| 1 | /* $Id: CoinPresolveForcing.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <stdio.h> |
| 7 | #include <math.h> |
| 8 | |
| 9 | #include "CoinPresolveMatrix.hpp" |
| 10 | #include "CoinPresolveEmpty.hpp" // for DROP_COL/DROP_ROW |
| 11 | #include "CoinPresolveFixed.hpp" |
| 12 | #include "CoinPresolveSubst.hpp" |
| 13 | #include "CoinHelperFunctions.hpp" |
| 14 | #include "CoinPresolveUseless.hpp" |
| 15 | #include "CoinPresolveForcing.hpp" |
| 16 | #include "CoinMessage.hpp" |
| 17 | #include "CoinFinite.hpp" |
| 18 | |
| 19 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 20 | #include "CoinPresolvePsdebug.hpp" |
| 21 | #endif |
| 22 | |
| 23 | /* |
| 24 | This just doesn't seem efficient, particularly when used to calculate row |
| 25 | bounds. Lots of extra work. |
| 26 | */ |
| 27 | void implied_bounds (const double *els, |
| 28 | const double *clo, const double *cup, |
| 29 | const int *hcol, |
| 30 | CoinBigIndex krs, CoinBigIndex kre, |
| 31 | double *maxupp, double *maxdownp, |
| 32 | int jcol, |
| 33 | double rlo, double rup, |
| 34 | double *iclb, double *icub) |
| 35 | { |
| 36 | if (rlo<=-PRESOLVE_INF&&rup>=PRESOLVE_INF) { |
| 37 | *iclb = -PRESOLVE_INF; |
| 38 | *icub = PRESOLVE_INF; |
| 39 | return; |
| 40 | } |
| 41 | bool posinf = false; |
| 42 | bool neginf = false; |
| 43 | double maxup = 0.0; |
| 44 | double maxdown = 0.0; |
| 45 | |
| 46 | int jcolk = -1; |
| 47 | |
| 48 | // compute sum of all bounds except for jcol |
| 49 | CoinBigIndex kk; |
| 50 | for (kk=krs; kk<kre; kk++) { |
| 51 | if (hcol[kk] == jcol) |
| 52 | jcolk = kk; |
| 53 | |
| 54 | // swap jcol with hcol[kre-1]; |
| 55 | // that is, consider jcol last |
| 56 | // this assumes that jcol occurs in this row |
| 57 | CoinBigIndex k = (hcol[kk] == jcol |
| 58 | ? kre-1 |
| 59 | : kk == kre-1 |
| 60 | ? jcolk |
| 61 | : kk); |
| 62 | |
| 63 | PRESOLVEASSERT(k != -1); // i.e. jcol had better be in the row |
| 64 | |
| 65 | int col = hcol[k]; |
| 66 | double coeff = els[k]; |
| 67 | double lb = clo[col]; |
| 68 | double ub = cup[col]; |
| 69 | |
| 70 | // quick! compute the implied col bounds before maxup/maxdown are changed |
| 71 | if (kk == kre-1) { |
| 72 | PRESOLVEASSERT(fabs(coeff) > ZTOLDP); |
| 73 | |
| 74 | double ilb = (rlo - maxup) / coeff; |
| 75 | bool finite_ilb = (-PRESOLVE_INF < rlo && !posinf && PRESOLVEFINITE(maxup)); |
| 76 | |
| 77 | double iub = (rup - maxdown) / coeff; |
| 78 | bool finite_iub = ( rup < PRESOLVE_INF && !neginf && PRESOLVEFINITE(maxdown)); |
| 79 | |
| 80 | if (coeff > 0.0) { |
| 81 | *iclb = (finite_ilb ? ilb : -PRESOLVE_INF); |
| 82 | *icub = (finite_iub ? iub : PRESOLVE_INF); |
| 83 | } else { |
| 84 | *iclb = (finite_iub ? iub : -PRESOLVE_INF); |
| 85 | *icub = (finite_ilb ? ilb : PRESOLVE_INF); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | if (coeff > 0.0) { |
| 90 | if (PRESOLVE_INF <= ub) { |
| 91 | posinf = true; |
| 92 | if (neginf) |
| 93 | break; // pointless |
| 94 | } else |
| 95 | maxup += ub * coeff; |
| 96 | |
| 97 | if (lb <= -PRESOLVE_INF) { |
| 98 | neginf = true; |
| 99 | if (posinf) |
| 100 | break; // pointless |
| 101 | } else |
| 102 | maxdown += lb * coeff; |
| 103 | } else { |
| 104 | if (PRESOLVE_INF <= ub) { |
| 105 | neginf = true; |
| 106 | if (posinf) |
| 107 | break; // pointless |
| 108 | } else |
| 109 | maxdown += ub * coeff; |
| 110 | |
| 111 | if (lb <= -PRESOLVE_INF) { |
| 112 | posinf = true; |
| 113 | if (neginf) |
| 114 | break; // pointless |
| 115 | } else |
| 116 | maxup += lb * coeff; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | // If we broke from the loop, then the bounds are infinite. |
| 121 | // However, since we put the column whose implied bounds we want |
| 122 | // to know at the end, and it doesn't matter if its own bounds |
| 123 | // are infinite, don't worry about breaking at the last iteration. |
| 124 | if (kk<kre-1) { |
| 125 | *iclb = -PRESOLVE_INF; |
| 126 | *icub = PRESOLVE_INF; |
| 127 | } else |
| 128 | PRESOLVEASSERT(jcolk != -1); |
| 129 | |
| 130 | // store row bounds |
| 131 | *maxupp = (posinf) ? PRESOLVE_INF : maxup; |
| 132 | *maxdownp = (neginf) ? -PRESOLVE_INF : maxdown; |
