| 1 | /* $Id: CoinPresolveDupcol.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <stdio.h> |
| 7 | #include <math.h> |
| 8 | |
| 9 | //#define PRESOLVE_DEBUG 1 |
| 10 | // Debugging macros/functions |
| 11 | //#define PRESOLVE_DETAIL 1 |
| 12 | #include "CoinPresolveMatrix.hpp" |
| 13 | #include "CoinPresolveFixed.hpp" |
| 14 | #include "CoinPresolveDupcol.hpp" |
| 15 | #include "CoinSort.hpp" |
| 16 | #include "CoinFinite.hpp" |
| 17 | #include "CoinHelperFunctions.hpp" |
| 18 | #include "CoinPresolveUseless.hpp" |
| 19 | #include "CoinMessage.hpp" |
| 20 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 21 | #include "CoinPresolvePsdebug.hpp" |
| 22 | #endif |
| 23 | |
| 24 | #define DSEED2 2147483647.0 |
| 25 | // Can be used from anywhere |
| 26 | void coin_init_random_vec(double *work, int n) |
| 27 | { |
| 28 | double deseed = 12345678.0; |
| 29 | |
| 30 | for (int i = 0; i < n; ++i) { |
| 31 | deseed *= 16807.; |
| 32 | int jseed = static_cast<int> (deseed / DSEED2); |
| 33 | deseed -= static_cast<double> (jseed) * DSEED2; |
| 34 | double random = deseed / DSEED2; |
| 35 | |
| 36 | work[i]=random; |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | namespace { // begin unnamed file-local namespace |
| 41 | |
| 42 | /* |
| 43 | For each candidate major-dimension vector in majcands, calculate the sum |
| 44 | over the vector, with each minor dimension weighted by a random amount. |
| 45 | (E.g., calculate column sums with each row weighted by a random amount.) |
| 46 | The sums are returned in the corresponding entries of majsums. |
| 47 | */ |
| 48 | |
| 49 | void compute_sums (int /*n*/, const int *majlens, const CoinBigIndex *majstrts, |
| 50 | int *minndxs, double *elems, const double *minmuls, |
| 51 | int *majcands, double *majsums, int nlook) |
| 52 | |
| 53 | { for (int cndx = 0 ; cndx < nlook ; ++cndx) |
| 54 | { int i = majcands[cndx] ; |
| 55 | PRESOLVEASSERT(majlens[i] > 0) ; |
| 56 | |
| 57 | CoinBigIndex kcs = majstrts[i] ; |
| 58 | CoinBigIndex kce = kcs + majlens[i] ; |
| 59 | |
| 60 | double value = 0.0 ; |
| 61 | |
| 62 | for (CoinBigIndex k = kcs ; k < kce ; k++) |
| 63 | { int irow = minndxs[k] ; |
| 64 | value += minmuls[irow]*elems[k] ; } |
| 65 | |
| 66 | majsums[cndx] = value ; } |
| 67 | |
| 68 | return ; } |
| 69 | |
| 70 | |
| 71 | void create_col (int col, int n, double *els, |
| 72 | CoinBigIndex *mcstrt, double *colels, int *hrow, int *link, |
| 73 | CoinBigIndex *free_listp) |
| 74 | { |
| 75 | int *rows = reinterpret_cast<int *>(els+n) ; |
| 76 | CoinBigIndex free_list = *free_listp; |
| 77 | int xstart = NO_LINK; |
| 78 | for (int i=0; i<n; ++i) { |
| 79 | CoinBigIndex k = free_list; |
| 80 | assert(k >= 0) ; |
| 81 | free_list = link[free_list]; |
| 82 | hrow[k] = rows[i]; |
| 83 | colels[k] = els[i]; |
| 84 | link[k] = xstart; |
| 85 | xstart = k; |
| 86 | } |
| 87 | mcstrt[col] = xstart; |
| 88 | *free_listp = free_list; |
| 89 | } |
| 90 | |
| 91 | |
| 92 | } // end unnamed file-local namespace |
| 93 | |
| 94 | |
| 95 | |
| 96 | const char *dupcol_action::name () const |
| 97 | { |
| 98 | return ("dupcol_action" ); |
| 99 | } |
| 100 | |
| 101 | |
| 102 | /* |
| 103 | Original comment: This is just ekkredc5, adapted into the new framework. |
| 104 | The datasets scorpion.mps and allgrade.mps have duplicate columns. |
| 105 | |
| 106 | In case you don't have your OSL manual handy, a somewhat more informative |
| 107 | explanation: We're looking for an easy-to-detect special case of linearly |
| 108 | dependent columns, where the coefficients of the duplicate columns are |
| 109 | exactly equal. The idea for locating such columns is to generate pseudo- |
| 110 | random weights for each row and then calculate the weighted sum of |
| 111 | coefficients of each column. Columns with equal sums are checked more |
| 112 | thoroughly. |
| 113 | |
| 114 | Analysis of the situation says there are two major cases: |
| 115 | * If the columns have equal objective coefficients, we can combine |
| 116 | them. |
| 117 | * If the columns have unequal objective coefficients, we may be able to |
| 118 | fix one at bound. If the required bound doesn't exist, we have dual |
| 119 | infeasibility (hence one of primal infeasibility or unboundedness). |
| 120 | |
| 121 | In the comments below are a few fragments of code from the original |
| 122 | routine. I don't think they make sense, but I've left them for the nonce in |
| 123 | case someone else recognises the purpose. -- lh, 040909 -- |
| 124 | */ |
| 125 | |
| 126 | const CoinPresolveAction |
| 127 | *dupcol_action::presolve (CoinPresolveMatrix *prob, |
| 128 | const CoinPresolveAction *next) |
| 129 | { |
| 130 | double startTime = 0.0; |
| 131 | int startEmptyRows=0; |
| 132 | int startEmptyColumns = 0; |
| 133 | if (prob->tuning_) { |
| 134 | startTime = CoinCpuTime(); |
| 135 | startEmptyRows = prob->countEmptyRows(); |
| 136 | startEmptyColumns = prob->countEmptyCols(); |
| 137 | } |
| 138 | |
| 139 | double maxmin = prob->maxmin_ ; |
| 140 | |
| 141 | double *colels = prob->colels_ ; |
| 142 | int *hrow = prob->hrow_ ; |
| 143 | CoinBigIndex *mcstrt = prob->mcstrt_ ; |
| 144 | int *hincol = prob->hincol_ ; |
| 145 | int ncols = prob->ncols_ ; |
| 146 | int nrows = prob->nrows_ ; |
| 147 | |
| 148 | double *clo = prob->clo_ ; |
| 149 | double *cup = prob->cup_ ; |
| 150 | double *sol = prob->sol_ ; |
| 151 | double *rlo = prob->rlo_ ; |
| 152 | double *rup = prob->rup_ ; |
| 153 | |
| 154 | // If all coefficients positive do more simply |
| 155 | bool allPositive=true; |
| 156 | double * rhs = prob->usefulRowDouble_; //new double[nrows]; |
