1 | /* $Id: CoinPresolveDupcol.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #include <stdio.h> |
7 | #include <math.h> |
8 | |
9 | //#define PRESOLVE_DEBUG 1 |
10 | // Debugging macros/functions |
11 | //#define PRESOLVE_DETAIL 1 |
12 | #include "CoinPresolveMatrix.hpp" |
13 | #include "CoinPresolveFixed.hpp" |
14 | #include "CoinPresolveDupcol.hpp" |
15 | #include "CoinSort.hpp" |
16 | #include "CoinFinite.hpp" |
17 | #include "CoinHelperFunctions.hpp" |
18 | #include "CoinPresolveUseless.hpp" |
19 | #include "CoinMessage.hpp" |
20 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
21 | #include "CoinPresolvePsdebug.hpp" |
22 | #endif |
23 | |
24 | #define DSEED2 2147483647.0 |
25 | // Can be used from anywhere |
26 | void coin_init_random_vec(double *work, int n) |
27 | { |
28 | double deseed = 12345678.0; |
29 | |
30 | for (int i = 0; i < n; ++i) { |
31 | deseed *= 16807.; |
32 | int jseed = static_cast<int> (deseed / DSEED2); |
33 | deseed -= static_cast<double> (jseed) * DSEED2; |
34 | double random = deseed / DSEED2; |
35 | |
36 | work[i]=random; |
37 | } |
38 | } |
39 | |
40 | namespace { // begin unnamed file-local namespace |
41 | |
42 | /* |
43 | For each candidate major-dimension vector in majcands, calculate the sum |
44 | over the vector, with each minor dimension weighted by a random amount. |
45 | (E.g., calculate column sums with each row weighted by a random amount.) |
46 | The sums are returned in the corresponding entries of majsums. |
47 | */ |
48 | |
49 | void compute_sums (int /*n*/, const int *majlens, const CoinBigIndex *majstrts, |
50 | int *minndxs, double *elems, const double *minmuls, |
51 | int *majcands, double *majsums, int nlook) |
52 | |
53 | { for (int cndx = 0 ; cndx < nlook ; ++cndx) |
54 | { int i = majcands[cndx] ; |
55 | PRESOLVEASSERT(majlens[i] > 0) ; |
56 | |
57 | CoinBigIndex kcs = majstrts[i] ; |
58 | CoinBigIndex kce = kcs + majlens[i] ; |
59 | |
60 | double value = 0.0 ; |
61 | |
62 | for (CoinBigIndex k = kcs ; k < kce ; k++) |
63 | { int irow = minndxs[k] ; |
64 | value += minmuls[irow]*elems[k] ; } |
65 | |
66 | majsums[cndx] = value ; } |
67 | |
68 | return ; } |
69 | |
70 | |
71 | void create_col (int col, int n, double *els, |
72 | CoinBigIndex *mcstrt, double *colels, int *hrow, int *link, |
73 | CoinBigIndex *free_listp) |
74 | { |
75 | int *rows = reinterpret_cast<int *>(els+n) ; |
76 | CoinBigIndex free_list = *free_listp; |
77 | int xstart = NO_LINK; |
78 | for (int i=0; i<n; ++i) { |
79 | CoinBigIndex k = free_list; |
80 | assert(k >= 0) ; |
81 | free_list = link[free_list]; |
82 | hrow[k] = rows[i]; |
83 | colels[k] = els[i]; |
84 | link[k] = xstart; |
85 | xstart = k; |
86 | } |
87 | mcstrt[col] = xstart; |
88 | *free_listp = free_list; |
89 | } |
90 | |
91 | |
92 | } // end unnamed file-local namespace |
93 | |
94 | |
95 | |
96 | const char *dupcol_action::name () const |
97 | { |
98 | return ("dupcol_action" ); |
99 | } |
100 | |
101 | |
102 | /* |
103 | Original comment: This is just ekkredc5, adapted into the new framework. |
104 | The datasets scorpion.mps and allgrade.mps have duplicate columns. |
105 | |
106 | In case you don't have your OSL manual handy, a somewhat more informative |
107 | explanation: We're looking for an easy-to-detect special case of linearly |
108 | dependent columns, where the coefficients of the duplicate columns are |
109 | exactly equal. The idea for locating such columns is to generate pseudo- |
110 | random weights for each row and then calculate the weighted sum of |
111 | coefficients of each column. Columns with equal sums are checked more |
112 | thoroughly. |
113 | |
114 | Analysis of the situation says there are two major cases: |
115 | * If the columns have equal objective coefficients, we can combine |
116 | them. |
117 | * If the columns have unequal objective coefficients, we may be able to |
118 | fix one at bound. If the required bound doesn't exist, we have dual |
119 | infeasibility (hence one of primal infeasibility or unboundedness). |
120 | |
121 | In the comments below are a few fragments of code from the original |
122 | routine. I don't think they make sense, but I've left them for the nonce in |
123 | case someone else recognises the purpose. -- lh, 040909 -- |
124 | */ |
125 | |
126 | const CoinPresolveAction |
127 | *dupcol_action::presolve (CoinPresolveMatrix *prob, |
128 | const CoinPresolveAction *next) |
129 | { |
130 | double startTime = 0.0; |
131 | int startEmptyRows=0; |
132 | int startEmptyColumns = 0; |
133 | if (prob->tuning_) { |
134 | startTime = CoinCpuTime(); |
135 | startEmptyRows = prob->countEmptyRows(); |
136 | startEmptyColumns = prob->countEmptyCols(); |
137 | } |
138 | |
139 | double maxmin = prob->maxmin_ ; |
140 | |
141 | double *colels = prob->colels_ ; |
142 | int *hrow = prob->hrow_ ; |
143 | CoinBigIndex *mcstrt = prob->mcstrt_ ; |
144 | int *hincol = prob->hincol_ ; |
145 | int ncols = prob->ncols_ ; |
146 | int nrows = prob->nrows_ ; |
147 | |
148 | double *clo = prob->clo_ ; |
149 | double *cup = prob->cup_ ; |
150 | double *sol = prob->sol_ ; |
151 | double *rlo = prob->rlo_ ; |
152 | double *rup = prob->rup_ ; |
153 | |
154 | // If all coefficients positive do more simply |
155 | bool allPositive=true; |
156 | double * rhs = prob->usefulRowDouble_; //new double[nrows]; |
