| 1 | /* $Id: CoinPresolveImpliedFree.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <stdio.h> |
| 7 | #include <math.h> |
| 8 | |
| 9 | #include "CoinPresolveMatrix.hpp" |
| 10 | #include "CoinPresolveSubst.hpp" |
| 11 | #include "CoinPresolveIsolated.hpp" |
| 12 | #include "CoinPresolveFixed.hpp" |
| 13 | #include "CoinPresolveImpliedFree.hpp" |
| 14 | #include "CoinPresolveUseless.hpp" |
| 15 | #include "CoinPresolveForcing.hpp" |
| 16 | #include "CoinMessage.hpp" |
| 17 | #include "CoinHelperFunctions.hpp" |
| 18 | #include "CoinSort.hpp" |
| 19 | #include "CoinFinite.hpp" |
| 20 | |
| 21 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 22 | #include "CoinPresolvePsdebug.hpp" |
| 23 | #endif |
| 24 | |
| 25 | namespace { // begin unnamed file-local namespace |
| 26 | |
| 27 | const CoinPresolveAction *testRedundant (CoinPresolveMatrix *prob, |
| 28 | const CoinPresolveAction *next, |
| 29 | int & numberInfeasible) |
| 30 | { |
| 31 | numberInfeasible=0; |
| 32 | int numberColumns = prob->ncols_; |
| 33 | double * columnLower = new double[numberColumns]; |
| 34 | double * columnUpper = new double[numberColumns]; |
| 35 | CoinMemcpyN(prob->clo_,numberColumns,columnLower); |
| 36 | CoinMemcpyN(prob->cup_,numberColumns,columnUpper); |
| 37 | |
| 38 | const double *element = prob->rowels_; |
| 39 | const int *column = prob->hcol_; |
| 40 | const CoinBigIndex *rowStart = prob->mrstrt_; |
| 41 | const int *rowLength = prob->hinrow_; |
| 42 | int numberRows = prob->nrows_; |
| 43 | const int *hrow = prob->hrow_; |
| 44 | const CoinBigIndex *mcstrt = prob->mcstrt_; |
| 45 | const int *hincol = prob->hincol_; |
| 46 | |
| 47 | int *useless_rows = prob->usefulRowInt_+numberRows; //new int[numberRows]; |
| 48 | int nuseless_rows = 0; |
| 49 | |
| 50 | double *rowLower = prob->rlo_; |
| 51 | double *rowUpper = prob->rup_; |
| 52 | |
| 53 | double tolerance = prob->feasibilityTolerance_; |
| 54 | int numberChanged=1,iPass=0; |
| 55 | #define USE_SMALL_LARGE |
| 56 | #ifdef USE_SMALL_LARGE |
| 57 | double large = 1.0e15; // treat bounds > this as infinite |
| 58 | #else |
| 59 | double large = 1.0e20; // treat bounds > this as infinite |
| 60 | #endif |
| 61 | #ifndef NDEBUG |
| 62 | double large2= 1.0e10*large; |
| 63 | #endif |
| 64 | int totalTightened = 0; |
| 65 | |
| 66 | int iRow, iColumn; |
| 67 | |
| 68 | char * markRow = reinterpret_cast<char *>(prob->usefulRowInt_); // wasnew int[numberRows]; |
| 69 | for (iRow=0;iRow<numberRows;iRow++) { |
| 70 | if ((rowLower[iRow]>-large||rowUpper[iRow]<large)&&rowLength[iRow]>0) { |
| 71 | markRow[iRow]=-1; |
| 72 | } else { |
| 73 | markRow[iRow]=1; |
| 74 | if (rowLength[iRow]>0) { |
| 75 | // Row is redundant |
| 76 | useless_rows[nuseless_rows++] = iRow; |
| 77 | prob->addRow(iRow); |
| 78 | } |
| 79 | } |
| 80 | } |
| 81 | #define MAXPASS 10 |
| 82 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
| 83 | double relaxedTolerance = 100.0*tolerance; |
| 84 | |
| 85 | // Loop round seeing if we can tighten bounds |
| 86 | // Would be faster to have a stack of possible rows |
| 87 | // and we put altered rows back on stack |
| 88 | int numberCheck=-1; |
| 89 | while(numberChanged>numberCheck) { |
| 90 | |
| 91 | numberChanged = 0; // Bounds tightened this pass |
| 92 | |
| 93 | if (iPass==MAXPASS) break; |
| 94 | iPass++; |
| 95 | |
| 96 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 97 | |
| 98 | if (markRow[iRow]==-1) { |
| 99 | |
| 100 | // possible row - but mark as useless next time |
| 101 | markRow[iRow]=-2; |
| 102 | int infiniteUpper = 0; |
| 103 | int infiniteLower = 0; |
| 104 | double maximumUp = 0.0; |
| 105 | double maximumDown = 0.0; |
| 106 | double newBound; |
| 107 | CoinBigIndex rStart = rowStart[iRow]; |
| 108 | CoinBigIndex rEnd = rowStart[iRow]+rowLength[iRow]; |
| 109 | CoinBigIndex j; |
| 110 | // Compute possible lower and upper ranges |
| 111 | |
| 112 | for (j = rStart; j < rEnd; ++j) { |
| 113 | double value=element[j]; |
| 114 | iColumn = column[j]; |
| 115 | if (value > 0.0) { |
| 116 | if (columnUpper[iColumn] < large) |
| 117 | maximumUp += columnUpper[iColumn] * value; |
| 118 | else |
| 119 | ++infiniteUpper; |
| 120 | if (columnLower[iColumn] > -large) |
| 121 | maximumDown += columnLower[iColumn] * value; |
| 122 | else |
| 123 | ++infiniteLower; |
| 124 | } else if (value<0.0) { |
| 125 | if (columnUpper[iColumn] < large) |
| 126 | maximumDown += columnUpper[iColumn] * value; |
| 127 | else |
| 128 | ++infiniteLower; |
| 129 | if (columnLower[iColumn] > -large) |
| 130 | maximumUp += columnLower[iColumn] * value; |
| 131 | else |
| 132 | ++infiniteUpper; |
| 133 | } |
| 134 | } |
| 135 | // Build in a margin of error |
| 136 | maximumUp += 1.0e-8*fabs(maximumUp); |
| 137 | maximumDown -= 1.0e-8*fabs(maximumDown); |
| 138 | double maxUp = maximumUp+infiniteUpper*1.0e31; |
| 139 | double maxDown = maximumDown-infiniteLower*1.0e31; |
| 140 | if (maxUp <= rowUpper[iRow] + tolerance && |
| 141 | maxDown >= rowLower[iRow] - tolerance) { |
| 142 | |
| 143 | } else { |
| 144 | if (maxUp < rowLower[iRow] -relaxedTolerance || |
| 145 | maxDown > rowUpper[iRow]+relaxedTolerance) { |
| 146 | if(!fixInfeasibility) { |
| 147 | // problem is infeasible - exit at once |
| 148 | numberInfeasible++; |
| 149 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 150 | prob->messages()) |
| 151 | <<iRow |
| 152 | <<rowLower[iRow] |
| 153 | <<rowUpper[iRow] |
| 154 | <<CoinMessageEol; |
| 155 | break; |
| 156 | } else { |
| 157 | continue; |
| 158 | } |
| 159 | } |
| 160 | double lower = rowLower[iRow]; |
| 161 | double upper = rowUpper[iRow]; |
| 162 | // Clean up |
| 163 | if (maximumUp < lower && maximumUp > lower -relaxedTolerance) |
| 164 | maximumUp=lower; |
| 165 | if (maximumDown > upper && maximumDown < upper +relaxedTolerance) |
| 166 | maximumDown=upper; |
| 167 | for (j = rStart; j < rEnd; ++j) { |
| 168 | double value=element[j]; |
| 169 | iColumn = column[j]; |
| 170 | double nowLower = columnLower[iColumn]; |
| 171 | double nowUpper = columnUpper[iColumn]; |
| 172 | if (value > 0.0) { |
| 173 | // positive value |
| 174 | if (lower>-large) { |
| 175 | if (!infiniteUpper) { |
| 176 | assert(nowUpper < large2); |
| 177 | newBound = nowUpper + |
| 178 | (lower - maximumUp) / value; |
| 179 | // relax if original was large |
| 180 | if (fabs(maximumUp)>1.0e8) |
| 181 | newBound -= 1.0e-12*fabs(maximumUp); |
| 182 | } else if (infiniteUpper==1&&nowUpper>=large) { |
| 183 | newBound = (lower -maximumUp) / value; |
| 184 | // relax if original was large |
| 185 | if (fabs(maximumUp)>1.0e8) |
| 186 | newBound -= 1.0e-12*fabs(maximumUp); |
| 187 | } else { |
| 188 | newBound = -COIN_DBL_MAX; |
| 189 | } |
| 190 | if (newBound > nowLower + 1.0e-12&&newBound>-large) { |
| 191 | // Tighten the lower bound |
| 192 | columnLower[iColumn] = newBound; |
| 193 | markRow[iRow]=1; |
| 194 | numberChanged++; |
| 195 | // Mark rows as possible |
| 196 | CoinBigIndex kcs = mcstrt[iColumn]; |
| 197 | CoinBigIndex kce = kcs + hincol[iColumn]; |
| 198 | CoinBigIndex k; |
| 199 | for (k=kcs; k<kce; ++k) { |
| 200 | int row = hrow[k]; |
| 201 | if (markRow[row]==-2) { |
| 202 | // on list for next time |
| 203 | markRow[row]=-1; |
| 204 | } |
| 205 | } |
| 206 | // check infeasible (relaxed) |
| 207 | if (nowUpper - newBound < |
| 208 | -relaxedTolerance) { |
| 209 | numberInfeasible++; |
| 210 | } |
| 211 | // adjust |
| 212 | double now; |
| 213 | if (nowLower<=-large) { |
| 214 | now=0.0; |
| 215 | infiniteLower--; |
| 216 | } else { |
| 217 | now = nowLower; |
| 218 | } |
| 219 | maximumDown += (newBound-now) * value; |
| 220 | nowLower = newBound; |
| 221 | //#define FREE_DEBUG 2 |
| 222 | #if FREE_DEBUG >1 |
| 223 | if (fabs((newBound-now)*value)>1.0e8) { |
| 224 | // recompute |
| 225 | infiniteLower = 0; |
| 226 | maximumDown = 0.0; |
| 227 | CoinBigIndex j2; |
| 228 | // Compute possible lower and upper ranges |
| 229 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 230 | double value=element[j2]; |
