| 1 | /* $Id: CoinPresolvePsdebug.cpp 1373 2011-01-03 23:57:44Z lou $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <new> |
| 7 | #include <stdio.h> |
| 8 | #include <math.h> |
| 9 | |
| 10 | #include "CoinPresolveMatrix.hpp" |
| 11 | #include "CoinHelperFunctions.hpp" |
| 12 | |
| 13 | /* |
| 14 | \file |
| 15 | |
| 16 | This file contains a number of routines that are useful when doing serious |
| 17 | debugging but unneeded otherwise. Presumably if you're deep enough into |
| 18 | presolve to need these, you're willing to scan the file to see what can be |
| 19 | done. See also the Presolve Debug Functions module in the doxygen doc'n |
| 20 | and CoinPresolvePsdebug.hpp. |
| 21 | |
| 22 | The general approach for the matrix consistency routines is that the |
| 23 | routines return void and abort when they find a problem. The routines |
| 24 | that check the basis and solution complain loudly but do not abort. |
| 25 | |
| 26 | NOTE: The definitions for PRESOLVE_CONSISTENCY and PRESOLVE_DEBUG MUST BE |
| 27 | CONSISTENT across all CoinPresolve source files. AND OsiPresolve, |
| 28 | if you're debugging there. Otherwise, at best you'll get garbage |
| 29 | output. More likely, you'll get a core dump. Resist the temptation to |
| 30 | define these constants in individual files. In particular, cdone and |
| 31 | rdone will NOT be consistently maintained during postsolve. |
| 32 | |
| 33 | Hack away as your needs dictate. |
| 34 | */ |
| 35 | |
| 36 | |
| 37 | /* |
| 38 | Integrity checking routines for the (loosely) packed matrices of a |
| 39 | CoinPresolveMatrix object. Some routines work on column-major and row-major |
| 40 | reps separately, others do cross-checking. |
| 41 | */ |
| 42 | |
| 43 | namespace { // begin unnamed file-local namespace |
| 44 | |
| 45 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 46 | /* |
| 47 | Check for duplicate entries in a major vector by walking the vector. For each |
| 48 | coefficient, use presolve_find_row to search the remainder of the column |
| 49 | for an entry with the same row index. We don't want to find anything. |
| 50 | */ |
| 51 | |
| 52 | void no_majvec_dups (const char *majdones, const CoinBigIndex *majstrts, |
| 53 | const int *minndxs, const int *majlens, int nmaj) |
| 54 | |
| 55 | { for (int maj = 0 ; maj < nmaj ; maj++) |
| 56 | { if ((!majdones || majdones[maj]) && majlens[maj] > 0) |
| 57 | { CoinBigIndex ks = majstrts[maj] ; |
| 58 | CoinBigIndex ke = ks+majlens[maj] ; |
| 59 | for (CoinBigIndex k = ks ; k < ke ; k++) |
| 60 | { |
| 61 | /* |
| 62 | Assert we fell off the end of the column without finding the entry. |
| 63 | */ |
| 64 | PRESOLVEASSERT(presolve_find_minor1(minndxs[k],k+1, |
| 65 | ke,minndxs) == ke) ; } } } |
| 66 | return ; } |
| 67 | |
| 68 | /* |
| 69 | As the name implies: scan for explicit zeros. |
| 70 | */ |
| 71 | void check_majvec_nozeros (const CoinBigIndex *majstrts, const double *majels, |
| 72 | const int *majlens, int nmaj) |
| 73 | |
| 74 | { for (int maj = 0 ; maj < nmaj ; maj++) |
| 75 | { if (majlens[maj] > 0) |
| 76 | { CoinBigIndex ks = majstrts[maj] ; |
| 77 | CoinBigIndex ke = ks+majlens[maj] ; |
| 78 | for (CoinBigIndex k = ks ; k < ke ; k++) |
| 79 | { PRESOLVEASSERT(fabs(majels[k]) > ZTOLDP) ; } } } |
| 80 | |
| 81 | return ; } |
| 82 | |
| 83 | /* |
| 84 | Integrity checks for the linked lists that indicate major vector ordering |
| 85 | in the bulk storage area (minor index and coefficient arrays). |
| 86 | */ |
| 87 | void links_ok (presolvehlink *majlink, int *majstrts, int *majlens, int nmaj) |
| 88 | |
| 89 | { int maj ; |
| 90 | |
| 91 | /* |
| 92 | Confirm link integrity. Vectors of length 0 should not be part of the chain. |
| 93 | */ |
| 94 | for (maj = 0 ; maj < nmaj ; maj++) |
| 95 | { int pre = majlink[maj].pre ; |
| 96 | int suc = majlink[maj].suc ; |
| 97 | |
| 98 | if (majlens[maj] == 0) |
| 99 | { PRESOLVEASSERT(pre == NO_LINK && suc == NO_LINK) ; } |
| 100 | if (pre != NO_LINK) |
| 101 | { PRESOLVEASSERT(0 <= pre && pre <= nmaj) ; |
| 102 | PRESOLVEASSERT(majlink[pre].suc == maj) ; } |
| 103 | if (suc != NO_LINK) |
| 104 | { PRESOLVEASSERT(0 <= suc && suc <= nmaj) ; |
| 105 | PRESOLVEASSERT(majlink[suc].pre == maj) ; } } |
| 106 | /* |
| 107 | There must be a first vector. |
| 108 | */ |
| 109 | for (maj = 0 ; maj < nmaj ; maj++) |
| 110 | { if (majlink[maj].pre == NO_LINK) |
| 111 | break ; } |
