3190 | if (saveStatus_) |
3191 | statusOfProblemInPrimal(lastCleaned, 1, &dummyProgress, true, ifValuesPass); |
3192 | else |
3193 | statusOfProblemInPrimal(lastCleaned, 0, &dummyProgress, true, ifValuesPass); |
3194 | if (problemStatus_ == 5) { |
3195 | COIN_DETAIL_PRINT(printf("Singular basis\n" )); |
3196 | problemStatus_ = -1; |
3197 | returnCode = 5; |
3198 | } |
3199 | } |
3200 | #ifdef CLP_DEBUG |
3201 | { |
3202 | int i; |
3203 | // not [1] as may have information |
3204 | for (i = 0; i < 4; i++) { |
3205 | if (i != 1) |
3206 | rowArray_[i]->checkClear(); |
3207 | } |
3208 | for (i = 0; i < 2; i++) { |
3209 | columnArray_[i]->checkClear(); |
3210 | } |
3211 | } |
3212 | #endif |
3213 | return returnCode; |
3214 | } |
3215 | // Create primal ray |
3216 | void |
3217 | ClpSimplexPrimal::primalRay(CoinIndexedVector * rowArray) |
3218 | { |
3219 | delete [] ray_; |
3220 | ray_ = new double [numberColumns_]; |
3221 | CoinZeroN(ray_, numberColumns_); |
3222 | int number = rowArray->getNumElements(); |
3223 | int * index = rowArray->getIndices(); |
3224 | double * array = rowArray->denseVector(); |
3225 | double way = -directionIn_; |
3226 | int i; |
3227 | double zeroTolerance = 1.0e-12; |
3228 | if (sequenceIn_ < numberColumns_) |
3229 | ray_[sequenceIn_] = directionIn_; |
3230 | if (!rowArray->packedMode()) { |
3231 | for (i = 0; i < number; i++) { |
3232 | int iRow = index[i]; |
3233 | int iPivot = pivotVariable_[iRow]; |
3234 | double arrayValue = array[iRow]; |
3235 | if (iPivot < numberColumns_ && fabs(arrayValue) >= zeroTolerance) |
3236 | ray_[iPivot] = way * arrayValue; |
3237 | } |
3238 | } else { |
3239 | for (i = 0; i < number; i++) { |
3240 | int iRow = index[i]; |
3241 | int iPivot = pivotVariable_[iRow]; |
3242 | double arrayValue = array[i]; |
3243 | if (iPivot < numberColumns_ && fabs(arrayValue) >= zeroTolerance) |
3244 | ray_[iPivot] = way * arrayValue; |
3245 | } |
3246 | } |
3247 | } |
3248 | /* Get next superbasic -1 if none, |
3249 | Normal type is 1 |
3250 | If type is 3 then initializes sorted list |
3251 | if 2 uses list. |
3252 | */ |
3253 | int |
3254 | ClpSimplexPrimal::nextSuperBasic(int superBasicType, |
3255 | CoinIndexedVector * columnArray) |
3256 | { |
3257 | int returnValue = -1; |
3258 | bool finished = false; |
3259 | while (!finished) { |
3260 | returnValue = firstFree_; |
3261 | int iColumn = firstFree_ + 1; |
3262 | if (superBasicType > 1) { |
3263 | if (superBasicType > 2) { |
3264 | // Initialize list |
3265 | // Wild guess that lower bound more natural than upper |
3266 | int number = 0; |
3267 | double * work = columnArray->denseVector(); |
3268 | int * which = columnArray->getIndices(); |
3269 | for (iColumn = 0; iColumn < numberRows_ + numberColumns_; iColumn++) { |
3270 | if (!flagged(iColumn)) { |
3271 | if (getStatus(iColumn) == superBasic) { |
3272 | if (fabs(solution_[iColumn] - lower_[iColumn]) <= primalTolerance_) { |
3273 | solution_[iColumn] = lower_[iColumn]; |
3274 | setStatus(iColumn, atLowerBound); |
3275 | } else if (fabs(solution_[iColumn] - upper_[iColumn]) |
3276 | <= primalTolerance_) { |
3277 | solution_[iColumn] = upper_[iColumn]; |
3278 | setStatus(iColumn, atUpperBound); |
3279 | } else if (lower_[iColumn] < -1.0e20 && upper_[iColumn] > 1.0e20) { |
3280 | setStatus(iColumn, isFree); |