| 231 | int iColumn = column[j2]; |
| 232 | if (value > 0.0) { |
| 233 | if (columnLower[iColumn] > -large) |
| 234 | maximumDown += columnLower[iColumn] * value; |
| 235 | else |
| 236 | ++infiniteLower; |
| 237 | } else if (value<0.0) { |
| 238 | if (columnUpper[iColumn] < large) |
| 239 | maximumDown += columnUpper[iColumn] * value; |
| 240 | else |
| 241 | ++infiniteLower; |
| 242 | } |
| 243 | } |
| 244 | // Build in a margin of error |
| 245 | maximumDown -= 1.0e-8*fabs(maximumDown); |
| 246 | if (maximumDown > upper && maximumDown < upper +relaxedTolerance) |
| 247 | maximumDown=upper; |
| 248 | } |
| 249 | #endif |
| 250 | #if FREE_DEBUG |
| 251 | #define DEBUG_TOLERANCE 1.0e-10 |
| 252 | { // DEBUG |
| 253 | int infiniteUpper2 = 0; |
| 254 | int infiniteLower2 = 0; |
| 255 | double maximumUp2 = 0.0; |
| 256 | double maximumDown2 = 0.0; |
| 257 | CoinBigIndex j2; |
| 258 | // Compute possible lower and upper ranges |
| 259 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 260 | double value=element[j2]; |
| 261 | int iColumn = column[j2]; |
| 262 | if (value > 0.0) { |
| 263 | if (columnUpper[iColumn] < large) |
| 264 | maximumUp2 += columnUpper[iColumn] * value; |
| 265 | else |
| 266 | ++infiniteUpper2; |
| 267 | if (columnLower[iColumn] > -large) |
| 268 | maximumDown2 += columnLower[iColumn] * value; |
| 269 | else |
| 270 | ++infiniteLower2; |
| 271 | } else if (value<0.0) { |
| 272 | if (columnUpper[iColumn] < large) |
| 273 | maximumDown2 += columnUpper[iColumn] * value; |
| 274 | else |
| 275 | ++infiniteLower2; |
| 276 | if (columnLower[iColumn] > -large) |
| 277 | maximumUp2 += columnLower[iColumn] * value; |
| 278 | else |
| 279 | ++infiniteUpper2; |
| 280 | } |
| 281 | } |
| 282 | // Build in a margin of error |
| 283 | maximumUp2 += 1.0e-8*fabs(maximumUp2); |
| 284 | maximumDown2 -= 1.0e-8*fabs(maximumDown2); |
| 285 | if (maximumUp2 < lower && maximumUp2 > lower -relaxedTolerance) |
| 286 | maximumUp2=lower; |
| 287 | if (maximumDown2 > upper && maximumDown2 < upper +relaxedTolerance) |
| 288 | maximumDown2=upper; |
| 289 | assert (infiniteLower==infiniteLower2); |
| 290 | assert (infiniteUpper==infiniteUpper2); |
| 291 | assert (fabs(maximumDown-maximumDown2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumDown))); |
| 292 | assert (fabs(maximumUp-maximumUp2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumUp))); |
| 293 | } // END DEBUG |
| 294 | #endif |
| 295 | } |
| 296 | } |
| 297 | if (upper <large) { |
| 298 | if (!infiniteLower) { |
| 299 | assert(nowLower >- large2); |
| 300 | newBound = nowLower + |
| 301 | (upper - maximumDown) / value; |
| 302 | // relax if original was large |
| 303 | if (fabs(maximumDown)>1.0e8) |
| 304 | newBound += 1.0e-12*fabs(maximumDown); |
| 305 | } else if (infiniteLower==1&&nowLower<=-large) { |
| 306 | newBound = (upper - maximumDown) / value; |
| 307 | // relax if original was large |
| 308 | if (fabs(maximumDown)>1.0e8) |
| 309 | newBound += 1.0e-12*fabs(maximumDown); |
| 310 | } else { |
| 311 | newBound = COIN_DBL_MAX; |
| 312 | } |
| 313 | if (newBound < nowUpper - 1.0e-12&&newBound<large) { |
| 314 | // Tighten the upper bound |
| 315 | columnUpper[iColumn] = newBound; |
| 316 | markRow[iRow]=1; |
| 317 | numberChanged++; |
| 318 | // Mark rows as possible |
| 319 | CoinBigIndex kcs = mcstrt[iColumn]; |
| 320 | CoinBigIndex kce = kcs + hincol[iColumn]; |
| 321 | CoinBigIndex k; |
| 322 | for (k=kcs; k<kce; ++k) { |
| 323 | int row = hrow[k]; |
| 324 | if (markRow[row]==-2) { |
| 325 | // on list for next time |
| 326 | markRow[row]=-1; |
| 327 | } |
| 328 | } |
| 329 | // check infeasible (relaxed) |
| 330 | if (newBound - nowLower < |
| 331 | -relaxedTolerance) { |
| 332 | numberInfeasible++; |
| 333 | } |
| 334 | // adjust |
| 335 | double now; |
| 336 | if (nowUpper>=large) { |
| 337 | now=0.0; |
| 338 | infiniteUpper--; |
| 339 | } else { |
| 340 | now = nowUpper; |
| 341 | } |
| 342 | maximumUp += (newBound-now) * value; |
| 343 | nowUpper = newBound; |
| 344 | #if FREE_DEBUG >1 |
| 345 | if (fabs((newBound-now)*value)>1.0e8) { |
| 346 | // recompute |
| 347 | infiniteUpper = 0; |
| 348 | maximumUp = 0.0; |
| 349 | CoinBigIndex j2; |
| 350 | // Compute possible lower and upper ranges |
| 351 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 352 | double value=element[j2]; |
| 353 | int iColumn = column[j2]; |
| 354 | if (value > 0.0) { |
| 355 | if (columnUpper[iColumn] < large) |
| 356 | maximumUp += columnUpper[iColumn] * value; |
| 357 | else |
| 358 | ++infiniteUpper; |
| 359 | } else if (value<0.0) { |
| 360 | if (columnLower[iColumn] > -large) |
| 361 | maximumUp += columnLower[iColumn] * value; |
| 362 | else |
| 363 | ++infiniteUpper; |
| 364 | } |
| 365 | } |
| 366 | // Build in a margin of error |
| 367 | maximumUp += 1.0e-8*fabs(maximumUp); |
| 368 | if (maximumUp < lower && maximumUp > lower -relaxedTolerance) |
| 369 | maximumUp=lower; |
| 370 | } |
| 371 | #endif |
| 372 | #if FREE_DEBUG |
| 373 | { // DEBUG |
| 374 | int infiniteUpper2 = 0; |
| 375 | int infiniteLower2 = 0; |
| 376 | double maximumUp2 = 0.0; |
| 377 | double maximumDown2 = 0.0; |
| 378 | CoinBigIndex j2; |
| 379 | // Compute possible lower and upper ranges |
| 380 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 381 | double value=element[j2]; |
| 382 | int iColumn = column[j2]; |
| 383 | if (value > 0.0) { |
| 384 | if (columnUpper[iColumn] < large) |
| 385 | maximumUp2 += columnUpper[iColumn] * value; |
| 386 | else |
| 387 | ++infiniteUpper2; |
| 388 | if (columnLower[iColumn] > -large) |
| 389 | maximumDown2 += columnLower[iColumn] * value; |
| 390 | else |
| 391 | ++infiniteLower2; |
| 392 | } else if (value<0.0) { |
| 393 | if (columnUpper[iColumn] < large) |
| 394 | maximumDown2 += columnUpper[iColumn] * value; |
| 395 | else |
| 396 | ++infiniteLower2; |
| 397 | if (columnLower[iColumn] > -large) |
| 398 | maximumUp2 += columnLower[iColumn] * value; |
| 399 | else |
| 400 | ++infiniteUpper2; |
| 401 | } |
| 402 | } |
| 403 | // Build in a margin of error |
| 404 | maximumUp2 += 1.0e-8*fabs(maximumUp2); |
| 405 | maximumDown2 -= 1.0e-8*fabs(maximumDown2); |
| 406 | if (maximumUp2 < lower && maximumUp2 > lower -relaxedTolerance) |
| 407 | maximumUp2=lower; |
| 408 | if (maximumDown2 > upper && maximumDown2 < upper +relaxedTolerance) |
| 409 | maximumDown2=upper; |
| 410 | assert (infiniteLower==infiniteLower2); |
| 411 | assert (infiniteUpper==infiniteUpper2); |
| 412 | assert (fabs(maximumDown-maximumDown2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumDown))); |
| 413 | assert (fabs(maximumUp-maximumUp2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumUp))); |
| 414 | } // END DEBUG |
| 415 | #endif |
| 416 | } |
| 417 | } |
| 418 | } else { |
| 419 | // negative value |
| 420 | if (lower>-large) { |
| 421 | if (!infiniteUpper) { |
| 422 | assert(nowLower < large2); |
| 423 | newBound = nowLower + |
| 424 | (lower - maximumUp) / value; |
| 425 | // relax if original was large |
| 426 | if (fabs(maximumUp)>1.0e8) |
| 427 | newBound += 1.0e-12*fabs(maximumUp); |
| 428 | } else if (infiniteUpper==1&&nowLower<=-large) { |
| 429 | newBound = (lower -maximumUp) / value; |
| 430 | // relax if original was large |
| 431 | if (fabs(maximumUp)>1.0e8) |
| 432 | newBound += 1.0e-12*fabs(maximumUp); |
| 433 | } else { |
| 434 | newBound = COIN_DBL_MAX; |
| 435 | } |
| 436 | if (newBound < nowUpper - 1.0e-12&&newBound<large) { |
| 437 | // Tighten the upper bound |
| 438 | columnUpper[iColumn] = newBound; |
| 439 | markRow[iRow]=1; |
| 440 | numberChanged++; |
| 441 | // Mark rows as possible |
| 442 | CoinBigIndex kcs = mcstrt[iColumn]; |
| 443 | CoinBigIndex kce = kcs + hincol[iColumn]; |
| 444 | CoinBigIndex k; |
| 445 | for (k=kcs; k<kce; ++k) { |
| 446 | int row = hrow[k]; |
| 447 | if (markRow[row]==-2) { |
| 448 | // on list for next time |
| 449 | markRow[row]=-1; |
| 450 | } |
| 451 | } |
| 452 | // check infeasible (relaxed) |
| 453 | if (newBound - nowLower < |