| 112 | PRESOLVEASSERT(nmaj == 0 || maj < nmaj) ; |
| 113 | /* |
| 114 | The order of the linked list should match the ordering indicated by the |
| 115 | major vector start & length arrays. |
| 116 | */ |
| 117 | while (maj != NO_LINK) |
| 118 | { if (majlink[maj].suc != NO_LINK) |
| 119 | { PRESOLVEASSERT(majstrts[maj]+majlens[maj] <= |
| 120 | majstrts[majlink[maj].suc]) ; } |
| 121 | maj = majlink[maj].suc ; } |
| 122 | |
| 123 | return ; } |
| 124 | |
| 125 | |
| 126 | /* |
| 127 | matrix_consistent checks that an entry is in the column-major representation |
| 128 | if it is in the row-major representation. If testvals is non-zero, it also |
| 129 | checks that their values are the same. |
| 130 | |
| 131 | By doing the appropriate swaps of column- and row-major data structures in |
| 132 | the parameter list, we can check that an entry is in the row-major |
| 133 | representation if it's in the column-major representation. |
| 134 | |
| 135 | I can't see any nice way to rename the parameters (majmajstrt? minmajstrt?). |
| 136 | |
| 137 | Original comment: ``Note that there may be entries in a row that correspond |
| 138 | to empty columns and vice-versa.'' To which a previous browser had commented |
| 139 | ``HUH???''. And I agree. -- lh, 040907 -- |
| 140 | */ |
| 141 | |
| 142 | void matrix_consistent (const CoinBigIndex *mrstrt, const int *hinrow, |
| 143 | const int *hcol, const double *rowels, |
| 144 | const CoinBigIndex *mcstrt, const int *hincol, |
| 145 | const int *hrow, const double *colels, |
| 146 | int nrows, int testvals, |
| 147 | const char *ROW, const char *COL) |
| 148 | { |
| 149 | for (int irow=0; irow<nrows; irow++) { |
| 150 | if (hinrow[irow] > 0) { |
| 151 | CoinBigIndex krs = mrstrt[irow]; |
| 152 | CoinBigIndex kre = krs + hinrow[irow]; |
| 153 | |
| 154 | for (CoinBigIndex k=krs; k<kre; k++) { |
| 155 | int jcol = hcol[k]; |
| 156 | CoinBigIndex kcs = mcstrt[jcol]; |
| 157 | CoinBigIndex kce = kcs + hincol[jcol]; |
| 158 | |
| 159 | CoinBigIndex kk = presolve_find_row1(irow, kcs, kce, hrow); |
| 160 | if (kk == kce) { |
| 161 | printf("MATRIX INCONSISTENT: can't find %s %d in %s %d\n" , |
| 162 | ROW, irow, COL, jcol); |
| 163 | fflush(stdout); |
| 164 | abort(); |
| 165 | } |
| 166 | if (testvals && colels[kk] != rowels[k]) { |
| 167 | printf("MATRIX INCONSISTENT: value for %s %d and %s %d\n" , |
| 168 | ROW, irow, COL, jcol); |
| 169 | fflush(stdout); |
| 170 | abort(); |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | #endif |
| 177 | } // end unnamed file-local namespace |
| 178 | |
| 179 | /* |
| 180 | Utilizes matrix_consistent to check for equivalence of the column- and |
| 181 | row-major representations. Checks for presence of coefficients in the |
| 182 | column-major matrix, given presence in the row-major matrix, then checks |
| 183 | for presence in the row-major matrix given presence in the column-major |
| 184 | matrix. If testvals == true (default), the check also tests that the |
| 185 | coefficients have equal value. |
| 186 | |
| 187 | See further comments with matrix_consistent. |
| 188 | */ |
| 189 | |
| 190 | # if PRESOLVE_CONSISTENCY |
| 191 | void presolve_consistent(const CoinPresolveMatrix *preObj, bool testvals) |
| 192 | { |
| 193 | matrix_consistent(preObj->mrstrt_,preObj->hinrow_,preObj->hcol_, |
| 194 | preObj->rowels_, |
| 195 | preObj->mcstrt_,preObj->hincol_,preObj->hrow_, |
| 196 | preObj->colels_, |
| 197 | preObj->nrows_,testvals,"row" ,"col" ) ; |
| 198 | matrix_consistent(preObj->mcstrt_,preObj->hincol_,preObj->hrow_, |
| 199 | preObj->colels_, |
| 200 | preObj->mrstrt_,preObj->hinrow_,preObj->hcol_, |
| 201 | preObj->rowels_, |
| 202 | preObj->ncols_,testvals,"col" ,"row" ) ; |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | Check the column- and/or row-major matrices for duplicates. By default, both |
| 207 | will be checked. |
| 208 | */ |
| 209 | |
| 210 | void presolve_no_dups (const CoinPresolveMatrix *preObj, |
| 211 | bool doCol, bool doRow) |
| 212 | |
| 213 | { |
| 214 | if (doCol) |
| 215 | { no_majvec_dups(0,preObj->mcstrt_,preObj->hrow_, |
| 216 | preObj->hincol_,preObj->ncols_) ; } |
| 217 | if (doRow) |
| 218 | { no_majvec_dups(0,preObj->mrstrt_,preObj->hcol_, |
| 219 | preObj->hinrow_,preObj->nrows_) ; } |
| 220 | |
| 221 | return ; } |
| 222 | |
| 223 | |
| 224 | /* |
| 225 | As the name implies: scan for explicit zeros. By default, both matrices are |
| 226 | scanned. |