157 | CoinMemcpyN(rup,nrows,rhs); |
158 | /* |
159 | Scan the columns for candidates, and write the indices into sort. We're not |
160 | interested in columns that are empty, prohibited, or integral. |
161 | |
162 | Question: Should we exclude singletons, which are useful in other transforms? |
163 | Question: Why are we excluding integral columns? |
164 | */ |
165 | // allow integral columns if asked for |
166 | bool allowIntegers = ( prob->presolveOptions_&1)!=0; |
167 | int *sort = prob->usefulColumnInt_; //new int[ncols] ; |
168 | int nlook = 0 ; |
169 | for (int j = 0 ; j < ncols ; j++) { |
170 | if (hincol[j] == 0) continue ; |
171 | // sort |
172 | CoinSort_2(hrow+mcstrt[j],hrow+mcstrt[j]+hincol[j], |
173 | colels+mcstrt[j]); |
174 | // check all positive and adjust rhs |
175 | if (allPositive) { |
176 | double lower = clo[j]; |
177 | if (lower<cup[j]) { |
178 | for (int k=mcstrt[j];k<mcstrt[j]+hincol[j];k++) { |
179 | double value=colels[k]; |
180 | if (value<0.0) |
181 | allPositive=false; |
182 | else |
183 | rhs[hrow[k]] -= lower*value; |
184 | } |
185 | } else { |
186 | for (int k=mcstrt[j];k<mcstrt[j]+hincol[j];k++) { |
187 | double value=colels[k]; |
188 | rhs[hrow[k]] -= lower*value; |
189 | } |
190 | } |
191 | } |
192 | if (prob->colProhibited2(j)) continue ; |
193 | //#define PRESOLVE_INTEGER_DUPCOL |
194 | #ifndef PRESOLVE_INTEGER_DUPCOL |
195 | if (prob->isInteger(j)&&!allowIntegers) continue ; |
196 | #endif |
197 | sort[nlook++] = j ; } |
198 | if (nlook == 0) |
199 | { //delete[] sort ; |
200 | //delete [] rhs; |
201 | return (next) ; } |
202 | /* |
203 | Prep: add the coefficients of each candidate column. To reduce false |
204 | positives, multiply each row by a `random' multiplier when forming the |
205 | sums. On return from compute_sums, sort and colsum are loaded with the |
206 | indices and column sums, respectively, of candidate columns. The pair of |
207 | arrays are then sorted by sum so that equal sums are adjacent. |
208 | */ |
209 | double *colsum = prob->usefulColumnDouble_; //new double[ncols] ; |
210 | double *rowmul; |
211 | if (!prob->randomNumber_) { |
212 | rowmul = new double[nrows] ; |
213 | coin_init_random_vec(rowmul,nrows) ; |
214 | } else { |
215 | rowmul = prob->randomNumber_; |
216 | } |
217 | compute_sums(ncols,hincol,mcstrt,hrow,colels,rowmul,sort,colsum,nlook) ; |
218 | CoinSort_2(colsum,colsum+nlook,sort) ; |
219 | /* |
220 | General prep --- unpack the various vectors we'll need, and allocate arrays |
221 | to record the results. |
222 | */ |
223 | presolvehlink *clink = prob->clink_ ; |
224 | |
225 | double *rowels = prob->rowels_ ; |
226 | int *hcol = prob->hcol_ ; |
227 | const CoinBigIndex *mrstrt = prob->mrstrt_ ; |
228 | int *hinrow = prob->hinrow_ ; |
229 | |
230 | double *dcost = prob->cost_ ; |
231 | |
232 | action *actions = new action [nlook] ; |
233 | int nactions = 0 ; |
234 | # ifdef ZEROFAULT |
235 | memset(actions,0,nlook*sizeof(action)) ; |
236 | # endif |
237 | |
238 | int *fixed_down = new int[nlook] ; |
239 | int nfixed_down = 0 ; |
240 | int *fixed_up = new int[nlook] ; |
241 | int nfixed_up = 0 ; |
242 | |
243 | #if 0 |
244 | // Excluded in the original routine. I'm guessing it's excluded because |
245 | // it's just not cost effective to worry about this. -- lh, 040908 -- |
246 | |
247 | // It may be the case that several columns are duplicate. |
248 | // If not all have the same cost, then we have to make sure |
249 | // that we set the most expensive one to its minimum |
250 | // now sort in each class by cost |
251 | { |
252 | double dval = colsum[0] ; |
253 | int first = 0 ; |
254 | for (int jj = 1; jj < nlook; jj++) { |
255 | while (colsum[jj]==dval) |
256 | jj++ ; |
257 | |
258 | if (first + 1 < jj) { |
259 | double buf[jj - first] ; |
260 | for (int i=first; i<jj; ++i) |
261 | buf[i-first] = dcost[sort[i]]*maxmin ; |
262 | |
263 | CoinSort_2(buf,buf+jj-first,sort+first) ; |
264 | //ekk_sortonDouble(buf,&sort[first],jj-first) ; |
265 | } |
266 | } |
267 | } |
268 | #endif |
269 | // We will get all min/max but only if needed |
270 | bool gotStuff=false; |
271 | /* |
272 | Original comment: It appears to be the case that this loop is finished, |
273 | there may still be duplicate cols left. I haven't done anything |
274 | about that yet. |
275 | |
276 | Open the main loop to compare column pairs. We'll compare sort[jj] to |
277 | sort[tgt]. This allows us to accumulate multiple columns into one. But |
278 | we don't manage all-pairs comparison when we can't combine columns. |
279 | |
280 | We can quickly dismiss pairs which have unequal sums or lengths. |
281 | */ |
282 | int isorted = -1 ; |
283 | int tgt = 0 ; |
284 | for (int jj = 1 ; jj < nlook ; jj++) |
285 | { if (colsum[jj] != colsum[jj-1]) { |
286 | tgt = jj; // Must update before continuing |
287 | continue ; |
288 | } |
289 | |
290 | int j2 = sort[jj] ; |
291 | int j1 = sort[tgt] ; |
292 | int len2 = hincol[j2] ; |
293 | int len1 = hincol[j1] ; |
294 | |
295 | if (len2 != len1) |
296 | { tgt = jj ; |
297 | continue ; } |
298 | /* |
299 | The final test: sort the columns by row index and compare each index and |
300 | coefficient. |
301 | */ |
302 | CoinBigIndex kcs = mcstrt[j2] ; |
303 | CoinBigIndex kce = kcs+hincol[j2] ; |
304 | int ishift = mcstrt[j1]-kcs ; |
