1 | /* $Id: CoinPresolveMatrix.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #include <stdio.h> |
7 | |
8 | #include <cassert> |
9 | #include <iostream> |
10 | |
11 | #include "CoinHelperFunctions.hpp" |
12 | #include "CoinPresolveMatrix.hpp" |
13 | #include "CoinTime.hpp" |
14 | |
15 | /*! \file |
16 | |
17 | This file contains methods for CoinPresolveMatrix, the object used during |
18 | presolve transformations. |
19 | */ |
20 | |
21 | /* |
22 | Constructor and destructor for CoinPresolveMatrix. |
23 | */ |
24 | |
25 | /* |
26 | CoinPresolveMatrix constructor |
27 | |
28 | The constructor does very little, for much the same reasons that the |
29 | CoinPrePostsolveMatrix constructor does little. Might as well wait until we |
30 | load a matrix. |
31 | |
32 | In general, for presolve the allocated size can be equal to the size of the |
33 | constraint matrix before presolve transforms are applied. (Presolve |
34 | transforms are assumed to reduce the size of the constraint system.) But we |
35 | need to keep the *_alloc parameters for compatibility with |
36 | CoinPrePostsolveMatrix. |
37 | */ |
38 | |
39 | CoinPresolveMatrix::CoinPresolveMatrix |
40 | (int ncols_alloc, int nrows_alloc, CoinBigIndex nelems_alloc) |
41 | |
42 | : CoinPrePostsolveMatrix(ncols_alloc,nrows_alloc,nelems_alloc), |
43 | |
44 | clink_(0), |
45 | rlink_(0), |
46 | |
47 | dobias_(0.0), |
48 | mrstrt_(0), |
49 | hinrow_(0), |
50 | rowels_(0), |
51 | hcol_(0), |
52 | |
53 | integerType_(0), |
54 | anyInteger_(false), |
55 | tuning_(false), |
56 | startTime_(0.0), |
57 | feasibilityTolerance_(0.0), |
58 | status_(-1), |
59 | pass_(0), |
60 | maxSubstLevel_(3), |
61 | colChanged_(0), |
62 | colsToDo_(0), |
63 | numberColsToDo_(0), |
64 | nextColsToDo_(0), |
65 | numberNextColsToDo_(0), |
66 | |
67 | rowChanged_(0), |
68 | rowsToDo_(0), |
69 | numberRowsToDo_(0), |
70 | nextRowsToDo_(0), |
71 | numberNextRowsToDo_(0), |
72 | presolveOptions_(0), |
73 | anyProhibited_(false), |
74 | usefulRowInt_(NULL), |
75 | usefulRowDouble_(NULL), |
76 | usefulColumnInt_(NULL), |
77 | usefulColumnDouble_(NULL), |
78 | randomNumber_(NULL), |
79 | infiniteUp_(NULL), |
80 | sumUp_(NULL), |
81 | infiniteDown_(NULL), |
82 | sumDown_(NULL) |
83 | |
84 | { /* nothing to do here */ |
85 | |
86 | return ; } |
87 | |
88 | /* |
89 | CoinPresolveMatrix destructor. |
90 | */ |
91 | |
92 | CoinPresolveMatrix::~CoinPresolveMatrix() |
93 | |
94 | { delete[] clink_ ; |
95 | delete[] rlink_ ; |
96 | |
97 | delete[] mrstrt_ ; |
98 | delete[] hinrow_ ; |
99 | delete[] rowels_ ; |
100 | delete[] hcol_ ; |
101 | |
102 | delete[] integerType_ ; |
103 | delete[] rowChanged_ ; |
104 | delete[] rowsToDo_ ; |
105 | delete[] nextRowsToDo_ ; |
106 | delete[] colChanged_ ; |
107 | delete[] colsToDo_ ; |
108 | delete[] nextColsToDo_ ; |
109 | delete[] usefulRowInt_; |
110 | delete[] usefulRowDouble_; |
111 | delete[] usefulColumnInt_; |
112 | delete[] usefulColumnDouble_; |
113 | delete[] randomNumber_; |
114 | delete[] infiniteUp_; |
115 | delete[] sumUp_; |
116 | delete[] infiniteDown_; |
117 | delete[] sumDown_; |
118 | |
119 | return ; } |
120 | |
121 | |
122 | |
123 | /* |
124 | This routine loads a CoinPackedMatrix and proceeds to do the bulk of the |
125 | initialisation for the PrePostsolve and Presolve objects. |
126 | |
