| 1 | /* $Id: CoinPresolveMatrix.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <stdio.h> |
| 7 | |
| 8 | #include <cassert> |
| 9 | #include <iostream> |
| 10 | |
| 11 | #include "CoinHelperFunctions.hpp" |
| 12 | #include "CoinPresolveMatrix.hpp" |
| 13 | #include "CoinTime.hpp" |
| 14 | |
| 15 | /*! \file |
| 16 | |
| 17 | This file contains methods for CoinPresolveMatrix, the object used during |
| 18 | presolve transformations. |
| 19 | */ |
| 20 | |
| 21 | /* |
| 22 | Constructor and destructor for CoinPresolveMatrix. |
| 23 | */ |
| 24 | |
| 25 | /* |
| 26 | CoinPresolveMatrix constructor |
| 27 | |
| 28 | The constructor does very little, for much the same reasons that the |
| 29 | CoinPrePostsolveMatrix constructor does little. Might as well wait until we |
| 30 | load a matrix. |
| 31 | |
| 32 | In general, for presolve the allocated size can be equal to the size of the |
| 33 | constraint matrix before presolve transforms are applied. (Presolve |
| 34 | transforms are assumed to reduce the size of the constraint system.) But we |
| 35 | need to keep the *_alloc parameters for compatibility with |
| 36 | CoinPrePostsolveMatrix. |
| 37 | */ |
| 38 | |
| 39 | CoinPresolveMatrix::CoinPresolveMatrix |
| 40 | (int ncols_alloc, int nrows_alloc, CoinBigIndex nelems_alloc) |
| 41 | |
| 42 | : CoinPrePostsolveMatrix(ncols_alloc,nrows_alloc,nelems_alloc), |
| 43 | |
| 44 | clink_(0), |
| 45 | rlink_(0), |
| 46 | |
| 47 | dobias_(0.0), |
| 48 | mrstrt_(0), |
| 49 | hinrow_(0), |
| 50 | rowels_(0), |
| 51 | hcol_(0), |
| 52 | |
| 53 | integerType_(0), |
| 54 | anyInteger_(false), |
| 55 | tuning_(false), |
| 56 | startTime_(0.0), |
| 57 | feasibilityTolerance_(0.0), |
| 58 | status_(-1), |
| 59 | pass_(0), |
| 60 | maxSubstLevel_(3), |
| 61 | colChanged_(0), |
| 62 | colsToDo_(0), |
| 63 | numberColsToDo_(0), |
| 64 | nextColsToDo_(0), |
| 65 | numberNextColsToDo_(0), |
| 66 | |
| 67 | rowChanged_(0), |
| 68 | rowsToDo_(0), |
| 69 | numberRowsToDo_(0), |
| 70 | nextRowsToDo_(0), |
| 71 | numberNextRowsToDo_(0), |
| 72 | presolveOptions_(0), |
| 73 | anyProhibited_(false), |
| 74 | usefulRowInt_(NULL), |
| 75 | usefulRowDouble_(NULL), |
| 76 | usefulColumnInt_(NULL), |
| 77 | usefulColumnDouble_(NULL), |
| 78 | randomNumber_(NULL), |
| 79 | infiniteUp_(NULL), |
| 80 | sumUp_(NULL), |
| 81 | infiniteDown_(NULL), |
| 82 | sumDown_(NULL) |
| 83 | |
| 84 | { /* nothing to do here */ |
| 85 | |
| 86 | return ; } |
| 87 | |
| 88 | /* |
| 89 | CoinPresolveMatrix destructor. |
| 90 | */ |
| 91 | |
| 92 | CoinPresolveMatrix::~CoinPresolveMatrix() |
| 93 | |
| 94 | { delete[] clink_ ; |
| 95 | delete[] rlink_ ; |
| 96 | |
| 97 | delete[] mrstrt_ ; |
| 98 | delete[] hinrow_ ; |
| 99 | delete[] rowels_ ; |
| 100 | delete[] hcol_ ; |
| 101 | |
| 102 | delete[] integerType_ ; |
| 103 | delete[] rowChanged_ ; |
| 104 | delete[] rowsToDo_ ; |
| 105 | delete[] nextRowsToDo_ ; |
| 106 | delete[] colChanged_ ; |
| 107 | delete[] colsToDo_ ; |
| 108 | delete[] nextColsToDo_ ; |