305 | |
306 | if (len1 > 1 && isorted < j1) |
307 | { CoinSort_2(hrow+mcstrt[j1],hrow+mcstrt[j1]+len1, |
308 | colels+mcstrt[j1]) ; |
309 | isorted = j1 ; } |
310 | if (len2 > 1 && isorted < j2) |
311 | { CoinSort_2(hrow+kcs,hrow+kcs+len2,colels+kcs) ; |
312 | isorted = j2 ; } |
313 | |
314 | CoinBigIndex k ; |
315 | for (k = kcs ; k < kce ; k++) |
316 | { if (hrow[k] != hrow[k+ishift] || colels[k] != colels[k+ishift]) |
317 | { break ; } } |
318 | if (k != kce) |
319 | { tgt = jj ; |
320 | continue ; } |
321 | /* |
322 | These really are duplicate columns. Grab values for convenient reference. |
323 | Convert the objective coefficients for minimization. |
324 | */ |
325 | double clo1 = clo[j1] ; |
326 | double cup1 = cup[j1] ; |
327 | double clo2 = clo[j2] ; |
328 | double cup2 = cup[j2] ; |
329 | double c1 = dcost[j1]*maxmin ; |
330 | double c2 = dcost[j2]*maxmin ; |
331 | PRESOLVEASSERT(!(clo1 == cup1 || clo2 == cup2)) ; |
332 | // Get reasonable bounds on sum of two variables |
333 | double lowerBound=-COIN_DBL_MAX; |
334 | double upperBound=COIN_DBL_MAX; |
335 | // For now only if lower bounds are zero |
336 | if (!clo1&&!clo2) { |
337 | // Only need bounds if c1 != c2 |
338 | if (c1!=c2) { |
339 | if (!allPositive) { |
340 | #if 0 |
341 | |
342 | for (k=kcs;k<kce;k++) { |
343 | int iRow = hrow[k]; |
344 | bool posinf = false; |
345 | bool neginf = false; |
346 | double maxup = 0.0; |
347 | double maxdown = 0.0; |
348 | |
349 | // compute sum of all bounds except for j1,j2 |
350 | CoinBigIndex kk; |
351 | CoinBigIndex kre = mrstrt[iRow]+hinrow[iRow]; |
352 | double value1=0.0; |
353 | for (kk=mrstrt[iRow]; kk<kre; kk++) { |
354 | int col = hcol[kk]; |
355 | if (col == j1||col==j2) { |
356 | value1=rowels[kk]; |
357 | continue; |
358 | } |
359 | double coeff = rowels[kk]; |
360 | double lb = clo[col]; |
361 | double ub = cup[col]; |
362 | |
363 | if (coeff > 0.0) { |
364 | if (PRESOLVE_INF <= ub) { |
365 | posinf = true; |
366 | if (neginf) |
367 | break; // pointless |
368 | } else { |
369 | maxup += ub * coeff; |
370 | } |
371 | if (lb <= -PRESOLVE_INF) { |
372 | neginf = true; |
373 | if (posinf) |
374 | break; // pointless |
375 | } else { |
376 | maxdown += lb * coeff; |
377 | } |
378 | } else { |
379 | if (PRESOLVE_INF <= ub) { |
380 | neginf = true; |
381 | if (posinf) |
382 | break; // pointless |
383 | } else { |
384 | maxdown += ub * coeff; |
385 | } |
386 | if (lb <= -PRESOLVE_INF) { |
387 | posinf = true; |
388 | if (neginf) |
389 | break; // pointless |
390 | } else { |
391 | maxup += lb * coeff; |
392 | } |
393 | } |
394 | } |
395 | |
396 | if (kk==kre) { |
397 | assert (value1); |
398 | if (value1>1.0e-5) { |
399 | if (!neginf&&rup[iRow]<1.0e10) |
400 | if (upperBound*value1>rup[iRow]-maxdown) |
401 | upperBound = (rup[iRow]-maxdown)/value1; |
402 | if (!posinf&&rlo[iRow]>-1.0e10) |
403 | if (lowerBound*value1<rlo[iRow]-maxup) |
404 | lowerBound = (rlo[iRow]-maxup)/value1; |
405 | } else if (value1<-1.0e-5) { |
406 | if (!neginf&&rup[iRow]<1.0e10) |
407 | if (lowerBound*value1>rup[iRow]-maxdown) { |
408 | #ifndef NDEBUG |
409 | double x=lowerBound; |
410 | #endif |
411 | lowerBound = (rup[iRow]-maxdown)/value1; |
412 | assert (lowerBound == CoinMax(x,(rup[iRow]-maxdown)/value1)); |
413 | } |
414 | if (!posinf&&rlo[iRow]>-1.0e10) |
415 | if (upperBound*value1<rlo[iRow]-maxup) { |
416 | #ifndef NDEBUG |
417 | double x=upperBound; |
418 | #endif |
419 | upperBound = (rlo[iRow]-maxup)/value1; |
420 | assert(upperBound == CoinMin(x,(rlo[iRow]-maxup)/value1)); |
421 | } |
422 | } |
423 | } |
424 | } |
425 | double l=lowerBound; |
426 | double u=upperBound; |
427 | #endif |
428 | if (!gotStuff) { |
429 | prob->recomputeSums(-1); // get min max |
430 | gotStuff=true; |
431 | } |
432 | int positiveInf=0; |
433 | int negativeInf=0; |
434 | double lo=0; |
435 | double up=0.0; |
436 | if (clo1<-PRESOLVE_INF) |
437 | negativeInf++; |
438 | else |
439 | lo+=clo1; |
440 | if (clo2<-PRESOLVE_INF) |
441 | negativeInf++; |
442 | else |
443 | lo+=clo2; |
444 | if (cup1>PRESOLVE_INF) |
445 | positiveInf++; |
446 | else |
447 | up+=cup1; |
448 | if (cup2>PRESOLVE_INF) |
449 | positiveInf++; |
450 | else |
451 | up+=cup2; |
452 | for (k=kcs;k<kce;k++) { |
453 | int iRow = hrow[k]; |
454 | double value = colels[k]; |
455 | int pInf = (value>0.0) ? positiveInf : negativeInf; |
456 | int nInf = (value>0.0) ? negativeInf : positiveInf; |
457 | int posinf = prob->infiniteUp_[iRow]-pInf; |
458 | int neginf = prob->infiniteDown_[iRow]-nInf; |
459 | if (posinf>0&&neginf>0) |
460 | continue; // this row can't bound |
461 | double maxup = prob->sumUp_[iRow]; |
462 | double maxdown = prob->sumDown_[iRow]; |
463 | |
464 | if (value>0.0) { |
465 | maxdown -= value*lo; |
466 | maxup -= value*up; |
467 | } else { |
468 | maxdown -= value*up; |
469 | maxup -= value*lo; |
470 | } |
471 | if (value>1.0e-5) { |
472 | if (!neginf&&rup[iRow]<1.0e10) |
473 | if (upperBound*value>rup[iRow]-maxdown) |
474 | upperBound = (rup[iRow]-maxdown)/value; |
475 | if (!posinf&&rlo[iRow]>-1.0e10) |
476 | if (lowerBound*value<rlo[iRow]-maxup) |
477 | lowerBound = (rlo[iRow]-maxup)/value; |
478 | } else if (value<-1.0e-5) { |
479 | if (!neginf&&rup[iRow]<1.0e10) |
480 | if (lowerBound*value>rup[iRow]-maxdown) { |
481 | lowerBound = (rup[iRow]-maxdown)/value; |
