| 1 | /* $Id: CoinPresolveHelperFunctions.cpp 1373 2011-01-03 23:57:44Z lou $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | /*! \file |
| 7 | |
| 8 | This file contains helper functions for CoinPresolve. The declarations needed |
| 9 | for use are included in CoinPresolveMatrix.hpp. |
| 10 | */ |
| 11 | |
| 12 | #include <stdio.h> |
| 13 | |
| 14 | #include <cassert> |
| 15 | #include <iostream> |
| 16 | |
| 17 | #include "CoinHelperFunctions.hpp" |
| 18 | #include "CoinPresolveMatrix.hpp" |
| 19 | |
| 20 | |
| 21 | /*! \defgroup PMMDVX Packed Matrix Major Dimension Vector Expansion |
| 22 | \brief Functions to help with major-dimension vector expansion in a |
| 23 | packed matrix structure. |
| 24 | |
| 25 | This next block of functions handles the problems associated with expanding |
| 26 | a column in a column-major representation or a row in a row-major |
| 27 | representation. |
| 28 | |
| 29 | We need to be able to answer the questions: |
| 30 | * Is there room to expand a major vector in place? |
| 31 | * Is there sufficient free space at the end of the element and minor |
| 32 | index storage areas (bulk storage) to hold the major vector? |
| 33 | |
| 34 | When the answer to the first question is `no', we need to be able to move |
| 35 | the major vector to the free space at the end of bulk storage. |
| 36 | |
| 37 | When the answer to the second question is `no', we need to be able to |
| 38 | compact the major vectors in the bulk storage area in order to regain a |
| 39 | block of useable space at the end. |
| 40 | |
| 41 | presolve_make_memlists initialises a linked list that tracks the position of |
| 42 | major vectors in the bulk storage area. It's used to locate physically |
| 43 | adjacent vectors. |
| 44 | |
| 45 | presolve_expand deals with adding a coefficient to a major vector, either |
| 46 | in-place or by moving it to free space at the end of the storage areas. |
| 47 | There are two inline wrappers, presolve_expand_col and presolve_expand_row, |
| 48 | defined in CoinPresolveMatrix.hpp. |
| 49 | |
| 50 | compact_rep compacts the major vectors in the storage areas to |
| 51 | leave a single block of free space at the end. |
| 52 | */ |
| 53 | //@{ |
| 54 | |
| 55 | /* |
| 56 | This first function doesn't need to be known outside of this file. |
| 57 | */ |
| 58 | namespace { |
| 59 | |
| 60 | /* |
| 61 | compact_rep |
| 62 | |
| 63 | This routine compacts the major vectors in the bulk storage area, |
| 64 | leaving a single block of free space at the end. The vectors are not |
| 65 | reordered, just shifted down to remove gaps. |
| 66 | */ |
| 67 | |
| 68 | void compact_rep (double *elems, int *indices, |
| 69 | CoinBigIndex *starts, const int *lengths, int n, |
| 70 | const presolvehlink *link) |
| 71 | { |
| 72 | # if PRESOLVE_SUMMARY |
| 73 | printf("****COMPACTING****\n" ) ; |
| 74 | # endif |
| 75 | |
| 76 | // for now, just look for the first element of the list |
| 77 | int i = n ; |
| 78 | while (link[i].pre != NO_LINK) |
| 79 | i = link[i].pre ; |
| 80 | |
| 81 | int j = 0 ; |
| 82 | for (; i != n; i = link[i].suc) { |
| 83 | CoinBigIndex s = starts[i] ; |
| 84 | CoinBigIndex e = starts[i] + lengths[i] ; |
| 85 | |
| 86 | // because of the way link is organized, j <= s |
