| 1 | /* $Id: CoinPresolveHelperFunctions.cpp 1373 2011-01-03 23:57:44Z lou $ */ | 
|---|
| 2 | // Copyright (C) 2002, International Business Machines | 
|---|
| 3 | // Corporation and others.  All Rights Reserved. | 
|---|
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). | 
|---|
| 5 |  | 
|---|
| 6 | /*! \file | 
|---|
| 7 |  | 
|---|
| 8 | This file contains helper functions for CoinPresolve. The declarations needed | 
|---|
| 9 | for use are included in CoinPresolveMatrix.hpp. | 
|---|
| 10 | */ | 
|---|
| 11 |  | 
|---|
| 12 | #include <stdio.h> | 
|---|
| 13 |  | 
|---|
| 14 | #include <cassert> | 
|---|
| 15 | #include <iostream> | 
|---|
| 16 |  | 
|---|
| 17 | #include "CoinHelperFunctions.hpp" | 
|---|
| 18 | #include "CoinPresolveMatrix.hpp" | 
|---|
| 19 |  | 
|---|
| 20 |  | 
|---|
| 21 | /*! \defgroup PMMDVX Packed Matrix Major Dimension Vector Expansion | 
|---|
| 22 | \brief Functions to help with major-dimension vector expansion in a | 
|---|
| 23 | packed matrix structure. | 
|---|
| 24 |  | 
|---|
| 25 | This next block of functions handles the problems associated with expanding | 
|---|
| 26 | a column in a column-major representation or a row in a row-major | 
|---|
| 27 | representation. | 
|---|
| 28 |  | 
|---|
| 29 | We need to be able to answer the questions: | 
|---|
| 30 | * Is there room to expand a major vector in place? | 
|---|
| 31 | * Is there sufficient free space at the end of the element and minor | 
|---|
| 32 | index storage areas (bulk storage) to hold the major vector? | 
|---|
| 33 |  | 
|---|
| 34 | When the answer to the first question is `no', we need to be able to move | 
|---|
| 35 | the major vector to the free space at the end of bulk storage. | 
|---|
| 36 |  | 
|---|
| 37 | When the answer to the second question is `no', we need to be able to | 
|---|
| 38 | compact the major vectors in the bulk storage area in order to regain a | 
|---|
| 39 | block of useable space at the end. | 
|---|
| 40 |  | 
|---|
| 41 | presolve_make_memlists initialises a linked list that tracks the position of | 
|---|
| 42 | major vectors in the bulk storage area. It's used to locate physically | 
|---|
| 43 | adjacent vectors. | 
|---|
| 44 |  | 
|---|
| 45 | presolve_expand deals with adding a coefficient to a major vector, either | 
|---|
| 46 | in-place or by moving it to free space at the end of the storage areas. | 
|---|
| 47 | There are two inline wrappers, presolve_expand_col and presolve_expand_row, | 
|---|
| 48 | defined in CoinPresolveMatrix.hpp. | 
|---|
| 49 |  | 
|---|
| 50 | compact_rep compacts the major vectors in the storage areas to | 
|---|
| 51 | leave a single block of free space at the end. | 
|---|
| 52 | */ | 
|---|
| 53 | //@{ | 
|---|
| 54 |  | 
|---|
| 55 | /* | 
|---|
| 56 | This first function doesn't need to be known outside of this file. | 
|---|
| 57 | */ | 
|---|
| 58 | namespace { | 
|---|
| 59 |  | 
|---|
| 60 | /* | 
|---|
| 61 | compact_rep | 
|---|
| 62 |  | 
|---|
| 63 | This routine compacts the major vectors in the bulk storage area, | 
|---|
| 64 | leaving a single block of free space at the end. The vectors are not | 
|---|
| 65 | reordered, just shifted down to remove gaps. | 
|---|
| 66 | */ | 
|---|
| 67 |  | 
|---|