| 133 | } |
| 134 | |
| 135 | static void implied_row_bounds(const double *els, |
| 136 | const double *clo, const double *cup, |
| 137 | const int *hcol, |
| 138 | CoinBigIndex krs, CoinBigIndex kre, |
| 139 | double *maxupp, double *maxdownp) |
| 140 | { |
| 141 | int jcol = hcol[krs]; |
| 142 | bool posinf = false; |
| 143 | bool neginf = false; |
| 144 | double maxup = 0.0; |
| 145 | double maxdown = 0.0; |
| 146 | |
| 147 | int jcolk = -1; |
| 148 | |
| 149 | // compute sum of all bounds except for jcol |
| 150 | CoinBigIndex kk; |
| 151 | for (kk=krs; kk<kre; kk++) { |
| 152 | if (hcol[kk] == jcol) |
| 153 | jcolk = kk; |
| 154 | |
| 155 | // swap jcol with hcol[kre-1]; |
| 156 | // that is, consider jcol last |
| 157 | // this assumes that jcol occurs in this row |
| 158 | CoinBigIndex k = (hcol[kk] == jcol |
| 159 | ? kre-1 |
| 160 | : kk == kre-1 |
| 161 | ? jcolk |
| 162 | : kk); |
| 163 | |
| 164 | PRESOLVEASSERT(k != -1); // i.e. jcol had better be in the row |
| 165 | |
| 166 | int col = hcol[k]; |
| 167 | double coeff = els[k]; |
| 168 | double lb = clo[col]; |
| 169 | double ub = cup[col]; |
| 170 | |
| 171 | if (coeff > 0.0) { |
| 172 | if (PRESOLVE_INF <= ub) { |
| 173 | posinf = true; |
| 174 | if (neginf) |
| 175 | break; // pointless |
| 176 | } else |
| 177 | maxup += ub * coeff; |
| 178 | |
| 179 | if (lb <= -PRESOLVE_INF) { |
| 180 | neginf = true; |
| 181 | if (posinf) |
| 182 | break; // pointless |
| 183 | } else |
| 184 | maxdown += lb * coeff; |
| 185 | } else { |
| 186 | if (PRESOLVE_INF <= ub) { |
| 187 | neginf = true; |
| 188 | if (posinf) |
| 189 | break; // pointless |
| 190 | } else |
| 191 | maxdown += ub * coeff; |
| 192 | |
| 193 | if (lb <= -PRESOLVE_INF) { |
| 194 | posinf = true; |
| 195 | if (neginf) |
| 196 | break; // pointless |
| 197 | } else |
| 198 | maxup += lb * coeff; |
| 199 | } |
| 200 | } |
| 201 | // store row bounds |
| 202 | *maxupp = (posinf) ? PRESOLVE_INF : maxup; |
| 203 | *maxdownp = (neginf) ? -PRESOLVE_INF : maxdown; |
| 204 | } |
| 205 | |
| 206 | const char *forcing_constraint_action::name() const |
| 207 | { |
| 208 | return ("forcing_constraint_action" ); |
| 209 | } |
| 210 | // defed out to avoid compiler warning |
| 211 | #if 0 |
| 212 | static bool some_col_was_fixed(const int *hcol, CoinBigIndex krs, CoinBigIndex kre, |
| 213 | const double *clo, |
| 214 | const double *cup) |
| 215 | { |
| 216 | CoinBigIndex k; |
| 217 | for (k=krs; k<kre; k++) { |
| 218 | int jcol = hcol[k]; |
| 219 | if (clo[jcol] == cup[jcol]) |
| 220 | break; |
| 221 | } |
| 222 | return (k<kre); |
| 223 | } |
| 224 | #endif |
| 225 | |
| 226 | // |
| 227 | // It may be the case that the variable bounds are such that no matter what |
| 228 | // feasible value they take, the constraint cannot be violated; |
| 229 | // in this case, we obviously don't need to take it into account, and |
| 230 | // we just drop it as a USELESS constraint. |
| 231 | // |
| 232 | // On the other hand, it may be that the only way to satisfy a constraint |
| 233 | // is to jam all the constraint variables to one of their bounds; |
| 234 | // in this case, these variables are essentially fixed, which |
| 235 | // we do with a FORCING constraint. |
| 236 | // For now, this just tightens the bounds; subsequently the fixed variables |
| 237 | // will be removed, then the row will be dropped. |
| 238 | // |
| 239 | // Since both operations use similar information (the implied row bounds), |
| 240 | // we combine them into one presolve routine. |
| 241 | // |
| 242 | // I claim that these checks could be performed in parallel, |
| 243 | // that is, the tests could be carried out for all rows in parallel, |
| 244 | // and then the rows deleted and columns tightened afterward. |
| 245 | // Obviously, this is true for useless rows. |
| 246 | // The potential problem is forcing constraints, but I think |
| 247 | // that is ok. |
| 248 | // By doing it in parallel rather than sequentially, |
| 249 | // we may miss transformations due to variables that were fixed |
| 250 | // by forcing constraints, though. |
| 251 | // |