3281 | break; |
3282 | } else if (!flagged(iColumn)) { |
3283 | // put ones near bounds at end after sorting |
3284 | work[number] = - CoinMin(0.1 * (solution_[iColumn] - lower_[iColumn]), |
3285 | upper_[iColumn] - solution_[iColumn]); |
3286 | which[number++] = iColumn; |
3287 | } |
3288 | } |
3289 | } |
3290 | } |
3291 | CoinSort_2(work, work + number, which); |
3292 | columnArray->setNumElements(number); |
3293 | CoinZeroN(work, number); |
3294 | } |
3295 | int * which = columnArray->getIndices(); |
3296 | int number = columnArray->getNumElements(); |
3297 | if (!number) { |
3298 | // finished |
3299 | iColumn = numberRows_ + numberColumns_; |
3300 | returnValue = -1; |
3301 | } else { |
3302 | number--; |
3303 | returnValue = which[number]; |
3304 | iColumn = returnValue; |
3305 | columnArray->setNumElements(number); |
3306 | } |
3307 | } else { |
3308 | for (; iColumn < numberRows_ + numberColumns_; iColumn++) { |
3309 | if (!flagged(iColumn)) { |
3310 | if (getStatus(iColumn) == superBasic) { |
3311 | if (fabs(solution_[iColumn] - lower_[iColumn]) <= primalTolerance_) { |
3312 | solution_[iColumn] = lower_[iColumn]; |
3313 | setStatus(iColumn, atLowerBound); |
3314 | } else if (fabs(solution_[iColumn] - upper_[iColumn]) |
3315 | <= primalTolerance_) { |
3316 | solution_[iColumn] = upper_[iColumn]; |
3317 | setStatus(iColumn, atUpperBound); |
3318 | } else if (lower_[iColumn] < -1.0e20 && upper_[iColumn] > 1.0e20) { |
3319 | setStatus(iColumn, isFree); |
3320 | break; |
3321 | } else { |
3322 | break; |
3323 | } |
3324 | } |
3325 | } |
3326 | } |
3327 | } |
3328 | firstFree_ = iColumn; |
3329 | finished = true; |
3330 | if (firstFree_ == numberRows_ + numberColumns_) |
3331 | firstFree_ = -1; |
3332 | if (returnValue >= 0 && getStatus(returnValue) != superBasic && getStatus(returnValue) != isFree) |
3333 | finished = false; // somehow picked up odd one |
3334 | } |
3335 | return returnValue; |
3336 | } |
3337 | void |
3338 | ClpSimplexPrimal::clearAll() |
3339 | { |
3340 | // Clean up any gub stuff |
3341 | matrix_->extendUpdated(this, rowArray_[1], 1); |
3342 | int number = rowArray_[1]->getNumElements(); |
3343 | int * which = rowArray_[1]->getIndices(); |
3344 | |
3345 | int iIndex; |
3346 | for (iIndex = 0; iIndex < number; iIndex++) { |
3347 | |
3348 | int iRow = which[iIndex]; |
3349 | clearActive(iRow); |
3350 | } |
3351 | rowArray_[1]->clear(); |
3352 | // make sure any gub sets are clean |
3353 | matrix_->generalExpanded(this, 11, sequenceIn_); |
3354 | |
3355 | } |
3356 | // Sort of lexicographic resolve |
3357 | int |
3358 | ClpSimplexPrimal::lexSolve() |
3359 | { |
3360 | algorithm_ = +1; |
3361 | //specialOptions_ |= 4; |
3362 | |
3363 | // save data |
3364 | ClpDataSave data = saveData(); |
3365 | matrix_->refresh(this); // make sure matrix okay |
3366 | |
3367 | // Save so can see if doing after dual |
3368 | int initialStatus = problemStatus_; |
3369 | int initialIterations = numberIterations_; |
3370 | int initialNegDjs = -1; |
3371 | // initialize - maybe values pass and algorithm_ is +1 |
3372 | int ifValuesPass = 0; |
3373 | #if 0 |
3374 | // if so - put in any superbasic costed slacks |
3375 | // Start can skip some things in transposeTimes |
3376 | specialOptions_ |= 131072; |
3377 | if (ifValuesPass && specialOptions_ < 0x01000000) { |