| 454 | -relaxedTolerance) { |
| 455 | numberInfeasible++; |
| 456 | } |
| 457 | // adjust |
| 458 | double now; |
| 459 | if (nowUpper>=large) { |
| 460 | now=0.0; |
| 461 | infiniteLower--; |
| 462 | } else { |
| 463 | now = nowUpper; |
| 464 | } |
| 465 | maximumDown += (newBound-now) * value; |
| 466 | nowUpper = newBound; |
| 467 | #if FREE_DEBUG >1 |
| 468 | if (fabs((newBound-now)*value)>1.0e8) { |
| 469 | // recompute |
| 470 | infiniteLower = 0; |
| 471 | maximumDown = 0.0; |
| 472 | CoinBigIndex j2; |
| 473 | // Compute possible lower and upper ranges |
| 474 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 475 | double value=element[j2]; |
| 476 | int iColumn = column[j2]; |
| 477 | if (value > 0.0) { |
| 478 | if (columnLower[iColumn] > -large) |
| 479 | maximumDown += columnLower[iColumn] * value; |
| 480 | else |
| 481 | ++infiniteLower; |
| 482 | } else if (value<0.0) { |
| 483 | if (columnUpper[iColumn] < large) |
| 484 | maximumDown += columnUpper[iColumn] * value; |
| 485 | else |
| 486 | ++infiniteLower; |
| 487 | } |
| 488 | } |
| 489 | // Build in a margin of error |
| 490 | maximumDown -= 1.0e-8*fabs(maximumDown); |
| 491 | if (maximumDown > upper && maximumDown < upper +relaxedTolerance) |
| 492 | maximumDown=upper; |
| 493 | } |
| 494 | #endif |
| 495 | #if FREE_DEBUG |
| 496 | { // DEBUG |
| 497 | int infiniteUpper2 = 0; |
| 498 | int infiniteLower2 = 0; |
| 499 | double maximumUp2 = 0.0; |
| 500 | double maximumDown2 = 0.0; |
| 501 | CoinBigIndex j2; |
| 502 | // Compute possible lower and upper ranges |
| 503 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 504 | double value=element[j2]; |
| 505 | int iColumn = column[j2]; |
| 506 | if (value > 0.0) { |
| 507 | if (columnUpper[iColumn] < large) |
| 508 | maximumUp2 += columnUpper[iColumn] * value; |
| 509 | else |
| 510 | ++infiniteUpper2; |
| 511 | if (columnLower[iColumn] > -large) |
| 512 | maximumDown2 += columnLower[iColumn] * value; |
| 513 | else |
| 514 | ++infiniteLower2; |
| 515 | } else if (value<0.0) { |
| 516 | if (columnUpper[iColumn] < large) |
| 517 | maximumDown2 += columnUpper[iColumn] * value; |
| 518 | else |
| 519 | ++infiniteLower2; |
| 520 | if (columnLower[iColumn] > -large) |
| 521 | maximumUp2 += columnLower[iColumn] * value; |
| 522 | else |
| 523 | ++infiniteUpper2; |
| 524 | } |
| 525 | } |
| 526 | // Build in a margin of error |
| 527 | maximumUp2 += 1.0e-8*fabs(maximumUp2); |
| 528 | maximumDown2 -= 1.0e-8*fabs(maximumDown2); |
| 529 | if (maximumUp2 < lower && maximumUp2 > lower -relaxedTolerance) |
| 530 | maximumUp2=lower; |
| 531 | if (maximumDown2 > upper && maximumDown2 < upper +relaxedTolerance) |
| 532 | maximumDown2=upper; |
| 533 | assert (infiniteLower==infiniteLower2); |
| 534 | assert (infiniteUpper==infiniteUpper2); |
| 535 | assert (fabs(maximumDown-maximumDown2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumDown))); |
| 536 | assert (fabs(maximumUp-maximumUp2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumUp))); |
| 537 | } // END DEBUG |
| 538 | #endif |
| 539 | } |
| 540 | } |
| 541 | if (upper <large) { |
| 542 | if (!infiniteLower) { |
| 543 | assert(nowUpper < large2); |
| 544 | newBound = nowUpper + |
| 545 | (upper - maximumDown) / value; |
| 546 | // relax if original was large |
| 547 | if (fabs(maximumDown)>1.0e8) |
| 548 | newBound -= 1.0e-12*fabs(maximumDown); |
| 549 | } else if (infiniteLower==1&&nowUpper>=large) { |
| 550 | newBound = (upper - maximumDown) / value; |
| 551 | // relax if original was large |
| 552 | if (fabs(maximumDown)>1.0e8) |
| 553 | newBound -= 1.0e-12*fabs(maximumDown); |
| 554 | } else { |
| 555 | newBound = -COIN_DBL_MAX; |
| 556 | } |
| 557 | if (newBound > nowLower + 1.0e-12&&newBound>-large) { |
| 558 | // Tighten the lower bound |
| 559 | columnLower[iColumn] = newBound; |
| 560 | markRow[iRow]=1; |
| 561 | numberChanged++; |
| 562 | // Mark rows as possible |
| 563 | CoinBigIndex kcs = mcstrt[iColumn]; |
| 564 | CoinBigIndex kce = kcs + hincol[iColumn]; |
| 565 | CoinBigIndex k; |
| 566 | for (k=kcs; k<kce; ++k) { |
| 567 | int row = hrow[k]; |
| 568 | if (markRow[row]==-2) { |
| 569 | // on list for next time |
| 570 | markRow[row]=-1; |
| 571 | } |
| 572 | } |
| 573 | // check infeasible (relaxed) |
| 574 | if (nowUpper - newBound < |
| 575 | -relaxedTolerance) { |
| 576 | numberInfeasible++; |
| 577 | } |
| 578 | // adjust |
| 579 | double now; |
| 580 | if (nowLower<=-large) { |
| 581 | now=0.0; |
| 582 | infiniteUpper--; |
| 583 | } else { |
| 584 | now = nowLower; |
| 585 | } |
| 586 | maximumUp += (newBound-now) * value; |
| 587 | nowLower = newBound; |
| 588 | #if FREE_DEBUG >1 |
| 589 | if (fabs((newBound-now)*value)>1.0e8) { |
| 590 | // recompute |
| 591 | infiniteUpper = 0; |
| 592 | maximumUp = 0.0; |
| 593 | CoinBigIndex j2; |
| 594 | // Compute possible lower and upper ranges |
| 595 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 596 | double value=element[j2]; |
| 597 | int iColumn = column[j2]; |
| 598 | if (value > 0.0) { |
| 599 | if (columnUpper[iColumn] < large) |
| 600 | maximumUp += columnUpper[iColumn] * value; |
| 601 | else |
| 602 | ++infiniteUpper; |
| 603 | } else if (value<0.0) { |
| 604 | if (columnLower[iColumn] > -large) |
| 605 | maximumUp += columnLower[iColumn] * value; |
| 606 | else |
| 607 | ++infiniteUpper; |
| 608 | } |
| 609 | } |
| 610 | // Build in a margin of error |
| 611 | maximumUp += 1.0e-8*fabs(maximumUp); |
| 612 | if (maximumUp < lower && maximumUp > lower -relaxedTolerance) |
| 613 | maximumUp=lower; |
| 614 | } |
| 615 | #endif |
| 616 | #if FREE_DEBUG |
| 617 | { // DEBUG |
| 618 | int infiniteUpper2 = 0; |
| 619 | int infiniteLower2 = 0; |
| 620 | double maximumUp2 = 0.0; |
| 621 | double maximumDown2 = 0.0; |
| 622 | CoinBigIndex j2; |
| 623 | // Compute possible lower and upper ranges |
| 624 | for (j2 = rStart; j2 < rEnd; ++j2) { |
| 625 | double value=element[j2]; |
| 626 | int iColumn = column[j2]; |
| 627 | if (value > 0.0) { |
| 628 | if (columnUpper[iColumn] < large) |
| 629 | maximumUp2 += columnUpper[iColumn] * value; |
| 630 | else |
| 631 | ++infiniteUpper2; |
| 632 | if (columnLower[iColumn] > -large) |
| 633 | maximumDown2 += columnLower[iColumn] * value; |
| 634 | else |
| 635 | ++infiniteLower2; |
| 636 | } else if (value<0.0) { |
| 637 | if (columnUpper[iColumn] < large) |
| 638 | maximumDown2 += columnUpper[iColumn] * value; |
| 639 | else |
| 640 | ++infiniteLower2; |
| 641 | if (columnLower[iColumn] > -large) |
| 642 | maximumUp2 += columnLower[iColumn] * value; |
| 643 | else |
| 644 | ++infiniteUpper2; |
| 645 | } |
| 646 | } |
| 647 | // Build in a margin of error |
| 648 | maximumUp2 += 1.0e-8*fabs(maximumUp2); |
| 649 | maximumDown2 -= 1.0e-8*fabs(maximumDown2); |
| 650 | if (maximumUp2 < lower && maximumUp2 > lower -relaxedTolerance) |
| 651 | maximumUp2=lower; |
| 652 | if (maximumDown2 > upper && maximumDown2 < upper +relaxedTolerance) |
| 653 | maximumDown2=upper; |
| 654 | assert (infiniteLower==infiniteLower2); |
| 655 | assert (infiniteUpper==infiniteUpper2); |
| 656 | assert (fabs(maximumDown-maximumDown2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumDown))); |
| 657 | assert (fabs(maximumUp-maximumUp2)<DEBUG_TOLERANCE*(1.0e6+fabs(maximumUp))); |
| 658 | } // END DEBUG |
| 659 | #endif |
| 660 | } |
| 661 | } |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | } |
| 666 | } |
| 667 | totalTightened += numberChanged; |
| 668 | if (iPass==1) |
| 669 | numberCheck=CoinMax(10,numberChanged>>5); |
| 670 | if (numberInfeasible) break; |
| 671 | } |
| 672 | if (!numberInfeasible) { |
| 673 | //#define NO_FORCING |
| 674 | #ifdef NO_FORCING |
| 675 | #define ZZ 1 |
| 676 | #ifdef ZZ |
| 677 | double * clo2 = CoinCopyOfArray(prob->clo_,numberColumns); |
| 678 | double * cup2 = CoinCopyOfArray(prob->cup_,numberColumns); |
| 679 | #endif |
| 680 | forcing_constraint_action::action * actions = NULL; |
| 681 | int numActions=0; |
| 682 | int maxActions=0; |
| 683 | double * clo = prob->clo_; |