| 252 | // Note that both of these operations will cause problems |
| 253 | // if the variables in question really need to exceed their bounds in order |
| 254 | // to make the problem feasible. |
| 255 | |
| 256 | const CoinPresolveAction |
| 257 | *forcing_constraint_action::presolve(CoinPresolveMatrix *prob, |
| 258 | const CoinPresolveAction *next) |
| 259 | { |
| 260 | double startTime = 0.0; |
| 261 | int startEmptyRows=0; |
| 262 | int startEmptyColumns = 0; |
| 263 | if (prob->tuning_) { |
| 264 | startTime = CoinCpuTime(); |
| 265 | startEmptyRows = prob->countEmptyRows(); |
| 266 | startEmptyColumns = prob->countEmptyCols(); |
| 267 | } |
| 268 | double *clo = prob->clo_; |
| 269 | double *cup = prob->cup_; |
| 270 | double *csol = prob->sol_ ; |
| 271 | |
| 272 | const double *rowels = prob->rowels_; |
| 273 | const int *hcol = prob->hcol_; |
| 274 | const CoinBigIndex *mrstrt = prob->mrstrt_; |
| 275 | const int *hinrow = prob->hinrow_; |
| 276 | const int nrows = prob->nrows_; |
| 277 | |
| 278 | const double *rlo = prob->rlo_; |
| 279 | const double *rup = prob->rup_; |
| 280 | |
| 281 | // const char *integerType = prob->integerType_; |
| 282 | |
| 283 | const double tol = ZTOLDP; |
| 284 | const double inftol = prob->feasibilityTolerance_; |
| 285 | const int ncols = prob->ncols_; |
| 286 | |
| 287 | int *fixed_cols = new int[ncols]; |
| 288 | int nfixed_cols = 0; |
| 289 | |
| 290 | action *actions = new action [nrows]; |
| 291 | int nactions = 0; |
| 292 | |
| 293 | int *useless_rows = new int[nrows]; |
| 294 | int nuseless_rows = 0; |
| 295 | |
| 296 | int numberLook = prob->numberRowsToDo_; |
| 297 | int iLook; |
| 298 | int * look = prob->rowsToDo_; |
| 299 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
| 300 | |
| 301 | # if PRESOLVE_DEBUG |
| 302 | std::cout << "Entering forcing_constraint_action::presolve." << std::endl ; |
| 303 | presolve_check_sol(prob) ; |
| 304 | # endif |
| 305 | /* |
| 306 | Open a loop to scan the constraints of interest. There must be variables |
| 307 | left in the row. |
| 308 | */ |
| 309 | for (iLook=0;iLook<numberLook;iLook++) { |
| 310 | int irow = look[iLook]; |
| 311 | if (hinrow[irow] > 0) { |
| 312 | CoinBigIndex krs = mrstrt[irow]; |
| 313 | CoinBigIndex kre = krs + hinrow[irow]; |
| 314 | /* |
| 315 | Calculate upper and lower bounds on the row activity based on upper and lower |
| 316 | bounds on the variables. If these are finite and incompatible with the given |
| 317 | row bounds, we have infeasibility. |
| 318 | */ |
| 319 | double maxup, maxdown; |
| 320 | implied_row_bounds(rowels, clo, cup, hcol, krs, kre, |
| 321 | &maxup, &maxdown); |
| 322 | |
| 323 | if (maxup < PRESOLVE_INF && maxup + inftol < rlo[irow]&&!fixInfeasibility) { |
| 324 | /* max row activity below the row lower bound */ |
| 325 | prob->status_|= 1; |
| 326 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 327 | prob->messages()) |
| 328 | <<irow |
| 329 | <<rlo[irow] |
| 330 | <<rup[irow] |
| 331 | <<CoinMessageEol; |
| 332 | break; |
| 333 | } else if (-PRESOLVE_INF < maxdown && rup[irow] < maxdown - inftol&&!fixInfeasibility) { |
| 334 | /* min row activity above the row upper bound */ |
| 335 | prob->status_|= 1; |
| 336 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 337 | prob->messages()) |
| 338 | <<irow |
| 339 | <<rlo[irow] |
| 340 | <<rup[irow] |
| 341 | <<CoinMessageEol; |
| 342 | break; |
| 343 | } |
| 344 | // ADD TOLERANCE TO THESE TESTS |
| 345 | else if ((rlo[irow] <= -PRESOLVE_INF || |
| 346 | (-PRESOLVE_INF < maxdown && rlo[irow] <= maxdown)) && |
| 347 | (rup[irow] >= PRESOLVE_INF || |
| 348 | (maxup < PRESOLVE_INF && rup[irow] >= maxup))) { |
| 349 | |
| 350 | /* |
| 351 | Original comment: I'm not sure that these transforms don't intefere with |
| 352 | each other. We can get it next time. |
| 353 | |
| 354 | Well, I'll argue that bounds are never really loosened (at worst, they're |
| 355 | transferred onto some other variable, or inferred to be unnecessary. |
| 356 | Once useless, always useless. Leaving this hook in place allows for a sort |
| 357 | of infinite loop where this routine keeps queuing the same constraints over |