3378 | // Get column copy |
3379 | const CoinPackedMatrix * columnCopy = matrix(); |
3380 | const int * row = columnCopy->getIndices(); |
3381 | const CoinBigIndex * columnStart = columnCopy->getVectorStarts(); |
3382 | const int * columnLength = columnCopy->getVectorLengths(); |
3383 | //const double * element = columnCopy->getElements(); |
3384 | int n = 0; |
3385 | for (int iColumn = 0; iColumn < numberColumns_; iColumn++) { |
3386 | if (columnLength[iColumn] == 1) { |
3387 | Status status = getColumnStatus(iColumn); |
3388 | if (status != basic && status != isFree) { |
3389 | double value = columnActivity_[iColumn]; |
3390 | if (fabs(value - columnLower_[iColumn]) > primalTolerance_ && |
3391 | fabs(value - columnUpper_[iColumn]) > primalTolerance_) { |
3392 | int iRow = row[columnStart[iColumn]]; |
3393 | if (getRowStatus(iRow) == basic) { |
3394 | setRowStatus(iRow, superBasic); |
3395 | setColumnStatus(iColumn, basic); |
3396 | n++; |
3397 | } |
3398 | } |
3399 | } |
3400 | } |
3401 | } |
3402 | printf("%d costed slacks put in basis\n" , n); |
3403 | } |
3404 | #endif |
3405 | double * originalCost = NULL; |
3406 | double * originalLower = NULL; |
3407 | double * originalUpper = NULL; |
3408 | if (!startup(0, 0)) { |
3409 | |
3410 | // Set average theta |
3411 | nonLinearCost_->setAverageTheta(1.0e3); |
3412 | int lastCleaned = 0; // last time objective or bounds cleaned up |
3413 | |
3414 | // Say no pivot has occurred (for steepest edge and updates) |
3415 | pivotRow_ = -2; |
3416 | |
3417 | // This says whether to restore things etc |
3418 | int factorType = 0; |
3419 | if (problemStatus_ < 0 && perturbation_ < 100) { |
3420 | perturb(0); |
3421 | // Can't get here if values pass |
3422 | assert (!ifValuesPass); |
3423 | gutsOfSolution(NULL, NULL); |
3424 | if (handler_->logLevel() > 2) { |
3425 | handler_->message(CLP_SIMPLEX_STATUS, messages_) |
3426 | << numberIterations_ << objectiveValue(); |
3427 | handler_->printing(sumPrimalInfeasibilities_ > 0.0) |
3428 | << sumPrimalInfeasibilities_ << numberPrimalInfeasibilities_; |
3429 | handler_->printing(sumDualInfeasibilities_ > 0.0) |
3430 | << sumDualInfeasibilities_ << numberDualInfeasibilities_; |
3431 | handler_->printing(numberDualInfeasibilitiesWithoutFree_ |
3432 | < numberDualInfeasibilities_) |
3433 | << numberDualInfeasibilitiesWithoutFree_; |
3434 | handler_->message() << CoinMessageEol; |
3435 | } |
3436 | } |
3437 | ClpSimplex * saveModel = NULL; |
3438 | int stopSprint = -1; |
3439 | int sprintPass = 0; |
3440 | int reasonableSprintIteration = 0; |
3441 | int lastSprintIteration = 0; |
3442 | double lastObjectiveValue = COIN_DBL_MAX; |
3443 | // Start check for cycles |
3444 | progress_.fillFromModel(this); |
3445 | progress_.startCheck(); |
3446 | /* |
3447 | Status of problem: |
3448 | 0 - optimal |
3449 | 1 - infeasible |
3450 | 2 - unbounded |
3451 | -1 - iterating |
3452 | -2 - factorization wanted |
3453 | -3 - redo checking without factorization |
3454 | -4 - looks infeasible |
3455 | -5 - looks unbounded |
3456 | */ |
3457 | originalCost = CoinCopyOfArray(cost_, numberColumns_ + numberRows_); |
3458 | originalLower = CoinCopyOfArray(lower_, numberColumns_ + numberRows_); |
3459 | originalUpper = CoinCopyOfArray(upper_, numberColumns_ + numberRows_); |