127 | In the CoinPrePostsolveMatrix portion of the object, it initialises the |
128 | column-major packed matrix representation and the arrays that track the |
129 | motion of original columns and rows. |
130 | |
131 | In the CoinPresolveMatrix portion of the object, it initialises the |
132 | row-major packed matrix representation, the arrays that assist in matrix |
133 | storage management, and the arrays that track the rows and columns to be |
134 | processed. |
135 | |
136 | Arrays are allocated to the requested size (ncols0_, nrow0_, nelems0_). |
137 | |
138 | The source matrix must be column ordered; it does not need to be gap-free. |
139 | Bulk storage in the column-major (hrow_, colels_) and row-major (hcol_, |
140 | rowels_) matrices is allocated at twice the required size so that we can |
141 | expand columns and rows as needed. This is almost certainly grossly |
142 | oversize, but (1) it's efficient, and (2) the utility routines which |
143 | compact the bulk storage areas have no provision to reallocate. |
144 | */ |
145 | |
146 | void CoinPresolveMatrix::setMatrix (const CoinPackedMatrix *mtx) |
147 | |
148 | { |
149 | /* |
150 | Check to make sure the matrix will fit and is column ordered. |
151 | */ |
152 | if (mtx->isColOrdered() == false) |
153 | { throw CoinError("source matrix must be column ordered" , |
154 | "setMatrix" ,"CoinPrePostsolveMatrix" ) ; } |
155 | |
156 | int numCols = mtx->getNumCols() ; |
157 | if (numCols > ncols0_) |
158 | { throw CoinError("source matrix exceeds allocated capacity" , |
159 | "setMatrix" ,"CoinPrePostsolveMatrix" ) ; } |
160 | /* |
161 | Acquire the actual size, but allocate the matrix storage to the |
162 | requested capacity. The column-major rep is part of the PrePostsolve |
163 | object, the row-major rep belongs to the Presolve object. |
164 | */ |
165 | ncols_ = numCols ; |
166 | nrows_ = mtx->getNumRows() ; |
167 | nelems_ = mtx->getNumElements() ; |
168 | bulk0_ = static_cast<CoinBigIndex> (bulkRatio_*nelems0_) ; |
169 | |
170 | if (mcstrt_ == 0) mcstrt_ = new CoinBigIndex [ncols0_+1] ; |
171 | if (hincol_ == 0) hincol_ = new int [ncols0_+1] ; |
172 | if (hrow_ == 0) hrow_ = new int [bulk0_] ; |
173 | if (colels_ == 0) colels_ = new double [bulk0_] ; |
174 | |
175 | if (mrstrt_ == 0) mrstrt_ = new CoinBigIndex [nrows0_+1] ; |
176 | if (hinrow_ == 0) hinrow_ = new int [nrows0_+1] ; |
177 | if (hcol_ == 0) hcol_ = new int [bulk0_] ; |
178 | if (rowels_ == 0) rowels_ = new double [bulk0_] ; |
179 | /* |
180 | Grab the corresponding vectors from the source matrix. |
181 | */ |
182 | const CoinBigIndex *src_mcstrt = mtx->getVectorStarts() ; |
183 | const int *src_hincol = mtx->getVectorLengths() ; |
184 | const double *src_colels = mtx->getElements() ; |
185 | const int *src_hrow = mtx->getIndices() ; |
186 | /* |
187 | Bulk copy the column starts and lengths. |
188 | */ |
189 | CoinMemcpyN(src_mcstrt,mtx->getSizeVectorStarts(),mcstrt_) ; |
190 | CoinMemcpyN(src_hincol,mtx->getSizeVectorLengths(),hincol_) ; |
191 | /* |
192 | Copy the coefficients column by column in case there are gaps between |
193 | the columns in the bulk storage area. The assert is just in case the |
194 | gaps are *really* big. |
195 | */ |
196 | assert(src_mcstrt[ncols_] <= bulk0_) ; |
197 | int j; |
198 | for ( j = 0 ; j < numCols ; j++) |