| 358 | and over. -- lh, 040901 -- |
| 359 | |
| 360 | if (some_col_was_fixed(hcol, krs, kre, clo, cup)) { |
| 361 | prob->addRow(irow); |
| 362 | continue; |
| 363 | } |
| 364 | */ |
| 365 | |
| 366 | // this constraint must always be satisfied - drop it |
| 367 | useless_rows[nuseless_rows++] = irow; |
| 368 | |
| 369 | } else if ((maxup < PRESOLVE_INF && fabs(rlo[irow] - maxup) < tol) || |
| 370 | (-PRESOLVE_INF < maxdown && fabs(rup[irow] - maxdown) < tol)) { |
| 371 | |
| 372 | // the lower bound can just be reached, or |
| 373 | // the upper bound can just be reached; |
| 374 | // called a "forcing constraint" in the paper (p. 226) |
| 375 | const int lbound_tight = (maxup < PRESOLVE_INF && |
| 376 | fabs(rlo[irow] - maxup) < tol); |
| 377 | |
| 378 | /* |
| 379 | Original comment and rebuttal as above. |
| 380 | if (some_col_was_fixed(hcol, krs, kre, clo, cup)) { |
| 381 | // make sure on next time |
| 382 | prob->addRow(irow); |
| 383 | continue; |
| 384 | } |
| 385 | */ |
| 386 | // out of space - this probably never happens (but this routine will |
| 387 | // often put duplicates in the fixed column list) |
| 388 | if (nfixed_cols + (kre-krs) >= ncols) |
| 389 | break; |
| 390 | |
| 391 | double *bounds = new double[hinrow[irow]]; |
| 392 | int *rowcols = new int[hinrow[irow]]; |
| 393 | int lk = krs; // load fix-to-down in front |
| 394 | int uk = kre; // load fix-to-up in back |
| 395 | CoinBigIndex k; |
| 396 | for ( k=krs; k<kre; k++) { |
| 397 | int jcol = hcol[k]; |
| 398 | prob->addCol(jcol); |
| 399 | double coeff = rowels[k]; |
| 400 | |
| 401 | PRESOLVEASSERT(fabs(coeff) > ZTOLDP); |
| 402 | |
| 403 | // one of the two contributed to maxup - set the other to that |
| 404 | if (lbound_tight == (coeff > 0.0)) { |
| 405 | --uk; |
| 406 | bounds[uk-krs] = clo[jcol]; |
| 407 | rowcols[uk-krs] = jcol; |
| 408 | if (csol != 0) { |
| 409 | csol[jcol] = cup[jcol] ; |
| 410 | } |
| 411 | clo[jcol] = cup[jcol]; |
| 412 | } else { |
| 413 | bounds[lk-krs] = cup[jcol]; |
| 414 | rowcols[lk-krs] = jcol; |
| 415 | ++lk; |
| 416 | if (csol != 0) { |
| 417 | csol[jcol] = clo[jcol] ; |
| 418 | } |
| 419 | cup[jcol] = clo[jcol]; |
| 420 | } |
| 421 | |
| 422 | fixed_cols[nfixed_cols++] = jcol; |
| 423 | } |
| 424 | PRESOLVEASSERT(uk == lk); |
| 425 | |
| 426 | action *f = &actions[nactions]; |
| 427 | nactions++; |
| 428 | PRESOLVE_DETAIL_PRINT(printf("pre_forcing %dR E\n" ,irow)); |
| 429 | |
| 430 | f->row = irow; |
| 431 | f->nlo = lk-krs; |
| 432 | f->nup = kre-uk; |
| 433 | f->rowcols = rowcols; |
| 434 | f->bounds = bounds; |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | |
| 440 | if (nactions) { |
| 441 | #if PRESOLVE_SUMMARY |
| 442 | printf("NFORCED: %d\n" , nactions); |
| 443 | #endif |
| 444 | next = new forcing_constraint_action(nactions, |
| 445 | CoinCopyOfArray(actions,nactions), next); |
| 446 | } |
| 447 | deleteAction(actions,action*); |
| 448 | if (nuseless_rows) { |
| 449 | next = useless_constraint_action::presolve(prob, |
| 450 | useless_rows, nuseless_rows, |
| 451 | next); |
| 452 | } |
| 453 | delete[]useless_rows; |
| 454 | /* |
| 455 | We need to remove duplicates here, or we get into trouble in |
| 456 | remove_fixed_action::postsolve when we try to reinstate a column multiple |
| 457 | times. |
| 458 | */ |
| 459 | if (nfixed_cols) |
| 460 | { if (nfixed_cols > 1) |
| 461 | { std::sort(fixed_cols,fixed_cols+nfixed_cols) ; |
| 462 | int *end = std::unique(fixed_cols,fixed_cols+nfixed_cols) ; |
| 463 | nfixed_cols = static_cast<int>(end-fixed_cols) ; } |
| 464 | next = remove_fixed_action::presolve(prob,fixed_cols,nfixed_cols,next) ; } |
| 465 | delete[]fixed_cols ; |
| 466 | |
| 467 | if (prob->tuning_) { |
| 468 | double thisTime=CoinCpuTime(); |
| 469 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
| 470 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
| 471 | printf("CoinPresolveForcing(32) - %d rows, %d columns dropped in time %g, total %g\n" , |
| 472 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
| 473 | } |
| 474 | |
| 475 | # if PRESOLVE_DEBUG |
| 476 | presolve_check_sol(prob) ; |