| 157 | CoinMemcpyN(rup,nrows,rhs); |
| 158 | /* |
| 159 | Scan the columns for candidates, and write the indices into sort. We're not |
| 160 | interested in columns that are empty, prohibited, or integral. |
| 161 | |
| 162 | Question: Should we exclude singletons, which are useful in other transforms? |
| 163 | Question: Why are we excluding integral columns? |
| 164 | */ |
| 165 | // allow integral columns if asked for |
| 166 | bool allowIntegers = ( prob->presolveOptions_&1)!=0; |
| 167 | int *sort = prob->usefulColumnInt_; //new int[ncols] ; |
| 168 | int nlook = 0 ; |
| 169 | for (int j = 0 ; j < ncols ; j++) { |
| 170 | if (hincol[j] == 0) continue ; |
| 171 | // sort |
| 172 | CoinSort_2(hrow+mcstrt[j],hrow+mcstrt[j]+hincol[j], |
| 173 | colels+mcstrt[j]); |
| 174 | // check all positive and adjust rhs |
| 175 | if (allPositive) { |
| 176 | double lower = clo[j]; |
| 177 | if (lower<cup[j]) { |
| 178 | for (int k=mcstrt[j];k<mcstrt[j]+hincol[j];k++) { |
| 179 | double value=colels[k]; |
| 180 | if (value<0.0) |
| 181 | allPositive=false; |
| 182 | else |
| 183 | rhs[hrow[k]] -= lower*value; |
| 184 | } |
| 185 | } else { |
| 186 | for (int k=mcstrt[j];k<mcstrt[j]+hincol[j];k++) { |
| 187 | double value=colels[k]; |
| 188 | rhs[hrow[k]] -= lower*value; |
| 189 | } |
| 190 | } |
| 191 | } |
| 192 | if (prob->colProhibited2(j)) continue ; |
| 193 | //#define PRESOLVE_INTEGER_DUPCOL |
| 194 | #ifndef PRESOLVE_INTEGER_DUPCOL |
| 195 | if (prob->isInteger(j)&&!allowIntegers) continue ; |
| 196 | #endif |
| 197 | sort[nlook++] = j ; } |
| 198 | if (nlook == 0) |
| 199 | { //delete[] sort ; |
| 200 | //delete [] rhs; |
| 201 | return (next) ; } |
| 202 | /* |
| 203 | Prep: add the coefficients of each candidate column. To reduce false |
| 204 | positives, multiply each row by a `random' multiplier when forming the |
| 205 | sums. On return from compute_sums, sort and colsum are loaded with the |
| 206 | indices and column sums, respectively, of candidate columns. The pair of |
| 207 | arrays are then sorted by sum so that equal sums are adjacent. |
| 208 | */ |
| 209 | double *colsum = prob->usefulColumnDouble_; //new double[ncols] ; |
| 210 | double *rowmul; |
| 211 | if (!prob->randomNumber_) { |
| 212 | rowmul = new double[nrows] ; |
| 213 | coin_init_random_vec(rowmul,nrows) ; |
| 214 | } else { |
| 215 | rowmul = prob->randomNumber_; |
| 216 | } |
| 217 | compute_sums(ncols,hincol,mcstrt,hrow,colels,rowmul,sort,colsum,nlook) ; |
| 218 | CoinSort_2(colsum,colsum+nlook,sort) ; |
| 219 | /* |
| 220 | General prep --- unpack the various vectors we'll need, and allocate arrays |
| 221 | to record the results. |
| 222 | */ |
| 223 | presolvehlink *clink = prob->clink_ ; |
| 224 | |
| 225 | double *rowels = prob->rowels_ ; |
| 226 | int *hcol = prob->hcol_ ; |
| 227 | const CoinBigIndex *mrstrt = prob->mrstrt_ ; |
| 228 | int *hinrow = prob->hinrow_ ; |
| 229 | |
| 230 | double *dcost = prob->cost_ ; |
| 231 | |
| 232 | action *actions = new action [nlook] ; |
| 233 | int nactions = 0 ; |
| 234 | # ifdef ZEROFAULT |
| 235 | memset(actions,0,nlook*sizeof(action)) ; |
| 236 | # endif |
| 237 | |
| 238 | int *fixed_down = new int[nlook] ; |
| 239 | int nfixed_down = 0 ; |
| 240 | int *fixed_up = new int[nlook] ; |
| 241 | int nfixed_up = 0 ; |
| 242 | |
| 243 | #if 0 |
| 244 | // Excluded in the original routine. I'm guessing it's excluded because |
| 245 | // it's just not cost effective to worry about this. -- lh, 040908 -- |
| 246 | |
| 247 | // It may be the case that several columns are duplicate. |
| 248 | // If not all have the same cost, then we have to make sure |
| 249 | // that we set the most expensive one to its minimum |
| 250 | // now sort in each class by cost |
| 251 | { |
| 252 | double dval = colsum[0] ; |
| 253 | int first = 0 ; |
| 254 | for (int jj = 1; jj < nlook; jj++) { |
| 255 | while (colsum[jj]==dval) |
| 256 | jj++ ; |
| 257 | |
| 258 | if (first + 1 < jj) { |
| 259 | double buf[jj - first] ; |
| 260 | for (int i=first; i<jj; ++i) |
| 261 | buf[i-first] = dcost[sort[i]]*maxmin ; |
| 262 | |
| 263 | CoinSort_2(buf,buf+jj-first,sort+first) ; |
| 264 | //ekk_sortonDouble(buf,&sort[first],jj-first) ; |
| 265 | } |
| 266 | } |
| 267 | } |
| 268 | #endif |
| 269 | // We will get all min/max but only if needed |
| 270 | bool gotStuff=false; |
| 271 | /* |
| 272 | Original comment: It appears to be the case that this loop is finished, |
| 273 | there may still be duplicate cols left. I haven't done anything |
| 274 | about that yet. |
| 275 | |
| 276 | Open the main loop to compare column pairs. We'll compare sort[jj] to |
| 277 | sort[tgt]. This allows us to accumulate multiple columns into one. But |
| 278 | we don't manage all-pairs comparison when we can't combine columns. |
| 279 | |
| 280 | We can quickly dismiss pairs which have unequal sums or lengths. |
| 281 | */ |
| 282 | int isorted = -1 ; |
| 283 | int tgt = 0 ; |
| 284 | for (int jj = 1 ; jj < nlook ; jj++) |
| 285 | { if (colsum[jj] != colsum[jj-1]) { |
| 286 | tgt = jj; // Must update before continuing |
| 287 | continue ; |
| 288 | } |
| 289 | |
| 290 | int j2 = sort[jj] ; |
| 291 | int j1 = sort[tgt] ; |
| 292 | int len2 = hincol[j2] ; |
| 293 | int len1 = hincol[j1] ; |
| 294 | |
| 295 | if (len2 != len1) |
| 296 | { tgt = jj ; |
| 297 | continue ; } |
| 298 | /* |
| 299 | The final test: sort the columns by row index and compare each index and |
| 300 | coefficient. |
| 301 | */ |
| 302 | CoinBigIndex kcs = mcstrt[j2] ; |
| 303 | CoinBigIndex kce = kcs+hincol[j2] ; |
| 304 | int ishift = mcstrt[j1]-kcs ; |
| 305 | |