| 68 | void compact_rep (double *elems, int *indices, | 
|---|
| 69 | CoinBigIndex *starts, const int *lengths, int n, | 
|---|
| 70 | const presolvehlink *link) | 
|---|
| 71 | { | 
|---|
| 72 | # if PRESOLVE_SUMMARY | 
|---|
| 73 | printf( "****COMPACTING****\n") ; | 
|---|
| 74 | # endif | 
|---|
| 75 |  | 
|---|
| 76 | // for now, just look for the first element of the list | 
|---|
| 77 | int i = n ; | 
|---|
| 78 | while (link[i].pre != NO_LINK) | 
|---|
| 79 | i = link[i].pre ; | 
|---|
| 80 |  | 
|---|
| 81 | int j = 0 ; | 
|---|
| 82 | for (; i != n; i = link[i].suc) { | 
|---|
| 83 | CoinBigIndex s = starts[i] ; | 
|---|
| 84 | CoinBigIndex e = starts[i] + lengths[i] ; | 
|---|
| 85 |  | 
|---|
| 86 | // because of the way link is organized, j <= s | 
|---|
| 87 | starts[i] = j ; | 
|---|
| 88 | for (CoinBigIndex k = s; k < e; k++) { | 
|---|
| 89 | elems[j] = elems[k] ; | 
|---|
| 90 | indices[j] = indices[k] ; | 
|---|
| 91 | j++ ; | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 |  | 
|---|
| 97 | } /* end unnamed namespace */ | 
|---|
| 98 |  | 
|---|
| 99 | /* | 
|---|
| 100 | \brief Initialise linked list for major vector order in bulk storage | 
|---|
| 101 |  | 
|---|
| 102 | Initialise the linked list that will track the order of major vectors in | 
|---|
| 103 | the element and row index bulk storage arrays.  When finished, link[j].pre | 
|---|
| 104 | contains the index of the previous non-empty vector in the storage arrays | 
|---|
| 105 | and link[j].suc contains the index of the next non-empty vector. | 
|---|
| 106 |  | 
|---|
| 107 | For an empty vector j, link[j].pre = link[j].suc = NO_LINK. | 
|---|
| 108 |  | 
|---|
| 109 | If n is the number of major-dimension vectors, link[n] is valid; | 
|---|
| 110 | link[n].pre is the index of the last non-empty vector, and | 
|---|
| 111 | link[n].suc = NO_LINK. | 
|---|
| 112 |  | 
|---|
| 113 | This routine makes the implicit assumption that the order of vectors in the | 
|---|
| 114 | storage areas matches the order in starts. (I.e., there's no check that | 
|---|
| 115 | starts[j] > starts[i] for j < i.) | 
|---|
| 116 | */ | 
|---|
| 117 |  | 
|---|
| 118 | void presolve_make_memlists (/*CoinBigIndex *starts,*/ int *lengths, | 
|---|
| 119 | presolvehlink *link, int n) | 
|---|
| 120 | { | 
|---|
| 121 | int i ; | 
|---|
| 122 | int pre = NO_LINK ; | 
|---|
| 123 |  | 
|---|
| 124 | for (i=0; i<n; i++) { | 
|---|
| 125 | if (lengths[i]) { | 
|---|
| 126 | link[i].pre = pre ; | 
|---|
| 127 | if (pre != NO_LINK) | 
|---|
| 128 | link[pre].suc = i ; | 
|---|
| 129 | pre = i ; | 
|---|
| 130 | } | 
|---|
| 131 | else { | 
|---|
| 132 | link[i].pre = NO_LINK ; | 
|---|
| 133 | link[i].suc = NO_LINK ; | 
|---|
| 134 | } | 
|---|
| 135 | } | 
|---|
| 136 | if (pre != NO_LINK) | 
|---|
| 137 | link[pre].suc = n ; | 
|---|
| 138 |  | 
|---|
| 139 | // (1) Arbitrarily place the last non-empty entry in link[n].pre | 
|---|
| 140 | link[n].pre = pre ; | 
|---|
| 141 |  | 
|---|
| 142 | link[n].suc = NO_LINK ; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 |  | 
|---|
| 146 |  | 
|---|
| 147 | /* | 
|---|
| 148 | presolve_expand_major | 
|---|
| 149 |  | 
|---|
| 150 | The routine looks at the space currently occupied by major-dimension vector | 