| 109 | delete[] usefulRowInt_; |
| 110 | delete[] usefulRowDouble_; |
| 111 | delete[] usefulColumnInt_; |
| 112 | delete[] usefulColumnDouble_; |
| 113 | delete[] randomNumber_; |
| 114 | delete[] infiniteUp_; |
| 115 | delete[] sumUp_; |
| 116 | delete[] infiniteDown_; |
| 117 | delete[] sumDown_; |
| 118 | |
| 119 | return ; } |
| 120 | |
| 121 | |
| 122 | |
| 123 | /* |
| 124 | This routine loads a CoinPackedMatrix and proceeds to do the bulk of the |
| 125 | initialisation for the PrePostsolve and Presolve objects. |
| 126 | |
| 127 | In the CoinPrePostsolveMatrix portion of the object, it initialises the |
| 128 | column-major packed matrix representation and the arrays that track the |
| 129 | motion of original columns and rows. |
| 130 | |
| 131 | In the CoinPresolveMatrix portion of the object, it initialises the |
| 132 | row-major packed matrix representation, the arrays that assist in matrix |
| 133 | storage management, and the arrays that track the rows and columns to be |
| 134 | processed. |
| 135 | |
| 136 | Arrays are allocated to the requested size (ncols0_, nrow0_, nelems0_). |
| 137 | |
| 138 | The source matrix must be column ordered; it does not need to be gap-free. |
| 139 | Bulk storage in the column-major (hrow_, colels_) and row-major (hcol_, |
| 140 | rowels_) matrices is allocated at twice the required size so that we can |
| 141 | expand columns and rows as needed. This is almost certainly grossly |
| 142 | oversize, but (1) it's efficient, and (2) the utility routines which |
| 143 | compact the bulk storage areas have no provision to reallocate. |
| 144 | */ |
| 145 | |
| 146 | void CoinPresolveMatrix::setMatrix (const CoinPackedMatrix *mtx) |
| 147 | |
| 148 | { |
| 149 | /* |
| 150 | Check to make sure the matrix will fit and is column ordered. |
| 151 | */ |
| 152 | if (mtx->isColOrdered() == false) |
| 153 | { throw CoinError("source matrix must be column ordered" , |
| 154 | "setMatrix" ,"CoinPrePostsolveMatrix" ) ; } |
| 155 | |
| 156 | int numCols = mtx->getNumCols() ; |
| 157 | if (numCols > ncols0_) |
| 158 | { throw CoinError("source matrix exceeds allocated capacity" , |
| 159 | "setMatrix" ,"CoinPrePostsolveMatrix" ) ; } |
| 160 | /* |
| 161 | Acquire the actual size, but allocate the matrix storage to the |
| 162 | requested capacity. The column-major rep is part of the PrePostsolve |
| 163 | object, the row-major rep belongs to the Presolve object. |
| 164 | */ |
| 165 | ncols_ = numCols ; |
| 166 | nrows_ = mtx->getNumRows() ; |
| 167 | nelems_ = mtx->getNumElements() ; |
| 168 | bulk0_ = static_cast<CoinBigIndex> (bulkRatio_*nelems0_) ; |
| 169 | |
| 170 | if (mcstrt_ == 0) mcstrt_ = new CoinBigIndex [ncols0_+1] ; |
| 171 | if (hincol_ == 0) hincol_ = new int [ncols0_+1] ; |
| 172 | if (hrow_ == 0) hrow_ = new int [bulk0_] ; |
| 173 | if (colels_ == 0) colels_ = new double [bulk0_] ; |
| 174 | |
| 175 | if (mrstrt_ == 0) mrstrt_ = new CoinBigIndex [nrows0_+1] ; |
| 176 | if (hinrow_ == 0) hinrow_ = new int [nrows0_+1] ; |