3460 | while (problemStatus_ < 0) { |
3461 | int iRow, iColumn; |
3462 | // clear |
3463 | for (iRow = 0; iRow < 4; iRow++) { |
3464 | rowArray_[iRow]->clear(); |
3465 | } |
3466 | |
3467 | for (iColumn = 0; iColumn < 2; iColumn++) { |
3468 | columnArray_[iColumn]->clear(); |
3469 | } |
3470 | |
3471 | // give matrix (and model costs and bounds a chance to be |
3472 | // refreshed (normally null) |
3473 | matrix_->refresh(this); |
3474 | // If getting nowhere - why not give it a kick |
3475 | #if 1 |
3476 | if (perturbation_ < 101 && numberIterations_ > 2 * (numberRows_ + numberColumns_) && (specialOptions_ & 4) == 0 |
3477 | && initialStatus != 10) { |
3478 | perturb(1); |
3479 | matrix_->rhsOffset(this, true, false); |
3480 | } |
3481 | #endif |
3482 | // If we have done no iterations - special |
3483 | if (lastGoodIteration_ == numberIterations_ && factorType) |
3484 | factorType = 3; |
3485 | if (saveModel) { |
3486 | // Doing sprint |
3487 | if (sequenceIn_ < 0 || numberIterations_ >= stopSprint) { |
3488 | problemStatus_ = -1; |
3489 | originalModel(saveModel); |
3490 | saveModel = NULL; |
3491 | if (sequenceIn_ < 0 && numberIterations_ < reasonableSprintIteration && |
3492 | sprintPass > 100) |
3493 | primalColumnPivot_->switchOffSprint(); |
3494 | //lastSprintIteration=numberIterations_; |
3495 | COIN_DETAIL_PRINT(printf("End small model\n" )); |
3496 | } |
3497 | } |
3498 | |
3499 | // may factorize, checks if problem finished |
3500 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
3501 | if (initialStatus == 10) { |
3502 | // cleanup phase |
3503 | if(initialIterations != numberIterations_) { |
3504 | if (numberDualInfeasibilities_ > 10000 && numberDualInfeasibilities_ > 10 * initialNegDjs) { |
3505 | // getting worse - try perturbing |
3506 | if (perturbation_ < 101 && (specialOptions_ & 4) == 0) { |
3507 | perturb(1); |
3508 | matrix_->rhsOffset(this, true, false); |
3509 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
3510 | } |
3511 | } |
3512 | } else { |
3513 | // save number of negative djs |
3514 | if (!numberPrimalInfeasibilities_) |
3515 | initialNegDjs = numberDualInfeasibilities_; |
3516 | // make sure weight won't be changed |
3517 | if (infeasibilityCost_ == 1.0e10) |
3518 | infeasibilityCost_ = 1.000001e10; |
3519 | } |
3520 | } |
3521 | // See if sprint says redo because of problems |
3522 | if (numberDualInfeasibilities_ == -776) { |
3523 | // Need new set of variables |
3524 | problemStatus_ = -1; |
3525 | originalModel(saveModel); |
3526 | saveModel = NULL; |
3527 | //lastSprintIteration=numberIterations_; |
3528 | COIN_DETAIL_PRINT(printf("End small model after\n" )); |
3529 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
3530 | } |
3531 | int numberSprintIterations = 0; |
3532 | int numberSprintColumns = primalColumnPivot_->numberSprintColumns(numberSprintIterations); |
3533 | if (problemStatus_ == 777) { |
3534 | // problems so do one pass with normal |
3535 | problemStatus_ = -1; |
3536 | originalModel(saveModel); |
3537 | saveModel = NULL; |
3538 | // Skip factorization |
3539 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,false,saveModel); |
3540 | statusOfProblemInPrimal(lastCleaned, factorType, &progress_, true, ifValuesPass, saveModel); |