|---|
| 151 | k and makes sure that there's room to add one coefficient. | 
|---|
| 152 |  | 
|---|
| 153 | This may require moving the vector to the vacant area at the end of the | 
|---|
| 154 | bulk storage array. If there's no room left at the end of the array, an | 
|---|
| 155 | attempt is made to compact the existing vectors to make space. | 
|---|
| 156 |  | 
|---|
| 157 | Returns true for failure, false for success. | 
|---|
| 158 | */ | 
|---|
| 159 |  | 
|---|
| 160 | bool presolve_expand_major (CoinBigIndex *majstrts, double *els, | 
|---|
| 161 | int *minndxs, int *majlens, | 
|---|
| 162 | presolvehlink *majlinks, int nmaj, int k) | 
|---|
| 163 |  | 
|---|
| 164 | { const CoinBigIndex bulkCap = majstrts[nmaj] ; | 
|---|
| 165 |  | 
|---|
| 166 | /* | 
|---|
| 167 | Get the start and end of column k, and the index of the column which | 
|---|
| 168 | follows in the bulk storage. | 
|---|
| 169 | */ | 
|---|
| 170 | CoinBigIndex kcsx = majstrts[k] ; | 
|---|
| 171 | CoinBigIndex kcex = kcsx + majlens[k] ; | 
|---|
| 172 | int nextcol = majlinks[k].suc ; | 
|---|
| 173 | /* | 
|---|
| 174 | Do we have room to add one coefficient in place? | 
|---|
| 175 | */ | 
|---|
| 176 | if (kcex+1 < majstrts[nextcol]) | 
|---|
| 177 | { /* no action required */ } | 
|---|
| 178 | /* | 
|---|
| 179 | Is k the last non-empty column? In that case, attempt to compact the | 
|---|
| 180 | bulk storage. This will move k, so update the column start and end. | 
|---|
| 181 | If we still have no space, it's a fatal error. | 
|---|
| 182 | */ | 
|---|
| 183 | else | 
|---|
| 184 | if (nextcol == nmaj) | 
|---|
| 185 | { compact_rep(els,minndxs,majstrts,majlens,nmaj,majlinks) ; | 
|---|
| 186 | kcsx = majstrts[k] ; | 
|---|
| 187 | kcex = kcsx + majlens[k] ; | 
|---|
| 188 | if (kcex+1 >= bulkCap) | 
|---|
| 189 | { return (true) ; } } | 
|---|
| 190 | /* | 
|---|
| 191 | The most complicated case --- we need to move k from its current location | 
|---|
| 192 | to empty space at the end of the bulk storage. And we may need to make that! | 
|---|
| 193 | Compaction is identical to the above case. | 
|---|
| 194 | */ | 
|---|
| 195 | else | 
|---|
| 196 | { int lastcol = majlinks[nmaj].pre ; | 
|---|
| 197 | int newkcsx = majstrts[lastcol]+majlens[lastcol] ; | 
|---|
| 198 | int newkcex = newkcsx+majlens[k] ; | 
|---|
| 199 |  | 
|---|
| 200 | if (newkcex+1 >= bulkCap) | 
|---|
| 201 | { compact_rep(els,minndxs,majstrts,majlens,nmaj,majlinks) ; | 
|---|
| 202 | kcsx = majstrts[k] ; | 
|---|
| 203 | kcex = kcsx + majlens[k] ; | 
|---|
| 204 | newkcsx = majstrts[lastcol]+majlens[lastcol] ; | 
|---|
| 205 | newkcex = newkcsx+majlens[k] ; | 
|---|
| 206 | if (newkcex+1 >= bulkCap) | 
|---|
| 207 | { return (true) ; } } | 
|---|
| 208 | /* | 
|---|
| 209 | Moving the vector requires three actions. First we move the data, then | 
|---|
| 210 | update the packed matrix vector start, then relink the storage order list, | 
|---|
| 211 | */ | 
|---|
| 212 | memcpy(reinterpret_cast<void *>(&minndxs[newkcsx]), | 
|---|
| 213 | reinterpret_cast<void *>(&minndxs[kcsx]),majlens[k]*sizeof(int)) ; | 
|---|
| 214 | memcpy(reinterpret_cast<void *>(&els[newkcsx]), | 
|---|
| 215 | reinterpret_cast<void *>(&els[kcsx]),majlens[k]*sizeof(double)) ; | 