482 | } |
483 | if (!posinf&&rlo[iRow]>-1.0e10) |
484 | if (upperBound*value<rlo[iRow]-maxup) { |
485 | upperBound = (rlo[iRow]-maxup)/value; |
486 | } |
487 | } |
488 | } |
489 | //assert (fabs(l-lowerBound)<1.0e-5&&fabs(u-upperBound)<1.0e-5); |
490 | } else { |
491 | // can do faster |
492 | lowerBound=0.0; |
493 | for (k=kcs;k<kce;k++) { |
494 | int iRow = hrow[k]; |
495 | double value=colels[k]; |
496 | if (upperBound*value>rhs[iRow]) |
497 | upperBound = rhs[iRow]/value; |
498 | } |
499 | } |
500 | } |
501 | // relax a bit |
502 | upperBound -= 1.0e-9; |
503 | } else { |
504 | // Not sure what to do so give up |
505 | continue; |
506 | } |
507 | /* |
508 | There are two main cases: The objective coefficients are equal or unequal. |
509 | |
510 | For equal objective coefficients c1 == c2, we can combine the columns by |
511 | making the substitution x<j1> = x'<j1> - x<j2>. This will eliminate column |
512 | sort[jj] = j2 and leave the new variable x' in column sort[tgt] = j1. tgt |
513 | doesn't move. |
514 | */ |
515 | if (c1 == c2) |
516 | { |
517 | #ifdef PRESOLVE_INTEGER_DUPCOL |
518 | if (!allowIntegers) { |
519 | if (prob->isInteger(j1)) { |
520 | if (!prob->isInteger(j2)) { |
521 | if (cup2 < upperBound) //if (!prob->colInfinite(j2)) |
522 | continue; |
523 | else |
524 | cup2 = COIN_DBL_MAX; |
525 | } |
526 | } else if (prob->isInteger(j2)) { |
527 | if (cup1 < upperBound) //if (!prob->colInfinite(j1)) |
528 | continue; |
529 | else |
530 | cup1 = COIN_DBL_MAX; |
531 | } |
532 | //printf("TakingINTeq\n"); |
533 | } |
534 | #endif |
535 | /* |
536 | As far as the presolved lp, there's no difference between columns. But we |
537 | need this relation to hold in order to guarantee that we can split the |
538 | value of the combined column during postsolve without damaging the basis. |
539 | (The relevant case is when the combined column is basic --- we need to be |
540 | able to retain column j1 in the basis and make column j2 nonbasic.) |
541 | */ |
542 | if (!(clo2+cup1 <= clo1+cup2)) |
543 | { CoinSwap(j1,j2) ; |
544 | CoinSwap(clo1,clo2) ; |
545 | CoinSwap(cup1,cup2) ; |
546 | tgt = jj ; } |
547 | /* |
548 | Create the postsolve action before we start to modify the columns. |
549 | */ |
550 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d += %d\n" ,j1,j2,j1,j2)) ; |
551 | PRESOLVE_DETAIL_PRINT(printf("pre_dupcol %dC %dC E\n" ,j2,j1)); |
552 | |
553 | action *s = &actions[nactions++] ; |
554 | s->thislo = clo[j2] ; |
555 | s->thisup = cup[j2] ; |
556 | s->lastlo = clo[j1] ; |
557 | s->lastup = cup[j1] ; |
558 | s->ithis = j2 ; |
559 | s->ilast = j1 ; |
560 | s->nincol = hincol[j2] ; |
561 | s->colels = presolve_dupmajor(colels,hrow,hincol[j2],mcstrt[j2]) ; |
562 | /* |
563 | Combine the columns into column j1. Upper and lower bounds and solution |
564 | simply add, and the coefficients are unchanged. |
565 | |
566 | I'm skeptical of pushing a bound to infinity like this, but leave it for now. |
567 | -- lh, 040908 -- |
568 | */ |
569 | clo1 += clo2 ; |
570 | if (clo1 < -1.0e20) |
571 | { clo1 = -PRESOLVE_INF ; } |
572 | clo[j1] = clo1 ; |
573 | cup1 += cup2 ; |
574 | if (cup1 > 1.0e20) |
575 | { cup1 = PRESOLVE_INF ; } |
576 | cup[j1] = cup1 ; |
577 | if (sol) |
578 | { sol[j1] += sol[j2] ; } |
579 | if (prob->colstat_) |
580 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
581 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
582 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic); } } |
583 | /* |
584 | Empty column j2. |
585 | */ |
586 | dcost[j2] = 0.0 ; |
587 | if (sol) |
588 | { sol[j2] = clo2 ; } |
589 | CoinBigIndex k2cs = mcstrt[j2] ; |
590 | CoinBigIndex k2ce = k2cs + hincol[j2] ; |
591 | for (CoinBigIndex k = k2cs ; k < k2ce ; ++k) |
592 | { presolve_delete_from_row(hrow[k],j2,mrstrt,hinrow,hcol,rowels) ; } |
593 | hincol[j2] = 0 ; |
594 | PRESOLVE_REMOVE_LINK(clink,j2) ; |
595 | continue ; } |
596 | /* |
597 | Unequal reduced costs. In this case, we may be able to fix one of the columns |
598 | or prove dual infeasibility. Given column a_k, duals y, objective |
599 | coefficient c_k, the reduced cost cbar_k = c_k - dot(y,a_k). Given |
600 | a_1 = a_2, substitute for dot(y,a_1) in the relation for cbar_2 to get |
601 | cbar_2 = (c_2 - c_1) + cbar_1 |
602 | Independent elements here are variable bounds l_k, u_k, and difference |
603 | (c_2 - c_1). Infinite bounds for l_k, u_k will constrain the sign of cbar_k. |
604 | Assume minimization. If you do the case analysis, you find these cases of |
605 | interest: |
606 | |
607 | l_1 u_1 l_2 u_2 cbar_1 c_2-c_1 cbar_2 result |
608 | |
609 | A any finite -inf any <= 0 > 0 <= 0 x_1 -> NBUB |
610 | B -inf any any finite <= 0 < 0 < 0 x_2 -> NBUB |
611 | |
612 | C finite any any +inf >= 0 < 0 >= 0 x_1 -> NBLB |
613 | D any +inf finite any >= 0 > 0 >= 0 x_2 -> NBLB |
614 | |
615 | E -inf any any +inf <= 0 < 0 >= 0 dual infeas |
616 | F any inf -inf any >= 0 > 0 <= 0 dual infeas |
617 | |
618 | G any finite finite any > 0 no inference |
619 | H finite any any finite < 0 no inference |
620 | |
621 | The cases labelled dual infeasible are primal unbounded. |
622 | |
623 | To keep the code compact, we'll always aim to take x_2 to bound. In the cases |
624 | where x_1 should go to bound, we'll swap. The implementation is boolean |