| 306 | if (len1 > 1 && isorted < j1) |
| 307 | { CoinSort_2(hrow+mcstrt[j1],hrow+mcstrt[j1]+len1, |
| 308 | colels+mcstrt[j1]) ; |
| 309 | isorted = j1 ; } |
| 310 | if (len2 > 1 && isorted < j2) |
| 311 | { CoinSort_2(hrow+kcs,hrow+kcs+len2,colels+kcs) ; |
| 312 | isorted = j2 ; } |
| 313 | |
| 314 | CoinBigIndex k ; |
| 315 | for (k = kcs ; k < kce ; k++) |
| 316 | { if (hrow[k] != hrow[k+ishift] || colels[k] != colels[k+ishift]) |
| 317 | { break ; } } |
| 318 | if (k != kce) |
| 319 | { tgt = jj ; |
| 320 | continue ; } |
| 321 | /* |
| 322 | These really are duplicate columns. Grab values for convenient reference. |
| 323 | Convert the objective coefficients for minimization. |
| 324 | */ |
| 325 | double clo1 = clo[j1] ; |
| 326 | double cup1 = cup[j1] ; |
| 327 | double clo2 = clo[j2] ; |
| 328 | double cup2 = cup[j2] ; |
| 329 | double c1 = dcost[j1]*maxmin ; |
| 330 | double c2 = dcost[j2]*maxmin ; |
| 331 | PRESOLVEASSERT(!(clo1 == cup1 || clo2 == cup2)) ; |
| 332 | // Get reasonable bounds on sum of two variables |
| 333 | double lowerBound=-COIN_DBL_MAX; |
| 334 | double upperBound=COIN_DBL_MAX; |
| 335 | // For now only if lower bounds are zero |
| 336 | if (!clo1&&!clo2) { |
| 337 | // Only need bounds if c1 != c2 |
| 338 | if (c1!=c2) { |
| 339 | if (!allPositive) { |
| 340 | #if 0 |
| 341 | |
| 342 | for (k=kcs;k<kce;k++) { |
| 343 | int iRow = hrow[k]; |
| 344 | bool posinf = false; |
| 345 | bool neginf = false; |
| 346 | double maxup = 0.0; |
| 347 | double maxdown = 0.0; |
| 348 | |
| 349 | // compute sum of all bounds except for j1,j2 |
| 350 | CoinBigIndex kk; |
| 351 | CoinBigIndex kre = mrstrt[iRow]+hinrow[iRow]; |
| 352 | double value1=0.0; |
| 353 | for (kk=mrstrt[iRow]; kk<kre; kk++) { |
| 354 | int col = hcol[kk]; |
| 355 | if (col == j1||col==j2) { |
| 356 | value1=rowels[kk]; |
| 357 | continue; |
| 358 | } |
| 359 | double coeff = rowels[kk]; |
| 360 | double lb = clo[col]; |
| 361 | double ub = cup[col]; |
| 362 | |
| 363 | if (coeff > 0.0) { |
| 364 | if (PRESOLVE_INF <= ub) { |
| 365 | posinf = true; |
| 366 | if (neginf) |
| 367 | break; // pointless |
| 368 | } else { |
| 369 | maxup += ub * coeff; |
| 370 | } |
| 371 | if (lb <= -PRESOLVE_INF) { |
| 372 | neginf = true; |
| 373 | if (posinf) |
| 374 | break; // pointless |
| 375 | } else { |
| 376 | maxdown += lb * coeff; |
| 377 | } |
| 378 | } else { |
| 379 | if (PRESOLVE_INF <= ub) { |
| 380 | neginf = true; |
| 381 | if (posinf) |
| 382 | break; // pointless |
| 383 | } else { |
| 384 | maxdown += ub * coeff; |
| 385 | } |
| 386 | if (lb <= -PRESOLVE_INF) { |
| 387 | posinf = true; |
| 388 | if (neginf) |
| 389 | break; // pointless |
| 390 | } else { |
| 391 | maxup += lb * coeff; |
| 392 | } |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | if (kk==kre) { |
| 397 | assert (value1); |
| 398 | if (value1>1.0e-5) { |
| 399 | if (!neginf&&rup[iRow]<1.0e10) |
| 400 | if (upperBound*value1>rup[iRow]-maxdown) |
| 401 | upperBound = (rup[iRow]-maxdown)/value1; |
| 402 | if (!posinf&&rlo[iRow]>-1.0e10) |
| 403 | if (lowerBound*value1<rlo[iRow]-maxup) |
| 404 | lowerBound = (rlo[iRow]-maxup)/value1; |
| 405 | } else if (value1<-1.0e-5) { |
| 406 | if (!neginf&&rup[iRow]<1.0e10) |
| 407 | if (lowerBound*value1>rup[iRow]-maxdown) { |
| 408 | #ifndef NDEBUG |
| 409 | double x=lowerBound; |
| 410 | #endif |
| 411 | lowerBound = (rup[iRow]-maxdown)/value1; |
| 412 | assert (lowerBound == CoinMax(x,(rup[iRow]-maxdown)/value1)); |
| 413 | } |
| 414 | if (!posinf&&rlo[iRow]>-1.0e10) |
| 415 | if (upperBound*value1<rlo[iRow]-maxup) { |
| 416 | #ifndef NDEBUG |
| 417 | double x=upperBound; |
| 418 | #endif |
| 419 | upperBound = (rlo[iRow]-maxup)/value1; |
| 420 | assert(upperBound == CoinMin(x,(rlo[iRow]-maxup)/value1)); |
| 421 | } |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | double l=lowerBound; |
| 426 | double u=upperBound; |
| 427 | #endif |
| 428 | if (!gotStuff) { |
| 429 | prob->recomputeSums(-1); // get min max |
| 430 | gotStuff=true; |
| 431 | } |
| 432 | int positiveInf=0; |
| 433 | int negativeInf=0; |
| 434 | double lo=0; |
| 435 | double up=0.0; |
| 436 | if (clo1<-PRESOLVE_INF) |
| 437 | negativeInf++; |
| 438 | else |
| 439 | lo+=clo1; |
| 440 | if (clo2<-PRESOLVE_INF) |
| 441 | negativeInf++; |
| 442 | else |
| 443 | lo+=clo2; |
| 444 | if (cup1>PRESOLVE_INF) |
| 445 | positiveInf++; |
| 446 | else |
| 447 | up+=cup1; |
| 448 | if (cup2>PRESOLVE_INF) |
| 449 | positiveInf++; |
| 450 | else |
| 451 | up+=cup2; |
| 452 | for (k=kcs;k<kce;k++) { |
| 453 | int iRow = hrow[k]; |
| 454 | double value = colels[k]; |
| 455 | int pInf = (value>0.0) ? positiveInf : negativeInf; |
| 456 | int nInf = (value>0.0) ? negativeInf : positiveInf; |
| 457 | int posinf = prob->infiniteUp_[iRow]-pInf; |
| 458 | int neginf = prob->infiniteDown_[iRow]-nInf; |
| 459 | if (posinf>0&&neginf>0) |
| 460 | continue; // this row can't bound |
| 461 | double maxup = prob->sumUp_[iRow]; |
| 462 | double maxdown = prob->sumDown_[iRow]; |
| 463 | |
| 464 | if (value>0.0) { |
| 465 | maxdown -= value*lo; |
| 466 | maxup -= value*up; |
| 467 | } else { |
| 468 | maxdown -= value*up; |
| 469 | maxup -= value*lo; |
| 470 | } |
| 471 | if (value>1.0e-5) { |
| 472 | if (!neginf&&rup[iRow]<1.0e10) |
| 473 | if (upperBound*value>rup[iRow]-maxdown) |
| 474 | upperBound = (rup[iRow]-maxdown)/value; |
| 475 | if (!posinf&&rlo[iRow]>-1.0e10) |
| 476 | if (lowerBound*value<rlo[iRow]-maxup) |
| 477 | lowerBound = (rlo[iRow]-maxup)/value; |
| 478 | } else if (value<-1.0e-5) { |
| 479 | if (!neginf&&rup[iRow]<1.0e10) |
| 480 | if (lowerBound*value>rup[iRow]-maxdown) { |