| 477 | std::cout << "Leaving forcing_constraint_action::presolve." << std::endl ; |
| 478 | # endif |
| 479 | |
| 480 | return (next); |
| 481 | } |
| 482 | |
| 483 | void forcing_constraint_action::postsolve(CoinPostsolveMatrix *prob) const |
| 484 | { |
| 485 | const action *const actions = actions_; |
| 486 | const int nactions = nactions_; |
| 487 | |
| 488 | const double *colels = prob->colels_; |
| 489 | const int *hrow = prob->hrow_; |
| 490 | const CoinBigIndex *mcstrt = prob->mcstrt_; |
| 491 | const int *hincol = prob->hincol_; |
| 492 | const int *link = prob->link_; |
| 493 | |
| 494 | // CoinBigIndex free_list = prob->free_list_; |
| 495 | |
| 496 | double *clo = prob->clo_; |
| 497 | double *cup = prob->cup_; |
| 498 | double *rlo = prob->rlo_; |
| 499 | double *rup = prob->rup_; |
| 500 | |
| 501 | const double *sol = prob->sol_; |
| 502 | double *rcosts = prob->rcosts_; |
| 503 | |
| 504 | double *acts = prob->acts_; |
| 505 | double *rowduals = prob->rowduals_; |
| 506 | |
| 507 | const double ztoldj = prob->ztoldj_; |
| 508 | const double ztolzb = prob->ztolzb_; |
| 509 | |
| 510 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
| 511 | |
| 512 | const int irow = f->row; |
| 513 | const int nlo = f->nlo; |
| 514 | const int nup = f->nup; |
| 515 | const int ninrow = nlo + nup; |
| 516 | const int *rowcols = f->rowcols; |
| 517 | const double *bounds= f->bounds; |
| 518 | int k; |
| 519 | /* |
| 520 | Original comment: When we restore bounds here, we need to allow for the |
| 521 | possibility that the restored bound is infinite. This implies a check |
| 522 | for viable status. |
| 523 | |
| 524 | Hmmm ... I'm going to argue that in fact we have no choice: the status |
| 525 | of the variable must reflect the value it was fixed at, else we lose |
| 526 | feasibility. We don't care what the other bound does. -- lh, 040903 -- |
| 527 | */ |
| 528 | for (k=0; k<nlo; k++) { |
| 529 | int jcol = rowcols[k]; |
| 530 | cup[jcol] = bounds[k]; |
| 531 | prob->setColumnStatus(jcol,CoinPrePostsolveMatrix::atLowerBound) ; |
| 532 | /* |
| 533 | PRESOLVEASSERT(prob->getColumnStatus(jcol)!=CoinPrePostsolveMatrix::basic); |
| 534 | if (cup[jcol] >= PRESOLVE_INF) |
| 535 | { CoinPrePostsolveMatrix::Status statj = prob->getColumnStatus(jcol) ; |
| 536 | if (statj == CoinPrePostsolveMatrix::atUpperBound) |
| 537 | { if (clo[jcol] > -PRESOLVE_INF) |
| 538 | { statj = CoinPrePostsolveMatrix::atLowerBound ; } |
| 539 | else |
| 540 | { statj = CoinPrePostsolveMatrix::isFree ; } |
| 541 | prob->setColumnStatus(jcol,statj) ; } } |
| 542 | */ |
| 543 | } |
| 544 | |
| 545 | for (k=nlo; k<ninrow; k++) { |
| 546 | int jcol = rowcols[k]; |
| 547 | clo[jcol] = bounds[k]; |
| 548 | prob->setColumnStatus(jcol,CoinPrePostsolveMatrix::atUpperBound) ; |
| 549 | /* |
| 550 | PRESOLVEASSERT(prob->getColumnStatus(jcol)!=CoinPrePostsolveMatrix::basic); |
| 551 | if (clo[jcol] <= -PRESOLVE_INF) |
| 552 | { CoinPrePostsolveMatrix::Status statj = prob->getColumnStatus(jcol) ; |
| 553 | if (statj == CoinPrePostsolveMatrix::atLowerBound) |
| 554 | { if (cup[jcol] < PRESOLVE_INF) |
| 555 | { statj = CoinPrePostsolveMatrix::atUpperBound ; } |
| 556 | else |
| 557 | { statj = CoinPrePostsolveMatrix::isFree ; } |
| 558 | prob->setColumnStatus(jcol,statj) ; } } |
| 559 | */ |
| 560 | } |
| 561 | |
| 562 | PRESOLVEASSERT(prob->getRowStatus(irow)==CoinPrePostsolveMatrix::basic); |
| 563 | PRESOLVEASSERT(rowduals[irow] == 0.0); |
| 564 | |
| 565 | // this is a lazy implementation. |
| 566 | // we tightened the col bounds, then let them be eliminated |
| 567 | // by repeated uses of FIX_VARIABLE and a final DROP_ROW. |
| 568 | // Therefore, by this point the row has been marked basic, |
| 569 | // the rowdual of this row is 0.0, |
| 570 | // and the reduced costs for the cols may or may not be ok |
| 571 | // for the relaxed column bounds. |
| 572 | // |
| 573 | // find the one most out of whack and fix it. |
| 574 | int whacked = -1; |
| 575 | double whack = 0.0; |
| 576 | for (k=0; k<ninrow; k++) { |
| 577 | int jcol = rowcols[k]; |
| 578 | CoinBigIndex kk = presolve_find_row2(irow, mcstrt[jcol], hincol[jcol], hrow, link); |