| 684 | double * cup = prob->cup_; |
| 685 | double *csol = prob->sol_ ; |
| 686 | int * fixed = prob->usefulColumnInt_; |
| 687 | for (int i=0;i<numberColumns;i++) { |
| 688 | if (cup[i]>clo[i]+tolerance) |
| 689 | fixed[i]=0; |
| 690 | else |
| 691 | fixed[i]=-1; |
| 692 | } |
| 693 | #endif |
| 694 | for (iRow = 0; iRow < numberRows; iRow++) { |
| 695 | |
| 696 | if (markRow[iRow]<0) { |
| 697 | |
| 698 | // possible row |
| 699 | int infiniteUpper = 0; |
| 700 | int infiniteLower = 0; |
| 701 | double maximumUp = 0.0; |
| 702 | double maximumDown = 0.0; |
| 703 | CoinBigIndex rStart = rowStart[iRow]; |
| 704 | CoinBigIndex rEnd = rowStart[iRow]+rowLength[iRow]; |
| 705 | CoinBigIndex j; |
| 706 | // Compute possible lower and upper ranges |
| 707 | |
| 708 | for (j = rStart; j < rEnd; ++j) { |
| 709 | double value=element[j]; |
| 710 | iColumn = column[j]; |
| 711 | if (value > 0.0) { |
| 712 | if (columnUpper[iColumn] < large) |
| 713 | maximumUp += columnUpper[iColumn] * value; |
| 714 | else |
| 715 | ++infiniteUpper; |
| 716 | if (columnLower[iColumn] > -large) |
| 717 | maximumDown += columnLower[iColumn] * value; |
| 718 | else |
| 719 | ++infiniteLower; |
| 720 | } else if (value<0.0) { |
| 721 | if (columnUpper[iColumn] < large) |
| 722 | maximumDown += columnUpper[iColumn] * value; |
| 723 | else |
| 724 | ++infiniteLower; |
| 725 | if (columnLower[iColumn] > -large) |
| 726 | maximumUp += columnLower[iColumn] * value; |
| 727 | else |
| 728 | ++infiniteUpper; |
| 729 | } |
| 730 | } |
| 731 | // Build in a margin of error |
| 732 | maximumUp += 1.0e-8*fabs(maximumUp); |
| 733 | maximumDown -= 1.0e-8*fabs(maximumDown); |
| 734 | double maxUp = maximumUp+infiniteUpper*1.0e31; |
| 735 | double maxDown = maximumDown-infiniteLower*1.0e31; |
| 736 | if (maxUp <= rowUpper[iRow] + tolerance && |
| 737 | maxDown >= rowLower[iRow] - tolerance) { |
| 738 | #ifndef NO_FORCING |
| 739 | // Row is redundant |
| 740 | useless_rows[nuseless_rows++] = iRow; |
| 741 | prob->addRow(iRow); |
| 742 | #else |
| 743 | if (maxUp <= rowUpper[iRow] - tolerance && |
| 744 | maxDown >= rowLower[iRow] + tolerance) { |
| 745 | // Row is redundant |
| 746 | useless_rows[nuseless_rows++] = iRow; |
| 747 | prob->addRow(iRow); |
| 748 | } else { |
| 749 | CoinBigIndex k; |
| 750 | double tol2 = 10.0*tolerance; |
| 751 | int nFree=0; |
| 752 | bool bad=false; |
| 753 | for ( k=rStart; k<rEnd; k++) { |
| 754 | int jcol = column[k]; |
| 755 | if (columnUpper[jcol]-columnLower[jcol]>tol2) |
| 756 | nFree++; |
| 757 | if (fixed[jcol]>0) |
| 758 | bad=true; |
| 759 | } |
| 760 | if (nFree&&!bad) { |
| 761 | // the lower bound can just be reached, or |
| 762 | // the upper bound can just be reached; |
| 763 | // called a "forcing constraint" in the paper (p. 226) |
| 764 | const int lbound_tight = (maxUp < PRESOLVE_INF && |
| 765 | fabs(rowLower[iRow] - maxUp) < tolerance); |
| 766 | double *bounds = new double[rowLength[iRow]]; |
| 767 | int *rowcols = new int[rowLength[iRow]]; |
| 768 | int lk = rStart; // load fix-to-down in front |
| 769 | int uk = rEnd; // load fix-to-up in back |
| 770 | for ( k=rStart; k<rEnd; k++) { |
| 771 | int jcol = column[k]; |
| 772 | if (!fixed[jcol]) |
| 773 | fixed[jcol]=1; |
| 774 | prob->addCol(jcol); |
| 775 | double coeff = element[k]; |
| 776 | // one of the two contributed to maxup - set the other to that |
| 777 | if (lbound_tight == (coeff > 0.0)) { |
| 778 | --uk; |
| 779 | bounds[uk-rStart] = clo[jcol]; |
| 780 | rowcols[uk-rStart] = jcol; |
| 781 | if (csol != 0) { |
| 782 | csol[jcol] = columnUpper[jcol] ; |
| 783 | } |
| 784 | #ifdef ZZ |
| 785 | assert (columnLower[jcol]==clo[jcol]); |
| 786 | clo[jcol] = columnUpper[jcol]; |
| 787 | #endif |
| 788 | columnLower[jcol] = columnUpper[jcol]; |
| 789 | } else { |
| 790 | bounds[lk-rStart] = cup[jcol]; |
| 791 | rowcols[lk-rStart] = jcol; |
| 792 | ++lk; |
| 793 | if (csol != 0) { |
| 794 | csol[jcol] = columnLower[jcol] ; |
| 795 | } |
| 796 | #ifdef ZZ |
| 797 | assert (columnUpper[jcol]==cup[jcol]); |
| 798 | cup[jcol] = columnLower[jcol]; |
| 799 | #endif |
| 800 | columnUpper[jcol] = columnLower[jcol]; |
| 801 | } |
| 802 | } |
| 803 | PRESOLVEASSERT(uk == lk); |
| 804 | if (numActions==maxActions) { |
| 805 | maxActions = (11*maxActions)/10+10; |
| 806 | forcing_constraint_action::action * temp = |
| 807 | new forcing_constraint_action::action [maxActions]; |
| 808 | for (int i=0;i<numActions;i++) |
| 809 | temp[i]=actions[i]; |
| 810 | delete [] actions; |
| 811 | actions = temp; |
| 812 | } |
| 813 | |
| 814 | forcing_constraint_action::action * f = &actions[numActions]; |
| 815 | numActions++; |
| 816 | PRESOLVE_DETAIL_PRINT(printf("pre_impliedfree %dR E\n" ,iRow)); |
| 817 | f->row = iRow; |
| 818 | f->nlo = lk-rStart; |
| 819 | f->nup = rEnd-uk; |
| 820 | f->rowcols = rowcols; |
| 821 | f->bounds = bounds; |
| 822 | } else if (!nFree&&!bad) { |
| 823 | // Row is redundant |
| 824 | useless_rows[nuseless_rows++] = iRow; |
| 825 | prob->addRow(iRow); |
| 826 | } |
| 827 | } |
| 828 | #endif |
| 829 | } |
| 830 | } |
| 831 | } |
| 832 | #ifdef NO_FORCING |
| 833 | if (numActions) { |
| 834 | #if PRESOLVE_SUMMARY |
| 835 | printf("NFORCED_FROM_IMPLIED: %d\n" , numActions); |
| 836 | #endif |
| 837 | next = new forcing_constraint_action(numActions, |
| 838 | CoinCopyOfArray(actions,numActions), next); |
| 839 | deleteAction(actions,action*); |
| 840 | actions=NULL; |
| 841 | } |
| 842 | assert (!actions); |
| 843 | #endif |
| 844 | if (nuseless_rows) { |
| 845 | next = useless_constraint_action::presolve(prob, |
| 846 | useless_rows, nuseless_rows, |
| 847 | next); |
| 848 | } |
| 849 | #ifdef NO_FORCING |
| 850 | #ifdef ZZ |
| 851 | // temp |
| 852 | for (int i=0;i<numberColumns;i++) { |
| 853 | clo[i]=clo2[i]; |
| 854 | cup[i]=cup2[i]; |
| 855 | } |
| 856 | #endif |
| 857 | //delete [] clo2; |
| 858 | //delete [] cup2; |
| 859 | if (numActions) { |
| 860 | //int * fixed = prob->usefulColumnInt_; |
| 861 | // See if any columns fixed |
| 862 | int nFixed=0; |
| 863 | for (int i=0;i<numberColumns;i++) { |
| 864 | //if (columnUpper[i]<columnLower[i]+tolerance&& |
| 865 | // cup[i]>clo[i]+tolerance) { |
| 866 | if (fixed[i]>0) { |
| 867 | fixed[nFixed++]=i; |
| 868 | assert (columnUpper[i]>columnLower[i]-10.0*tolerance); |
| 869 | } |
| 870 | } |
| 871 | //if (nFixed) |
| 872 | //printf("could fix %d\n",nFixed); |
| 873 | //next = remove_fixed_action::presolve(prob,fixed,nFixed,next) ; |
| 874 | } |
| 875 | #endif |
| 876 | if ((prob->presolveOptions_&16)!=0) { |
| 877 | // may not unroll |
| 878 | const unsigned char *integerType = prob->integerType_; |
| 879 | double *csol = prob->sol_ ; |
| 880 | double * clo = prob->clo_; |
| 881 | double * cup = prob->cup_; |
| 882 | int * fixed = prob->usefulColumnInt_; |
| 883 | int nFixed=0; |
| 884 | int nChanged=0; |
| 885 | for (int i=0;i<numberColumns;i++) { |
| 886 | if (clo[i]==cup[i]) |
| 887 | continue; |
| 888 | double lower = columnLower[i]; |
| 889 | double upper = columnUpper[i]; |
| 890 | if (integerType[i]) { |
| 891 | //if (floor(upper+1.0e-4)<upper) |
| 892 | upper=floor(upper+1.0e-4); |
| 893 | //if (ceil(lower-1.0e-4)>lower) |
| 894 | lower=ceil(lower-1.0e-4); |
| 895 | } |
| 896 | if (upper-lower<1.0e-8) { |
| 897 | if (upper-lower<-tolerance) |
| 898 | numberInfeasible++; |
| 899 | if (CoinMin(fabs(upper),fabs(lower))<=1.0e-7) |
| 900 | upper=0.0; |
| 901 | fixed[nFixed++]=i; |
| 902 | //printf("fixing %d to %g\n",i,upper); |
| 903 | prob->addCol(i); |
| 904 | cup[i]=upper; |
| 905 | clo[i]=upper; |
| 906 | if (csol != 0) |
| 907 | csol[i] = upper; |
| 908 | } else { |
| 909 | if (integerType[i]) { |
| 910 | if (upper<cup[i]) { |
| 911 | cup[i]=upper; |
| 912 | nChanged++; |
| 913 | prob->addCol(i); |
| 914 | } |
| 915 | if (lower>clo[i]) { |
| 916 | clo[i]=lower; |
| 917 | nChanged++; |
| 918 | prob->addCol(i); |
| 919 | } |
| 920 | } |
| 921 | } |
| 922 | } |
| 923 | #ifdef CLP_INVESTIGATE |
| 924 | if (nFixed||nChanged) |