| 481 | lowerBound = (rup[iRow]-maxdown)/value; |
| 482 | } |
| 483 | if (!posinf&&rlo[iRow]>-1.0e10) |
| 484 | if (upperBound*value<rlo[iRow]-maxup) { |
| 485 | upperBound = (rlo[iRow]-maxup)/value; |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | //assert (fabs(l-lowerBound)<1.0e-5&&fabs(u-upperBound)<1.0e-5); |
| 490 | } else { |
| 491 | // can do faster |
| 492 | lowerBound=0.0; |
| 493 | for (k=kcs;k<kce;k++) { |
| 494 | int iRow = hrow[k]; |
| 495 | double value=colels[k]; |
| 496 | if (upperBound*value>rhs[iRow]) |
| 497 | upperBound = rhs[iRow]/value; |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | // relax a bit |
| 502 | upperBound -= 1.0e-9; |
| 503 | } else { |
| 504 | // Not sure what to do so give up |
| 505 | continue; |
| 506 | } |
| 507 | /* |
| 508 | There are two main cases: The objective coefficients are equal or unequal. |
| 509 | |
| 510 | For equal objective coefficients c1 == c2, we can combine the columns by |
| 511 | making the substitution x<j1> = x'<j1> - x<j2>. This will eliminate column |
| 512 | sort[jj] = j2 and leave the new variable x' in column sort[tgt] = j1. tgt |
| 513 | doesn't move. |
| 514 | */ |
| 515 | if (c1 == c2) |
| 516 | { |
| 517 | #ifdef PRESOLVE_INTEGER_DUPCOL |
| 518 | if (!allowIntegers) { |
| 519 | if (prob->isInteger(j1)) { |
| 520 | if (!prob->isInteger(j2)) { |
| 521 | if (cup2 < upperBound) //if (!prob->colInfinite(j2)) |
| 522 | continue; |
| 523 | else |
| 524 | cup2 = COIN_DBL_MAX; |
| 525 | } |
| 526 | } else if (prob->isInteger(j2)) { |
| 527 | if (cup1 < upperBound) //if (!prob->colInfinite(j1)) |
| 528 | continue; |
| 529 | else |
| 530 | cup1 = COIN_DBL_MAX; |
| 531 | } |
| 532 | //printf("TakingINTeq\n"); |
| 533 | } |
| 534 | #endif |
| 535 | /* |
| 536 | As far as the presolved lp, there's no difference between columns. But we |
| 537 | need this relation to hold in order to guarantee that we can split the |
| 538 | value of the combined column during postsolve without damaging the basis. |
| 539 | (The relevant case is when the combined column is basic --- we need to be |
| 540 | able to retain column j1 in the basis and make column j2 nonbasic.) |
| 541 | */ |
| 542 | if (!(clo2+cup1 <= clo1+cup2)) |
| 543 | { CoinSwap(j1,j2) ; |
| 544 | CoinSwap(clo1,clo2) ; |
| 545 | CoinSwap(cup1,cup2) ; |
| 546 | tgt = jj ; } |
| 547 | /* |
| 548 | Create the postsolve action before we start to modify the columns. |
| 549 | */ |
| 550 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d += %d\n" ,j1,j2,j1,j2)) ; |
| 551 | PRESOLVE_DETAIL_PRINT(printf("pre_dupcol %dC %dC E\n" ,j2,j1)); |
| 552 | |
| 553 | action *s = &actions[nactions++] ; |
| 554 | s->thislo = clo[j2] ; |
| 555 | s->thisup = cup[j2] ; |
| 556 | s->lastlo = clo[j1] ; |
| 557 | s->lastup = cup[j1] ; |
| 558 | s->ithis = j2 ; |
| 559 | s->ilast = j1 ; |
| 560 | s->nincol = hincol[j2] ; |
| 561 | s->colels = presolve_dupmajor(colels,hrow,hincol[j2],mcstrt[j2]) ; |
| 562 | /* |
| 563 | Combine the columns into column j1. Upper and lower bounds and solution |
| 564 | simply add, and the coefficients are unchanged. |
| 565 | |
| 566 | I'm skeptical of pushing a bound to infinity like this, but leave it for now. |
| 567 | -- lh, 040908 -- |
| 568 | */ |
| 569 | clo1 += clo2 ; |
| 570 | if (clo1 < -1.0e20) |
| 571 | { clo1 = -PRESOLVE_INF ; } |
| 572 | clo[j1] = clo1 ; |
| 573 | cup1 += cup2 ; |
| 574 | if (cup1 > 1.0e20) |
| 575 | { cup1 = PRESOLVE_INF ; } |
| 576 | cup[j1] = cup1 ; |
| 577 | if (sol) |
| 578 | { sol[j1] += sol[j2] ; } |
| 579 | if (prob->colstat_) |
| 580 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
| 581 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
| 582 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic); } } |
| 583 | /* |
| 584 | Empty column j2. |
| 585 | */ |
| 586 | dcost[j2] = 0.0 ; |
| 587 | if (sol) |
| 588 | { sol[j2] = clo2 ; } |
| 589 | CoinBigIndex k2cs = mcstrt[j2] ; |
| 590 | CoinBigIndex k2ce = k2cs + hincol[j2] ; |
| 591 | for (CoinBigIndex k = k2cs ; k < k2ce ; ++k) |
| 592 | { presolve_delete_from_row(hrow[k],j2,mrstrt,hinrow,hcol,rowels) ; } |
| 593 | hincol[j2] = 0 ; |
| 594 | PRESOLVE_REMOVE_LINK(clink,j2) ; |
| 595 | continue ; } |
| 596 | /* |
| 597 | Unequal reduced costs. In this case, we may be able to fix one of the columns |
| 598 | or prove dual infeasibility. Given column a_k, duals y, objective |
| 599 | coefficient c_k, the reduced cost cbar_k = c_k - dot(y,a_k). Given |
| 600 | a_1 = a_2, substitute for dot(y,a_1) in the relation for cbar_2 to get |
| 601 | cbar_2 = (c_2 - c_1) + cbar_1 |
| 602 | Independent elements here are variable bounds l_k, u_k, and difference |
| 603 | (c_2 - c_1). Infinite bounds for l_k, u_k will constrain the sign of cbar_k. |
| 604 | Assume minimization. If you do the case analysis, you find these cases of |
| 605 | interest: |
| 606 | |
| 607 | l_1 u_1 l_2 u_2 cbar_1 c_2-c_1 cbar_2 result |
| 608 | |
| 609 | A any finite -inf any <= 0 > 0 <= 0 x_1 -> NBUB |
| 610 | B -inf any any finite <= 0 < 0 < 0 x_2 -> NBUB |
| 611 | |
| 612 | C finite any any +inf >= 0 < 0 >= 0 x_1 -> NBLB |
| 613 | D any +inf finite any >= 0 > 0 >= 0 x_2 -> NBLB |
| 614 | |
| 615 | E -inf any any +inf <= 0 < 0 >= 0 dual infeas |
| 616 | F any inf -inf any >= 0 > 0 <= 0 dual infeas |
| 617 | |
| 618 | G any finite finite any > 0 no inference |
| 619 | H finite any any finite < 0 no inference |
| 620 | |
| 621 | The cases labelled dual infeasible are primal unbounded. |
| 622 | |
| 623 | To keep the code compact, we'll always aim to take x_2 to bound. In the cases |