3541 | } else if (problemStatus_ < 0 && !saveModel && numberSprintColumns && firstFree_ < 0) { |
3542 | int numberSort = 0; |
3543 | int numberFixed = 0; |
3544 | int numberBasic = 0; |
3545 | reasonableSprintIteration = numberIterations_ + 100; |
3546 | int * whichColumns = new int[numberColumns_]; |
3547 | double * weight = new double[numberColumns_]; |
3548 | int numberNegative = 0; |
3549 | double sumNegative = 0.0; |
3550 | // now massage weight so all basic in plus good djs |
3551 | for (iColumn = 0; iColumn < numberColumns_; iColumn++) { |
3552 | double dj = dj_[iColumn]; |
3553 | switch(getColumnStatus(iColumn)) { |
3554 | |
3555 | case basic: |
3556 | dj = -1.0e50; |
3557 | numberBasic++; |
3558 | break; |
3559 | case atUpperBound: |
3560 | dj = -dj; |
3561 | break; |
3562 | case isFixed: |
3563 | dj = 1.0e50; |
3564 | numberFixed++; |
3565 | break; |
3566 | case atLowerBound: |
3567 | dj = dj; |
3568 | break; |
3569 | case isFree: |
3570 | dj = -100.0 * fabs(dj); |
3571 | break; |
3572 | case superBasic: |
3573 | dj = -100.0 * fabs(dj); |
3574 | break; |
3575 | } |
3576 | if (dj < -dualTolerance_ && dj > -1.0e50) { |
3577 | numberNegative++; |
3578 | sumNegative -= dj; |
3579 | } |
3580 | weight[iColumn] = dj; |
3581 | whichColumns[iColumn] = iColumn; |
3582 | } |
3583 | handler_->message(CLP_SPRINT, messages_) |
3584 | << sprintPass << numberIterations_ - lastSprintIteration << objectiveValue() << sumNegative |
3585 | << numberNegative |
3586 | << CoinMessageEol; |
3587 | sprintPass++; |
3588 | lastSprintIteration = numberIterations_; |
3589 | if (objectiveValue()*optimizationDirection_ > lastObjectiveValue - 1.0e-7 && sprintPass > 5) { |
3590 | // switch off |
3591 | COIN_DETAIL_PRINT(printf("Switching off sprint\n" )); |
3592 | primalColumnPivot_->switchOffSprint(); |
3593 | } else { |
3594 | lastObjectiveValue = objectiveValue() * optimizationDirection_; |
3595 | // sort |
3596 | CoinSort_2(weight, weight + numberColumns_, whichColumns); |
3597 | numberSort = CoinMin(numberColumns_ - numberFixed, numberBasic + numberSprintColumns); |
3598 | // Sort to make consistent ? |
3599 | std::sort(whichColumns, whichColumns + numberSort); |
3600 | saveModel = new ClpSimplex(this, numberSort, whichColumns); |
3601 | delete [] whichColumns; |
3602 | delete [] weight; |
3603 | // Skip factorization |
3604 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,false,saveModel); |
3605 | //statusOfProblemInPrimal(lastCleaned,factorType,&progress_,true,saveModel); |
3606 | stopSprint = numberIterations_ + numberSprintIterations; |
3607 | COIN_DETAIL_PRINT(printf("Sprint with %d columns for %d iterations\n" , |
3608 | numberSprintColumns, numberSprintIterations)); |
3609 | } |
3610 | } |
3611 | |
3612 | // Say good factorization |
3613 | factorType = 1; |
3614 | |
3615 | // Say no pivot has occurred (for steepest edge and updates) |
3616 | pivotRow_ = -2; |
3617 | |
3618 | // exit if victory declared |
3619 | if (problemStatus_ >= 0) { |
3620 | if (originalCost) { |
3621 | // find number nonbasic with zero reduced costs |
3622 | int numberDegen = 0; |
3623 | int numberTotal = numberColumns_; //+numberRows_; |
3624 | for (int i = 0; i < numberTotal; i++) { |
3625 | cost_[i] = 0.0; |
3626 | if (getStatus(i) == atLowerBound) { |
3627 | if (dj_[i] <= dualTolerance_) { |