| 925 | printf("%d fixed in impliedfree, %d changed\n" ,nFixed,nChanged); |
| 926 | #endif |
| 927 | if (nFixed) |
| 928 | next = remove_fixed_action::presolve(prob,fixed,nFixed,next) ; |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | delete [] columnLower; |
| 933 | delete [] columnUpper; |
| 934 | return next; |
| 935 | } |
| 936 | |
| 937 | } // end unnamed file-local namespace |
| 938 | |
| 939 | // If there is a row with a singleton column such that no matter what |
| 940 | // the values of the other variables are, the constraint forces the singleton |
| 941 | // column to have a feasible value, then we can drop the column and row, |
| 942 | // since we just compute the value of the column from the row in postsolve. |
| 943 | // This seems vaguely similar to the case of a useless constraint, but it |
| 944 | // is different. For example, if the singleton column is already free, |
| 945 | // then this operation will eliminate it, but the constraint is not useless |
| 946 | // (assuming the constraint is not trivial), since the variables do not imply an |
| 947 | // upper or lower bound. |
| 948 | // |
| 949 | // If the column is not singleton, we can still do something similar if the |
| 950 | // constraint is an equality constraint. In that case, we substitute away |
| 951 | // the variable in the other constraints it appears in. This introduces |
| 952 | // new coefficients, but the total number of coefficients never increases |
| 953 | // if the column has only two constraints, and may not increase much even |
| 954 | // if there are more. |
| 955 | // |
| 956 | // There is nothing to prevent us from substituting away a variable |
| 957 | // in an equality from the other constraints it appears in, but since |
| 958 | // that causes fill-in, it wouldn't make sense unless we could then |
| 959 | // drop the equality itself. We can't do that if the bounds on the |
| 960 | // variable in equation aren't implied by the equality. |
| 961 | // Another way of thinking of this is that there is nothing special |
| 962 | // about an equality; just like one can't always drop an inequality constraint |
| 963 | // with a column singleton, one can't always drop an equality. |
| 964 | // |
| 965 | // It is possible for two singleton columns to be in the same row. |
| 966 | // In that case, the other one will become empty. If its bounds and |
| 967 | // costs aren't just right, this signals an unbounded problem. |
| 968 | // We don't need to check that specially here. |
| 969 | // |
| 970 | // invariant: loosely packed |
| 971 | const CoinPresolveAction *implied_free_action::presolve(CoinPresolveMatrix *prob, |
| 972 | const CoinPresolveAction *next, |
| 973 | int & fill_level) |
| 974 | { |
| 975 | double startTime = 0.0; |
| 976 | int startEmptyRows=0; |
| 977 | int startEmptyColumns = 0; |
| 978 | if (prob->tuning_) { |
| 979 | startTime = CoinCpuTime(); |
| 980 | startEmptyRows = prob->countEmptyRows(); |
| 981 | startEmptyColumns = prob->countEmptyCols(); |
| 982 | } |
| 983 | double *colels = prob->colels_; |
| 984 | int *hrow = prob->hrow_; |
| 985 | const CoinBigIndex *mcstrt = prob->mcstrt_; |
| 986 | int *hincol = prob->hincol_; |
| 987 | const int ncols = prob->ncols_; |
| 988 | |
| 989 | const double *clo = prob->clo_; |
| 990 | const double *cup = prob->cup_; |
| 991 | |
| 992 | const double *rowels = prob->rowels_; |
| 993 | const int *hcol = prob->hcol_; |
| 994 | const CoinBigIndex *mrstrt = prob->mrstrt_; |
| 995 | int *hinrow = prob->hinrow_; |
| 996 | int nrows = prob->nrows_; |
| 997 | |
| 998 | /*const*/ double *rlo = prob->rlo_; |
| 999 | /*const*/ double *rup = prob->rup_; |
| 1000 | |
| 1001 | double *cost = prob->cost_; |
| 1002 | |
| 1003 | presolvehlink *rlink = prob->rlink_; |
| 1004 | presolvehlink *clink = prob->clink_; |
| 1005 | |
| 1006 | const unsigned char *integerType = prob->integerType_; |
| 1007 | bool stopSomeStuff = (prob->presolveOptions()&4)!=0; |
| 1008 | |
| 1009 | const double tol = prob->feasibilityTolerance_; |
| 1010 | #if 1 |
| 1011 | // This needs to be made faster |
| 1012 | int numberInfeasible; |
| 1013 | //printf("Imp pass %d\n",prob->pass_); |
| 1014 | #ifdef COIN_LIGHTWEIGHT_PRESOLVE |
| 1015 | if (prob->pass_==1) { |
| 1016 | #endif |
| 1017 | next = testRedundant(prob,next,numberInfeasible); |
| 1018 | if ((prob->presolveOptions_&16384)!=0) |
| 1019 | numberInfeasible=0; |
| 1020 | if (numberInfeasible) { |
| 1021 | // infeasible |
| 1022 | prob->status_|= 1; |
| 1023 | return (next); |
| 1024 | } |
| 1025 | #ifdef COIN_LIGHTWEIGHT_PRESOLVE |
| 1026 | } |
| 1027 | #endif |
| 1028 | if (prob->pass_>15&&(prob->presolveOptions_&0x10000)!=0) { |
| 1029 | fill_level=2; |
| 1030 | return next; |
| 1031 | } |
| 1032 | #endif |
| 1033 | // int nbounds = 0; |
| 1034 | |
| 1035 | action *actions = new action [ncols]; |
| 1036 | # ifdef ZEROFAULT |
| 1037 | CoinZeroN(reinterpret_cast<char *>(actions),ncols*sizeof(action)) ; |
| 1038 | # endif |
| 1039 | int nactions = 0; |
| 1040 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
| 1041 | |
| 1042 | int *implied_free = prob->usefulColumnInt_; //new int[ncols]; |
| 1043 | int * whichFree = implied_free+ncols; |
| 1044 | int numberFree=0; |
| 1045 | int i; |
| 1046 | |
| 1047 | // memory for min max |
| 1048 | int * infiniteDown = new int [nrows]; |
| 1049 | int * infiniteUp = new int [nrows]; |
| 1050 | double * maxDown = new double[nrows]; |
| 1051 | double * maxUp = new double[nrows]; |
| 1052 | |
| 1053 | // mark as not computed |
| 1054 | // -1 => not computed, -2 give up (singleton), -3 give up (other) |
| 1055 | for (i=0;i<nrows;i++) { |
| 1056 | if (hinrow[i]>1) |
| 1057 | infiniteUp[i]=-1; |
| 1058 | else |
| 1059 | infiniteUp[i]=-2; |
| 1060 | } |
| 1061 | #ifdef USE_SMALL_LARGE |
| 1062 | double large=1.0e10; |
| 1063 | #else |
| 1064 | double large=1.0e20; |
| 1065 | #endif |
| 1066 | |
| 1067 | int numberLook = prob->numberColsToDo_; |
| 1068 | int iLook; |
| 1069 | int * look = prob->colsToDo_; |
| 1070 | //int * look2 = NULL; |
| 1071 | // if gone from 2 to 3 look at all |
| 1072 | // why does this loop not check for prohibited columns? -- lh, 040818 -- |
| 1073 | // changed 040923 |
| 1074 | if (fill_level<0) { |
| 1075 | look = prob->usefulColumnInt_+ncols; //new int[ncols]; |
| 1076 | //look=look2; |
| 1077 | if (!prob->anyProhibited()) { |
| 1078 | for (iLook=0;iLook<ncols;iLook++) |
| 1079 | look[iLook]=iLook; |
| 1080 | numberLook=ncols; |
| 1081 | } else { |
| 1082 | // some prohibited |
| 1083 | numberLook=0; |
| 1084 | for (iLook=0;iLook<ncols;iLook++) |
| 1085 | if (!prob->colProhibited(iLook)) |
| 1086 | look[numberLook++]=iLook; |
| 1087 | } |
| 1088 | } |
| 1089 | int maxLook = CoinAbs(fill_level); |
| 1090 | for (iLook=0;iLook<numberLook;iLook++) { |
| 1091 | int j=look[iLook]; |
| 1092 | if (hincol[j] <= maxLook&&hincol[j]) { |
| 1093 | CoinBigIndex kcs = mcstrt[j]; |
| 1094 | CoinBigIndex kce = kcs + hincol[j]; |
| 1095 | bool singletonColumn = (hincol[j]==1); |
| 1096 | bool possible = false; |
| 1097 | bool singleton = false; |
| 1098 | CoinBigIndex k; |
| 1099 | double largestElement=0.0; |
| 1100 | for (k=kcs; k<kce; ++k) { |
| 1101 | int row = hrow[k]; |
| 1102 | double coeffj = colels[k]; |
| 1103 | |
| 1104 | // if its row is an equality constraint... |
| 1105 | if (hinrow[row] > 1 ) { |
| 1106 | if ( fabs(rlo[row] - rup[row]) < tol && |
| 1107 | fabs(coeffj) > ZTOLDP2) { |
| 1108 | possible=true; |
| 1109 | } |
| 1110 | largestElement = CoinMax(largestElement,fabs(coeffj)); |
| 1111 | } else { |
| 1112 | singleton=true; |
| 1113 | } |
| 1114 | } |
| 1115 | if (possible&&!singleton) { |
| 1116 | double low=-COIN_DBL_MAX; |
| 1117 | double high=COIN_DBL_MAX; |
| 1118 | // get bound implied by all rows |
| 1119 | for (k=kcs; k<kce; ++k) { |
| 1120 | int row = hrow[k]; |
| 1121 | double coeffj = colels[k]; |
| 1122 | if (fabs(coeffj) > ZTOLDP2) { |
| 1123 | if (infiniteUp[row]==-1) { |
| 1124 | // compute |