| 177 | if (hcol_ == 0) hcol_ = new int [bulk0_] ; |
| 178 | if (rowels_ == 0) rowels_ = new double [bulk0_] ; |
| 179 | /* |
| 180 | Grab the corresponding vectors from the source matrix. |
| 181 | */ |
| 182 | const CoinBigIndex *src_mcstrt = mtx->getVectorStarts() ; |
| 183 | const int *src_hincol = mtx->getVectorLengths() ; |
| 184 | const double *src_colels = mtx->getElements() ; |
| 185 | const int *src_hrow = mtx->getIndices() ; |
| 186 | /* |
| 187 | Bulk copy the column starts and lengths. |
| 188 | */ |
| 189 | CoinMemcpyN(src_mcstrt,mtx->getSizeVectorStarts(),mcstrt_) ; |
| 190 | CoinMemcpyN(src_hincol,mtx->getSizeVectorLengths(),hincol_) ; |
| 191 | /* |
| 192 | Copy the coefficients column by column in case there are gaps between |
| 193 | the columns in the bulk storage area. The assert is just in case the |
| 194 | gaps are *really* big. |
| 195 | */ |
| 196 | assert(src_mcstrt[ncols_] <= bulk0_) ; |
| 197 | int j; |
| 198 | for ( j = 0 ; j < numCols ; j++) |
| 199 | { int lenj = src_hincol[j] ; |
| 200 | CoinBigIndex offset = mcstrt_[j] ; |
| 201 | CoinMemcpyN(src_colels+offset,lenj,colels_+offset) ; |
| 202 | CoinMemcpyN(src_hrow+offset,lenj,hrow_+offset) ; } |
| 203 | /* |
| 204 | Now make a row-major copy. Start by counting the number of coefficients in |
| 205 | each row; we can do this directly in hinrow. Given the number of |
| 206 | coefficients in a row, we know how to lay out the bulk storage area. |
| 207 | */ |
| 208 | CoinZeroN(hinrow_,nrows0_+1) ; |
| 209 | for ( j = 0 ; j < ncols_ ; j++) |
| 210 | { int *rowIndices = hrow_+mcstrt_[j] ; |
| 211 | int lenj = hincol_[j] ; |
| 212 | for (int k = 0 ; k < lenj ; k++) |
| 213 | { int i = rowIndices[k] ; |
| 214 | hinrow_[i]++ ; } } |
| 215 | /* |
| 216 | Initialize mrstrt[i] to the start of row i+1. As we drop each coefficient |
| 217 | and column index into the bulk storage arrays, we'll decrement and store. |
| 218 | When we're done, mrstrt[i] will point to the start of row i, as it should. |
| 219 | */ |
| 220 | int totalCoeffs = 0 ; |
| 221 | int i; |
| 222 | for ( i = 0 ; i < nrows_ ; i++) |
| 223 | { totalCoeffs += hinrow_[i] ; |
| 224 | mrstrt_[i] = totalCoeffs ; } |
| 225 | mrstrt_[nrows_] = totalCoeffs ; |
| 226 | for ( j = ncols_-1 ; j >= 0 ; j--) |
| 227 | { int lenj = hincol_[j] ; |
| 228 | double *colCoeffs = colels_+mcstrt_[j] ; |
| 229 | int *rowIndices = hrow_+mcstrt_[j] ; |
| 230 | for (int k = 0 ; k < lenj ; k++) |
| 231 | { int ri; |
| 232 | ri = rowIndices[k] ; |
| 233 | double aij = colCoeffs[k] ; |
| 234 | CoinBigIndex l = --mrstrt_[ri] ; |
| 235 | rowels_[l] = aij ; |
| 236 | hcol_[l] = j ; } } |
| 237 | /* |
| 238 | Now the support structures. The entry for original column j should start |
| 239 | out as j; similarly for row i. originalColumn_ and originalRow_ belong to |
| 240 | the PrePostsolve object. |
| 241 | */ |
| 242 | if (originalColumn_ == 0) originalColumn_ = new int [ncols0_] ; |
| 243 | if (originalRow_ == 0) originalRow_ = new int [nrows0_] ; |