| 87 | starts[i] = j ; |
| 88 | for (CoinBigIndex k = s; k < e; k++) { |
| 89 | elems[j] = elems[k] ; |
| 90 | indices[j] = indices[k] ; |
| 91 | j++ ; |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | |
| 97 | } /* end unnamed namespace */ |
| 98 | |
| 99 | /* |
| 100 | \brief Initialise linked list for major vector order in bulk storage |
| 101 | |
| 102 | Initialise the linked list that will track the order of major vectors in |
| 103 | the element and row index bulk storage arrays. When finished, link[j].pre |
| 104 | contains the index of the previous non-empty vector in the storage arrays |
| 105 | and link[j].suc contains the index of the next non-empty vector. |
| 106 | |
| 107 | For an empty vector j, link[j].pre = link[j].suc = NO_LINK. |
| 108 | |
| 109 | If n is the number of major-dimension vectors, link[n] is valid; |
| 110 | link[n].pre is the index of the last non-empty vector, and |
| 111 | link[n].suc = NO_LINK. |
| 112 | |
| 113 | This routine makes the implicit assumption that the order of vectors in the |
| 114 | storage areas matches the order in starts. (I.e., there's no check that |
| 115 | starts[j] > starts[i] for j < i.) |
| 116 | */ |
| 117 | |
| 118 | void presolve_make_memlists (/*CoinBigIndex *starts,*/ int *lengths, |
| 119 | presolvehlink *link, int n) |
| 120 | { |
| 121 | int i ; |
| 122 | int pre = NO_LINK ; |
| 123 | |
| 124 | for (i=0; i<n; i++) { |
| 125 | if (lengths[i]) { |
| 126 | link[i].pre = pre ; |
| 127 | if (pre != NO_LINK) |
| 128 | link[pre].suc = i ; |
| 129 | pre = i ; |
| 130 | } |
| 131 | else { |
| 132 | link[i].pre = NO_LINK ; |
| 133 | link[i].suc = NO_LINK ; |
| 134 | } |
| 135 | } |
| 136 | if (pre != NO_LINK) |
| 137 | link[pre].suc = n ; |
| 138 | |
| 139 | // (1) Arbitrarily place the last non-empty entry in link[n].pre |
| 140 | link[n].pre = pre ; |
| 141 | |
| 142 | link[n].suc = NO_LINK ; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | |
| 147 | /* |
| 148 | presolve_expand_major |
| 149 | |
| 150 | The routine looks at the space currently occupied by major-dimension vector |
| 151 | k and makes sure that there's room to add one coefficient. |
| 152 | |
| 153 | This may require moving the vector to the vacant area at the end of the |
| 154 | bulk storage array. If there's no room left at the end of the array, an |
| 155 | attempt is made to compact the existing vectors to make space. |
| 156 | |
| 157 | Returns true for failure, false for success. |
| 158 | */ |
| 159 | |
| 160 | bool presolve_expand_major (CoinBigIndex *majstrts, double *els, |
| 161 | int *minndxs, int *majlens, |
| 162 | presolvehlink *majlinks, int nmaj, int k) |
| 163 | |
| 164 | { const CoinBigIndex bulkCap = majstrts[nmaj] ; |
| 165 | |
| 166 | /* |
| 167 | Get the start and end of column k, and the index of the column which |
| 168 | follows in the bulk storage. |
| 169 | */ |
| 170 | CoinBigIndex kcsx = majstrts[k] ; |
| 171 | CoinBigIndex kcex = kcsx + majlens[k] ; |
| 172 | int nextcol = majlinks[k].suc ; |
| 173 | /* |
| 174 | Do we have room to add one coefficient in place? |
| 175 | */ |
| 176 | if (kcex+1 < majstrts[nextcol]) |
| 177 | { /* no action required */ } |
| 178 | /* |
| 179 | Is k the last non-empty column? In that case, attempt to compact the |