| 579 | |
| 580 | // choose rowdual to cancel out reduced cost |
| 581 | double whack0 = rcosts[jcol] / colels[kk]; |
| 582 | |
| 583 | if (((rcosts[jcol] > ztoldj && !(fabs(sol[jcol] - clo[jcol]) <= ztolzb)) || |
| 584 | (rcosts[jcol] < -ztoldj && !(fabs(sol[jcol] - cup[jcol]) <= ztolzb))) && |
| 585 | fabs(whack0) > fabs(whack)) { |
| 586 | whacked = jcol; |
| 587 | whack = whack0; |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | if (whacked != -1) { |
| 592 | prob->setColumnStatus(whacked,CoinPrePostsolveMatrix::basic); |
| 593 | if (acts[irow]-rlo[irow]<rup[irow]-acts[irow]) |
| 594 | prob->setRowStatus(irow,CoinPrePostsolveMatrix::atLowerBound); |
| 595 | else |
| 596 | prob->setRowStatus(irow,CoinPrePostsolveMatrix::atUpperBound); |
| 597 | rowduals[irow] = whack; |
| 598 | |
| 599 | for (k=0; k<ninrow; k++) { |
| 600 | int jcol = rowcols[k]; |
| 601 | CoinBigIndex kk = presolve_find_row2(irow, mcstrt[jcol], hincol[jcol], hrow, link); |
| 602 | |
| 603 | rcosts[jcol] -= (rowduals[irow] * colels[kk]); |
| 604 | } |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | # if PRESOLVE_CONSISTENCY |
| 609 | presolve_check_threads(prob) ; |
| 610 | # endif |
| 611 | |
| 612 | } |
| 613 | |
| 614 | |
| 615 | |
| 616 | #if 0 // (A) |
| 617 | // Determine the maximum and minimum values the constraint sums |
| 618 | // may take, given the bounds on the variables. |
| 619 | // If there are infinite terms, record where the first one is, |
| 620 | // and whether there is more than one. |
| 621 | // It is possible to compute implied bounds for the (one) variable |
| 622 | // with no bound. |
| 623 | static void implied_bounds1(CoinPresolveMatrix * prob, const double *rowels, |
| 624 | const int *mrstrt, |
| 625 | const int *hrow, |
| 626 | const int *hinrow, |
| 627 | const double *clo, const double *cup, |
| 628 | const int *hcol, |
| 629 | int ncols, |
| 630 | const double *rlo, const double *rup, |
| 631 | const char *integerType, |
| 632 | int nrows, |
| 633 | double *ilbound, double *iubound) |
| 634 | { |
| 635 | const double tol = prob->feasibilityTolerance_; |
| 636 | |
| 637 | for (int irow=0; irow<nrows; irow++) { |
| 638 | CoinBigIndex krs = mrstrt[irow]; |
| 639 | CoinBigIndex kre = krs + hinrow[irow]; |
| 640 | |
| 641 | double irlo = rlo[irow]; |
| 642 | double irup = rup[irow]; |
| 643 | |
| 644 | // These are used to set column bounds below. |
| 645 | // If there are no (positive) infinite terms, |
| 646 | // the loop will range from krs to kre; |
| 647 | // if there is just one, it will range over that one variable; |
| 648 | // otherwise, it will be empty. |
| 649 | int ub_inf_index = -1; |
| 650 | int lb_inf_index = -1; |
| 651 | |
| 652 | double maxup = 0.0; |
| 653 | double maxdown = 0.0; |
| 654 | CoinBigIndex k; |
| 655 | for (k=krs; k<kre; k++) { |
| 656 | int jcol = hcol[k]; |
| 657 | double coeff = rowels[k]; |
| 658 | double lb = clo[jcol]; |
| 659 | double ub = cup[jcol]; |
| 660 | |
| 661 | // HAVE TO DEAL WITH BOUNDS OF INTEGER VARIABLES |
| 662 | if (coeff > 0.0) { |
| 663 | if (PRESOLVE_INF <= ub) { |
| 664 | if (ub_inf_index == -1) { |
| 665 | ub_inf_index = k; |
| 666 | } else { |
| 667 | ub_inf_index = -2; |
| 668 | if (lb_inf_index == -2) |
| 669 | break; // pointless |
| 670 | } |
| 671 | } else |
| 672 | maxup += ub * coeff; |
| 673 | |
| 674 | if (lb <= -PRESOLVE_INF) { |
| 675 | if (lb_inf_index == -1) { |
| 676 | lb_inf_index = k; |
| 677 | } else { |
| 678 | lb_inf_index = -2; |
| 679 | if (ub_inf_index == -2) |
| 680 | break; // pointless |
| 681 | } |
| 682 | } else |
| 683 | maxdown += lb * coeff; |
| 684 | } |
| 685 | else { |
| 686 | if (PRESOLVE_INF <= ub) { |
| 687 | if (lb_inf_index == -1) { |
| 688 | lb_inf_index = k; |
| 689 | } else { |
| 690 | lb_inf_index = -2; |
| 691 | if (ub_inf_index == -2) |
| 692 | break; // pointless |
| 693 | } |
| 694 | } else |
| 695 | maxdown += ub * coeff; |
| 696 | |
| 697 | if (lb <= -PRESOLVE_INF) { |
| 698 | if (ub_inf_index == -1) { |
| 699 | ub_inf_index = k; |
| 700 | } else { |
| 701 | ub_inf_index = -2; |
| 702 | if (lb_inf_index == -2) |
| 703 | break; // pointless |
| 704 | } |