| 244 | |
| 245 | for ( j = 0 ; j < ncols0_ ; j++) |
| 246 | originalColumn_[j] = j ; |
| 247 | for ( i = 0 ; i < nrows0_ ; i++) |
| 248 | originalRow_[i] = i ; |
| 249 | /* |
| 250 | We have help to set up the clink_ and rlink_ vectors (aids for matrix bulk |
| 251 | storage management). clink_ and rlink_ belong to the Presolve object. Once |
| 252 | this is done, it's safe to set mrstrt_[nrows_] and mcstrt_[ncols_] to the |
| 253 | full size of the bulk storage area. |
| 254 | */ |
| 255 | if (clink_ == 0) clink_ = new presolvehlink [ncols0_+1] ; |
| 256 | if (rlink_ == 0) rlink_ = new presolvehlink [nrows0_+1] ; |
| 257 | presolve_make_memlists(/*mcstrt_,*/hincol_,clink_,ncols_) ; |
| 258 | presolve_make_memlists(/*mrstrt_,*/hinrow_,rlink_,nrows_) ; |
| 259 | mcstrt_[ncols_] = bulk0_ ; |
| 260 | mrstrt_[nrows_] = bulk0_ ; |
| 261 | /* |
| 262 | No rows or columns have been changed just yet. colChanged_ and rowChanged_ |
| 263 | belong to the Presolve object. |
| 264 | */ |
| 265 | if (colChanged_ == 0) colChanged_ = new unsigned char [ncols0_] ; |
| 266 | CoinZeroN(colChanged_,ncols0_) ; |
| 267 | if (rowChanged_ == 0) rowChanged_ = new unsigned char [nrows0_] ; |
| 268 | CoinZeroN(rowChanged_,nrows0_) ; |
| 269 | /* |
| 270 | Finally, allocate the various *ToDo arrays. These are used to track the rows |
| 271 | and columns which should be processed in a given round of presolve |
| 272 | transforms. These belong to the Presolve object. Setting number*ToDo to 0 |
| 273 | is all the initialization that's required here. |
| 274 | */ |
| 275 | rowsToDo_ = new int [nrows0_] ; |
| 276 | numberRowsToDo_ = 0 ; |
| 277 | nextRowsToDo_ = new int [nrows0_] ; |
| 278 | numberNextRowsToDo_ = 0 ; |
| 279 | colsToDo_ = new int [ncols0_] ; |
| 280 | numberColsToDo_ = 0 ; |
| 281 | nextColsToDo_ = new int [ncols0_] ; |
| 282 | numberNextColsToDo_ = 0 ; |
| 283 | initializeStuff(); |
| 284 | return ; } |
| 285 | /* Recompute ups and downs for a row (nonzero if infeasible). |
| 286 | If iRow -1 then recompute all */ |
| 287 | int |
| 288 | CoinPresolveMatrix::recomputeSums(int iRow) |
| 289 | { |
| 290 | double * columnLower = clo_; |
| 291 | double * columnUpper = cup_; |
| 292 | |
| 293 | const double *element = rowels_; |
| 294 | const int *column = hcol_; |
| 295 | const CoinBigIndex *rowStart = mrstrt_; |
| 296 | const int *rowLength = hinrow_; |
| 297 | int numberRows = nrows_; |
| 298 | int numberColumns = ncols_; |
| 299 | //const int *hrow = hrow_; |
| 300 | //const CoinBigIndex *mcstrt = mcstrt_; |
| 301 | //const int *hincol = hincol_; |
| 302 | double *rowLower = rlo_; |
| 303 | double *rowUpper = rup_; |
| 304 | double large = 1.0e20; // treat bounds > this as infinite |
| 305 | int iFirst = (iRow>=0) ? iRow : 0; |
| 306 | int iLast = (iRow>=0) ? iRow : numberRows; |
| 307 | int infeasible=0; |
| 308 | double tolerance = feasibilityTolerance_; |
| 309 | for (iRow=iFirst;iRow<iLast;iRow++) { |
| 310 | infiniteUp_[iRow]=0; |