| 1125 | CoinBigIndex krs = mrstrt[row]; |
| 1126 | CoinBigIndex kre = krs + hinrow[row]; |
| 1127 | int infiniteUpper = 0; |
| 1128 | int infiniteLower = 0; |
| 1129 | double maximumUp = 0.0; |
| 1130 | double maximumDown = 0.0; |
| 1131 | CoinBigIndex kk; |
| 1132 | // Compute possible lower and upper ranges |
| 1133 | for (kk = krs; kk < kre; ++kk) { |
| 1134 | double value=rowels[kk]; |
| 1135 | int iColumn = hcol[kk]; |
| 1136 | if (value > 0.0) { |
| 1137 | if (cup[iColumn] < large) |
| 1138 | maximumUp += cup[iColumn] * value; |
| 1139 | else |
| 1140 | ++infiniteUpper; |
| 1141 | if (clo[iColumn] > -large) |
| 1142 | maximumDown += clo[iColumn] * value; |
| 1143 | else |
| 1144 | ++infiniteLower; |
| 1145 | } else if (value<0.0) { |
| 1146 | if (cup[iColumn] < large) |
| 1147 | maximumDown += cup[iColumn] * value; |
| 1148 | else |
| 1149 | ++infiniteLower; |
| 1150 | if (clo[iColumn] > -large) |
| 1151 | maximumUp += clo[iColumn] * value; |
| 1152 | else |
| 1153 | ++infiniteUpper; |
| 1154 | } |
| 1155 | } |
| 1156 | double maxUpx = maximumUp+infiniteUpper*1.0e31; |
| 1157 | double maxDownx = maximumDown-infiniteLower*1.0e31; |
| 1158 | if (maxUpx <= rup[row] + tol && |
| 1159 | maxDownx >= rlo[row] - tol) { |
| 1160 | |
| 1161 | // Row is redundant |
| 1162 | infiniteUp[row]=-3; |
| 1163 | |
| 1164 | } else if (maxUpx < rlo[row] -tol &&!fixInfeasibility) { |
| 1165 | /* there is an upper bound and it can't be reached */ |
| 1166 | prob->status_|= 1; |
| 1167 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 1168 | prob->messages()) |
| 1169 | <<row |
| 1170 | <<rlo[row] |
| 1171 | <<rup[row] |
| 1172 | <<CoinMessageEol; |
| 1173 | infiniteUp[row]=-3; |
| 1174 | break; |
| 1175 | } else if ( maxDownx > rup[row]+tol&&!fixInfeasibility) { |
| 1176 | /* there is a lower bound and it can't be reached */ |
| 1177 | prob->status_|= 1; |
| 1178 | prob->messageHandler()->message(COIN_PRESOLVE_ROWINFEAS, |
| 1179 | prob->messages()) |
| 1180 | <<row |
| 1181 | <<rlo[row] |
| 1182 | <<rup[row] |
| 1183 | <<CoinMessageEol; |
| 1184 | infiniteUp[row]=-3; |
| 1185 | break; |
| 1186 | } else { |
| 1187 | infiniteUp[row]=infiniteUpper; |
| 1188 | infiniteDown[row]=infiniteLower; |
| 1189 | maxUp[row]=maximumUp; |
| 1190 | maxDown[row]=maximumDown; |
| 1191 | } |
| 1192 | } |
| 1193 | if (infiniteUp[row]>=0) { |
| 1194 | double lower = rlo[row]; |
| 1195 | double upper = rup[row]; |
| 1196 | double value=coeffj; |
| 1197 | double nowLower = clo[j]; |
| 1198 | double nowUpper = cup[j]; |
| 1199 | double newBound; |
| 1200 | int infiniteUpper=infiniteUp[row]; |
| 1201 | int infiniteLower=infiniteDown[row]; |
| 1202 | double maximumUp = maxUp[row]; |
| 1203 | double maximumDown = maxDown[row]; |
| 1204 | if (value > 0.0) { |
| 1205 | // positive value |
| 1206 | if (lower>-large) { |
| 1207 | if (!infiniteUpper) { |
| 1208 | assert(nowUpper < large); |
| 1209 | newBound = nowUpper + |
| 1210 | (lower - maximumUp) / value; |
| 1211 | // relax if original was large |
| 1212 | if (fabs(maximumUp)>1.0e8&&!singletonColumn) |
| 1213 | newBound -= 1.0e-12*fabs(maximumUp); |
| 1214 | } else if (infiniteUpper==1&&nowUpper>large) { |
| 1215 | newBound = (lower -maximumUp) / value; |
| 1216 | // relax if original was large |
| 1217 | if (fabs(maximumUp)>1.0e8&&!singletonColumn) |
| 1218 | newBound -= 1.0e-12*fabs(maximumUp); |
| 1219 | } else { |
| 1220 | newBound = -COIN_DBL_MAX; |
| 1221 | } |
| 1222 | if (newBound<=-large) |
| 1223 | newBound = -COIN_DBL_MAX; |
| 1224 | if (newBound > nowLower + 1.0e-12) { |
| 1225 | // Tighten the lower bound |
| 1226 | // adjust |
| 1227 | double now; |
| 1228 | if (nowLower<-large) { |
| 1229 | now=0.0; |
| 1230 | infiniteLower--; |
| 1231 | } else { |
| 1232 | now = nowLower; |
| 1233 | } |
| 1234 | maximumDown += (newBound-now) * value; |
| 1235 | nowLower = newBound; |
| 1236 | } |
| 1237 | low=CoinMax(low,newBound); |
| 1238 | } |
| 1239 | if (upper <large) { |
| 1240 | if (!infiniteLower) { |
| 1241 | assert(nowLower >- large); |
| 1242 | newBound = nowLower + |
| 1243 | (upper - maximumDown) / value; |
| 1244 | // relax if original was large |
| 1245 | if (fabs(maximumDown)>1.0e8&&!singletonColumn) |
| 1246 | newBound += 1.0e-12*fabs(maximumDown); |
| 1247 | } else if (infiniteLower==1&&nowLower<-large) { |
| 1248 | newBound = (upper - maximumDown) / value; |
| 1249 | // relax if original was large |
| 1250 | if (fabs(maximumDown)>1.0e8&&!singletonColumn) |
| 1251 | newBound += 1.0e-12*fabs(maximumDown); |
| 1252 | } else { |
| 1253 | newBound = COIN_DBL_MAX; |
| 1254 | } |
| 1255 | if (newBound>=large) |
| 1256 | newBound = COIN_DBL_MAX; |
| 1257 | if (newBound < nowUpper - 1.0e-12) { |
| 1258 | // Tighten the upper bound |
| 1259 | // adjust |
| 1260 | double now; |
| 1261 | if (nowUpper>large) { |
| 1262 | now=0.0; |
| 1263 | infiniteUpper--; |
| 1264 | } else { |
| 1265 | now = nowUpper; |
| 1266 | } |
| 1267 | maximumUp += (newBound-now) * value; |
| 1268 | nowUpper = newBound; |
| 1269 | } |
| 1270 | high=CoinMin(high,newBound); |
| 1271 | } |
| 1272 | } else { |
| 1273 | // negative value |
| 1274 | if (lower>-large) { |
| 1275 | if (!infiniteUpper) { |
| 1276 | assert(nowLower >- large); |
| 1277 | newBound = nowLower + |
| 1278 | (lower - maximumUp) / value; |
| 1279 | // relax if original was large |
| 1280 | if (fabs(maximumUp)>1.0e8&&!singletonColumn) |
| 1281 | newBound += 1.0e-12*fabs(maximumUp); |
| 1282 | } else if (infiniteUpper==1&&nowLower<-large) { |
| 1283 | newBound = (lower -maximumUp) / value; |
| 1284 | // relax if original was large |
| 1285 | if (fabs(maximumUp)>1.0e8&&!singletonColumn) |
| 1286 | newBound += 1.0e-12*fabs(maximumUp); |
| 1287 | } else { |
| 1288 | newBound = COIN_DBL_MAX; |
| 1289 | } |
| 1290 | if (newBound>=large) |
| 1291 | newBound = COIN_DBL_MAX; |
| 1292 | if (newBound < nowUpper - 1.0e-12) { |
| 1293 | // Tighten the upper bound |
| 1294 | // adjust |
| 1295 | double now; |
| 1296 | if (nowUpper>large) { |
| 1297 | now=0.0; |
| 1298 | infiniteLower--; |
| 1299 | } else { |
| 1300 | now = nowUpper; |
| 1301 | } |
| 1302 | maximumDown += (newBound-now) * value; |
| 1303 | nowUpper = newBound; |
| 1304 | } |
| 1305 | high=CoinMin(high,newBound); |
| 1306 | } |
| 1307 | if (upper <large) { |
| 1308 | if (!infiniteLower) { |
| 1309 | assert(nowUpper < large); |
| 1310 | newBound = nowUpper + |
| 1311 | (upper - maximumDown) / value; |
| 1312 | // relax if original was large |
| 1313 | if (fabs(maximumDown)>1.0e8&&!singletonColumn) |
| 1314 | newBound -= 1.0e-12*fabs(maximumDown); |
| 1315 | } else if (infiniteLower==1&&nowUpper>large) { |
| 1316 | newBound = (upper - maximumDown) / value; |
| 1317 | // relax if original was large |
| 1318 | if (fabs(maximumDown)>1.0e8&&!singletonColumn) |
| 1319 | newBound -= 1.0e-12*fabs(maximumDown); |
| 1320 | } else { |
| 1321 | newBound = -COIN_DBL_MAX; |
| 1322 | } |
| 1323 | if (newBound<=-large) |
| 1324 | newBound = -COIN_DBL_MAX; |
| 1325 | if (newBound > nowLower + 1.0e-12) { |
| 1326 | // Tighten the lower bound |
| 1327 | // adjust |
| 1328 | double now; |
| 1329 | if (nowLower<-large) { |
| 1330 | now=0.0; |
| 1331 | infiniteUpper--; |
| 1332 | } else { |
| 1333 | now = nowLower; |
| 1334 | } |
| 1335 | maximumUp += (newBound-now) * value; |
| 1336 | nowLower = newBound; |
| 1337 | } |
| 1338 | low = CoinMax(low,newBound); |
| 1339 | } |
| 1340 | } |
| 1341 | } else if (infiniteUp[row]==-3) { |
| 1342 | // give up |
| 1343 | high=COIN_DBL_MAX; |
| 1344 | low=-COIN_DBL_MAX; |
| 1345 | break; |
| 1346 | } |
| 1347 | } |
| 1348 | } |
| 1349 | if (clo[j] <= low && high <= cup[j]) { |
| 1350 | |
| 1351 | // both column bounds implied by the constraints of the problem |
| 1352 | // get row |
| 1353 | // If more than one equality is present, how do I know the one I |
| 1354 | // select here will be the one that actually implied tighter |
| 1355 | // bounds? Seems like I should care. -- lh, 040818 -- |
| 1356 | largestElement *= 0.1; |
| 1357 | int krow=-1; |