199 | { int lenj = src_hincol[j] ; |
200 | CoinBigIndex offset = mcstrt_[j] ; |
201 | CoinMemcpyN(src_colels+offset,lenj,colels_+offset) ; |
202 | CoinMemcpyN(src_hrow+offset,lenj,hrow_+offset) ; } |
203 | /* |
204 | Now make a row-major copy. Start by counting the number of coefficients in |
205 | each row; we can do this directly in hinrow. Given the number of |
206 | coefficients in a row, we know how to lay out the bulk storage area. |
207 | */ |
208 | CoinZeroN(hinrow_,nrows0_+1) ; |
209 | for ( j = 0 ; j < ncols_ ; j++) |
210 | { int *rowIndices = hrow_+mcstrt_[j] ; |
211 | int lenj = hincol_[j] ; |
212 | for (int k = 0 ; k < lenj ; k++) |
213 | { int i = rowIndices[k] ; |
214 | hinrow_[i]++ ; } } |
215 | /* |
216 | Initialize mrstrt[i] to the start of row i+1. As we drop each coefficient |
217 | and column index into the bulk storage arrays, we'll decrement and store. |
218 | When we're done, mrstrt[i] will point to the start of row i, as it should. |
219 | */ |
220 | int totalCoeffs = 0 ; |
221 | int i; |
222 | for ( i = 0 ; i < nrows_ ; i++) |
223 | { totalCoeffs += hinrow_[i] ; |
224 | mrstrt_[i] = totalCoeffs ; } |
225 | mrstrt_[nrows_] = totalCoeffs ; |
226 | for ( j = ncols_-1 ; j >= 0 ; j--) |
227 | { int lenj = hincol_[j] ; |
228 | double *colCoeffs = colels_+mcstrt_[j] ; |
229 | int *rowIndices = hrow_+mcstrt_[j] ; |
230 | for (int k = 0 ; k < lenj ; k++) |
231 | { int ri; |
232 | ri = rowIndices[k] ; |
233 | double aij = colCoeffs[k] ; |
234 | CoinBigIndex l = --mrstrt_[ri] ; |
235 | rowels_[l] = aij ; |
236 | hcol_[l] = j ; } } |
237 | /* |
238 | Now the support structures. The entry for original column j should start |
239 | out as j; similarly for row i. originalColumn_ and originalRow_ belong to |
240 | the PrePostsolve object. |
241 | */ |
242 | if (originalColumn_ == 0) originalColumn_ = new int [ncols0_] ; |
243 | if (originalRow_ == 0) originalRow_ = new int [nrows0_] ; |
244 | |
245 | for ( j = 0 ; j < ncols0_ ; j++) |
246 | originalColumn_[j] = j ; |
247 | for ( i = 0 ; i < nrows0_ ; i++) |
248 | originalRow_[i] = i ; |
249 | /* |
250 | We have help to set up the clink_ and rlink_ vectors (aids for matrix bulk |
251 | storage management). clink_ and rlink_ belong to the Presolve object. Once |
252 | this is done, it's safe to set mrstrt_[nrows_] and mcstrt_[ncols_] to the |
253 | full size of the bulk storage area. |
254 | */ |
255 | if (clink_ == 0) clink_ = new presolvehlink [ncols0_+1] ; |
256 | if (rlink_ == 0) rlink_ = new presolvehlink [nrows0_+1] ; |
257 | presolve_make_memlists(/*mcstrt_,*/hincol_,clink_,ncols_) ; |
258 | presolve_make_memlists(/*mrstrt_,*/hinrow_,rlink_,nrows_) ; |
259 | mcstrt_[ncols_] = bulk0_ ; |
260 | mrstrt_[nrows_] = bulk0_ ; |
261 | /* |
262 | No rows or columns have been changed just yet. colChanged_ and rowChanged_ |
263 | belong to the Presolve object. |
264 | */ |
265 | if (colChanged_ == 0) colChanged_ = new unsigned char [ncols0_] ; |
266 | CoinZeroN(colChanged_,ncols0_) ; |
267 | if (rowChanged_ == 0) rowChanged_ = new unsigned char [nrows0_] ; |
268 | CoinZeroN(rowChanged_,nrows0_) ; |
269 | /* |
270 | Finally, allocate the various *ToDo arrays. These are used to track the rows |
271 | and columns which should be processed in a given round of presolve |