| 624 | where x_1 should go to bound, we'll swap. The implementation is boolean |
| 625 | algebra. Define bits for infinite bounds and (c_2 > c_1), then look for the |
| 626 | correct patterns. |
| 627 | */ |
| 628 | else |
| 629 | { int minterm = 0 ; |
| 630 | #ifdef PRESOLVE_INTEGER_DUPCOL |
| 631 | if (!allowIntegers) { |
| 632 | if (c2 > c1) { |
| 633 | if (cup1 < upperBound/*!prob->colInfinite(j1)*/ && (prob->isInteger(j1)||prob->isInteger(j2))) |
| 634 | continue ; |
| 635 | } else { |
| 636 | if (cup2 < upperBound/*!prob->colInfinite(j2)*/ && (prob->isInteger(j1)||prob->isInteger(j2))) |
| 637 | continue ; |
| 638 | } |
| 639 | //printf("TakingINTne\n"); |
| 640 | } |
| 641 | #endif |
| 642 | bool swapped = false ; |
| 643 | #if PRESOLVE_DEBUG |
| 644 | printf("bounds %g %g\n" ,lowerBound,upperBound); |
| 645 | #endif |
| 646 | if (c2 > c1) minterm |= 1<<0 ; |
| 647 | if (cup2 >= PRESOLVE_INF/*prob->colInfinite(j2)*/) minterm |= 1<<1 ; |
| 648 | if (clo2 <= -PRESOLVE_INF) minterm |= 1<<2 ; |
| 649 | if (cup1 >= PRESOLVE_INF/*prob->colInfinite(j1)*/) minterm |= 1<<3 ; |
| 650 | if (clo1 <= -PRESOLVE_INF) minterm |= 1<<4 ; |
| 651 | // for now be careful - just one special case |
| 652 | if (!clo1&&!clo2) { |
| 653 | if (c2 > c1 && cup1 >= upperBound) |
| 654 | minterm |= 1<<3; |
| 655 | else if (c2 < c1 && cup2 >= upperBound) |
| 656 | minterm |= 1<<1; |
| 657 | } |
| 658 | /* |
| 659 | The most common case in a well-formed system should be no inference. We're |
| 660 | looking for x00x1 (case G) and 0xx00 (case H). This is where we have the |
| 661 | potential to miss inferences: If there are three or more columns with the |
| 662 | same sum, sort[tgt] == j1 will only be compared to the second in the |
| 663 | group. |
| 664 | */ |
| 665 | if ((minterm&0x0d) == 0x1 || (minterm&0x13) == 0) |
| 666 | { tgt = jj ; |
| 667 | continue ; } |
| 668 | /* |
| 669 | Next remove the unbounded cases, 1xx10 and x11x1. |
| 670 | */ |
| 671 | if ((minterm&0x13) == 0x12 || (minterm&0x0d) == 0x0d) |
| 672 | { prob->setStatus(2) ; |
| 673 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) Unbounded\n" ,j1,j2)) ; |
| 674 | break ; } |
| 675 | /* |
| 676 | With the no inference and unbounded cases removed, all that's left are the |
| 677 | cases where we can push a variable to bound. Swap if necessary (x01x1 or |
| 678 | 0xx10) so that we're always fixing index j2. This means that column |
| 679 | sort[tgt] = j1 will be fixed. Unswapped, we fix column sort[jj] = j2. |
| 680 | */ |
| 681 | if ((minterm&0x0d) == 0x05 || (minterm&0x13) == 0x02) |
| 682 | { CoinSwap(j1, j2) ; |
| 683 | CoinSwap(clo1, clo2) ; |
| 684 | CoinSwap(cup1, cup2) ; |
| 685 | CoinSwap(c1, c2) ; |
| 686 | int tmp1 = minterm&0x18 ; |
| 687 | int tmp2 = minterm&0x06 ; |
| 688 | int tmp3 = minterm&0x01 ; |
| 689 | minterm = (tmp1>>2)|(tmp2<<2)|(tmp3^0x01) ; |
| 690 | swapped = true ; } |
| 691 | /* |
| 692 | Force x_2 to upper bound? (Case B, boolean 1X100, where X == don't care.) |
| 693 | */ |
| 694 | if ((minterm&0x13) == 0x10) |
| 695 | { fixed_up[nfixed_up++] = j2 ; |
| 696 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d -> NBUB\n" ,j1,j2,j2)) ; |
| 697 | if (prob->colstat_) |
| 698 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
| 699 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
| 700 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic) ; } |
| 701 | prob->setColumnStatus(j2,CoinPrePostsolveMatrix::atUpperBound) ; } |
| 702 | if (sol) |
| 703 | { double delta2 = cup2-sol[j2] ; |
| 704 | sol[j2] = cup2 ; |
| 705 | sol[j1] -= delta2 ; } |
| 706 | if (swapped) |
| 707 | { tgt = jj ; } |
| 708 | continue ; } |
| 709 | /* |
| 710 | Force x_2 to lower bound? (Case C, boolean X1011.) |
| 711 | */ |
| 712 | if ((minterm&0x0d) == 0x09) |
| 713 | { fixed_down[nfixed_down++] = j2 ; |
| 714 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d -> NBLB\n" ,j1,j2,j2)) ; |
| 715 | if (prob->colstat_) |
| 716 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
| 717 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
| 718 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic) ; } |
| 719 | prob->setColumnStatus(j2,CoinPrePostsolveMatrix::atLowerBound) ; } |
| 720 | if (sol) |
| 721 | { double delta2 = clo2-sol[j2] ; |
| 722 | sol[j2] = clo2 ; |
| 723 | sol[j1] -= delta2 ; } |
| 724 | if (swapped) |
| 725 | { tgt = jj ; } |
| 726 | continue ; } } |
| 727 | /* |
| 728 | We should never reach this point in the loop --- all cases force a new |
| 729 | iteration or loop termination. If we get here, something happened that we |
| 730 | didn't anticipate. |
| 731 | */ |
| 732 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) UNEXPECTED!\n" ,j1,j2)) ; } |
| 733 | /* |
| 734 | What's left? Deallocate vectors, and call make_fixed_action to handle any |
| 735 | variables that were fixed to bound. |
| 736 | */ |
| 737 | if (rowmul != prob->randomNumber_) |
| 738 | delete[] rowmul ; |
| 739 | //delete[] colsum ; |
| 740 | //delete[] sort ; |
| 741 | //delete [] rhs; |
| 742 | |
| 743 | # if PRESOLVE_SUMMARY || PRESOLVE_DEBUG |
| 744 | if (nactions+nfixed_down+nfixed_up > 0) |
| 745 | { printf("DUPLICATE COLS: %d combined, %d lb, %d ub\n" , |
| 746 | nactions,nfixed_down,nfixed_up) ; } |
| 747 | # endif |
| 748 | if (nactions) |
| 749 | { next = new dupcol_action(nactions,CoinCopyOfArray(actions,nactions),next) ; |
| 750 | // we can't go round again in integer |
| 751 | prob->presolveOptions_ |= 0x80000000; |
| 752 | } |
| 753 | deleteAction(actions,action*) ; |
| 754 | |
| 755 | if (nfixed_down) |
| 756 | { next = |
| 757 | make_fixed_action::presolve(prob,fixed_down,nfixed_down,true,next) ; } |