| 227 | */ |
| 228 | void presolve_no_zeros (const CoinPresolveMatrix *preObj, |
| 229 | bool doCol, bool doRow) |
| 230 | { |
| 231 | if (doCol) |
| 232 | { check_majvec_nozeros(preObj->mcstrt_,preObj->colels_,preObj->hincol_, |
| 233 | preObj->ncols_) ; } |
| 234 | if (doRow) |
| 235 | { check_majvec_nozeros(preObj->mrstrt_,preObj->rowels_,preObj->hinrow_, |
| 236 | preObj->nrows_) ; } |
| 237 | |
| 238 | return ; } |
| 239 | |
| 240 | /* |
| 241 | Lazy check on column lengths. Scan the row index array for the column. |
| 242 | If the relevant row length in the row-major rep is non-zero, assume we're ok. |
| 243 | |
| 244 | Not advertised in CoinPresolvePsdebug.hpp. |
| 245 | */ |
| 246 | void presolve_hincol_ok(const int *mcstrt, const int *hincol, |
| 247 | const int *hinrow, |
| 248 | const int *hrow, int ncols) |
| 249 | { |
| 250 | int jcol; |
| 251 | |
| 252 | for (jcol=0; jcol<ncols; jcol++) |
| 253 | if (hincol[jcol] > 0) { |
| 254 | int kcs = mcstrt[jcol]; |
| 255 | int kce = kcs + hincol[jcol]; |
| 256 | int n=0; |
| 257 | |
| 258 | int k; |
| 259 | for (k=kcs; k<kce; k++) { |
| 260 | int row = hrow[k]; |
| 261 | if (hinrow[row] > 0) |
| 262 | n++; |
| 263 | } |
| 264 | if (n != hincol[jcol]) |
| 265 | abort(); |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | /* |
| 270 | Integrity checks for the linked lists that indicate major vector ordering |
| 271 | in the bulk storage area (minor index and coefficient arrays). |
| 272 | */ |
| 273 | void presolve_links_ok (const CoinPresolveMatrix *preObj, |
| 274 | bool doCol, bool doRow) |
| 275 | { |
| 276 | if (doCol) |
| 277 | { links_ok(preObj->clink_,preObj->mcstrt_, |
| 278 | preObj->hincol_,preObj->ncols_) ; } |
| 279 | if (doRow) |
| 280 | { links_ok(preObj->rlink_,preObj->mrstrt_, |
| 281 | preObj->hinrow_,preObj->nrows_) ; } |
| 282 | |
| 283 | return ; } |
| 284 | |
| 285 | |
| 286 | |
| 287 | /* |
| 288 | Routines to check a threaded matrix from a CoinPostsolve object. |
| 289 | */ |
| 290 | |
| 291 | /* |
| 292 | Check that the column length agrees with the column thread. There must be |
| 293 | the correct number of coefficients, and the thread must end with the NO_LINK |
| 294 | marker. |
| 295 | */ |
| 296 | void presolve_check_threads (const CoinPostsolveMatrix *obj) |
| 297 | |
| 298 | { |
| 299 | |
| 300 | CoinBigIndex *mcstrt = obj->mcstrt_ ; |
| 301 | int *hincol = obj->hincol_ ; |
| 302 | CoinBigIndex *link = obj->link_ ; |
| 303 | char *cdone = obj->cdone_ ; |
| 304 | |
| 305 | int n = obj->ncols0_ ; |
| 306 | |
| 307 | /* |
| 308 | Scan the columns, checking only the ones that have been processed into the |
| 309 | constraint matrix. |
| 310 | */ |
| 311 | for (int j = 0 ; j < n ; j++) |
| 312 | { if (!cdone[j]) continue ; |
| 313 | |
| 314 | int lenj = hincol[j] ; |
| 315 | int k ; |
| 316 | for (k = mcstrt[j] ; k != NO_LINK && lenj > 0 ; k = link[k]) |
| 317 | { assert(k >= 0 && k < obj->maxlink_) ; |
| 318 | lenj-- ; } |
| 319 | |
| 320 | assert(k == NO_LINK && lenj == 0) ; } |
| 321 | |
| 322 | return ; } |
| 323 | |
| 324 | /* |
| 325 | Check the free list. We're looking for gross corruption here. The notion is |
| 326 | that the free list plus elements in the matrix should add up to the capacity |
| 327 | of the bulk store. |
| 328 | */ |
| 329 | |
| 330 | void presolve_check_free_list (const CoinPostsolveMatrix *obj, bool chkElemCnt) |
| 331 | |
| 332 | { |
| 333 | |
| 334 | CoinBigIndex k = obj->free_list_ ; |
| 335 | CoinBigIndex freeCnt = 0 ; |
| 336 | CoinBigIndex maxlink = obj->maxlink_ ; |
| 337 | CoinBigIndex *link = obj->link_ ; |
| 338 | /* |
| 339 | Redundancy in the data structure. These should always be equal. |
| 340 | */ |
| 341 | assert(maxlink == obj->bulk0_) ; |
| 342 | /* |
| 343 | Walk the free list portion of link. We should never point outside the bulk |
| 344 | store. If we ever come across an entry that's less than 0, it had better be |
| 345 | NO_LINK, the end marker. |
| 346 | */ |
| 347 | while (k >= 0) |
| 348 | { assert(k < maxlink) ; |
| 349 | freeCnt++ ; |
| 350 | k = link[k] ; } |
| 351 | assert(k == NO_LINK) ; |
| 352 | /* |
| 353 | And a final test: elements in the matrix plus free space should equal the |
| 354 | size of the bulk area. A good thought, but less than practical. Currently |
| 355 | postsolve doesn't track the number of elements in the matrix. But you might |