272 | transforms. These belong to the Presolve object. Setting number*ToDo to 0 |
273 | is all the initialization that's required here. |
274 | */ |
275 | rowsToDo_ = new int [nrows0_] ; |
276 | numberRowsToDo_ = 0 ; |
277 | nextRowsToDo_ = new int [nrows0_] ; |
278 | numberNextRowsToDo_ = 0 ; |
279 | colsToDo_ = new int [ncols0_] ; |
280 | numberColsToDo_ = 0 ; |
281 | nextColsToDo_ = new int [ncols0_] ; |
282 | numberNextColsToDo_ = 0 ; |
283 | initializeStuff(); |
284 | return ; } |
285 | /* Recompute ups and downs for a row (nonzero if infeasible). |
286 | If iRow -1 then recompute all */ |
287 | int |
288 | CoinPresolveMatrix::recomputeSums(int iRow) |
289 | { |
290 | double * columnLower = clo_; |
291 | double * columnUpper = cup_; |
292 | |
293 | const double *element = rowels_; |
294 | const int *column = hcol_; |
295 | const CoinBigIndex *rowStart = mrstrt_; |
296 | const int *rowLength = hinrow_; |
297 | int numberRows = nrows_; |
298 | int numberColumns = ncols_; |
299 | //const int *hrow = hrow_; |
300 | //const CoinBigIndex *mcstrt = mcstrt_; |
301 | //const int *hincol = hincol_; |
302 | double *rowLower = rlo_; |
303 | double *rowUpper = rup_; |
304 | double large = 1.0e20; // treat bounds > this as infinite |
305 | int iFirst = (iRow>=0) ? iRow : 0; |
306 | int iLast = (iRow>=0) ? iRow : numberRows; |
307 | int infeasible=0; |
308 | double tolerance = feasibilityTolerance_; |
309 | for (iRow=iFirst;iRow<iLast;iRow++) { |
310 | infiniteUp_[iRow]=0; |
311 | sumUp_[iRow]=0.0; |
312 | infiniteDown_[iRow]=0; |
313 | sumDown_[iRow]=0.0; |
314 | if ((rowLower[iRow]>-large||rowUpper[iRow]<large)&&rowLength[iRow]>0) { |
315 | int infiniteUpper = 0; |
316 | int infiniteLower = 0; |
317 | double maximumUp = 0.0; |
318 | double maximumDown = 0.0; |
319 | CoinBigIndex rStart = rowStart[iRow]; |
320 | CoinBigIndex rEnd = rowStart[iRow]+rowLength[iRow]; |
321 | CoinBigIndex j; |
322 | // Compute possible lower and upper ranges |
323 | |
324 | for (j = rStart; j < rEnd; ++j) { |
325 | double value=element[j]; |
326 | int iColumn = column[j]; |
327 | if (value > 0.0) { |
328 | if (columnUpper[iColumn] < large) |
329 | maximumUp += columnUpper[iColumn] * value; |
330 | else |
331 | ++infiniteUpper; |
332 | if (columnLower[iColumn] > -large) |
333 | maximumDown += columnLower[iColumn] * value; |
334 | else |
335 | ++infiniteLower; |
336 | } else if (value<0.0) { |
337 | if (columnUpper[iColumn] < large) |
338 | maximumDown += columnUpper[iColumn] * value; |
339 | else |
340 | ++infiniteLower; |
341 | if (columnLower[iColumn] > -large) |
342 | maximumUp += columnLower[iColumn] * value; |
343 | else |
344 | ++infiniteUpper; |
345 | } |
346 | } |
347 | #if 0 |
348 | // Build in a margin of error (NO) |
349 | maximumUp += 1.0e-8*fabs(maximumUp); |
350 | maximumDown -= 1.0e-8*fabs(maximumDown); |
351 | #endif |
352 | infiniteUp_[iRow]=infiniteUpper; |
353 | sumUp_[iRow]=maximumUp; |
354 | infiniteDown_[iRow]=infiniteLower; |
355 | sumDown_[iRow]=maximumDown; |
356 | double maxUp = maximumUp+infiniteUpper*1.0e31; |
357 | double maxDown = maximumDown-infiniteLower*1.0e31; |
358 | if (maxUp <= rowUpper[iRow] + tolerance && |
359 | maxDown >= rowLower[iRow] - tolerance) { |
360 | // redundant |
361 | infiniteUp_[iRow]=numberColumns+1; |
362 | infiniteDown_[iRow]=numberColumns+1; |