| 758 | delete[]fixed_down ; |
| 759 | |
| 760 | if (nfixed_up) |
| 761 | { next = |
| 762 | make_fixed_action::presolve(prob,fixed_up,nfixed_up,false,next) ; } |
| 763 | delete[]fixed_up ; |
| 764 | |
| 765 | if (prob->tuning_) { |
| 766 | double thisTime=CoinCpuTime(); |
| 767 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
| 768 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
| 769 | printf("CoinPresolveDupcol(128) - %d rows, %d columns dropped in time %g, total %g\n" , |
| 770 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
| 771 | } |
| 772 | return (next) ; } |
| 773 | |
| 774 | |
| 775 | void dupcol_action::postsolve(CoinPostsolveMatrix *prob) const |
| 776 | { |
| 777 | const action *const actions = actions_; |
| 778 | const int nactions = nactions_; |
| 779 | |
| 780 | double *clo = prob->clo_; |
| 781 | double *cup = prob->cup_; |
| 782 | |
| 783 | double *sol = prob->sol_; |
| 784 | double *dcost = prob->cost_; |
| 785 | |
| 786 | double *colels = prob->colels_; |
| 787 | int *hrow = prob->hrow_; |
| 788 | CoinBigIndex *mcstrt = prob->mcstrt_; |
| 789 | int *hincol = prob->hincol_; |
| 790 | int *link = prob->link_; |
| 791 | |
| 792 | double *rcosts = prob->rcosts_; |
| 793 | double tolerance = prob->ztolzb_; |
| 794 | |
| 795 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
| 796 | int icol = f->ithis; // was fixed |
| 797 | int icol2 = f->ilast; // was kept |
| 798 | |
| 799 | dcost[icol] = dcost[icol2]; |
| 800 | clo[icol] = f->thislo; |
| 801 | cup[icol] = f->thisup; |
| 802 | clo[icol2] = f->lastlo; |
| 803 | cup[icol2] = f->lastup; |
| 804 | |
| 805 | create_col(icol,f->nincol,f->colels,mcstrt,colels,hrow,link, |
| 806 | &prob->free_list_) ; |
| 807 | # if PRESOLVE_CONSISTENCY |
| 808 | presolve_check_free_list(prob) ; |
| 809 | # endif |
| 810 | // hincol[icol] = hincol[icol2]; // right? - no - has to match number in create_col |
| 811 | hincol[icol] = f->nincol; |
| 812 | |
| 813 | double l_j = f->thislo; |
| 814 | double u_j = f->thisup; |
| 815 | double l_k = f->lastlo; |
| 816 | double u_k = f->lastup; |
| 817 | double x_k_sol = sol[icol2]; |
| 818 | PRESOLVE_DETAIL_PRINT(printf("post icol %d %g %g %g icol2 %d %g %g %g\n" , |
| 819 | icol,clo[icol],sol[icol],cup[icol], |
| 820 | icol2,clo[icol2],sol[icol2],cup[icol2])); |
| 821 | if (l_j>-PRESOLVE_INF&& x_k_sol-l_j>=l_k-tolerance&&x_k_sol-l_j<=u_k+tolerance) { |
| 822 | // j at lb, leave k |
| 823 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atLowerBound); |
| 824 | sol[icol] = l_j; |
| 825 | sol[icol2] = x_k_sol - sol[icol]; |
| 826 | } else if (u_j<PRESOLVE_INF&& x_k_sol-u_j>=l_k-tolerance&&x_k_sol-u_j<=u_k+tolerance) { |
| 827 | // j at ub, leave k |
| 828 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atUpperBound); |
| 829 | sol[icol] = u_j; |
| 830 | sol[icol2] = x_k_sol - sol[icol]; |
| 831 | } else if (l_k>-PRESOLVE_INF&& x_k_sol-l_k>=l_j-tolerance&&x_k_sol-l_k<=u_j+tolerance) { |
| 832 | // k at lb make j basic |
| 833 | prob->setColumnStatus(icol,prob->getColumnStatus(icol2)); |
| 834 | sol[icol2] = l_k; |
| 835 | sol[icol] = x_k_sol - l_k; |
| 836 | prob->setColumnStatus(icol2,CoinPrePostsolveMatrix::atLowerBound); |
| 837 | } else if (u_k<PRESOLVE_INF&& x_k_sol-u_k>=l_j-tolerance&&x_k_sol-u_k<=u_j+tolerance) { |
| 838 | // k at ub make j basic |
| 839 | prob->setColumnStatus(icol,prob->getColumnStatus(icol2)); |
| 840 | sol[icol2] = u_k; |
| 841 | sol[icol] = x_k_sol - u_k; |
| 842 | prob->setColumnStatus(icol2,CoinPrePostsolveMatrix::atUpperBound); |
| 843 | } else { |
| 844 | // both free! superbasic time |
| 845 | sol[icol] = 0.0; // doesn't matter |
| 846 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::isFree); |
| 847 | } |
| 848 | PRESOLVE_DETAIL_PRINT(printf("post2 icol %d %g icol2 %d %g\n" , |
| 849 | icol,sol[icol], |
| 850 | icol2,sol[icol2])); |
| 851 | // row activity doesn't change |
| 852 | // dj of both variables is the same |
| 853 | rcosts[icol] = rcosts[icol2]; |
| 854 | // leave until destructor |
| 855 | // deleteAction(f->colels,double *); |
| 856 | |
| 857 | # if PRESOLVE_DEBUG |
| 858 | const double ztolzb = prob->ztolzb_; |
| 859 | if (! (clo[icol] - ztolzb <= sol[icol] && sol[icol] <= cup[icol] + ztolzb)) |
| 860 | printf("BAD DUPCOL BOUNDS: %g %g %g\n" , clo[icol], sol[icol], cup[icol]); |
| 861 | if (! (clo[icol2] - ztolzb <= sol[icol2] && sol[icol2] <= cup[icol2] + ztolzb)) |
| 862 | printf("BAD DUPCOL BOUNDS: %g %g %g\n" , clo[icol2], sol[icol2], cup[icol2]); |
| 863 | # endif |
| 864 | } |
| 865 | // leave until desctructor |
| 866 | // deleteAction(actions_,action *); |
| 867 | } |
| 868 | |
| 869 | dupcol_action::~dupcol_action() |
| 870 | { |
| 871 | for (int i = nactions_-1; i >= 0; --i) { |
| 872 | deleteAction(actions_[i].colels, double *); |
| 873 | } |
| 874 | deleteAction(actions_, action*); |
| 875 | } |
| 876 | |
| 877 | |
| 878 | |
| 879 | /* |
| 880 | Routines for duplicate rows. This is definitely unfinished --- there's no |
| 881 | postsolve action. |
| 882 | */ |
| 883 | |
| 884 | const char *duprow_action::name () const |
| 885 | { |
| 886 | return ("duprow_action" ); |
| 887 | } |
| 888 | |
| 889 | // This is just ekkredc4, adapted into the new framework. |
| 890 | /* |
| 891 | I've made minimal changes for compatibility with dupcol: An initial scan to |
| 892 | accumulate rows of interest in sort. |
| 893 | -- lh, 040909 -- |
| 894 | */ |
| 895 | const CoinPresolveAction |
| 896 | *duprow_action::presolve (CoinPresolveMatrix *prob, |
| 897 | const CoinPresolveAction *next) |
| 898 | { |
| 899 | double startTime = 0.0; |