| 356 | find it useful if you're checking a newly constructed postsolve matrix. Even |
| 357 | then, you need to make sure nelems_ is correct. In the normal scheme of |
| 358 | things, this requires that somewhere there's a count of elements. Right now, |
| 359 | drop_empty_cols_action::presolve does this count, and you can get an accurate |
| 360 | value from the presolve object. assignPresolveToPostsolve will transfer this |
| 361 | value. Otherwise you're on your own --- your constructor must somehow find |
| 362 | this count. Using a standard CoinPackedMatrix is another way to get a count. |
| 363 | */ |
| 364 | if (chkElemCnt) |
| 365 | { assert(obj->nelems_+freeCnt == maxlink) ; } |
| 366 | |
| 367 | |
| 368 | return ; } |
| 369 | #endif |
| 370 | |
| 371 | |
| 372 | /* |
| 373 | Routines to check solution and basis composition. |
| 374 | */ |
| 375 | |
| 376 | /* |
| 377 | CoinPostsolveMatrix |
| 378 | |
| 379 | This routine performs two checks on reduced costs held in rcosts_: |
| 380 | * The value held in rcosts_ is checked against the status of the |
| 381 | variable. Errors reported as "Bad rcost" |
| 382 | * The reduced cost is calculated from scratch and compared to the |
| 383 | value held in rcosts_. Errors reported as "Inacc rcost" |
| 384 | |
| 385 | Remember that postsolve has a schizophrenic attitude about maximisation. All |
| 386 | transforms assume minimisation, and that's reflected in the reduced costs we |
| 387 | see here. And you must load duals and reduced costs with the correct sign for |
| 388 | minimisation. But, as a small courtesy (and a big inconsistency), postsolve |
| 389 | will negate objective coefficients for you. Hence the rather odd use of |
| 390 | maxmin. |
| 391 | |
| 392 | The routine is specific to CoinPostsolveMatrix because the reduced cost |
| 393 | calculation requires traversal of (threaded) matrix columns. |
| 394 | |
| 395 | NOTE: This routine holds static variables. It will detect when the problem |
| 396 | size changes and reinitialise. If you use presolve debugging over |
| 397 | multiple problems and you want to be dead sure of reinitialisation, |
| 398 | use the call presolve_check_reduced_costs(0), which will reinitialise |
| 399 | and return. |
| 400 | */ |
| 401 | # if PRESOLVE_DEBUG |
| 402 | |
| 403 | void presolve_check_reduced_costs (const CoinPostsolveMatrix *postObj) |
| 404 | { |
| 405 | |
| 406 | static bool warned = false ; |
| 407 | static double *warned_rcosts = 0 ; |
| 408 | static int allocSize = 0 ; |
| 409 | static const CoinPostsolveMatrix *lastObj = 0 ; |
| 410 | |
| 411 | /* |
| 412 | Is the client asking for reinitialisation only? |
| 413 | */ |
| 414 | if (postObj == 0) |
| 415 | { warned = false ; |
| 416 | if (warned_rcosts != 0) |
| 417 | { delete[] warned_rcosts ; |
| 418 | warned_rcosts = 0 ; } |
| 419 | allocSize = 0 ; |
| 420 | lastObj = 0 ; |
| 421 | return ; } |
| 422 | /* |
| 423 | *Should* the client have asked for reinitialisation? |
| 424 | */ |
| 425 | int ncols0 = postObj->ncols0_ ; |
| 426 | if (allocSize < ncols0 || postObj != lastObj) |
| 427 | { warned = false ; |
| 428 | delete[] warned_rcosts ; |
| 429 | warned_rcosts = 0 ; |
| 430 | allocSize = 0 ; |
| 431 | lastObj = postObj ; } |
| 432 | |
| 433 | |
| 434 | double *rcosts = postObj->rcosts_ ; |
| 435 | |
| 436 | /* |
| 437 | By tracking values in warned_rcosts, we can produce a single message the |
| 438 | first time a value is determined to be incorrect. |
| 439 | */ |
| 440 | if (!warned) |
| 441 | { warned = true ; |
| 442 | std::cout |
| 443 | << "reduced cost" << std::endl ; |
| 444 | warned_rcosts = new double[ncols0] ; |
| 445 | CoinZeroN(warned_rcosts,ncols0) ; } |
| 446 | |
| 447 | double *colels = postObj->colels_ ; |
| 448 | int *hrow = postObj->hrow_ ; |
| 449 | int *mcstrt = postObj->mcstrt_ ; |
| 450 | int *hincol = postObj->hincol_ ; |
| 451 | CoinBigIndex *link = postObj->link_ ; |
| 452 | |
| 453 | double *clo = postObj->clo_ ; |
| 454 | double *cup = postObj->cup_ ; |
| 455 | |
| 456 | double *dcost = postObj->cost_ ; |
| 457 | |
| 458 | double *sol = postObj->sol_ ; |
| 459 | |
| 460 | char *cdone = postObj->cdone_ ; |
| 461 | char *rdone = postObj->rdone_ ; |
| 462 | |
| 463 | const double ztoldj = postObj->ztoldj_ ; |
| 464 | const double ztolzb = postObj->ztolzb_ ; |
| 465 | |
| 466 | double *rowduals = postObj->rowduals_ ; |
| 467 | |
| 468 | double maxmin = postObj->maxmin_ ; |
| 469 | std::string strMaxmin((maxmin < 0)?"max" :"min" ) ; |