| 1358 | int ninrow=ncols+1; |
| 1359 | double thisValue=0.0; |
| 1360 | for (k=kcs; k<kce; ++k) { |
| 1361 | int row = hrow[k]; |
| 1362 | double coeffj = colels[k]; |
| 1363 | if ( fabs(rlo[row] - rup[row]) < tol && |
| 1364 | fabs(coeffj) > largestElement) { |
| 1365 | if (hinrow[row]<ninrow) { |
| 1366 | ninrow=hinrow[row]; |
| 1367 | krow=row; |
| 1368 | thisValue=coeffj; |
| 1369 | } |
| 1370 | } |
| 1371 | } |
| 1372 | if (krow>=0) { |
| 1373 | bool goodRow=true; |
| 1374 | if (integerType[j]) { |
| 1375 | // can only accept if good looking row |
| 1376 | double scaleFactor = 1.0/thisValue; |
| 1377 | double rhs = rlo[krow]*scaleFactor; |
| 1378 | if (fabs(rhs-floor(rhs+0.5))<tol) { |
| 1379 | CoinBigIndex krs = mrstrt[krow]; |
| 1380 | CoinBigIndex kre = krs + hinrow[krow]; |
| 1381 | CoinBigIndex kk; |
| 1382 | bool allOnes=true; |
| 1383 | for (kk = krs; kk < kre; ++kk) { |
| 1384 | double value=rowels[kk]*scaleFactor; |
| 1385 | if (fabs(value)!=1.0) |
| 1386 | allOnes=false; |
| 1387 | int iColumn = hcol[kk]; |
| 1388 | if (!integerType[iColumn]||fabs(value-floor(value+0.5))>tol) { |
| 1389 | goodRow=false; |
| 1390 | break; |
| 1391 | } |
| 1392 | } |
| 1393 | if (rlo[krow]==1.0&&hinrow[krow]>=5&&stopSomeStuff&&allOnes) |
| 1394 | goodRow=false; // may spoil SOS |
| 1395 | } else { |
| 1396 | goodRow=false; |
| 1397 | } |
| 1398 | } |
| 1399 | if (goodRow) { |
| 1400 | implied_free[numberFree] = krow; |
| 1401 | whichFree[numberFree++] = j; |
| 1402 | // And say row no good for further use |
| 1403 | infiniteUp[krow]=-3; |
| 1404 | //printf("column %d implied free by row %d hincol %d hinrow %d\n", |
| 1405 | // j,krow,hincol[j],hinrow[krow]); |
| 1406 | } |
| 1407 | } |
| 1408 | } |
| 1409 | } |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | delete [] infiniteDown; |
| 1414 | delete [] infiniteUp; |
| 1415 | delete [] maxDown; |
| 1416 | delete [] maxUp; |
| 1417 | |
| 1418 | int isolated_row = -1; |
| 1419 | |
| 1420 | // first pick off the easy ones |
| 1421 | // note that this will only deal with columns that were originally |
| 1422 | // singleton; it will not deal with doubleton columns that become |
| 1423 | // singletons as a result of dropping rows. |
| 1424 | for (iLook=0;iLook<numberFree;iLook++) { |
| 1425 | int j=whichFree[iLook]; |
| 1426 | if (hincol[j] == 1) { |
| 1427 | CoinBigIndex kcs = mcstrt[j]; |
| 1428 | int row = hrow[kcs]; |
| 1429 | double coeffj = colels[kcs]; |
| 1430 | |
| 1431 | CoinBigIndex krs = mrstrt[row]; |
| 1432 | CoinBigIndex kre = krs + hinrow[row]; |
| 1433 | |
| 1434 | |
| 1435 | // isolated rows are weird |
| 1436 | { |
| 1437 | int n = 0; |
| 1438 | for (CoinBigIndex k=krs; k<kre; ++k) |
| 1439 | n += hincol[hcol[k]]; |
| 1440 | if (n==hinrow[row]) { |
| 1441 | isolated_row = row; |
| 1442 | break; |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | const bool nonzero_cost = (cost[j] != 0.0&&fabs(rup[row]-rlo[row])<=tol); |
| 1447 | |
| 1448 | double *save_costs = nonzero_cost ? new double[hinrow[row]] : NULL; |
| 1449 | |
| 1450 | { |
| 1451 | action *s = &actions[nactions++]; |
| 1452 | |
| 1453 | s->row = row; |
| 1454 | s->col = j; |
| 1455 | PRESOLVE_DETAIL_PRINT(printf("pre_impliedfree2 %dC %dR E\n" ,j,row)); |
| 1456 | |
| 1457 | s->clo = clo[j]; |
| 1458 | s->cup = cup[j]; |
| 1459 | s->rlo = rlo[row]; |
| 1460 | s->rup = rup[row]; |
| 1461 | |
| 1462 | s->ninrow = hinrow[row]; |
| 1463 | s->rowels = presolve_dupmajor(rowels,hcol,hinrow[row],krs) ; |
| 1464 | s->costs = save_costs; |
| 1465 | } |
| 1466 | |
| 1467 | if (nonzero_cost) { |
| 1468 | double rhs = rlo[row]; |
| 1469 | double costj = cost[j]; |
| 1470 | |
| 1471 | # if PRESOLVE_DEBUG |
| 1472 | printf("FREE COSTS: %g " , costj); |
| 1473 | # endif |
| 1474 | for (CoinBigIndex k=krs; k<kre; k++) { |
| 1475 | int jcol = hcol[k]; |
| 1476 | save_costs[k-krs] = cost[jcol]; |
| 1477 | |
| 1478 | if (jcol != j) { |
| 1479 | double coeff = rowels[k]; |
| 1480 | |
| 1481 | # if PRESOLVE_DEBUG |
| 1482 | printf("%g %g " , cost[jcol], coeff/coeffj); |
| 1483 | # endif |
| 1484 | /* |
| 1485 | * Similar to eliminating doubleton: |
| 1486 | * cost1 x = cost1 (c - b y) / a = (c cost1)/a - (b cost1)/a |
| 1487 | * cost[icoly] += cost[icolx] * (-coeff2 / coeff1); |
| 1488 | */ |
| 1489 | cost[jcol] += costj * (-coeff / coeffj); |
| 1490 | } |
| 1491 | } |
| 1492 | # if PRESOLVE_DEBUG |
| 1493 | printf("\n" ); |
| 1494 | |
| 1495 | /* similar to doubleton */ |
| 1496 | printf("BIAS??????? %g %g %g %g\n" , |
| 1497 | costj * rhs / coeffj, |
| 1498 | costj, rhs, coeffj); |
| 1499 | # endif |
| 1500 | prob->change_bias(costj * rhs / coeffj); |
| 1501 | // ?? |
| 1502 | cost[j] = 0.0; |
| 1503 | } |
| 1504 | |
| 1505 | /* remove the row from the columns in the row */ |
| 1506 | for (CoinBigIndex k=krs; k<kre; k++) { |
| 1507 | int jcol=hcol[k]; |
| 1508 | prob->addCol(jcol); |
| 1509 | presolve_delete_from_col(row,jcol,mcstrt,hincol,hrow,colels) ; |
| 1510 | if (hincol[jcol] == 0) |
| 1511 | { PRESOLVE_REMOVE_LINK(prob->clink_,jcol) ; } |
| 1512 | } |
| 1513 | PRESOLVE_REMOVE_LINK(rlink, row); |
| 1514 | hinrow[row] = 0; |
| 1515 | |
| 1516 | // just to make things squeeky |
| 1517 | rlo[row] = 0.0; |
| 1518 | rup[row] = 0.0; |
| 1519 | |
| 1520 | PRESOLVE_REMOVE_LINK(clink, j); |
| 1521 | hincol[j] = 0; |
| 1522 | |
| 1523 | implied_free[iLook] = -1; |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | //delete [] look2; |
| 1528 | if (nactions) { |
| 1529 | # if PRESOLVE_SUMMARY |
| 1530 | printf("NIMPLIED FREE: %d\n" , nactions); |
| 1531 | # endif |
| 1532 | action *actions1 = new action[nactions]; |
| 1533 | CoinMemcpyN(actions, nactions, actions1); |
| 1534 | next = new implied_free_action(nactions, actions1, next); |
| 1535 | } |
| 1536 | delete [] actions; |
| 1537 | |
| 1538 | if (isolated_row != -1) { |
| 1539 | const CoinPresolveAction *nextX = isolated_constraint_action::presolve(prob, |
| 1540 | isolated_row, next); |
| 1541 | if (nextX) |
| 1542 | next = nextX; // may fail |
| 1543 | } |
| 1544 | // try more complex ones |
| 1545 | if (fill_level) { |
| 1546 | next = subst_constraint_action::presolve(prob, implied_free, |
| 1547 | whichFree,numberFree, |
| 1548 | next,fill_level); |
| 1549 | } |
| 1550 | //delete[]implied_free; |
| 1551 | |
| 1552 | if (prob->tuning_) { |
| 1553 | double thisTime=CoinCpuTime(); |
| 1554 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
| 1555 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
| 1556 | printf("CoinPresolveImpliedFree(64) - %d rows, %d columns dropped in time %g, total %g\n" , |
| 1557 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
| 1558 | } |
| 1559 | return (next); |
| 1560 | } |
| 1561 | |
| 1562 | |
| 1563 | |
| 1564 | const char *implied_free_action::name() const |
| 1565 | { |
| 1566 | return ("implied_free_action" ); |
| 1567 | } |
| 1568 | |
| 1569 | void implied_free_action::postsolve(CoinPostsolveMatrix *prob) const |
| 1570 | { |
| 1571 | const action *const actions = actions_; |
| 1572 | const int nactions = nactions_; |
| 1573 | |
| 1574 | double *elementByColumn = prob->colels_; |
| 1575 | int *hrow = prob->hrow_; |
| 1576 | CoinBigIndex *columnStart = prob->mcstrt_; |
| 1577 | int *numberInColumn = prob->hincol_; |
| 1578 | int *link = prob->link_; |
| 1579 | |
| 1580 | double *clo = prob->clo_; |
| 1581 | double *cup = prob->cup_; |
| 1582 | |
| 1583 | double *rlo = prob->rlo_; |
| 1584 | double *rup = prob->rup_; |
| 1585 | |
| 1586 | double *sol = prob->sol_; |
| 1587 | |
| 1588 | double *rcosts = prob->rcosts_; |
| 1589 | double *dcost = prob->cost_; |
| 1590 | |
| 1591 | double *acts = prob->acts_; |
| 1592 | double *rowduals = prob->rowduals_; |
| 1593 | |
| 1594 | const double maxmin = prob->maxmin_; |
| 1595 | |
| 1596 | # if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 1597 | char *cdone = prob->cdone_; |
| 1598 | char *rdone = prob->rdone_; |
| 1599 | # endif |
| 1600 | |
| 1601 | CoinBigIndex &free_list = prob->free_list_; |
| 1602 | |