| 180 | bulk storage. This will move k, so update the column start and end. |
| 181 | If we still have no space, it's a fatal error. |
| 182 | */ |
| 183 | else |
| 184 | if (nextcol == nmaj) |
| 185 | { compact_rep(els,minndxs,majstrts,majlens,nmaj,majlinks) ; |
| 186 | kcsx = majstrts[k] ; |
| 187 | kcex = kcsx + majlens[k] ; |
| 188 | if (kcex+1 >= bulkCap) |
| 189 | { return (true) ; } } |
| 190 | /* |
| 191 | The most complicated case --- we need to move k from its current location |
| 192 | to empty space at the end of the bulk storage. And we may need to make that! |
| 193 | Compaction is identical to the above case. |
| 194 | */ |
| 195 | else |
| 196 | { int lastcol = majlinks[nmaj].pre ; |
| 197 | int newkcsx = majstrts[lastcol]+majlens[lastcol] ; |
| 198 | int newkcex = newkcsx+majlens[k] ; |
| 199 | |
| 200 | if (newkcex+1 >= bulkCap) |
| 201 | { compact_rep(els,minndxs,majstrts,majlens,nmaj,majlinks) ; |
| 202 | kcsx = majstrts[k] ; |
| 203 | kcex = kcsx + majlens[k] ; |
| 204 | newkcsx = majstrts[lastcol]+majlens[lastcol] ; |
| 205 | newkcex = newkcsx+majlens[k] ; |
| 206 | if (newkcex+1 >= bulkCap) |
| 207 | { return (true) ; } } |
| 208 | /* |
| 209 | Moving the vector requires three actions. First we move the data, then |
| 210 | update the packed matrix vector start, then relink the storage order list, |
| 211 | */ |
| 212 | memcpy(reinterpret_cast<void *>(&minndxs[newkcsx]), |
| 213 | reinterpret_cast<void *>(&minndxs[kcsx]),majlens[k]*sizeof(int)) ; |
| 214 | memcpy(reinterpret_cast<void *>(&els[newkcsx]), |
| 215 | reinterpret_cast<void *>(&els[kcsx]),majlens[k]*sizeof(double)) ; |
| 216 | majstrts[k] = newkcsx ; |
| 217 | PRESOLVE_REMOVE_LINK(majlinks,k) ; |
| 218 | PRESOLVE_INSERT_LINK(majlinks,k,lastcol) ; } |
| 219 | /* |
| 220 | Success --- the vector has room for one more coefficient. |
| 221 | */ |
| 222 | return (false) ; } |
| 223 | |
| 224 | //@} |
| 225 | |
| 226 | |
| 227 | |
| 228 | /* |
| 229 | Helper function to duplicate a major-dimension vector. |
| 230 | */ |
| 231 | |
| 232 | /* |
| 233 | A major-dimension vector is composed of paired element and minor index |
| 234 | arrays. We want to duplicate length entries from both arrays, starting at |
| 235 | offset. |
| 236 | |
| 237 | If tgt > 0, we'll run a more complicated copy loop which will elide the |
| 238 | entry with minor index == tgt. In this case, we want to reduce the size of |
| 239 | the allocated array by 1. |
| 240 | |
| 241 | Pigs will fly before sizeof(int) > sizeof(double), but if it ever |
| 242 | happens this code will fail. |
| 243 | */ |
| 244 | |
| 245 | double *presolve_dupmajor (const double *elems, const int *indices, |
| 246 | int length, CoinBigIndex offset, int tgt) |
| 247 | |
| 248 | { int n ; |
| 249 | |
| 250 | if (tgt >= 0) length-- ; |
| 251 | |
| 252 | if (2*sizeof(int) <= sizeof(double)) |
| 253 | n = (3*length+1)>>1 ; |
| 254 | else |
| 255 | n = 2*length ; |
| 256 | |
| 257 | double *dArray = new double [n] ; |
| 258 | int *iArray = reinterpret_cast<int *>(dArray+length) ; |
| 259 | |
| 260 | if (tgt < 0) |
| 261 | { memcpy(dArray,elems+offset,length*sizeof(double)) ; |
| 262 | memcpy(iArray,indices+offset,length*sizeof(int)) ; } |
| 263 | else |