| 311 | sumUp_[iRow]=0.0; |
| 312 | infiniteDown_[iRow]=0; |
| 313 | sumDown_[iRow]=0.0; |
| 314 | if ((rowLower[iRow]>-large||rowUpper[iRow]<large)&&rowLength[iRow]>0) { |
| 315 | int infiniteUpper = 0; |
| 316 | int infiniteLower = 0; |
| 317 | double maximumUp = 0.0; |
| 318 | double maximumDown = 0.0; |
| 319 | CoinBigIndex rStart = rowStart[iRow]; |
| 320 | CoinBigIndex rEnd = rowStart[iRow]+rowLength[iRow]; |
| 321 | CoinBigIndex j; |
| 322 | // Compute possible lower and upper ranges |
| 323 | |
| 324 | for (j = rStart; j < rEnd; ++j) { |
| 325 | double value=element[j]; |
| 326 | int iColumn = column[j]; |
| 327 | if (value > 0.0) { |
| 328 | if (columnUpper[iColumn] < large) |
| 329 | maximumUp += columnUpper[iColumn] * value; |
| 330 | else |
| 331 | ++infiniteUpper; |
| 332 | if (columnLower[iColumn] > -large) |
| 333 | maximumDown += columnLower[iColumn] * value; |
| 334 | else |
| 335 | ++infiniteLower; |
| 336 | } else if (value<0.0) { |
| 337 | if (columnUpper[iColumn] < large) |
| 338 | maximumDown += columnUpper[iColumn] * value; |
| 339 | else |
| 340 | ++infiniteLower; |
| 341 | if (columnLower[iColumn] > -large) |
| 342 | maximumUp += columnLower[iColumn] * value; |
| 343 | else |
| 344 | ++infiniteUpper; |
| 345 | } |
| 346 | } |
| 347 | #if 0 |
| 348 | // Build in a margin of error (NO) |
| 349 | maximumUp += 1.0e-8*fabs(maximumUp); |
| 350 | maximumDown -= 1.0e-8*fabs(maximumDown); |
| 351 | #endif |
| 352 | infiniteUp_[iRow]=infiniteUpper; |
| 353 | sumUp_[iRow]=maximumUp; |
| 354 | infiniteDown_[iRow]=infiniteLower; |
| 355 | sumDown_[iRow]=maximumDown; |
| 356 | double maxUp = maximumUp+infiniteUpper*1.0e31; |
| 357 | double maxDown = maximumDown-infiniteLower*1.0e31; |
| 358 | if (maxUp <= rowUpper[iRow] + tolerance && |
| 359 | maxDown >= rowLower[iRow] - tolerance) { |
| 360 | // redundant |
| 361 | infiniteUp_[iRow]=numberColumns+1; |
| 362 | infiniteDown_[iRow]=numberColumns+1; |
| 363 | } else if (maxUp <rowLower[iRow]-tolerance) { |
| 364 | // infeasible |
| 365 | infeasible++; |
| 366 | } else if (maxDown >rowUpper[iRow]+tolerance) { |
| 367 | // infeasible |
| 368 | infeasible++; |
| 369 | } |
| 370 | } else { |
| 371 | // odd probably redundant |
| 372 | infiniteUp_[iRow]=numberColumns+1; |
| 373 | infiniteDown_[iRow]=numberColumns+1; |
| 374 | if (rowLower[iRow]>0.0||rowUpper[iRow]<0.0) { |
| 375 | double tolerance2=10.0*tolerance; |
| 376 | if (rowLower[iRow]>0.0&&rowLower[iRow]<tolerance2) |
| 377 | rowLower[iRow]=0.0; |
| 378 | else |
| 379 | infeasible++; |
| 380 | if (rowUpper[iRow]<0.0&&rowUpper[iRow]>-tolerance2) |
| 381 | rowUpper[iRow]=0.0; |
| 382 | else |
| 383 | infeasible++; |
| 384 | } |
| 385 | } |
| 386 | } |
| 387 | return infeasible; |
| 388 | } |
| 389 | // Initialize random numbers etc (nonzero if infeasible) |
| 390 | int |
| 391 | CoinPresolveMatrix::initializeStuff() |
| 392 | { |
| 393 | // Allocate useful arrays |
| 394 | usefulRowInt_ = new int [3*nrows_]; |
| 395 | usefulRowDouble_ = new double [nrows_]; |