|---|
| 216 | majstrts[k] = newkcsx ; | 
|---|
| 217 | PRESOLVE_REMOVE_LINK(majlinks,k) ; | 
|---|
| 218 | PRESOLVE_INSERT_LINK(majlinks,k,lastcol) ; } | 
|---|
| 219 | /* | 
|---|
| 220 | Success --- the vector has room for one more coefficient. | 
|---|
| 221 | */ | 
|---|
| 222 | return (false) ; } | 
|---|
| 223 |  | 
|---|
| 224 | //@} | 
|---|
| 225 |  | 
|---|
| 226 |  | 
|---|
| 227 |  | 
|---|
| 228 | /* | 
|---|
| 229 | Helper function to duplicate a major-dimension vector. | 
|---|
| 230 | */ | 
|---|
| 231 |  | 
|---|
| 232 | /* | 
|---|
| 233 | A major-dimension vector is composed of paired element and minor index | 
|---|
| 234 | arrays.  We want to duplicate length entries from both arrays, starting at | 
|---|
| 235 | offset. | 
|---|
| 236 |  | 
|---|
| 237 | If tgt > 0, we'll run a more complicated copy loop which will elide the | 
|---|
| 238 | entry with minor index == tgt. In this case, we want to reduce the size of | 
|---|
| 239 | the allocated array by 1. | 
|---|
| 240 |  | 
|---|
| 241 | Pigs will fly before sizeof(int) > sizeof(double), but if it ever | 
|---|
| 242 | happens this code will fail. | 
|---|
| 243 | */ | 
|---|
| 244 |  | 
|---|
| 245 | double *presolve_dupmajor (const double *elems, const int *indices, | 
|---|
| 246 | int length, CoinBigIndex offset, int tgt) | 
|---|
| 247 |  | 
|---|
| 248 | { int n ; | 
|---|
| 249 |  | 
|---|
| 250 | if (tgt >= 0) length-- ; | 
|---|
| 251 |  | 
|---|
| 252 | if (2*sizeof(int) <= sizeof(double)) | 
|---|
| 253 | n = (3*length+1)>>1 ; | 
|---|
| 254 | else | 
|---|
| 255 | n = 2*length ; | 
|---|
| 256 |  | 
|---|
| 257 | double *dArray = new double [n] ; | 
|---|
| 258 | int *iArray = reinterpret_cast<int *>(dArray+length) ; | 
|---|
| 259 |  | 
|---|
| 260 | if (tgt < 0) | 
|---|
| 261 | { memcpy(dArray,elems+offset,length*sizeof(double)) ; | 
|---|
| 262 | memcpy(iArray,indices+offset,length*sizeof(int)) ; } | 
|---|
| 263 | else | 
|---|
| 264 | { int korig ; | 
|---|
| 265 | int kcopy = 0 ; | 
|---|
| 266 | indices += offset ; | 
|---|
| 267 | elems += offset ; | 
|---|
| 268 | for (korig = 0 ; korig <= length ; korig++) | 
|---|
| 269 | { int i = indices[korig] ; | 
|---|
| 270 | if (i != tgt) | 
|---|
| 271 | { dArray[kcopy] = elems[korig] ; | 
|---|
| 272 | iArray[kcopy++] = indices[korig] ; } } } | 
|---|
| 273 |  | 
|---|
| 274 | return (dArray) ; } | 
|---|
| 275 |  | 
|---|
| 276 |  | 
|---|
| 277 |  | 
|---|
| 278 | /* | 
|---|
| 279 | Routines to find the position of the entry for a given minor index in a | 
|---|
| 280 | major vector. Inline wrappers with column-major and row-major parameter | 
|---|
| 281 | names are defined in CoinPresolveMatrix.hpp. The threaded matrix used in | 
|---|
| 282 | postsolve exists only as a column-major form, so only one wrapper is | 
|---|
| 283 | defined. | 
|---|
| 284 | */ | 
|---|
| 285 |  | 
|---|
| 286 | /* | 
|---|
| 287 | presolve_find_minor | 
|---|
| 288 |  | 
|---|
| 289 | Find the position (k) of the entry for a given minor index (tgt) within | 
|---|
| 290 | the range of entries for a major vector (ks, ke). | 
|---|
| 291 |  | 
|---|
| 292 | Print a tag and abort (DIE) if there's no entry for tgt. | 
|---|
| 293 | */ | 
|---|
| 294 | #if 0 | 
|---|