| 264 | { int korig ; |
| 265 | int kcopy = 0 ; |
| 266 | indices += offset ; |
| 267 | elems += offset ; |
| 268 | for (korig = 0 ; korig <= length ; korig++) |
| 269 | { int i = indices[korig] ; |
| 270 | if (i != tgt) |
| 271 | { dArray[kcopy] = elems[korig] ; |
| 272 | iArray[kcopy++] = indices[korig] ; } } } |
| 273 | |
| 274 | return (dArray) ; } |
| 275 | |
| 276 | |
| 277 | |
| 278 | /* |
| 279 | Routines to find the position of the entry for a given minor index in a |
| 280 | major vector. Inline wrappers with column-major and row-major parameter |
| 281 | names are defined in CoinPresolveMatrix.hpp. The threaded matrix used in |
| 282 | postsolve exists only as a column-major form, so only one wrapper is |
| 283 | defined. |
| 284 | */ |
| 285 | |
| 286 | /* |
| 287 | presolve_find_minor |
| 288 | |
| 289 | Find the position (k) of the entry for a given minor index (tgt) within |
| 290 | the range of entries for a major vector (ks, ke). |
| 291 | |
| 292 | Print a tag and abort (DIE) if there's no entry for tgt. |
| 293 | */ |
| 294 | #if 0 |
| 295 | CoinBigIndex presolve_find_minor (int tgt, CoinBigIndex ks, |
| 296 | CoinBigIndex ke, const int *minndxs) |
| 297 | |
| 298 | { CoinBigIndex k ; |
| 299 | for (k = ks ; k < ke ; k++) |
| 300 | { if (minndxs[k] == tgt) |
| 301 | return (k) ; } |
| 302 | DIE("FIND_MINOR" ) ; |
| 303 | |
| 304 | abort () ; return -1; } |
| 305 | #endif |
| 306 | /* |
| 307 | As presolve_find_minor, but return a position one past the end of |
| 308 | the major vector when the entry is not already present. |
| 309 | */ |
| 310 | CoinBigIndex presolve_find_minor1 (int tgt, CoinBigIndex ks, |
| 311 | CoinBigIndex ke, const int *minndxs) |
| 312 | { CoinBigIndex k ; |
| 313 | for (k = ks ; k < ke ; k++) |
| 314 | { if (minndxs[k] == tgt) |
| 315 | return (k) ; } |
| 316 | |
| 317 | return (k) ; } |
| 318 | |
| 319 | /* |
| 320 | In a threaded matrix, the major vector does not occupy a contiguous block |
| 321 | in the bulk storage area. For example, in a threaded column-major matrix, |
| 322 | if a<i,p> is in pos'n kp of hrow, the next coefficient a<i,q> will be |
| 323 | in pos'n kq = link[kp]. Abort if we don't find it. |
| 324 | */ |
| 325 | CoinBigIndex presolve_find_minor2 (int tgt, CoinBigIndex ks, |
| 326 | int majlen, const int *minndxs, |
| 327 | const CoinBigIndex *majlinks) |
| 328 | |
| 329 | { for (int i = 0 ; i < majlen ; ++i) |
| 330 | { if (minndxs[ks] == tgt) |
| 331 | return (ks) ; |
| 332 | ks = majlinks[ks] ; } |
| 333 | DIE("FIND_MINOR2" ) ; |
| 334 | |
| 335 | abort () ; return -1; } |
| 336 | |
| 337 | /* |
| 338 | As presolve_find_minor2, but return -1 if the entry is missing |
| 339 | */ |
| 340 | CoinBigIndex presolve_find_minor3 (int tgt, CoinBigIndex ks, |
| 341 | int majlen, const int *minndxs, |
| 342 | const CoinBigIndex *majlinks) |
| 343 | |
| 344 | { for (int i = 0 ; i < majlen ; ++i) |
| 345 | { if (minndxs[ks] == tgt) |
| 346 | return (ks) ; |
| 347 | ks = majlinks[ks] ; } |
| 348 | |
| 349 | return (-1) ; } |
| 350 | |
| 351 | /* |
| 352 | Delete the entry for a minor index from a major vector. The last entry in |
| 353 | the major vector is moved into the hole left by the deleted entry. This |