| 470 | int checkCol=-1; |
| 471 | /* |
| 472 | Scan all columns, but only check the ones that are marked as having been |
| 473 | postprocessed. |
| 474 | */ |
| 475 | for (int j = 0 ; j < ncols0 ; j++) |
| 476 | { if (cdone[j] == 0) continue ; |
| 477 | const char *statjstr = postObj->columnStatusString(j) ; |
| 478 | /* |
| 479 | Check the stored reduced cost for accuracy. See note above w.r.t. maxmin. |
| 480 | */ |
| 481 | double dj = rcosts[j] ; |
| 482 | double wrndj = warned_rcosts[j] ; |
| 483 | |
| 484 | { int ndx ; |
| 485 | CoinBigIndex k = mcstrt[j] ; |
| 486 | int len = hincol[j] ; |
| 487 | double chkdj = maxmin*dcost[j] ; |
| 488 | if (j==checkCol) |
| 489 | printf("dj for %d is %g - cost is %g\n" , |
| 490 | j,dj,chkdj); |
| 491 | for (ndx = 0 ; ndx < len ; ndx++) |
| 492 | { int row = hrow[k] ; |
| 493 | PRESOLVEASSERT(rdone[row] != 0) ; |
| 494 | chkdj -= rowduals[row]*colels[k] ; |
| 495 | if (j==checkCol) |
| 496 | printf("row %d coeff %g dual %g => dj %g\n" , |
| 497 | row,colels[k],rowduals[row],chkdj); |
| 498 | |
| 499 | k = link[k] ; } |
| 500 | if (fabs(dj-chkdj) > ztoldj && wrndj != dj) |
| 501 | { std::cout |
| 502 | << "Inacc rcost: " << j << " " << statjstr << " " |
| 503 | << strMaxmin << " have " << dj |
| 504 | << " should be " << chkdj << " err " << fabs(dj-chkdj) |
| 505 | << std::endl ; } } |
| 506 | /* |
| 507 | Check the stored reduced cost for consistency with the variable's status. |
| 508 | The cases are |
| 509 | * basic: (reduced cost) == 0 |
| 510 | * at upper bound and not at lower bound: (reduced cost)*(maxmin) <= 0 |
| 511 | * at lower bound and not at upper bound: (reduced cost)*(maxmin) >= 0 |
| 512 | * not at either bound: any sign is correct (the variable can move either |
| 513 | way) but superbasic status is sufficiently exotic that it always |
| 514 | deserves a message. (There should be no superbasic variables at the |
| 515 | completion of postsolve.) |
| 516 | As a courtesy, show the reduced cost with the proper sign. |
| 517 | */ |
| 518 | { double xj = sol[j] ; |
| 519 | double lj = clo[j] ; |
| 520 | double uj = cup[j] ; |
| 521 | |
| 522 | if (postObj->columnIsBasic(j)) |
| 523 | { if (fabs(dj) > ztoldj && wrndj != dj) |
| 524 | { std::cout |
| 525 | << "Bad rcost: " << j << " " << maxmin*dj |
| 526 | << " " << statjstr << " " << strMaxmin << std::endl ; } } |
| 527 | else |
| 528 | if (fabs(xj-uj) < ztolzb && fabs(xj-lj) > ztolzb) |
| 529 | { if (dj >= ztoldj && wrndj != dj) |
| 530 | { std::cout |
| 531 | << "Bad rcost: " << j << " " << maxmin*dj |
| 532 | << " " << statjstr << " " << strMaxmin << std::endl ; } } |
| 533 | else |
| 534 | if (fabs(xj-lj) < ztolzb && fabs(xj-uj) > ztolzb) |
| 535 | { if (dj <= -ztoldj && wrndj != dj) |
| 536 | { std::cout |
| 537 | << "Bad rcost: " << j << " " << maxmin*dj |
| 538 | << " " << statjstr << " " << strMaxmin << std::endl ; } } |
| 539 | else |
| 540 | if (fabs(xj-lj) > ztolzb && fabs(xj-uj) > ztolzb) |
| 541 | { if (fabs(dj) > ztoldj && wrndj != dj) |
| 542 | { std::cout |
| 543 | << "Superbasic rcost: " << j << " " << maxmin*dj |
| 544 | << " " << statjstr << " " << strMaxmin |
| 545 | << " lb " << lj << " val " << xj << " ub " << uj << std::endl ; } } |
| 546 | } |
| 547 | |
| 548 | warned_rcosts[j] = rcosts[j] ; } |
| 549 | |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | CoinPostsolveMatrix |
| 554 | |
| 555 | This routine checks the value and status of the dual variables. It |
| 556 | checks that the value and status of the dual agree with the row activity. |
| 557 | Errors are reported as "Bad dual" |
| 558 | |
| 559 | See presolve_check_reduced_costs for an explanation of the use of maxmin. |
| 560 | |
| 561 | Specific to CoinPostsolveMatrix due to the use of rdone. This could be fixed, |
| 562 | but probably better to clone the function and specialise it for |
| 563 | CoinPresolveMatrix. |
| 564 | */ |
| 565 | |
| 566 | void presolve_check_duals (const CoinPostsolveMatrix *postObj) |
| 567 | { |
| 568 | |
| 569 | |
| 570 | int nrows0 = postObj->nrows0_ ; |
| 571 | |
| 572 | double *rowduals = postObj->rowduals_ ; |
| 573 | |
| 574 | double *acts = postObj->acts_ ; |
| 575 | double *rup = postObj->rup_ ; |
| 576 | double *rlo = postObj->rlo_ ; |
| 577 | |
| 578 | char *rdone = postObj->rdone_ ; |
| 579 | |
| 580 | const double ztoldj = postObj->ztoldj_ ; |
| 581 | const double ztolzb = postObj->ztolzb_ ; |