625 | algebra. Define bits for infinite bounds and (c_2 > c_1), then look for the |
626 | correct patterns. |
627 | */ |
628 | else |
629 | { int minterm = 0 ; |
630 | #ifdef PRESOLVE_INTEGER_DUPCOL |
631 | if (!allowIntegers) { |
632 | if (c2 > c1) { |
633 | if (cup1 < upperBound/*!prob->colInfinite(j1)*/ && (prob->isInteger(j1)||prob->isInteger(j2))) |
634 | continue ; |
635 | } else { |
636 | if (cup2 < upperBound/*!prob->colInfinite(j2)*/ && (prob->isInteger(j1)||prob->isInteger(j2))) |
637 | continue ; |
638 | } |
639 | //printf("TakingINTne\n"); |
640 | } |
641 | #endif |
642 | bool swapped = false ; |
643 | #if PRESOLVE_DEBUG |
644 | printf("bounds %g %g\n" ,lowerBound,upperBound); |
645 | #endif |
646 | if (c2 > c1) minterm |= 1<<0 ; |
647 | if (cup2 >= PRESOLVE_INF/*prob->colInfinite(j2)*/) minterm |= 1<<1 ; |
648 | if (clo2 <= -PRESOLVE_INF) minterm |= 1<<2 ; |
649 | if (cup1 >= PRESOLVE_INF/*prob->colInfinite(j1)*/) minterm |= 1<<3 ; |
650 | if (clo1 <= -PRESOLVE_INF) minterm |= 1<<4 ; |
651 | // for now be careful - just one special case |
652 | if (!clo1&&!clo2) { |
653 | if (c2 > c1 && cup1 >= upperBound) |
654 | minterm |= 1<<3; |
655 | else if (c2 < c1 && cup2 >= upperBound) |
656 | minterm |= 1<<1; |
657 | } |
658 | /* |
659 | The most common case in a well-formed system should be no inference. We're |
660 | looking for x00x1 (case G) and 0xx00 (case H). This is where we have the |
661 | potential to miss inferences: If there are three or more columns with the |
662 | same sum, sort[tgt] == j1 will only be compared to the second in the |
663 | group. |
664 | */ |
665 | if ((minterm&0x0d) == 0x1 || (minterm&0x13) == 0) |
666 | { tgt = jj ; |
667 | continue ; } |
668 | /* |
669 | Next remove the unbounded cases, 1xx10 and x11x1. |
670 | */ |
671 | if ((minterm&0x13) == 0x12 || (minterm&0x0d) == 0x0d) |
672 | { prob->setStatus(2) ; |
673 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) Unbounded\n" ,j1,j2)) ; |
674 | break ; } |
675 | /* |
676 | With the no inference and unbounded cases removed, all that's left are the |
677 | cases where we can push a variable to bound. Swap if necessary (x01x1 or |
678 | 0xx10) so that we're always fixing index j2. This means that column |
679 | sort[tgt] = j1 will be fixed. Unswapped, we fix column sort[jj] = j2. |
680 | */ |
681 | if ((minterm&0x0d) == 0x05 || (minterm&0x13) == 0x02) |
682 | { CoinSwap(j1, j2) ; |
683 | CoinSwap(clo1, clo2) ; |
684 | CoinSwap(cup1, cup2) ; |
685 | CoinSwap(c1, c2) ; |
686 | int tmp1 = minterm&0x18 ; |
687 | int tmp2 = minterm&0x06 ; |
688 | int tmp3 = minterm&0x01 ; |
689 | minterm = (tmp1>>2)|(tmp2<<2)|(tmp3^0x01) ; |
690 | swapped = true ; } |
691 | /* |
692 | Force x_2 to upper bound? (Case B, boolean 1X100, where X == don't care.) |
693 | */ |
694 | if ((minterm&0x13) == 0x10) |
695 | { fixed_up[nfixed_up++] = j2 ; |
696 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d -> NBUB\n" ,j1,j2,j2)) ; |
697 | if (prob->colstat_) |
698 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
699 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
700 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic) ; } |
701 | prob->setColumnStatus(j2,CoinPrePostsolveMatrix::atUpperBound) ; } |
702 | if (sol) |
703 | { double delta2 = cup2-sol[j2] ; |
704 | sol[j2] = cup2 ; |
705 | sol[j1] -= delta2 ; } |
706 | if (swapped) |
707 | { tgt = jj ; } |
708 | continue ; } |
709 | /* |
710 | Force x_2 to lower bound? (Case C, boolean X1011.) |
711 | */ |
712 | if ((minterm&0x0d) == 0x09) |
713 | { fixed_down[nfixed_down++] = j2 ; |
714 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) %d -> NBLB\n" ,j1,j2,j2)) ; |
715 | if (prob->colstat_) |
716 | { if (prob->getColumnStatus(j1) == CoinPrePostsolveMatrix::basic || |
717 | prob->getColumnStatus(j2) == CoinPrePostsolveMatrix::basic) |
718 | { prob->setColumnStatus(j1,CoinPrePostsolveMatrix::basic) ; } |
719 | prob->setColumnStatus(j2,CoinPrePostsolveMatrix::atLowerBound) ; } |
720 | if (sol) |
721 | { double delta2 = clo2-sol[j2] ; |
722 | sol[j2] = clo2 ; |
723 | sol[j1] -= delta2 ; } |
724 | if (swapped) |
725 | { tgt = jj ; } |
726 | continue ; } } |
727 | /* |
728 | We should never reach this point in the loop --- all cases force a new |
729 | iteration or loop termination. If we get here, something happened that we |
730 | didn't anticipate. |
731 | */ |
732 | PRESOLVE_STMT(printf("DUPCOL: (%d,%d) UNEXPECTED!\n" ,j1,j2)) ; } |
733 | /* |
734 | What's left? Deallocate vectors, and call make_fixed_action to handle any |
735 | variables that were fixed to bound. |
736 | */ |
737 | if (rowmul != prob->randomNumber_) |
738 | delete[] rowmul ; |
739 | //delete[] colsum ; |
740 | //delete[] sort ; |
741 | //delete [] rhs; |
742 | |
743 | # if PRESOLVE_SUMMARY || PRESOLVE_DEBUG |
744 | if (nactions+nfixed_down+nfixed_up > 0) |
745 | { printf("DUPLICATE COLS: %d combined, %d lb, %d ub\n" , |
746 | nactions,nfixed_down,nfixed_up) ; } |
747 | # endif |
748 | if (nactions) |
749 | { next = new dupcol_action(nactions,CoinCopyOfArray(actions,nactions),next) ; |
750 | // we can't go round again in integer |
751 | prob->presolveOptions_ |= 0x80000000; |
752 | } |
753 | deleteAction(actions,action*) ; |
754 | |
755 | if (nfixed_down) |
756 | { next = |
757 | make_fixed_action::presolve(prob,fixed_down,nfixed_down,true,next) ; } |