| 354 | leaves some space between the end of this major vector and the start of the |
| 355 | next in the bulk storage areas (this is termed loosely packed). Inline |
| 356 | wrappers with column-major and row-major parameter names are defined in |
| 357 | CoinPresolveMatrix.hpp. The threaded matrix used in postsolve exists only |
| 358 | as a column-major form, so only one wrapper is defined. |
| 359 | */ |
| 360 | |
| 361 | #if 0 |
| 362 | void presolve_delete_from_major (int majndx, int minndx, |
| 363 | const CoinBigIndex *majstrts, |
| 364 | int *majlens, int *minndxs, double *els) |
| 365 | |
| 366 | { CoinBigIndex ks = majstrts[majndx] ; |
| 367 | CoinBigIndex ke = ks + majlens[majndx] ; |
| 368 | |
| 369 | CoinBigIndex kmi = presolve_find_minor(minndx,ks,ke,minndxs) ; |
| 370 | |
| 371 | minndxs[kmi] = minndxs[ke-1] ; |
| 372 | els[kmi] = els[ke-1] ; |
| 373 | majlens[majndx]-- ; |
| 374 | |
| 375 | return ; } |
| 376 | // Delete all marked and zero marked |
| 377 | void presolve_delete_many_from_major (int majndx, char * marked, |
| 378 | const CoinBigIndex *majstrts, |
| 379 | int *majlens, int *minndxs, double *els) |
| 380 | |
| 381 | { |
| 382 | CoinBigIndex ks = majstrts[majndx] ; |
| 383 | CoinBigIndex ke = ks + majlens[majndx] ; |
| 384 | CoinBigIndex put=ks; |
| 385 | for (CoinBigIndex k=ks;k<ke;k++) { |
| 386 | int iMinor = minndxs[k]; |
| 387 | if (!marked[iMinor]) { |
| 388 | minndxs[put]=iMinor; |
| 389 | els[put++]=els[k]; |
| 390 | } else { |
| 391 | marked[iMinor]=0; |
| 392 | } |
| 393 | } |
| 394 | majlens[majndx] = put-ks ; |
| 395 | return ; |
| 396 | } |
| 397 | #endif |
| 398 | |
| 399 | /* |
| 400 | Delete the entry for a minor index from a major vector in a threaded matrix. |
| 401 | |
| 402 | This involves properly relinking the free list. |
| 403 | */ |
| 404 | void presolve_delete_from_major2 (int majndx, int minndx, |
| 405 | CoinBigIndex *majstrts, int *majlens, |
| 406 | int *minndxs, /*double *els,*/ int *majlinks, |
| 407 | CoinBigIndex *free_listp) |
| 408 | |
| 409 | { CoinBigIndex k = majstrts[majndx] ; |
| 410 | |
| 411 | /* |
| 412 | Desired entry is the first in its major vector. We need to touch up majstrts |
| 413 | to point to the next entry and link the deleted entry to the front of the |
| 414 | free list. |
| 415 | */ |
| 416 | if (minndxs[k] == minndx) |
| 417 | { majstrts[majndx] = majlinks[k] ; |
| 418 | majlinks[k] = *free_listp ; |
| 419 | *free_listp = k ; |
| 420 | majlens[majndx]-- ; } |
| 421 | /* |
| 422 | Desired entry is somewhere in the major vector. We need to relink around |
| 423 | it and then link it on the front of the free list. |
| 424 | |
| 425 | The loop runs over elements 1 .. len-1; we've already ruled out element 0. |
| 426 | */ |
| 427 | else |
| 428 | { int len = majlens[majndx] ; |
| 429 | CoinBigIndex kpre = k ; |
| 430 | k = majlinks[k] ; |
| 431 | for (int i = 1 ; i < len ; ++i) |
| 432 | { if (minndxs[k] == minndx) |
| 433 | { majlinks[kpre] = majlinks[k] ; |
| 434 | majlinks[k] = *free_listp ; |
| 435 | *free_listp = k ; |
| 436 | majlens[majndx]-- ; |
| 437 | return ; } |
| 438 | kpre = k ; |
| 439 | k = majlinks[k] ; } |
| 440 | DIE("DELETE_FROM_MAJOR2" ) ; } |
| 441 | |
| 442 | assert(*free_listp >= 0) ; |
| 443 | |
| 444 | return ; } |
| 445 | |