| 582 | |
| 583 | double maxmin = postObj->maxmin_ ; |
| 584 | std::string strMaxmin((maxmin < 0)?"max" :"min" ) ; |
| 585 | |
| 586 | /* |
| 587 | Scan all processed rows. The rules are as for normal reduced costs, but |
| 588 | we need to remember the various flips and inversions. In summary, the correct |
| 589 | situation at optimality (minimisation) is: |
| 590 | * acts[i] == rup[i] ==> artificial NBLB ==> dual[i] < 0 |
| 591 | * acts[i] == rlo[i] ==> artificial NBUB ==> dual[i] > 0 |
| 592 | |
| 593 | We can't say much about the dual for an equality. It can go either way. As a |
| 594 | courtesy, show the dual with the proper sign. |
| 595 | */ |
| 596 | for (int i = 0 ; i < nrows0 ; i++) |
| 597 | { if (rdone[i] == 0) continue ; |
| 598 | |
| 599 | double ui = rup[i] ; |
| 600 | double li = rlo[i] ; |
| 601 | |
| 602 | if (ui-li < 1.0e-6) continue ; |
| 603 | |
| 604 | double yi = rowduals[i] ; |
| 605 | double lhsi = acts[i] ; |
| 606 | const char *statistr = postObj->rowStatusString(i) ; |
| 607 | |
| 608 | |
| 609 | if (fabs(lhsi-li) < ztolzb) |
| 610 | { if (yi < -ztoldj) |
| 611 | { std::cout |
| 612 | << "Bad dual: " << i << " " << maxmin*yi |
| 613 | << " " << statistr << " " << strMaxmin << std::endl ; } } |
| 614 | else |
| 615 | if (fabs(lhsi-ui) < ztolzb) |
| 616 | { if (yi > ztoldj) |
| 617 | { std::cout |
| 618 | << "Bad dual: " << i << " " << maxmin*yi |
| 619 | << " " << statistr << " " << strMaxmin << std::endl ; } } |
| 620 | else |
| 621 | if (li < lhsi && lhsi < ui) |
| 622 | { if (fabs(yi) > ztoldj) |
| 623 | { std::cout |
| 624 | << "Bad dual: " << i << " " << maxmin*yi |
| 625 | << " " << statistr << " " << strMaxmin << std::endl ; } } } |
| 626 | return ; } |
| 627 | |
| 628 | |
| 629 | |
| 630 | /* |
| 631 | CoinPresolveMatrix |
| 632 | |
| 633 | This routine will check the primal (column) solution for feasibility and |
| 634 | status. If there's no column solution (sol_), the routine bails out. If the |
| 635 | column solution is present, all else is assumed to be present. |
| 636 | |
| 637 | chkColSol: check colum solution (primal variables) |
| 638 | 0 - checks off |
| 639 | 1 - check for NaN/Inf |
| 640 | *2 - check for above/below column bounds |
| 641 | chkRowAct: check row solution (evaluate constraint lhs) |
| 642 | 0 - checks off |
| 643 | *1 - check for NaN/Inf |
| 644 | 2 - check for inaccuracy, above/below row bounds |
| 645 | chkStatus: check for valid status of architectural variables |
| 646 | 0 - checks off |
| 647 | *1 - checks on, if colstat_ exists |
| 648 | |
| 649 | In general, the presolve transforms are not prepared to properly adjust the |
| 650 | row activity (reported as `Inacc RSOL'). Postsolve transforms do better. On |
| 651 | the bright side, the code seems to work just fine without maintaining row |
| 652 | activity. You probably don't want to use the level 2 checks for the row |
| 653 | solution, particularly in presolve. |
| 654 | |
| 655 | To do: implement row status checks. |
| 656 | |
| 657 | With a bit of thought, the various checks could be more cleanly separated |
| 658 | to require only the minimum information for each check. |
| 659 | */ |
| 660 | void presolve_check_sol (const CoinPresolveMatrix *preObj, |
| 661 | int chkColSol, int chkRowAct, int chkStatus) |
| 662 | |
| 663 | { |
| 664 | double *colels = preObj->colels_ ; |
| 665 | int *hrow = preObj->hrow_ ; |
| 666 | int *mcstrt = preObj->mcstrt_ ; |
| 667 | int *hincol = preObj->hincol_ ; |
| 668 | int *hinrow = preObj->hinrow_ ; |
| 669 | |
| 670 | int n = preObj->ncols_ ; |
| 671 | int m = preObj->nrows_ ; |
| 672 | |
| 673 | /* |
| 674 | If there's no column solution, bail out now. |
| 675 | */ |
| 676 | if (preObj->sol_ == 0) return ; |
| 677 | |
| 678 | double *csol = preObj->sol_ ; |
| 679 | double *acts = preObj->acts_ ; |
| 680 | double *clo = preObj->clo_ ; |
| 681 | double *cup = preObj->cup_ ; |
| 682 | double *rlo = preObj->rlo_ ; |
| 683 | double *rup = preObj->rup_ ; |
| 684 | |
| 685 | double tol = preObj->ztolzb_ ; |
| 686 | |
| 687 | double *rsol = 0 ; |
| 688 | if (chkRowAct) |
| 689 | { rsol = new double[m] ; |
| 690 | memset(rsol,0,m*sizeof(double)) ; } |
| 691 | |
| 692 | /* |
| 693 | Open a loop to scan each column. For each column, do the following: |
| 694 | * Update the row solution (lhs value) by adding the contribution from |
| 695 | this column. |
| 696 | * Check for bogus values (NaN, infinity) |