| 295 | CoinBigIndex presolve_find_minor (int tgt, CoinBigIndex ks, | 
|---|
| 296 | CoinBigIndex ke, const int *minndxs) | 
|---|
| 297 |  | 
|---|
| 298 | { CoinBigIndex k ; | 
|---|
| 299 | for (k = ks ; k < ke ; k++) | 
|---|
| 300 | { if (minndxs[k] == tgt) | 
|---|
| 301 | return (k) ; } | 
|---|
| 302 | DIE( "FIND_MINOR") ; | 
|---|
| 303 |  | 
|---|
| 304 | abort () ; return -1; } | 
|---|
| 305 | #endif | 
|---|
| 306 | /* | 
|---|
| 307 | As presolve_find_minor, but return a position one past the end of | 
|---|
| 308 | the major vector when the entry is not already present. | 
|---|
| 309 | */ | 
|---|
| 310 | CoinBigIndex presolve_find_minor1 (int tgt, CoinBigIndex ks, | 
|---|
| 311 | CoinBigIndex ke, const int *minndxs) | 
|---|
| 312 | { CoinBigIndex k ; | 
|---|
| 313 | for (k = ks ; k < ke ; k++) | 
|---|
| 314 | { if (minndxs[k] == tgt) | 
|---|
| 315 | return (k) ; } | 
|---|
| 316 |  | 
|---|
| 317 | return (k) ; } | 
|---|
| 318 |  | 
|---|
| 319 | /* | 
|---|
| 320 | In a threaded matrix, the major vector does not occupy a contiguous block | 
|---|
| 321 | in the bulk storage area. For example, in a threaded column-major matrix, | 
|---|
| 322 | if a<i,p> is in pos'n kp of hrow, the next coefficient a<i,q> will be | 
|---|
| 323 | in pos'n kq = link[kp]. Abort if we don't find it. | 
|---|
| 324 | */ | 
|---|
| 325 | CoinBigIndex presolve_find_minor2 (int tgt, CoinBigIndex ks, | 
|---|
| 326 | int majlen, const int *minndxs, | 
|---|
| 327 | const CoinBigIndex *majlinks) | 
|---|
| 328 |  | 
|---|
| 329 | { for (int i = 0 ; i < majlen ; ++i) | 
|---|
| 330 | { if (minndxs[ks] == tgt) | 
|---|
| 331 | return (ks) ; | 
|---|
| 332 | ks = majlinks[ks] ; } | 
|---|
| 333 | DIE( "FIND_MINOR2") ; | 
|---|
| 334 |  | 
|---|
| 335 | abort () ; return -1; } | 
|---|
| 336 |  | 
|---|
| 337 | /* | 
|---|
| 338 | As presolve_find_minor2, but return -1 if the entry is missing | 
|---|
| 339 | */ | 
|---|
| 340 | CoinBigIndex presolve_find_minor3 (int tgt, CoinBigIndex ks, | 
|---|
| 341 | int majlen, const int *minndxs, | 
|---|
| 342 | const CoinBigIndex *majlinks) | 
|---|
| 343 |  | 
|---|
| 344 | { for (int i = 0 ; i < majlen ; ++i) | 
|---|
| 345 | { if (minndxs[ks] == tgt) | 
|---|
| 346 | return (ks) ; | 
|---|
| 347 | ks = majlinks[ks] ; } | 
|---|
| 348 |  | 
|---|
| 349 | return (-1) ; } | 
|---|
| 350 |  | 
|---|
| 351 | /* | 
|---|
| 352 | Delete the entry for a minor index from a major vector.  The last entry in | 
|---|
| 353 | the major vector is moved into the hole left by the deleted entry. This | 
|---|
| 354 | leaves some space between the end of this major vector and the start of the | 
|---|
| 355 | next in the bulk storage areas (this is termed loosely packed). Inline | 
|---|
| 356 | wrappers with column-major and row-major parameter names are defined in | 
|---|
| 357 | CoinPresolveMatrix.hpp.  The threaded matrix used in postsolve exists only | 
|---|
| 358 | as a column-major form, so only one wrapper is defined. | 
|---|
| 359 | */ | 
|---|
| 360 |  | 
|---|
| 361 | #if 0 | 
|---|
| 362 | void presolve_delete_from_major (int majndx, int minndx, | 
|---|
| 363 | const CoinBigIndex *majstrts, | 
|---|
| 364 | int *majlens, int *minndxs, double *els) | 
|---|
| 365 |  | 