363 | } else if (maxUp <rowLower[iRow]-tolerance) { |
364 | // infeasible |
365 | infeasible++; |
366 | } else if (maxDown >rowUpper[iRow]+tolerance) { |
367 | // infeasible |
368 | infeasible++; |
369 | } |
370 | } else { |
371 | // odd probably redundant |
372 | infiniteUp_[iRow]=numberColumns+1; |
373 | infiniteDown_[iRow]=numberColumns+1; |
374 | if (rowLower[iRow]>0.0||rowUpper[iRow]<0.0) { |
375 | double tolerance2=10.0*tolerance; |
376 | if (rowLower[iRow]>0.0&&rowLower[iRow]<tolerance2) |
377 | rowLower[iRow]=0.0; |
378 | else |
379 | infeasible++; |
380 | if (rowUpper[iRow]<0.0&&rowUpper[iRow]>-tolerance2) |
381 | rowUpper[iRow]=0.0; |
382 | else |
383 | infeasible++; |
384 | } |
385 | } |
386 | } |
387 | return infeasible; |
388 | } |
389 | // Initialize random numbers etc (nonzero if infeasible) |
390 | int |
391 | CoinPresolveMatrix::initializeStuff() |
392 | { |
393 | // Allocate useful arrays |
394 | usefulRowInt_ = new int [3*nrows_]; |
395 | usefulRowDouble_ = new double [nrows_]; |
396 | usefulColumnInt_ = new int [2*ncols_]; |
397 | usefulColumnDouble_ = new double[ncols_]; |
398 | int k=CoinMax(ncols_+1,nrows_+1); |
399 | randomNumber_ = new double [k]; |
400 | coin_init_random_vec(randomNumber_,k); |
401 | infiniteUp_ = new int [nrows_]; |
402 | sumUp_ = new double [nrows_]; |
403 | infiniteDown_ = new int [nrows_]; |
404 | sumDown_ = new double [nrows_]; |
405 | // return recomputeSums(-1); |
406 | return 0; |
407 | } |
408 | // Delete useful arrays |
409 | void |
410 | CoinPresolveMatrix::deleteStuff() |
411 | { |
412 | delete[] usefulRowInt_; |
413 | delete[] usefulRowDouble_; |
414 | delete[] usefulColumnInt_; |
415 | delete[] usefulColumnDouble_; |
416 | delete[] randomNumber_; |
417 | delete[] infiniteUp_; |
418 | delete[] sumUp_; |
419 | delete[] infiniteDown_; |
420 | delete[] sumDown_; |
421 | usefulRowInt_ = NULL; |
422 | usefulRowDouble_ = NULL; |
423 | usefulColumnInt_ = NULL; |
424 | usefulColumnDouble_ = NULL; |
425 | randomNumber_ = NULL; |
426 | infiniteUp_ = NULL; |
427 | sumUp_ = NULL; |
428 | infiniteDown_ = NULL; |
429 | sumDown_ = NULL; |
430 | } |
431 | |
432 | |
433 | /* |
434 | These functions set integer type information. The first expects an array with |
435 | an entry for each variable. The second sets all variables to integer or |
436 | continuous type. |
437 | */ |
438 | |
439 | void CoinPresolveMatrix::setVariableType (const unsigned char *variableType, |
440 | int lenParam) |
441 | |
442 | { int len ; |
443 | |
444 | if (lenParam < 0) |
445 | { len = ncols_ ; } |
446 | else |
447 | if (lenParam > ncols0_) |
448 | { throw CoinError("length exceeds allocated size" , |
449 | "setIntegerType" ,"CoinPresolveMatrix" ) ; } |
450 | else |
451 | { len = lenParam ; } |
452 | |
453 | if (integerType_ == 0) integerType_ = new unsigned char [ncols0_] ; |
454 | CoinCopyN(variableType,len,integerType_) ; |
455 | |
456 | return ; } |
457 | |
458 | void CoinPresolveMatrix::setVariableType (bool allIntegers, int lenParam) |
459 | |
460 | { int len ; |
461 | |
462 | if (lenParam < 0) |
463 | { len = ncols_ ; } |
464 | else |
465 | if (lenParam > ncols0_) |
466 | { throw CoinError("length exceeds allocated size" , |
467 | "setIntegerType" ,"CoinPresolveMatrix" ) ; } |
468 | else |
469 | { len = lenParam ; } |
470 | |