| 697 | * Check for feasibility (value within column bounds) |
| 698 | * Check that the status of the variable agrees with the value and with the |
| 699 | lower and upper bounds. Free should have no bounds, superbasic should |
| 700 | have at least one. |
| 701 | */ |
| 702 | for (int j = 0 ; j < n ; ++j) |
| 703 | { CoinBigIndex v = mcstrt[j] ; |
| 704 | int colLen = hincol[j] ; |
| 705 | double xj = csol[j] ; |
| 706 | double lj = clo[j] ; |
| 707 | double uj = cup[j] ; |
| 708 | |
| 709 | if (chkRowAct) |
| 710 | { for (int u = 0 ; u < colLen ; ++u) |
| 711 | { int i = hrow[v] ; |
| 712 | double aij = colels[v] ; |
| 713 | v++ ; |
| 714 | rsol[i] += aij*xj ; } } |
| 715 | |
| 716 | if (chkColSol&((1<<1)|(1<<0))) |
| 717 | { if (CoinIsnan(xj)) |
| 718 | { printf("NaN CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 719 | if (xj <= -PRESOLVE_INF || xj >= PRESOLVE_INF) |
| 720 | { printf("Inf CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 721 | if (chkColSol > 1) |
| 722 | { if (xj < lj-tol) |
| 723 | { printf("low CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 724 | else |
| 725 | if (xj > uj+tol) |
| 726 | { printf("high CSOL: %d : lb = %g x = %g ub = %g\n" , |
| 727 | j,lj,xj,uj) ; } } } |
| 728 | if (chkStatus && preObj->colstat_) |
| 729 | { CoinPrePostsolveMatrix::Status statj = preObj->getColumnStatus(j) ; |
| 730 | switch (statj) |
| 731 | { case CoinPrePostsolveMatrix::atUpperBound: |
| 732 | { if (uj >= PRESOLVE_INF || fabs(xj-uj) > tol) |
| 733 | { printf("Bad status CSOL: %d : status atUpperBound : " ,j) ; |
| 734 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 735 | break ; } |
| 736 | case CoinPrePostsolveMatrix::atLowerBound: |
| 737 | { if (lj <= -PRESOLVE_INF || fabs(xj-lj) > tol) |
| 738 | { printf("Bad status CSOL: %d : status atLowerBound : " ,j) ; |
| 739 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 740 | break ; } |
| 741 | case CoinPrePostsolveMatrix::isFree: |
| 742 | { if (lj > -PRESOLVE_INF || uj < PRESOLVE_INF) |
| 743 | { printf("Bad status CSOL: %d : status isFree : " ,j) ; |
| 744 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 745 | break ; } |
| 746 | case CoinPrePostsolveMatrix::superBasic: |
| 747 | { if (!(lj > -PRESOLVE_INF || uj < PRESOLVE_INF)) |
| 748 | { printf("Bad status CSOL: %d : status superBasic : " ,j) ; |
| 749 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 750 | break ; } |
| 751 | case CoinPrePostsolveMatrix::basic: |
| 752 | { /* Nothing to do here. */ |
| 753 | break ; } |
| 754 | default: |
| 755 | { printf("Bad status CSOL: %d : status unrecognized : " ,j) ; |
| 756 | break ; } } } } |
| 757 | /* |
| 758 | Now check the row solution. acts[i] is what presolve thinks we have, rsol[i] |
| 759 | is what we've just calculated while scanning the columns. We need only |
| 760 | check nontrivial rows (i.e., rows with length > 0). For each row, |
| 761 | * Check for bogus values (NaN, infinity) |
| 762 | * Check for accuracy (acts == rsol) |
| 763 | * Check for feasibility (rsol within row bounds) |
| 764 | */ |
| 765 | tol *=1.0e3; |
| 766 | if (chkRowAct) |
| 767 | { for (int i = 0 ; i < m ; ++i) |
| 768 | { if (hinrow[i]) |
| 769 | { double lhsi = acts[i] ; |
| 770 | double evali = rsol[i] ; |
| 771 | double li = rlo[i] ; |
| 772 | double ui = rup[i] ; |
| 773 | |
| 774 | if (CoinIsnan(evali) || CoinIsnan(lhsi)) |
| 775 | { printf("NaN RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 776 | i,li,evali,lhsi,ui) ; } |
| 777 | if (evali <= -PRESOLVE_INF || evali >= PRESOLVE_INF || |
| 778 | lhsi <= -PRESOLVE_INF || lhsi >= PRESOLVE_INF) |
| 779 | { printf("Inf RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 780 | i,li,evali,lhsi,ui) ; } |
| 781 | if (chkRowAct > 1) |
| 782 | { if (fabs(evali-lhsi) > tol) |
| 783 | { printf("Inacc RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 784 | i,li,evali,lhsi,ui) ; } |
| 785 | if (evali < li-tol || lhsi < li-tol) |
| 786 | { printf("low RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 787 | i,li,evali,lhsi,ui) ; } |
| 788 | else |
| 789 | if (evali > ui+tol || lhsi > ui+tol) |
| 790 | { printf("high RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 791 | i,li,evali,lhsi,ui) ; } } } } |
| 792 | delete [] rsol ; } |
| 793 | return ; } |
| 794 | |
| 795 | /* |
| 796 | CoinPostsolveMatrix |
| 797 | |
| 798 | check_sol overload for CoinPostsolveMatrix. Parameters and functionality |