| 1603 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
| 1604 | |
| 1605 | int irow = f->row; |
| 1606 | int icol = f->col; |
| 1607 | |
| 1608 | int ninrow = f->ninrow; |
| 1609 | const double *rowels = f->rowels; |
| 1610 | const int *rowcols = reinterpret_cast<const int *>(rowels+ninrow) ; |
| 1611 | const double *save_costs = f->costs; |
| 1612 | |
| 1613 | // put back coefficients in the row |
| 1614 | // this includes recreating the singleton column |
| 1615 | { |
| 1616 | for (int k = 0; k<ninrow; k++) { |
| 1617 | int jcol = rowcols[k]; |
| 1618 | double coeff = rowels[k]; |
| 1619 | |
| 1620 | if (save_costs) { |
| 1621 | rcosts[jcol] += maxmin*(save_costs[k]-dcost[jcol]); |
| 1622 | dcost[jcol] = save_costs[k]; |
| 1623 | } |
| 1624 | { |
| 1625 | CoinBigIndex kk = free_list; |
| 1626 | assert(kk >= 0 && kk < prob->bulk0_) ; |
| 1627 | free_list = link[free_list]; |
| 1628 | link[kk] = columnStart[jcol]; |
| 1629 | columnStart[jcol] = kk; |
| 1630 | elementByColumn[kk] = coeff; |
| 1631 | hrow[kk] = irow; |
| 1632 | } |
| 1633 | |
| 1634 | if (jcol == icol) { |
| 1635 | // initialize the singleton column |
| 1636 | numberInColumn[jcol] = 1; |
| 1637 | clo[icol] = f->clo; |
| 1638 | cup[icol] = f->cup; |
| 1639 | |
| 1640 | # if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 1641 | cdone[icol] = IMPLIED_FREE; |
| 1642 | # endif |
| 1643 | } else { |
| 1644 | numberInColumn[jcol]++; |
| 1645 | } |
| 1646 | } |
| 1647 | # if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 1648 | rdone[irow] = IMPLIED_FREE; |
| 1649 | # endif |
| 1650 | # if PRESOLVE_CONSISTENCY |
| 1651 | presolve_check_free_list(prob) ; |
| 1652 | # endif |
| 1653 | |
| 1654 | rlo[irow] = f->rlo; |
| 1655 | rup[irow] = f->rup; |
| 1656 | } |
| 1657 | //deleteAction( f->costs,double*); do on delete |
| 1658 | // coeff has now been initialized |
| 1659 | |
| 1660 | // compute solution |
| 1661 | { |
| 1662 | double act = 0.0; |
| 1663 | double coeff = 0.0; |
| 1664 | |
| 1665 | for (int k = 0; k<ninrow; k++) |
| 1666 | if (rowcols[k] == icol) |
| 1667 | coeff = rowels[k]; |
| 1668 | else { |
| 1669 | int jcol = rowcols[k]; |
| 1670 | PRESOLVE_STMT(CoinBigIndex kk = presolve_find_row2(irow, columnStart[jcol], numberInColumn[jcol], hrow, link)); |
| 1671 | act += rowels[k] * sol[jcol]; |
| 1672 | } |
| 1673 | |
| 1674 | PRESOLVEASSERT(fabs(coeff) > ZTOLDP); |
| 1675 | double thisCost = maxmin*dcost[icol]; |
| 1676 | double loActivity,upActivity; |
| 1677 | if (coeff>0) { |
| 1678 | loActivity = (rlo[irow]-act)/coeff; |
| 1679 | upActivity = (rup[irow]-act)/coeff; |
| 1680 | } else { |
| 1681 | loActivity = (rup[irow]-act)/coeff; |
| 1682 | upActivity = (rlo[irow]-act)/coeff; |
| 1683 | } |
| 1684 | loActivity = CoinMax(loActivity,clo[icol]); |
| 1685 | upActivity = CoinMin(upActivity,cup[icol]); |
| 1686 | int where; //0 in basis, -1 at lb, +1 at ub |
| 1687 | const double tolCheck = 0.1*prob->ztolzb_; |
| 1688 | if (loActivity<clo[icol]+tolCheck/fabs(coeff)&&thisCost>=0.0) |
| 1689 | where=-1; |
| 1690 | else if (upActivity>cup[icol]-tolCheck/fabs(coeff)&&thisCost<0.0) |
| 1691 | where=1; |
| 1692 | else |
| 1693 | where =0; |
| 1694 | // But we may need to put in basis to stay dual feasible |
| 1695 | double possibleDual = thisCost/coeff; |
| 1696 | if (where) { |
| 1697 | double worst= prob->ztoldj_; |
| 1698 | for (int k = 0; k<ninrow; k++) { |
| 1699 | int jcol = rowcols[k]; |
| 1700 | if (jcol!=icol) { |
| 1701 | CoinPrePostsolveMatrix::Status status = prob->getColumnStatus(jcol); |
| 1702 | // can only trust basic |
| 1703 | if (status==CoinPrePostsolveMatrix::basic) { |
| 1704 | if (fabs(rcosts[jcol])>worst) |
| 1705 | worst=fabs(rcosts[jcol]); |
| 1706 | } else if (sol[jcol]<clo[jcol]+ZTOLDP) { |
| 1707 | if (-rcosts[jcol]>worst) |
| 1708 | worst=-rcosts[jcol]; |
| 1709 | } else if (sol[jcol]>cup[jcol]-ZTOLDP) { |
| 1710 | if (rcosts[jcol]>worst) |
| 1711 | worst=rcosts[jcol]; |
| 1712 | } |
| 1713 | } |
| 1714 | } |
| 1715 | if (worst>prob->ztoldj_) { |
| 1716 | // see if better if in basis |
| 1717 | double worst2 = prob->ztoldj_; |
| 1718 | for (int k = 0; k<ninrow; k++) { |
| 1719 | int jcol = rowcols[k]; |
| 1720 | if (jcol!=icol) { |
| 1721 | double coeff = rowels[k]; |
| 1722 | double newDj = rcosts[jcol]-possibleDual*coeff; |
| 1723 | CoinPrePostsolveMatrix::Status status = prob->getColumnStatus(jcol); |
| 1724 | // can only trust basic |
| 1725 | if (status==CoinPrePostsolveMatrix::basic) { |
| 1726 | if (fabs(newDj)>worst2) |
| 1727 | worst2=fabs(newDj); |
| 1728 | } else if (sol[jcol]<clo[jcol]+ZTOLDP) { |
| 1729 | if (-newDj>worst2) |
| 1730 | worst2=-newDj; |
| 1731 | } else if (sol[jcol]>cup[jcol]-ZTOLDP) { |
| 1732 | if (newDj>worst2) |
| 1733 | worst2=newDj; |
| 1734 | } |
| 1735 | } |
| 1736 | } |
| 1737 | if (worst2<worst) |
| 1738 | where=0; // put in basis |
| 1739 | } |
| 1740 | } |
| 1741 | if (!where) { |
| 1742 | // choose rowdual to make this col basic |
| 1743 | rowduals[irow] = possibleDual; |
| 1744 | if ((rlo[irow] < rup[irow] && rowduals[irow] < 0.0) |
| 1745 | || rlo[irow]< -1.0e20) { |
| 1746 | //if (rlo[irow]<-1.0e20&&rowduals[irow]>ZTOLDP) |
| 1747 | //printf("IMP %g %g %g\n",rlo[irow],rup[irow],rowduals[irow]); |
| 1748 | sol[icol] = (rup[irow] - act) / coeff; |
| 1749 | //assert (sol[icol]>=clo[icol]-1.0e-5&&sol[icol]<=cup[icol]+1.0e-5); |
| 1750 | acts[irow] = rup[irow]; |
| 1751 | prob->setRowStatus(irow,CoinPrePostsolveMatrix::atUpperBound); |
| 1752 | } else { |
| 1753 | sol[icol] = (rlo[irow] - act) / coeff; |
| 1754 | //assert (sol[icol]>=clo[icol]-1.0e-5&&sol[icol]<=cup[icol]+1.0e-5); |
| 1755 | acts[irow] = rlo[irow]; |
| 1756 | prob->setRowStatus(irow,CoinPrePostsolveMatrix::atLowerBound); |
| 1757 | } |
| 1758 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::basic); |
| 1759 | for (int k = 0; k<ninrow; k++) { |
| 1760 | int jcol = rowcols[k]; |
| 1761 | double coeff = rowels[k]; |
| 1762 | rcosts[jcol] -= possibleDual*coeff; |
| 1763 | } |
| 1764 | rcosts[icol] = 0.0; |
| 1765 | } else { |
| 1766 | rowduals[irow] = 0.0; |
| 1767 | rcosts[icol] = thisCost; |
| 1768 | prob->setRowStatus(irow,CoinPrePostsolveMatrix::basic); |
| 1769 | if (where<0) { |
| 1770 | // to lb |
| 1771 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atLowerBound); |
| 1772 | sol[icol]=clo[icol]; |
| 1773 | } else { |
| 1774 | // to ub |
| 1775 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::atUpperBound); |
| 1776 | sol[icol]=cup[icol]; |
| 1777 | } |
| 1778 | acts[irow] = act + sol[icol]*coeff; |
| 1779 | //assert (acts[irow]>=rlo[irow]-1.0e-5&&acts[irow]<=rup[irow]+1.0e-5); |
| 1780 | } |
| 1781 | # if PRESOLVE_DEBUG |
| 1782 | { |
| 1783 | double *colels = prob->colels_; |
| 1784 | int *hrow = prob->hrow_; |
| 1785 | const CoinBigIndex *mcstrt = prob->mcstrt_; |
| 1786 | int *hincol = prob->hincol_; |
| 1787 | for (int j = 0; j<ninrow; j++) { |
| 1788 | int jcol = rowcols[j]; |
| 1789 | CoinBigIndex k = mcstrt[jcol]; |
| 1790 | int nx = hincol[jcol]; |
| 1791 | double dj = dcost[jcol]; |
| 1792 | for (int i=0; i<nx; ++i) { |
| 1793 | int row = hrow[k]; |
| 1794 | double coeff = colels[k]; |
| 1795 | k = link[k]; |
| 1796 | dj -= rowduals[row] * coeff; |
| 1797 | //printf("col jcol row %d coeff %g dual %g new dj %g\n", |
| 1798 | // row,coeff,rowduals[row],dj); |
| 1799 | } |
| 1800 | if (fabs(dj-rcosts[jcol])>1.0e-3) |
| 1801 | printf("changed\n" ); |
| 1802 | } |
| 1803 | } |
| 1804 | # endif |
| 1805 | } |
| 1806 | } |
| 1807 | |
| 1808 | return ; |
| 1809 | } |
| 1810 | |
| 1811 | |
| 1812 | /* |
| 1813 | Why do we delete costs during postsolve() execution, but none of the other |
| 1814 | components of the action? |
| 1815 | */ |
| 1816 | implied_free_action::~implied_free_action() |
| 1817 | { |
| 1818 | int i; |
| 1819 | for (i=0;i<nactions_;i++) { |
| 1820 | deleteAction(actions_[i].rowels,double *); |
| 1821 | deleteAction( actions_[i].costs,double *); |
| 1822 | } |
| 1823 | deleteAction(actions_,action *); |
| 1824 | } |
| 1825 | |