758 | delete[]fixed_down ; |
759 | |
760 | if (nfixed_up) |
761 | { next = |
762 | make_fixed_action::presolve(prob,fixed_up,nfixed_up,false,next) ; } |
763 | delete[]fixed_up ; |
764 | |
765 | if (prob->tuning_) { |
766 | double thisTime=CoinCpuTime(); |
767 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
768 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
769 | printf("CoinPresolveDupcol(128) - %d rows, %d columns dropped in time %g, total %g\n" , |
770 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
771 | } |
772 | return (next) ; } |
773 | |
774 | |
775 | void dupcol_action::postsolve(CoinPostsolveMatrix *prob) const |
776 | { |
777 | const action *const actions = actions_; |
778 | const int nactions = nactions_; |
779 | |
780 | double *clo = prob->clo_; |
781 | double *cup = prob->cup_; |
782 | |
783 | double *sol = prob->sol_; |
784 | double *dcost = prob->cost_; |
785 | |
786 | double *colels = prob->colels_; |
787 | int *hrow = prob->hrow_; |
788 | CoinBigIndex *mcstrt = prob->mcstrt_; |
789 | int *hincol = prob->hincol_; |
790 | int *link = prob->link_; |
791 | |
792 | double *rcosts = prob->rcosts_; |
793 | double tolerance = prob->ztolzb_; |
794 | |
795 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
796 | int icol = f->ithis; // was fixed |
797 | int icol2 = f->ilast; // was kept |
798 | |
799 | dcost[icol] = dcost[icol2]; |
800 | clo[icol] = f->thislo; |
801 | cup[icol] = f->thisup; |
802 | clo[icol2] = f->lastlo; |
803 | cup[icol2] = f->lastup; |
804 | |
805 | create_col(icol,f->nincol,f->colels,mcstrt,colels,hrow,link, |
806 | &prob->free_list_) ; |
807 | # if PRESOLVE_CONSISTENCY |
808 | presolve_check_free_list(prob) ; |
809 | # endif |
810 | // hincol[icol] = hincol[icol2]; // right? - no - has to match number in create_col |
811 | hincol[icol] = f->nincol; |
812 | |
813 | double l_j = f->thislo; |
814 | double u_j = f->thisup; |
815 | double l_k = f->lastlo; |
816 | double u_k = f->lastup; |
817 | double x_k_sol = sol[icol2]; |
818 | PRESOLVE_DETAIL_PRINT(printf("post icol %d %g %g %g icol2 %d %g %g %g\n" , |
819 | icol,clo[icol],sol[icol],cup[icol], |
820 | icol2,clo[icol2],sol[icol2],cup[icol2])); |
821 | if (l_j>-PRESOLVE_INF&& x_k_sol-l_j>=l_k-tolerance&&x_k_sol-l_j<=u_k+tolerance) { |
822 | // j at lb, leave k |
823 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atLowerBound); |
824 | sol[icol] = l_j; |
825 | sol[icol2] = x_k_sol - sol[icol]; |
826 | } else if (u_j<PRESOLVE_INF&& x_k_sol-u_j>=l_k-tolerance&&x_k_sol-u_j<=u_k+tolerance) { |
827 | // j at ub, leave k |
828 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atUpperBound); |
829 | sol[icol] = u_j; |
830 | sol[icol2] = x_k_sol - sol[icol]; |
831 | } else if (l_k>-PRESOLVE_INF&& x_k_sol-l_k>=l_j-tolerance&&x_k_sol-l_k<=u_j+tolerance) { |
832 | // k at lb make j basic |
833 | prob->setColumnStatus(icol,prob->getColumnStatus(icol2)); |
834 | sol[icol2] = l_k; |
835 | sol[icol] = x_k_sol - l_k; |
836 | prob->setColumnStatus(icol2,CoinPrePostsolveMatrix::atLowerBound); |
837 | } else if (u_k<PRESOLVE_INF&& x_k_sol-u_k>=l_j-tolerance&&x_k_sol-u_k<=u_j+tolerance) { |
838 | // k at ub make j basic |
839 | prob->setColumnStatus(icol,prob->getColumnStatus(icol2)); |
840 | sol[icol2] = u_k; |
841 | sol[icol] = x_k_sol - u_k; |
842 | prob->setColumnStatus(icol2,CoinPrePostsolveMatrix::atUpperBound); |
843 | } else { |
844 | // both free! superbasic time |
845 | sol[icol] = 0.0; // doesn't matter |
846 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::isFree); |
847 | } |
848 | PRESOLVE_DETAIL_PRINT(printf("post2 icol %d %g icol2 %d %g\n" , |
849 | icol,sol[icol], |
850 | icol2,sol[icol2])); |
851 | // row activity doesn't change |
852 | // dj of both variables is the same |
853 | rcosts[icol] = rcosts[icol2]; |
854 | // leave until destructor |
855 | // deleteAction(f->colels,double *); |
856 | |
857 | # if PRESOLVE_DEBUG |
858 | const double ztolzb = prob->ztolzb_; |
859 | if (! (clo[icol] - ztolzb <= sol[icol] && sol[icol] <= cup[icol] + ztolzb)) |
860 | printf("BAD DUPCOL BOUNDS: %g %g %g\n" , clo[icol], sol[icol], cup[icol]); |
861 | if (! (clo[icol2] - ztolzb <= sol[icol2] && sol[icol2] <= cup[icol2] + ztolzb)) |
862 | printf("BAD DUPCOL BOUNDS: %g %g %g\n" , clo[icol2], sol[icol2], cup[icol2]); |
863 | # endif |
864 | } |
865 | // leave until desctructor |
866 | // deleteAction(actions_,action *); |
867 | } |
868 | |
869 | dupcol_action::~dupcol_action() |
870 | { |
871 | for (int i = nactions_-1; i >= 0; --i) { |
872 | deleteAction(actions_[i].colels, double *); |
873 | } |
874 | deleteAction(actions_, action*); |
875 | } |
876 | |
877 | |
878 | |
879 | /* |
880 | Routines for duplicate rows. This is definitely unfinished --- there's no |
881 | postsolve action. |
882 | */ |
883 | |
884 | const char *duprow_action::name () const |
885 | { |
886 | return ("duprow_action" ); |
887 | } |
888 | |
889 | // This is just ekkredc4, adapted into the new framework. |
890 | /* |
891 | I've made minimal changes for compatibility with dupcol: An initial scan to |
892 | accumulate rows of interest in sort. |
893 | -- lh, 040909 -- |
894 | */ |
895 | const CoinPresolveAction |
896 | *duprow_action::presolve (CoinPresolveMatrix *prob, |
897 | const CoinPresolveAction *next) |
898 | { |
899 | double startTime = 0.0; |