| 900 | int startEmptyRows=0; |
| 901 | int startEmptyColumns = 0; |
| 902 | if (prob->tuning_) { |
| 903 | startTime = CoinCpuTime(); |
| 904 | startEmptyRows = prob->countEmptyRows(); |
| 905 | startEmptyColumns = prob->countEmptyCols(); |
| 906 | } |
| 907 | double *rowels = prob->rowels_; |
| 908 | int *hcol = prob->hcol_; |
| 909 | CoinBigIndex *mrstrt = prob->mrstrt_; |
| 910 | int *hinrow = prob->hinrow_; |
| 911 | int ncols = prob->ncols_; |
| 912 | int nrows = prob->nrows_; |
| 913 | |
| 914 | /* |
| 915 | Scan the rows for candidates, and write the indices into sort. We're not |
| 916 | interested in rows that are empty or prohibited. |
| 917 | |
| 918 | Question: Should we exclude singletons, which are useful in other transforms? |
| 919 | Question: Why are we excluding integral columns? |
| 920 | */ |
| 921 | int *sort = new int[nrows] ; |
| 922 | int nlook = 0 ; |
| 923 | for (int i = 0 ; i < nrows ; i++) |
| 924 | { if (hinrow[i] == 0) continue ; |
| 925 | if (prob->rowProhibited2(i)) continue ; |
| 926 | // sort |
| 927 | CoinSort_2(hcol+mrstrt[i],hcol+mrstrt[i]+hinrow[i], |
| 928 | rowels+mrstrt[i]); |
| 929 | sort[nlook++] = i ; } |
| 930 | if (nlook == 0) |
| 931 | { delete[] sort ; |
| 932 | return (next) ; } |
| 933 | |
| 934 | double * workrow = new double[nrows+1]; |
| 935 | |
| 936 | double * workcol; |
| 937 | if (!prob->randomNumber_) { |
| 938 | workcol = new double[ncols+1]; |
| 939 | coin_init_random_vec(workcol, ncols); |
| 940 | } else { |
| 941 | workcol = prob->randomNumber_; |
| 942 | } |
| 943 | compute_sums(nrows,hinrow,mrstrt,hcol,rowels,workcol,sort,workrow,nlook); |
| 944 | CoinSort_2(workrow,workrow+nlook,sort); |
| 945 | |
| 946 | double *rlo = prob->rlo_; |
| 947 | double *rup = prob->rup_; |
| 948 | |
| 949 | int nuseless_rows = 0; |
| 950 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
| 951 | bool allowIntersection = ( prob->presolveOptions_&16)!=0; |
| 952 | double tolerance = prob->feasibilityTolerance_; |
| 953 | |
| 954 | double dval = workrow[0]; |
| 955 | for (int jj = 1; jj < nlook; jj++) { |
| 956 | if (workrow[jj]==dval) { |
| 957 | int ithis=sort[jj]; |
| 958 | int ilast=sort[jj-1]; |
| 959 | CoinBigIndex krs = mrstrt[ithis]; |
| 960 | CoinBigIndex kre = krs + hinrow[ithis]; |
| 961 | if (hinrow[ithis] == hinrow[ilast]) { |
| 962 | int ishift = mrstrt[ilast] - krs; |
| 963 | CoinBigIndex k; |
| 964 | for (k=krs;k<kre;k++) { |
| 965 | if (hcol[k] != hcol[k+ishift] || |
| 966 | rowels[k] != rowels[k+ishift]) { |
| 967 | break; |
| 968 | } |
| 969 | } |
| 970 | if (k == kre) { |
| 971 | /* now check rhs to see what is what */ |
| 972 | double rlo1=rlo[ilast]; |
| 973 | double rup1=rup[ilast]; |
| 974 | double rlo2=rlo[ithis]; |
| 975 | double rup2=rup[ithis]; |
| 976 | |
| 977 | int idelete=-1; |
| 978 | if (rlo1<=rlo2) { |
| 979 | if (rup2<=rup1) { |
| 980 | /* this is strictly tighter than last */ |
| 981 | idelete=ilast; |
| 982 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
| 983 | } else if (fabs(rlo1-rlo2)<1.0e-12) { |
| 984 | /* last is strictly tighter than this */ |
| 985 | idelete=ithis; |
| 986 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ithis,ilast)); |
| 987 | // swap so can carry on deleting |
| 988 | sort[jj-1]=ithis; |
| 989 | sort[jj]=ilast; |
| 990 | } else { |
| 991 | if (rup1<rlo2-tolerance&&!fixInfeasibility) { |
| 992 | // infeasible |
| 993 | prob->status_|= 1; |
| 994 | // wrong message - correct if works |
| 995 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 996 | prob->messages()) |
| 997 | <<ithis |
| 998 | <<rlo[ithis] |
| 999 | <<rup[ithis] |
| 1000 | <<CoinMessageEol; |
| 1001 | break; |
| 1002 | } else if (allowIntersection/*||fabs(rup1-rlo2)<tolerance*/) { |
| 1003 | /* overlapping - could merge */ |
| 1004 | #ifdef CLP_INVESTIGATE7 |
| 1005 | printf("overlapping duplicate row %g %g, %g %g\n" , |
| 1006 | rlo1,rup1,rlo2,rup2); |
| 1007 | # endif |
| 1008 | // pretend this is stricter than last |
| 1009 | idelete=ilast; |
| 1010 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
| 1011 | rup[ithis]=rup1; |
| 1012 | } |
| 1013 | } |
| 1014 | } else { |
| 1015 | // rlo1>rlo2 |
| 1016 | if (rup1<=rup2) { |
| 1017 | /* last is strictly tighter than this */ |
| 1018 | idelete=ithis; |
| 1019 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ithis,ilast)); |
| 1020 | // swap so can carry on deleting |
| 1021 | sort[jj-1]=ithis; |
| 1022 | sort[jj]=ilast; |
| 1023 | } else { |
| 1024 | /* overlapping - could merge */ |
| 1025 | // rlo1>rlo2 |
| 1026 | // rup1>rup2 |
| 1027 | if (rup2<rlo1-tolerance&&!fixInfeasibility) { |
| 1028 | // infeasible |
| 1029 | prob->status_|= 1; |
| 1030 | // wrong message - correct if works |
| 1031 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 1032 | prob->messages()) |
| 1033 | <<ithis |
| 1034 | <<rlo[ithis] |
| 1035 | <<rup[ithis] |
| 1036 | <<CoinMessageEol; |
| 1037 | break; |
| 1038 | } else if (allowIntersection/*||fabs(rup2-rlo1)<tolerance*/) { |
| 1039 | #ifdef CLP_INVESTIGATE7 |
| 1040 | printf("overlapping duplicate row %g %g, %g %g\n" , |
| 1041 | rlo1,rup1,rlo2,rup2); |
| 1042 | # endif |
| 1043 | // pretend this is stricter than last |
| 1044 | idelete=ilast; |
| 1045 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
| 1046 | rlo[ithis]=rlo1; |
| 1047 | } |
| 1048 | } |
| 1049 | } |
| 1050 | if (idelete>=0) |
| 1051 | sort[nuseless_rows++]=idelete; |
| 1052 | } |
| 1053 | } |
| 1054 | } |
| 1055 | dval=workrow[jj]; |
| 1056 | } |
| 1057 | |
| 1058 | delete[]workrow; |
| 1059 | if(workcol != prob->randomNumber_) |
| 1060 | delete[]workcol; |
| 1061 | |
| 1062 | |