|---|
| 366 | { CoinBigIndex ks = majstrts[majndx] ; | 
|---|
| 367 | CoinBigIndex ke = ks + majlens[majndx] ; | 
|---|
| 368 |  | 
|---|
| 369 | CoinBigIndex kmi = presolve_find_minor(minndx,ks,ke,minndxs) ; | 
|---|
| 370 |  | 
|---|
| 371 | minndxs[kmi] = minndxs[ke-1] ; | 
|---|
| 372 | els[kmi] = els[ke-1] ; | 
|---|
| 373 | majlens[majndx]-- ; | 
|---|
| 374 |  | 
|---|
| 375 | return ; } | 
|---|
| 376 | // Delete all marked and zero marked | 
|---|
| 377 | void presolve_delete_many_from_major (int majndx, char * marked, | 
|---|
| 378 | const CoinBigIndex *majstrts, | 
|---|
| 379 | int *majlens, int *minndxs, double *els) | 
|---|
| 380 |  | 
|---|
| 381 | { | 
|---|
| 382 | CoinBigIndex ks = majstrts[majndx] ; | 
|---|
| 383 | CoinBigIndex ke = ks + majlens[majndx] ; | 
|---|
| 384 | CoinBigIndex put=ks; | 
|---|
| 385 | for (CoinBigIndex k=ks;k<ke;k++) { | 
|---|
| 386 | int iMinor = minndxs[k]; | 
|---|
| 387 | if (!marked[iMinor]) { | 
|---|
| 388 | minndxs[put]=iMinor; | 
|---|
| 389 | els[put++]=els[k]; | 
|---|
| 390 | } else { | 
|---|
| 391 | marked[iMinor]=0; | 
|---|
| 392 | } | 
|---|
| 393 | } | 
|---|
| 394 | majlens[majndx] = put-ks ; | 
|---|
| 395 | return ; | 
|---|
| 396 | } | 
|---|
| 397 | #endif | 
|---|
| 398 |  | 
|---|
| 399 | /* | 
|---|
| 400 | Delete the entry for a minor index from a major vector in a threaded matrix. | 
|---|
| 401 |  | 
|---|
| 402 | This involves properly relinking the free list. | 
|---|
| 403 | */ | 
|---|
| 404 | void presolve_delete_from_major2 (int majndx, int minndx, | 
|---|
| 405 | CoinBigIndex *majstrts, int *majlens, | 
|---|
| 406 | int *minndxs, /*double *els,*/ int *majlinks, | 
|---|
| 407 | CoinBigIndex *free_listp) | 
|---|
| 408 |  | 
|---|
| 409 | { CoinBigIndex k = majstrts[majndx] ; | 
|---|
| 410 |  | 
|---|
| 411 | /* | 
|---|
| 412 | Desired entry is the first in its major vector. We need to touch up majstrts | 
|---|
| 413 | to point to the next entry and link the deleted entry to the front of the | 
|---|
| 414 | free list. | 
|---|
| 415 | */ | 
|---|
| 416 | if (minndxs[k] == minndx) | 
|---|
| 417 | { majstrts[majndx] = majlinks[k] ; | 
|---|
| 418 | majlinks[k] = *free_listp ; | 
|---|
| 419 | *free_listp = k ; | 
|---|
| 420 | majlens[majndx]-- ; } | 
|---|
| 421 | /* | 
|---|
| 422 | Desired entry is somewhere in the major vector. We need to relink around | 
|---|
| 423 | it and then link it on the front of the free list. | 
|---|
| 424 |  | 
|---|
| 425 | The loop runs over elements 1 .. len-1; we've already ruled out element 0. | 
|---|
| 426 | */ | 
|---|
| 427 | else | 
|---|
| 428 | { int len = majlens[majndx] ; | 
|---|
| 429 | CoinBigIndex kpre = k ; | 
|---|
| 430 | k = majlinks[k] ; | 
|---|
| 431 | for (int i = 1 ; i < len ; ++i) | 
|---|
| 432 | { if (minndxs[k] == minndx) | 
|---|
| 433 | { majlinks[kpre] = majlinks[k] ; | 
|---|
| 434 | majlinks[k] = *free_listp ; | 
|---|
| 435 | *free_listp = k ; | 
|---|
| 436 | majlens[majndx]-- ; | 
|---|
| 437 | return ; } | 
|---|
| 438 | kpre = k ; | 
|---|
| 439 | k = majlinks[k] ; } | 
|---|
| 440 | DIE( "DELETE_FROM_MAJOR2") ; } | 
|---|
| 441 |  | 
|---|
| 442 | assert(*free_listp >= 0) ; | 
|---|
| 443 |  | 
|---|
| 444 | return ; } | 
|---|
| 445 |  | 
|---|