900 | int startEmptyRows=0; |
901 | int startEmptyColumns = 0; |
902 | if (prob->tuning_) { |
903 | startTime = CoinCpuTime(); |
904 | startEmptyRows = prob->countEmptyRows(); |
905 | startEmptyColumns = prob->countEmptyCols(); |
906 | } |
907 | double *rowels = prob->rowels_; |
908 | int *hcol = prob->hcol_; |
909 | CoinBigIndex *mrstrt = prob->mrstrt_; |
910 | int *hinrow = prob->hinrow_; |
911 | int ncols = prob->ncols_; |
912 | int nrows = prob->nrows_; |
913 | |
914 | /* |
915 | Scan the rows for candidates, and write the indices into sort. We're not |
916 | interested in rows that are empty or prohibited. |
917 | |
918 | Question: Should we exclude singletons, which are useful in other transforms? |
919 | Question: Why are we excluding integral columns? |
920 | */ |
921 | int *sort = new int[nrows] ; |
922 | int nlook = 0 ; |
923 | for (int i = 0 ; i < nrows ; i++) |
924 | { if (hinrow[i] == 0) continue ; |
925 | if (prob->rowProhibited2(i)) continue ; |
926 | // sort |
927 | CoinSort_2(hcol+mrstrt[i],hcol+mrstrt[i]+hinrow[i], |
928 | rowels+mrstrt[i]); |
929 | sort[nlook++] = i ; } |
930 | if (nlook == 0) |
931 | { delete[] sort ; |
932 | return (next) ; } |
933 | |
934 | double * workrow = new double[nrows+1]; |
935 | |
936 | double * workcol; |
937 | if (!prob->randomNumber_) { |
938 | workcol = new double[ncols+1]; |
939 | coin_init_random_vec(workcol, ncols); |
940 | } else { |
941 | workcol = prob->randomNumber_; |
942 | } |
943 | compute_sums(nrows,hinrow,mrstrt,hcol,rowels,workcol,sort,workrow,nlook); |
944 | CoinSort_2(workrow,workrow+nlook,sort); |
945 | |
946 | double *rlo = prob->rlo_; |
947 | double *rup = prob->rup_; |
948 | |
949 | int nuseless_rows = 0; |
950 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
951 | bool allowIntersection = ( prob->presolveOptions_&16)!=0; |
952 | double tolerance = prob->feasibilityTolerance_; |
953 | |
954 | double dval = workrow[0]; |
955 | for (int jj = 1; jj < nlook; jj++) { |
956 | if (workrow[jj]==dval) { |
957 | int ithis=sort[jj]; |
958 | int ilast=sort[jj-1]; |
959 | CoinBigIndex krs = mrstrt[ithis]; |
960 | CoinBigIndex kre = krs + hinrow[ithis]; |
961 | if (hinrow[ithis] == hinrow[ilast]) { |
962 | int ishift = mrstrt[ilast] - krs; |
963 | CoinBigIndex k; |
964 | for (k=krs;k<kre;k++) { |
965 | if (hcol[k] != hcol[k+ishift] || |
966 | rowels[k] != rowels[k+ishift]) { |
967 | break; |
968 | } |
969 | } |
970 | if (k == kre) { |
971 | /* now check rhs to see what is what */ |
972 | double rlo1=rlo[ilast]; |
973 | double rup1=rup[ilast]; |
974 | double rlo2=rlo[ithis]; |
975 | double rup2=rup[ithis]; |
976 | |
977 | int idelete=-1; |
978 | if (rlo1<=rlo2) { |
979 | if (rup2<=rup1) { |
980 | /* this is strictly tighter than last */ |
981 | idelete=ilast; |
982 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
983 | } else if (fabs(rlo1-rlo2)<1.0e-12) { |
984 | /* last is strictly tighter than this */ |
985 | idelete=ithis; |
986 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ithis,ilast)); |
987 | // swap so can carry on deleting |
988 | sort[jj-1]=ithis; |
989 | sort[jj]=ilast; |
990 | } else { |
991 | if (rup1<rlo2-tolerance&&!fixInfeasibility) { |
992 | // infeasible |
993 | prob->status_|= 1; |
994 | // wrong message - correct if works |
995 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
996 | prob->messages()) |
997 | <<ithis |
998 | <<rlo[ithis] |
999 | <<rup[ithis] |
1000 | <<CoinMessageEol; |
1001 | break; |
1002 | } else if (allowIntersection/*||fabs(rup1-rlo2)<tolerance*/) { |
1003 | /* overlapping - could merge */ |
1004 | #ifdef CLP_INVESTIGATE7 |
1005 | printf("overlapping duplicate row %g %g, %g %g\n" , |
1006 | rlo1,rup1,rlo2,rup2); |
1007 | # endif |
1008 | // pretend this is stricter than last |
1009 | idelete=ilast; |
1010 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
1011 | rup[ithis]=rup1; |
1012 | } |
1013 | } |
1014 | } else { |
1015 | // rlo1>rlo2 |
1016 | if (rup1<=rup2) { |
1017 | /* last is strictly tighter than this */ |
1018 | idelete=ithis; |
1019 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ithis,ilast)); |
1020 | // swap so can carry on deleting |
1021 | sort[jj-1]=ithis; |
1022 | sort[jj]=ilast; |
1023 | } else { |
1024 | /* overlapping - could merge */ |
1025 | // rlo1>rlo2 |
1026 | // rup1>rup2 |
1027 | if (rup2<rlo1-tolerance&&!fixInfeasibility) { |
1028 | // infeasible |
1029 | prob->status_|= 1; |
1030 | // wrong message - correct if works |
1031 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
1032 | prob->messages()) |
1033 | <<ithis |
1034 | <<rlo[ithis] |
1035 | <<rup[ithis] |
1036 | <<CoinMessageEol; |
1037 | break; |
1038 | } else if (allowIntersection/*||fabs(rup2-rlo1)<tolerance*/) { |
1039 | #ifdef CLP_INVESTIGATE7 |
1040 | printf("overlapping duplicate row %g %g, %g %g\n" , |
1041 | rlo1,rup1,rlo2,rup2); |
1042 | # endif |
1043 | // pretend this is stricter than last |
1044 | idelete=ilast; |
1045 | PRESOLVE_DETAIL_PRINT(printf("pre_duprow %dR %dR E\n" ,ilast,ithis)); |
1046 | rlo[ithis]=rlo1; |
1047 | } |
1048 | } |
1049 | } |
1050 | if (idelete>=0) |
1051 | sort[nuseless_rows++]=idelete; |
1052 | } |
1053 | } |
1054 | } |
1055 | dval=workrow[jj]; |
1056 | } |
1057 | |
1058 | delete[]workrow; |
1059 | if(workcol != prob->randomNumber_) |
1060 | delete[]workcol; |