| 1063 | if (nuseless_rows) { |
| 1064 | # if PRESOLVE_SUMMARY |
| 1065 | printf("DUPLICATE ROWS: %d\n" , nuseless_rows); |
| 1066 | # endif |
| 1067 | next = useless_constraint_action::presolve(prob, |
| 1068 | sort, nuseless_rows, |
| 1069 | next); |
| 1070 | } |
| 1071 | delete[]sort; |
| 1072 | |
| 1073 | if (prob->tuning_) { |
| 1074 | double thisTime=CoinCpuTime(); |
| 1075 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
| 1076 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
| 1077 | printf("CoinPresolveDuprow(256) - %d rows, %d columns dropped in time %g, total %g\n" , |
| 1078 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
| 1079 | } |
| 1080 | return (next); |
| 1081 | } |
| 1082 | |
| 1083 | void duprow_action::postsolve(CoinPostsolveMatrix *) const |
| 1084 | { |
| 1085 | printf("STILL NO POSTSOLVE FOR DUPROW!\n" ); |
| 1086 | abort(); |
| 1087 | } |
| 1088 | |
| 1089 | |
| 1090 | |
| 1091 | /* |
| 1092 | Routines for gub rows. This is definitely unfinished --- there's no |
| 1093 | postsolve action. |
| 1094 | */ |
| 1095 | |
| 1096 | const char *gubrow_action::name () const |
| 1097 | { |
| 1098 | return ("gubrow_action" ); |
| 1099 | } |
| 1100 | |
| 1101 | |
| 1102 | const CoinPresolveAction |
| 1103 | *gubrow_action::presolve (CoinPresolveMatrix *prob, |
| 1104 | const CoinPresolveAction *next) |
| 1105 | { |
| 1106 | double startTime = 0.0; |
| 1107 | int droppedElements=0; |
| 1108 | int affectedRows=0; |
| 1109 | if (prob->tuning_) { |
| 1110 | startTime = CoinCpuTime(); |
| 1111 | } |
| 1112 | double *rowels = prob->rowels_; |
| 1113 | int *hcol = prob->hcol_; |
| 1114 | CoinBigIndex *mrstrt = prob->mrstrt_; |
| 1115 | int *hinrow = prob->hinrow_; |
| 1116 | double *colels = prob->colels_ ; |
| 1117 | int *hrow = prob->hrow_ ; |
| 1118 | CoinBigIndex *mcstrt = prob->mcstrt_ ; |
| 1119 | int *hincol = prob->hincol_ ; |
| 1120 | int ncols = prob->ncols_; |
| 1121 | int nrows = prob->nrows_; |
| 1122 | double *rlo = prob->rlo_; |
| 1123 | double *rup = prob->rup_; |
| 1124 | |
| 1125 | /* |
| 1126 | Scan the rows. We're not |
| 1127 | interested in rows that are empty or prohibited. |
| 1128 | |
| 1129 | */ |
| 1130 | int *which = prob->usefulRowInt_; |
| 1131 | int * number = which + nrows; |
| 1132 | double * els = prob->usefulRowDouble_; |
| 1133 | char * markCol = reinterpret_cast<char *> (prob->usefulColumnInt_); |
| 1134 | memset(markCol,0,ncols); |
| 1135 | CoinZeroN(els,nrows); |
| 1136 | for (int i = 0 ; i < nrows ; i++) { |
| 1137 | int nInRow = hinrow[i]; |
| 1138 | if (nInRow>1 &&!prob->rowProhibited2(i)&&rlo[i]==rup[i]) { |
| 1139 | CoinBigIndex rStart = mrstrt[i]; |
| 1140 | CoinBigIndex k = rStart; |
| 1141 | CoinBigIndex rEnd = rStart+nInRow; |
| 1142 | double value1=rowels[k]; |
| 1143 | k++; |
| 1144 | for (;k<rEnd;k++) { |
| 1145 | if (rowels[k]!=value1) |
| 1146 | break; |
| 1147 | } |
| 1148 | if (k==rEnd) { |
| 1149 | // Gub row |
| 1150 | int nLook = 0 ; |
| 1151 | for (k=rStart;k<rEnd;k++) { |
| 1152 | int iColumn = hcol[k]; |
| 1153 | markCol[iColumn]=1; |
| 1154 | CoinBigIndex kk = mcstrt[iColumn]; |
| 1155 | CoinBigIndex cEnd = kk+hincol[iColumn]; |
| 1156 | for (;kk<cEnd;kk++) { |
| 1157 | int iRow = hrow[kk]; |
| 1158 | double value = colels[kk]; |
| 1159 | if (iRow!=i) { |
| 1160 | double value2 = els[iRow]; |
| 1161 | if (value2) { |
| 1162 | if (value==value2) |
| 1163 | number[iRow]++; |
| 1164 | } else { |
| 1165 | // first |
| 1166 | els[iRow]=value; |
| 1167 | number[iRow]=1; |
| 1168 | which[nLook++]=iRow; |
| 1169 | } |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | // Now see if any promising |
| 1174 | for (int j=0;j<nLook;j++) { |
| 1175 | int iRow = which[j]; |
| 1176 | if (number[iRow]==nInRow) { |
| 1177 | // can delete elements and adjust rhs |
| 1178 | affectedRows++; |
| 1179 | droppedElements += nInRow; |
| 1180 | for (CoinBigIndex kk=rStart; kk<rEnd; kk++) |
| 1181 | presolve_delete_from_col(iRow,hcol[kk],mcstrt,hincol,hrow,colels) ; |
| 1182 | int nInRow2 = hinrow[iRow]; |
| 1183 | CoinBigIndex rStart2 = mrstrt[iRow]; |
| 1184 | CoinBigIndex rEnd2 = rStart2+nInRow2; |
| 1185 | for (CoinBigIndex kk=rStart2; kk<rEnd2; kk++) { |
| 1186 | int iColumn = hcol[kk]; |
| 1187 | if (markCol[iColumn]==0) { |
| 1188 | hcol[rStart2]=iColumn; |
| 1189 | rowels[rStart2++]=rowels[kk]; |
| 1190 | } |
| 1191 | } |
| 1192 | hinrow[iRow] = nInRow2-nInRow; |
| 1193 | if (!hinrow[iRow]) |
| 1194 | PRESOLVE_REMOVE_LINK(prob->rlink_,iRow) ; |
| 1195 | double value =(rlo[i]/value1)*els[iRow]; |
| 1196 | // correct rhs |
| 1197 | if (rlo[iRow]>-1.0e20) |
| 1198 | rlo[iRow] -= value; |
| 1199 | if (rup[iRow]<1.0e20) |
| 1200 | rup[iRow] -= value; |
| 1201 | } |
| 1202 | els[iRow]=0.0; |
| 1203 | } |
| 1204 | for (k=rStart;k<rEnd;k++) { |
| 1205 | int iColumn = hcol[k]; |
| 1206 | markCol[iColumn]=0; |
| 1207 | } |
| 1208 | } |
| 1209 | } |
| 1210 | } |
| 1211 | if (prob->tuning_) { |
| 1212 | double thisTime=CoinCpuTime(); |
| 1213 | printf("CoinPresolveGubrow(1024) - %d elements dropped (%d rows) in time %g, total %g\n" , |
| 1214 | droppedElements,affectedRows,thisTime-startTime,thisTime-prob->startTime_); |
| 1215 | } else if (droppedElements) { |
| 1216 | #ifdef CLP_INVESTIGATE |
| 1217 | printf("CoinPresolveGubrow(1024) - %d elements dropped (%d rows)\n" , |
| 1218 | droppedElements,affectedRows); |
| 1219 | #endif |
| 1220 | } |
| 1221 | return (next); |
| 1222 | } |
| 1223 | |
| 1224 | void gubrow_action::postsolve(CoinPostsolveMatrix *) const |
| 1225 | { |
| 1226 | printf("STILL NO POSTSOLVE FOR GUBROW!\n" ); |
| 1227 | abort(); |
| 1228 | } |
| 1229 | |