471 | if (integerType_ == 0) integerType_ = new unsigned char [ncols0_] ; |
472 | |
473 | const unsigned char value = 1 ; |
474 | |
475 | if (allIntegers == true) |
476 | { CoinFillN(integerType_,len,value) ; } |
477 | else |
478 | { CoinZeroN(integerType_,len) ; } |
479 | |
480 | return ; } |
481 | |
482 | /* |
483 | The next pair of routines initialises the [row,col]ToDo lists in preparation |
484 | for a major pass. All except rows/columns marked as prohibited are added to |
485 | the lists. |
486 | */ |
487 | |
488 | void CoinPresolveMatrix::initColsToDo () |
489 | /* |
490 | Initialize the ToDo lists in preparation for a major iteration of |
491 | preprocessing. First, cut back the ToDo and NextToDo lists to zero entries. |
492 | Then place all columns not marked prohibited on the ToDo list. |
493 | */ |
494 | |
495 | { int j ; |
496 | |
497 | numberNextColsToDo_ = 0 ; |
498 | |
499 | if (anyProhibited_ == false) |
500 | { for (j = 0 ; j < ncols_ ; j++) |
501 | { colsToDo_[j] = j ; } |
502 | numberColsToDo_ = ncols_ ; } |
503 | else |
504 | { numberColsToDo_ = 0 ; |
505 | for (j = 0 ; j < ncols_ ; j++) |
506 | if (colProhibited(j) == false) |
507 | { colsToDo_[numberColsToDo_++] = j ; } } |
508 | |
509 | return ; } |
510 | |
511 | void CoinPresolveMatrix::initRowsToDo () |
512 | /* |
513 | Initialize the ToDo lists in preparation for a major iteration of |
514 | preprocessing. First, cut back the ToDo and NextToDo lists to zero entries. |
515 | Then place all rows not marked prohibited on the ToDo list. |
516 | */ |
517 | |
518 | { int i ; |
519 | |
520 | numberNextRowsToDo_ = 0 ; |
521 | |
522 | if (anyProhibited_ == false) |
523 | { for (i = 0 ; i < nrows_ ; i++) |
524 | { rowsToDo_[i] = i ; } |
525 | numberRowsToDo_ = nrows_ ; } |
526 | else |
527 | { numberRowsToDo_ = 0 ; |
528 | for (i = 0 ; i < nrows_ ; i++) |
529 | if (rowProhibited(i) == false) |
530 | { rowsToDo_[numberRowsToDo_++] = i ; } } |
531 | |
532 | return ; } |
533 | |
534 | int CoinPresolveMatrix::stepColsToDo () |
535 | /* |
536 | This routine transfers the contents of NextToDo to ToDo, simultaneously |
537 | resetting the Changed indicator. It returns the number of columns |
538 | transfered. |
539 | */ |
540 | { int k ; |
541 | |
542 | for (k = 0 ; k < numberNextColsToDo_ ; k++) |
543 | { int j = nextColsToDo_[k] ; |
544 | unsetColChanged(j) ; |
545 | colsToDo_[k] = j ; } |
546 | numberColsToDo_ = numberNextColsToDo_ ; |
547 | numberNextColsToDo_ = 0 ; |
548 | |
549 | return (numberColsToDo_) ; } |
550 | |
551 | int CoinPresolveMatrix::stepRowsToDo () |
552 | /* |
553 | This routine transfers the contents of NextToDo to ToDo, simultaneously |
554 | resetting the Changed indicator. It returns the number of columns |
555 | transfered. |
556 | */ |
557 | { int k ; |
558 | |
559 | for (k = 0 ; k < numberNextRowsToDo_ ; k++) |
560 | { int i = nextRowsToDo_[k] ; |
561 | unsetRowChanged(i) ; |
562 | rowsToDo_[k] = i ; } |
563 | numberRowsToDo_ = numberNextRowsToDo_ ; |
564 | numberNextRowsToDo_ = 0 ; |
565 | |
566 | return (numberRowsToDo_) ; } |
567 | // Say we want statistics - also set time |
568 | void |
569 | CoinPresolveMatrix::statistics() |
570 | { |
571 | tuning_=true; |
572 | startTime_ = CoinCpuTime(); |
573 | } |
574 | #ifdef PRESOLVE_DEBUG |
575 | #include "CoinPresolvePsdebug.cpp" |
576 | #endif |
577 | |