| 396 | usefulColumnInt_ = new int [2*ncols_]; |
| 397 | usefulColumnDouble_ = new double[ncols_]; |
| 398 | int k=CoinMax(ncols_+1,nrows_+1); |
| 399 | randomNumber_ = new double [k]; |
| 400 | coin_init_random_vec(randomNumber_,k); |
| 401 | infiniteUp_ = new int [nrows_]; |
| 402 | sumUp_ = new double [nrows_]; |
| 403 | infiniteDown_ = new int [nrows_]; |
| 404 | sumDown_ = new double [nrows_]; |
| 405 | // return recomputeSums(-1); |
| 406 | return 0; |
| 407 | } |
| 408 | // Delete useful arrays |
| 409 | void |
| 410 | CoinPresolveMatrix::deleteStuff() |
| 411 | { |
| 412 | delete[] usefulRowInt_; |
| 413 | delete[] usefulRowDouble_; |
| 414 | delete[] usefulColumnInt_; |
| 415 | delete[] usefulColumnDouble_; |
| 416 | delete[] randomNumber_; |
| 417 | delete[] infiniteUp_; |
| 418 | delete[] sumUp_; |
| 419 | delete[] infiniteDown_; |
| 420 | delete[] sumDown_; |
| 421 | usefulRowInt_ = NULL; |
| 422 | usefulRowDouble_ = NULL; |
| 423 | usefulColumnInt_ = NULL; |
| 424 | usefulColumnDouble_ = NULL; |
| 425 | randomNumber_ = NULL; |
| 426 | infiniteUp_ = NULL; |
| 427 | sumUp_ = NULL; |
| 428 | infiniteDown_ = NULL; |
| 429 | sumDown_ = NULL; |
| 430 | } |
| 431 | |
| 432 | |
| 433 | /* |
| 434 | These functions set integer type information. The first expects an array with |
| 435 | an entry for each variable. The second sets all variables to integer or |
| 436 | continuous type. |
| 437 | */ |
| 438 | |
| 439 | void CoinPresolveMatrix::setVariableType (const unsigned char *variableType, |
| 440 | int lenParam) |
| 441 | |
| 442 | { int len ; |
| 443 | |
| 444 | if (lenParam < 0) |
| 445 | { len = ncols_ ; } |
| 446 | else |
| 447 | if (lenParam > ncols0_) |
| 448 | { throw CoinError("length exceeds allocated size" , |
| 449 | "setIntegerType" ,"CoinPresolveMatrix" ) ; } |
| 450 | else |
| 451 | { len = lenParam ; } |
| 452 | |
| 453 | if (integerType_ == 0) integerType_ = new unsigned char [ncols0_] ; |
| 454 | CoinCopyN(variableType,len,integerType_) ; |
| 455 | |
| 456 | return ; } |
| 457 | |
| 458 | void CoinPresolveMatrix::setVariableType (bool allIntegers, int lenParam) |
| 459 | |
| 460 | { int len ; |
| 461 | |
| 462 | if (lenParam < 0) |
| 463 | { len = ncols_ ; } |
| 464 | else |
| 465 | if (lenParam > ncols0_) |
| 466 | { throw CoinError("length exceeds allocated size" , |
| 467 | "setIntegerType" ,"CoinPresolveMatrix" ) ; } |
| 468 | else |
| 469 | { len = lenParam ; } |
| 470 | |
| 471 | if (integerType_ == 0) integerType_ = new unsigned char [ncols0_] ; |
| 472 | |
| 473 | const unsigned char value = 1 ; |
| 474 | |
| 475 | if (allIntegers == true) |
| 476 | { CoinFillN(integerType_,len,value) ; } |
| 477 | else |
| 478 | { CoinZeroN(integerType_,len) ; } |
| 479 | |
| 480 | return ; } |
| 481 | |
| 482 | /* |
| 483 | The next pair of routines initialises the [row,col]ToDo lists in preparation |
| 484 | for a major pass. All except rows/columns marked as prohibited are added to |
| 485 | the lists. |
| 486 | */ |
| 487 | |