| 705 | } else |
| 706 | maxup += lb * coeff; |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | // ub_inf says whether the sum of the "other" ub terms is infinite |
| 711 | // in the loop below. |
| 712 | // In the case where we only saw one infinite term, the loop |
| 713 | // will only cover that case, in which case the other terms |
| 714 | // are *not* infinite. |
| 715 | // With two or more terms, it is infinite. |
| 716 | // If we only saw one infinite term, then |
| 717 | if (ub_inf_index == -2) |
| 718 | maxup = PRESOLVE_INF; |
| 719 | |
| 720 | if (lb_inf_index == -2) |
| 721 | maxdown = -PRESOLVE_INF; |
| 722 | |
| 723 | const bool maxup_finite = PRESOLVEFINITE(maxup); |
| 724 | const bool maxdown_finite = PRESOLVEFINITE(maxdown); |
| 725 | |
| 726 | if (ub_inf_index == -1 && maxup_finite && maxup + tol < rlo[irow]&&!fixInfeasibility) { |
| 727 | /* infeasible */ |
| 728 | prob->status_|= 1; |
| 729 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 730 | prob->messages()) |
| 731 | <<irow |
| 732 | <<rlo[irow] |
| 733 | <<rup[irow] |
| 734 | <<CoinMessageEol; |
| 735 | break; |
| 736 | } else if (lb_inf_index == -1 && maxdown_finite && rup[irow] < maxdown - tol&&!fixInfeasibility) { |
| 737 | /* infeasible */ |
| 738 | prob->status_|= 1; |
| 739 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 740 | prob->messages()) |
| 741 | <<irow |
| 742 | <<rlo[irow] |
| 743 | <<rup[irow] |
| 744 | <<CoinMessageEol; |
| 745 | break; |
| 746 | } |
| 747 | |
| 748 | for (k = krs; k<kre; ++k) { |
| 749 | int jcol = hcol[k]; |
| 750 | double coeff = rowels[k]; |
| 751 | |
| 752 | // SHOULD GET RID OF THIS |
| 753 | if (fabs(coeff) > ZTOLDP2 && |
| 754 | !integerType[jcol]) { |
| 755 | double maxup1 = (ub_inf_index == -1 || ub_inf_index == k |
| 756 | ? maxup |
| 757 | : PRESOLVE_INF); |
| 758 | bool maxup_finite1 = (ub_inf_index == -1 || ub_inf_index == k |
| 759 | ? maxup_finite |
| 760 | : false); |
| 761 | double maxdown1 = (lb_inf_index == -1 || lb_inf_index == k |
| 762 | ? maxdown |
| 763 | : PRESOLVE_INF); |
| 764 | bool maxdown_finite1 = (ub_inf_index == -1 || ub_inf_index == k |
| 765 | ? maxdown_finite |
| 766 | : false); |
| 767 | |
| 768 | double ilb = (irlo - maxup1) / coeff; |
| 769 | bool finite_ilb = (-PRESOLVE_INF < irlo && maxup_finite1); |
| 770 | |
| 771 | double iub = (irup - maxdown1) / coeff; |
| 772 | bool finite_iub = ( irup < PRESOLVE_INF && maxdown_finite1); |
| 773 | |
| 774 | double ilb1 = (coeff > 0.0 |
| 775 | ? (finite_ilb ? ilb : -PRESOLVE_INF) |
| 776 | : (finite_iub ? iub : -PRESOLVE_INF)); |
| 777 | |
| 778 | if (ilbound[jcol] < ilb1) { |
| 779 | ilbound[jcol] = ilb1; |
| 780 | //if (jcol == 278001) |
| 781 | //printf("JCOL LB %g\n", ilb1); |
| 782 | } |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | for (k = krs; k<kre; ++k) { |
| 787 | int jcol = hcol[k]; |
| 788 | double coeff = rowels[k]; |
| 789 | |
| 790 | // SHOULD GET RID OF THIS |
| 791 | if (fabs(coeff) > ZTOLDP2 && |
| 792 | !integerType[jcol]) { |
| 793 | double maxup1 = (ub_inf_index == -1 || ub_inf_index == k |
| 794 | ? maxup |
| 795 | : PRESOLVE_INF); |
| 796 | bool maxup_finite1 = (ub_inf_index == -1 || ub_inf_index == k |
| 797 | ? maxup_finite |
| 798 | : false); |
| 799 | double maxdown1 = (lb_inf_index == -1 || lb_inf_index == k |
| 800 | ? maxdown |
| 801 | : PRESOLVE_INF); |
| 802 | bool maxdown_finite1 = (ub_inf_index == -1 || ub_inf_index == k |
| 803 | ? maxdown_finite |
| 804 | : false); |
| 805 | |
| 806 | |
| 807 | double ilb = (irlo - maxup1) / coeff; |
| 808 | bool finite_ilb = (-PRESOLVE_INF < irlo && maxup_finite1); |
| 809 | |
| 810 | double iub = (irup - maxdown1) / coeff; |
| 811 | bool finite_iub = ( irup < PRESOLVE_INF && maxdown_finite1); |
| 812 | |
| 813 | double iub1 = (coeff > 0.0 |
| 814 | ? (finite_iub ? iub : PRESOLVE_INF) |
| 815 | : (finite_ilb ? ilb : PRESOLVE_INF)); |
| 816 | |
| 817 | if (iub1 < iubound[jcol]) { |
| 818 | iubound[jcol] = iub1; |
| 819 | //if (jcol == 278001) |
| 820 | //printf("JCOL UB %g\n", iub1); |
| 821 | } |
| 822 | } |
| 823 | } |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | #if 0 // (B) |