1061 | |
1062 | |
1063 | if (nuseless_rows) { |
1064 | # if PRESOLVE_SUMMARY |
1065 | printf("DUPLICATE ROWS: %d\n" , nuseless_rows); |
1066 | # endif |
1067 | next = useless_constraint_action::presolve(prob, |
1068 | sort, nuseless_rows, |
1069 | next); |
1070 | } |
1071 | delete[]sort; |
1072 | |
1073 | if (prob->tuning_) { |
1074 | double thisTime=CoinCpuTime(); |
1075 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
1076 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
1077 | printf("CoinPresolveDuprow(256) - %d rows, %d columns dropped in time %g, total %g\n" , |
1078 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
1079 | } |
1080 | return (next); |
1081 | } |
1082 | |
1083 | void duprow_action::postsolve(CoinPostsolveMatrix *) const |
1084 | { |
1085 | printf("STILL NO POSTSOLVE FOR DUPROW!\n" ); |
1086 | abort(); |
1087 | } |
1088 | |
1089 | |
1090 | |
1091 | /* |
1092 | Routines for gub rows. This is definitely unfinished --- there's no |
1093 | postsolve action. |
1094 | */ |
1095 | |
1096 | const char *gubrow_action::name () const |
1097 | { |
1098 | return ("gubrow_action" ); |
1099 | } |
1100 | |
1101 | |
1102 | const CoinPresolveAction |
1103 | *gubrow_action::presolve (CoinPresolveMatrix *prob, |
1104 | const CoinPresolveAction *next) |
1105 | { |
1106 | double startTime = 0.0; |
1107 | int droppedElements=0; |
1108 | int affectedRows=0; |
1109 | if (prob->tuning_) { |
1110 | startTime = CoinCpuTime(); |
1111 | } |
1112 | double *rowels = prob->rowels_; |
1113 | int *hcol = prob->hcol_; |
1114 | CoinBigIndex *mrstrt = prob->mrstrt_; |
1115 | int *hinrow = prob->hinrow_; |
1116 | double *colels = prob->colels_ ; |
1117 | int *hrow = prob->hrow_ ; |
1118 | CoinBigIndex *mcstrt = prob->mcstrt_ ; |
1119 | int *hincol = prob->hincol_ ; |
1120 | int ncols = prob->ncols_; |
1121 | int nrows = prob->nrows_; |
1122 | double *rlo = prob->rlo_; |
1123 | double *rup = prob->rup_; |
1124 | |
1125 | /* |
1126 | Scan the rows. We're not |
1127 | interested in rows that are empty or prohibited. |
1128 | |
1129 | */ |
1130 | int *which = prob->usefulRowInt_; |
1131 | int * number = which + nrows; |
1132 | double * els = prob->usefulRowDouble_; |
1133 | char * markCol = reinterpret_cast<char *> (prob->usefulColumnInt_); |
1134 | memset(markCol,0,ncols); |
1135 | CoinZeroN(els,nrows); |
1136 | for (int i = 0 ; i < nrows ; i++) { |
1137 | int nInRow = hinrow[i]; |
1138 | if (nInRow>1 &&!prob->rowProhibited2(i)&&rlo[i]==rup[i]) { |
1139 | CoinBigIndex rStart = mrstrt[i]; |
1140 | CoinBigIndex k = rStart; |
1141 | CoinBigIndex rEnd = rStart+nInRow; |
1142 | double value1=rowels[k]; |
1143 | k++; |
1144 | for (;k<rEnd;k++) { |
1145 | if (rowels[k]!=value1) |
1146 | break; |
1147 | } |
1148 | if (k==rEnd) { |
1149 | // Gub row |
1150 | int nLook = 0 ; |
1151 | for (k=rStart;k<rEnd;k++) { |
1152 | int iColumn = hcol[k]; |
1153 | markCol[iColumn]=1; |
1154 | CoinBigIndex kk = mcstrt[iColumn]; |
1155 | CoinBigIndex cEnd = kk+hincol[iColumn]; |
1156 | for (;kk<cEnd;kk++) { |
1157 | int iRow = hrow[kk]; |
1158 | double value = colels[kk]; |
1159 | if (iRow!=i) { |
1160 | double value2 = els[iRow]; |
1161 | if (value2) { |
1162 | if (value==value2) |
1163 | number[iRow]++; |
1164 | } else { |
1165 | // first |
1166 | els[iRow]=value; |
1167 | number[iRow]=1; |
1168 | which[nLook++]=iRow; |
1169 | } |
1170 | } |
1171 | } |
1172 | } |
1173 | // Now see if any promising |
1174 | for (int j=0;j<nLook;j++) { |
1175 | int iRow = which[j]; |
1176 | if (number[iRow]==nInRow) { |
1177 | // can delete elements and adjust rhs |
1178 | affectedRows++; |
1179 | droppedElements += nInRow; |
1180 | for (CoinBigIndex kk=rStart; kk<rEnd; kk++) |
1181 | presolve_delete_from_col(iRow,hcol[kk],mcstrt,hincol,hrow,colels) ; |
1182 | int nInRow2 = hinrow[iRow]; |
1183 | CoinBigIndex rStart2 = mrstrt[iRow]; |
1184 | CoinBigIndex rEnd2 = rStart2+nInRow2; |
1185 | for (CoinBigIndex kk=rStart2; kk<rEnd2; kk++) { |
1186 | int iColumn = hcol[kk]; |
1187 | if (markCol[iColumn]==0) { |
1188 | hcol[rStart2]=iColumn; |
1189 | rowels[rStart2++]=rowels[kk]; |
1190 | } |
1191 | } |
1192 | hinrow[iRow] = nInRow2-nInRow; |
1193 | if (!hinrow[iRow]) |
1194 | PRESOLVE_REMOVE_LINK(prob->rlink_,iRow) ; |
1195 | double value =(rlo[i]/value1)*els[iRow]; |
1196 | // correct rhs |
1197 | if (rlo[iRow]>-1.0e20) |
1198 | rlo[iRow] -= value; |
1199 | if (rup[iRow]<1.0e20) |
1200 | rup[iRow] -= value; |
1201 | } |
1202 | els[iRow]=0.0; |
1203 | } |
1204 | for (k=rStart;k<rEnd;k++) { |
1205 | int iColumn = hcol[k]; |
1206 | markCol[iColumn]=0; |
1207 | } |
1208 | } |
1209 | } |
1210 | } |
1211 | if (prob->tuning_) { |
1212 | double thisTime=CoinCpuTime(); |
1213 | printf("CoinPresolveGubrow(1024) - %d elements dropped (%d rows) in time %g, total %g\n" , |
1214 | droppedElements,affectedRows,thisTime-startTime,thisTime-prob->startTime_); |
1215 | } else if (droppedElements) { |
1216 | #ifdef CLP_INVESTIGATE |
1217 | printf("CoinPresolveGubrow(1024) - %d elements dropped (%d rows)\n" , |
1218 | droppedElements,affectedRows); |
1219 | #endif |
1220 | } |
1221 | return (next); |
1222 | } |
1223 | |
1224 | void gubrow_action::postsolve(CoinPostsolveMatrix *) const |
1225 | { |
1226 | printf("STILL NO POSTSOLVE FOR GUBROW!\n" ); |
1227 | abort(); |
1228 | } |
1229 | |