| 488 | void CoinPresolveMatrix::initColsToDo () |
| 489 | /* |
| 490 | Initialize the ToDo lists in preparation for a major iteration of |
| 491 | preprocessing. First, cut back the ToDo and NextToDo lists to zero entries. |
| 492 | Then place all columns not marked prohibited on the ToDo list. |
| 493 | */ |
| 494 | |
| 495 | { int j ; |
| 496 | |
| 497 | numberNextColsToDo_ = 0 ; |
| 498 | |
| 499 | if (anyProhibited_ == false) |
| 500 | { for (j = 0 ; j < ncols_ ; j++) |
| 501 | { colsToDo_[j] = j ; } |
| 502 | numberColsToDo_ = ncols_ ; } |
| 503 | else |
| 504 | { numberColsToDo_ = 0 ; |
| 505 | for (j = 0 ; j < ncols_ ; j++) |
| 506 | if (colProhibited(j) == false) |
| 507 | { colsToDo_[numberColsToDo_++] = j ; } } |
| 508 | |
| 509 | return ; } |
| 510 | |
| 511 | void CoinPresolveMatrix::initRowsToDo () |
| 512 | /* |
| 513 | Initialize the ToDo lists in preparation for a major iteration of |
| 514 | preprocessing. First, cut back the ToDo and NextToDo lists to zero entries. |
| 515 | Then place all rows not marked prohibited on the ToDo list. |
| 516 | */ |
| 517 | |
| 518 | { int i ; |
| 519 | |
| 520 | numberNextRowsToDo_ = 0 ; |
| 521 | |
| 522 | if (anyProhibited_ == false) |
| 523 | { for (i = 0 ; i < nrows_ ; i++) |
| 524 | { rowsToDo_[i] = i ; } |
| 525 | numberRowsToDo_ = nrows_ ; } |
| 526 | else |
| 527 | { numberRowsToDo_ = 0 ; |
| 528 | for (i = 0 ; i < nrows_ ; i++) |
| 529 | if (rowProhibited(i) == false) |
| 530 | { rowsToDo_[numberRowsToDo_++] = i ; } } |
| 531 | |
| 532 | return ; } |
| 533 | |
| 534 | int CoinPresolveMatrix::stepColsToDo () |
| 535 | /* |
| 536 | This routine transfers the contents of NextToDo to ToDo, simultaneously |
| 537 | resetting the Changed indicator. It returns the number of columns |
| 538 | transfered. |
| 539 | */ |
| 540 | { int k ; |
| 541 | |
| 542 | for (k = 0 ; k < numberNextColsToDo_ ; k++) |
| 543 | { int j = nextColsToDo_[k] ; |
| 544 | unsetColChanged(j) ; |
| 545 | colsToDo_[k] = j ; } |
| 546 | numberColsToDo_ = numberNextColsToDo_ ; |
| 547 | numberNextColsToDo_ = 0 ; |
| 548 | |
| 549 | return (numberColsToDo_) ; } |
| 550 | |
| 551 | int CoinPresolveMatrix::stepRowsToDo () |
| 552 | /* |
| 553 | This routine transfers the contents of NextToDo to ToDo, simultaneously |
| 554 | resetting the Changed indicator. It returns the number of columns |
| 555 | transfered. |
| 556 | */ |
| 557 | { int k ; |
| 558 | |
| 559 | for (k = 0 ; k < numberNextRowsToDo_ ; k++) |
| 560 | { int i = nextRowsToDo_[k] ; |
| 561 | unsetRowChanged(i) ; |
| 562 | rowsToDo_[k] = i ; } |
| 563 | numberRowsToDo_ = numberNextRowsToDo_ ; |
| 564 | numberNextRowsToDo_ = 0 ; |
| 565 | |
| 566 | return (numberRowsToDo_) ; } |
| 567 | // Say we want statistics - also set time |
| 568 | void |
| 569 | CoinPresolveMatrix::statistics() |
| 570 | { |
| 571 | tuning_=true; |
| 572 | startTime_ = CoinCpuTime(); |
| 573 | } |
| 574 | #ifdef PRESOLVE_DEBUG |
| 575 | #include "CoinPresolvePsdebug.cpp" |
| 576 | #endif |
| 577 | |