| 828 | postsolve for implied_bound |
| 829 | { |
| 830 | double lo0 = pa->clo; |
| 831 | double up0 = pa->cup; |
| 832 | int irow = pa->irow; |
| 833 | int jcol = pa->icol; |
| 834 | int *rowcols = pa->rowcols; |
| 835 | int ninrow = pa->ninrow; |
| 836 | |
| 837 | clo[jcol] = lo0; |
| 838 | cup[jcol] = up0; |
| 839 | |
| 840 | if ((colstat[jcol] & PRESOLVE_XBASIC) == 0 && |
| 841 | fabs(lo0 - sol[jcol]) > ztolzb && |
| 842 | fabs(up0 - sol[jcol]) > ztolzb) { |
| 843 | |
| 844 | // this non-basic variable is now away from its bound |
| 845 | // it is ok just to force it to be basic |
| 846 | // informally: if this variable is at its implied bound, |
| 847 | // then the other variables must be at their bounds, |
| 848 | // which means the bounds will stop them even if the aren't basic. |
| 849 | if (rowstat[irow] & PRESOLVE_XBASIC) |
| 850 | rowstat[irow] = 0; |
| 851 | else { |
| 852 | int k; |
| 853 | for (k=0; k<ninrow; k++) { |
| 854 | int col = rowcols[k]; |
| 855 | if (cdone[col] && |
| 856 | (colstat[col] & PRESOLVE_XBASIC) && |
| 857 | ((fabs(clo[col] - sol[col]) <= ztolzb && rcosts[col] >= -ztoldj) || |
| 858 | (fabs(cup[col] - sol[col]) <= ztolzb && rcosts[col] <= ztoldj))) |
| 859 | break; |
| 860 | } |
| 861 | if (k<ninrow) { |
| 862 | int col = rowcols[k]; |
| 863 | // steal this basic variable |
| 864 | #if PRESOLVE_DEBUG |
| 865 | printf("PIVOTING ON COL: %d %d -> %d\n" , irow, col, jcol); |
| 866 | #endif |
| 867 | colstat[col] = 0; |
| 868 | |
| 869 | // since all vars were at their bounds, the slack must be 0 |
| 870 | PRESOLVEASSERT(fabs(acts[irow]) < ZTOLDP); |
| 871 | rowstat[irow] = PRESOLVE_XBASIC; |
| 872 | } |
| 873 | else { |
| 874 | // should never happen? |
| 875 | abort(); |
| 876 | } |
| 877 | |
| 878 | // get rid of any remaining basic structurals, since their rcosts |
| 879 | // are going to become non-zero in a second. |
| 880 | abort(); |
| 881 | ///////////////////zero_pivot(); |
| 882 | } |
| 883 | |
| 884 | double rdual_adjust; |
| 885 | { |
| 886 | CoinBigIndex kk = presolve_find_row(irow, mcstrt[jcol], mcstrt[jcol] + hincol[jcol], hrow); |
| 887 | // adjust rowdual to cancel out reduced cost |
| 888 | // should probably search for col with largest factor |
| 889 | rdual_adjust = (rcosts[jcol] / colels[kk]); |
| 890 | rowduals[irow] += rdual_adjust; |
| 891 | colstat[jcol] = PRESOLVE_XBASIC; |
| 892 | } |
| 893 | |
| 894 | for (k=0; k<ninrow; k++) { |
| 895 | int jcol = rowcols[k]; |
| 896 | CoinBigIndex kk = presolve_find_row(irow, mcstrt[jcol], mcstrt[jcol] + hincol[jcol], hrow); |
| 897 | |
| 898 | rcosts[jcol] -= (rdual_adjust * colels[kk]); |
| 899 | } |
| 900 | |
| 901 | { |
| 902 | int k; |
| 903 | int badbasic = -1; |
| 904 | |
| 905 | // we may have just screwed up the rcost of another basic variable |
| 906 | for (k=0; k<ninrow; k++) { |
| 907 | int col = rowcols[k]; |
| 908 | if (col != jcol && |
| 909 | cdone[col] && |
| 910 | (colstat[col] & PRESOLVE_XBASIC) && |
| 911 | !(fabs(rcosts[col]) < ztoldj)) |
| 912 | if (badbasic == -1) |
| 913 | badbasic = k; |
| 914 | else |
| 915 | abort(); // two!! what to do??? |
| 916 | } |
| 917 | |
| 918 | if (badbasic != -1) { |
| 919 | int col = rowcols[badbasic]; |
| 920 | |
| 921 | if (fabs(acts[irow]) < ZTOLDP) { |
| 922 | #if PRESOLVE_DEBUG |
| 923 | printf("PIVOTING COL TO SLACK!: %d %d\n" , irow, col); |
| 924 | #endif |
| 925 | colstat[col] = 0; |
| 926 | rowstat[irow] = PRESOLVE_XBASIC; |
| 927 | } |
| 928 | else |
| 929 | abort(); |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | } |
| 934 | #endif // #if 0 // (B) |
| 935 | #endif // #if 0 // (A) |
| 936 | |
| 937 | forcing_constraint_action::~forcing_constraint_action() |
| 938 | { |
| 939 | int i; |
| 940 | for (i=0;i<nactions_;i++) { |
| 941 | //delete [] actions_[i].rowcols; MS Visual C++ V6 can not compile |
| 942 | //delete [] actions_[i].bounds; MS Visual C++ V6 can not compile |
| 943 | deleteAction(actions_[i].rowcols,int *); |
| 944 | deleteAction(actions_[i].bounds,double *); |
| 945 | } |
| 946 | // delete [] actions_; MS Visual C++ V6 can not compile |
| 947 | deleteAction(actions_,action *); |
| 948 | } |
| 949 | |