3628 | cost_[i] = numberTotal - i + randomNumberGenerator_.randomDouble() * 0.5; |
3629 | numberDegen++; |
3630 | } else { |
3631 | // fix |
3632 | cost_[i] = 1.0e10; //upper_[i]=lower_[i]; |
3633 | } |
3634 | } else if (getStatus(i) == atUpperBound) { |
3635 | if (dj_[i] >= -dualTolerance_) { |
3636 | cost_[i] = (numberTotal - i) + randomNumberGenerator_.randomDouble() * 0.5; |
3637 | numberDegen++; |
3638 | } else { |
3639 | // fix |
3640 | cost_[i] = -1.0e10; //lower_[i]=upper_[i]; |
3641 | } |
3642 | } else if (getStatus(i) == basic) { |
3643 | cost_[i] = (numberTotal - i) + randomNumberGenerator_.randomDouble() * 0.5; |
3644 | } |
3645 | } |
3646 | problemStatus_ = -1; |
3647 | lastObjectiveValue = COIN_DBL_MAX; |
3648 | // Start check for cycles |
3649 | progress_.fillFromModel(this); |
3650 | progress_.startCheck(); |
3651 | COIN_DETAIL_PRINT(printf("%d degenerate after %d iterations\n" , numberDegen, |
3652 | numberIterations_)); |
3653 | if (!numberDegen) { |
3654 | CoinMemcpyN(originalCost, numberTotal, cost_); |
3655 | delete [] originalCost; |
3656 | originalCost = NULL; |
3657 | CoinMemcpyN(originalLower, numberTotal, lower_); |
3658 | delete [] originalLower; |
3659 | CoinMemcpyN(originalUpper, numberTotal, upper_); |
3660 | delete [] originalUpper; |
3661 | } |
3662 | delete nonLinearCost_; |
3663 | nonLinearCost_ = new ClpNonLinearCost(this); |
3664 | progress_.endOddState(); |
3665 | continue; |
3666 | } else { |
3667 | COIN_DETAIL_PRINT(printf("exiting after %d iterations\n" , numberIterations_)); |
3668 | break; |
3669 | } |
3670 | } |
3671 | |
3672 | // test for maximum iterations |
3673 | if (hitMaximumIterations() || (ifValuesPass == 2 && firstFree_ < 0)) { |
3674 | problemStatus_ = 3; |
3675 | break; |
3676 | } |
3677 | |
3678 | if (firstFree_ < 0) { |
3679 | if (ifValuesPass) { |
3680 | // end of values pass |
3681 | ifValuesPass = 0; |
3682 | int status = eventHandler_->event(ClpEventHandler::endOfValuesPass); |
3683 | if (status >= 0) { |
3684 | problemStatus_ = 5; |
3685 | secondaryStatus_ = ClpEventHandler::endOfValuesPass; |
3686 | break; |
3687 | } |
3688 | } |
3689 | } |
3690 | // Check event |
3691 | { |
3692 | int status = eventHandler_->event(ClpEventHandler::endOfFactorization); |
3693 | if (status >= 0) { |
3694 | problemStatus_ = 5; |
3695 | secondaryStatus_ = ClpEventHandler::endOfFactorization; |
3696 | break; |
3697 | } |
3698 | } |
3699 | // Iterate |
3700 | whileIterating(ifValuesPass ? 1 : 0); |
3701 | } |
3702 | } |
3703 | assert (!originalCost); |
3704 | // if infeasible get real values |
3705 | //printf("XXXXY final cost %g\n",infeasibilityCost_); |
3706 | progress_.initialWeight_ = 0.0; |
3707 | if (problemStatus_ == 1 && secondaryStatus_ != 6) { |
3708 | infeasibilityCost_ = 0.0; |
3709 | createRim(1 + 4); |
3710 | nonLinearCost_->checkInfeasibilities(0.0); |
3711 | sumPrimalInfeasibilities_ = nonLinearCost_->sumInfeasibilities(); |
3712 | numberPrimalInfeasibilities_ = nonLinearCost_->numberInfeasibilities(); |
3713 | // and get good feasible duals |
3714 | computeDuals(NULL); |
3715 | } |
3716 | // Stop can skip some things in transposeTimes |
3717 | specialOptions_ &= ~131072; |
3718 | // clean up |
3719 | unflag(); |
3720 | finish(0); |
3721 | restoreData(data); |
3722 | return problemStatus_; |
3723 | } |
3724 | |