| 799 | identical to check_sol immediately above, but we have to remember we're |
| 800 | working with a threaded column-major representation. |
| 801 | */ |
| 802 | void presolve_check_sol (const CoinPostsolveMatrix *postObj, |
| 803 | int chkColSol, int chkRowAct, int chkStatus) |
| 804 | |
| 805 | { |
| 806 | double *colels = postObj->colels_ ; |
| 807 | int *hrow = postObj->hrow_ ; |
| 808 | int *mcstrt = postObj->mcstrt_ ; |
| 809 | int *hincol = postObj->hincol_ ; |
| 810 | int *link = postObj->link_ ; |
| 811 | |
| 812 | int n = postObj->ncols_ ; |
| 813 | int m = postObj->nrows_ ; |
| 814 | |
| 815 | double *csol = postObj->sol_ ; |
| 816 | double *acts = postObj->acts_ ; |
| 817 | double *clo = postObj->clo_ ; |
| 818 | double *cup = postObj->cup_ ; |
| 819 | double *rlo = postObj->rlo_ ; |
| 820 | double *rup = postObj->rup_ ; |
| 821 | |
| 822 | double tol = postObj->ztolzb_ ; |
| 823 | |
| 824 | double *rsol = 0 ; |
| 825 | if (chkRowAct) |
| 826 | { rsol = new double[m] ; |
| 827 | memset(rsol,0,m*sizeof(double)) ; } |
| 828 | |
| 829 | /* |
| 830 | Open a loop to scan each column. For each column, do the following: |
| 831 | * Update the row solution (lhs value) by adding the contribution from |
| 832 | this column. |
| 833 | * Check for bogus values (NaN, infinity) |
| 834 | * check that the status of the variable agrees with the value and with the |
| 835 | lower and upper bounds. Free should have no bounds, superbasic should |
| 836 | have at least one. |
| 837 | */ |
| 838 | for (int j = 0 ; j < n ; ++j) |
| 839 | { CoinBigIndex v = mcstrt[j] ; |
| 840 | int colLen = hincol[j] ; |
| 841 | double xj = csol[j] ; |
| 842 | double lj = clo[j] ; |
| 843 | double uj = cup[j] ; |
| 844 | |
| 845 | if (chkRowAct) |
| 846 | { for (int u = 0 ; u < colLen ; ++u) |
| 847 | { int i = hrow[v] ; |
| 848 | double aij = colels[v] ; |
| 849 | v = link[v] ; |
| 850 | rsol[i] += aij*xj ; } } |
| 851 | if (chkColSol) |
| 852 | { if (CoinIsnan(xj)) |
| 853 | { printf("NaN CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 854 | if (xj <= -PRESOLVE_INF || xj >= PRESOLVE_INF) |
| 855 | { printf("Inf CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 856 | if (chkColSol > 1) |
| 857 | { if (xj < lj-tol) |
| 858 | { printf("low CSOL: %d : lb = %g x = %g ub = %g\n" ,j,lj,xj,uj) ; } |
| 859 | else |
| 860 | if (xj > uj+tol) |
| 861 | { printf("high CSOL: %d : lb = %g x = %g ub = %g\n" , |
| 862 | j,lj,xj,uj) ; } } } |
| 863 | if (chkStatus && postObj->colstat_) |
| 864 | { CoinPrePostsolveMatrix::Status statj = postObj->getColumnStatus(j) ; |
| 865 | switch (statj) |
| 866 | { case CoinPrePostsolveMatrix::atUpperBound: |
| 867 | { if (uj >= PRESOLVE_INF || fabs(xj-uj) > tol) |
| 868 | { printf("Bad status CSOL: %d : status atUpperBound : " ,j) ; |
| 869 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 870 | break ; } |
| 871 | case CoinPrePostsolveMatrix::atLowerBound: |
| 872 | { if (lj <= -PRESOLVE_INF || fabs(xj-lj) > tol) |
| 873 | { printf("Bad status CSOL: %d : status atLowerBound : " ,j) ; |
| 874 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 875 | break ; } |
| 876 | case CoinPrePostsolveMatrix::isFree: |
| 877 | { if (lj > -PRESOLVE_INF || uj < PRESOLVE_INF) |
| 878 | { printf("Bad status CSOL: %d : status isFree : " ,j) ; |
| 879 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 880 | break ; } |
| 881 | case CoinPrePostsolveMatrix::superBasic: |
| 882 | { if (!(lj > -PRESOLVE_INF || uj < PRESOLVE_INF)) |
| 883 | { printf("Bad status CSOL: %d : status superBasic : " ,j) ; |
| 884 | printf("lb = %g x = %g ub = %g\n" ,lj,xj,uj) ; } |
| 885 | break ; } |
| 886 | case CoinPrePostsolveMatrix::basic: |
| 887 | { /* Nothing to do here. */ |
| 888 | break ; } |
| 889 | default: |
| 890 | { printf("Bad status CSOL: %d : status unrecognized : " ,j) ; |
| 891 | break ; } } } } |
| 892 | /* |
| 893 | Now check the row solution. acts[i] is what presolve thinks we have, rsol[i] |
| 894 | is what we've just calculated while scanning the columns. CoinPostsolveMatrix |
| 895 | does not contain hinrow_, so we can't check for trivial rows (cf. check_sol |
| 896 | for CoinPresolveMatrix). For each row, |
| 897 | * Check for bogus values (NaN, infinity) |
| 898 | */ |
| 899 | tol *= 1.0e4; |
| 900 | if (chkRowAct) |
| 901 | { for (int i = 0 ; i < m ; ++i) |
| 902 | { double lhsi = acts[i] ; |
| 903 | double evali = rsol[i] ; |
| 904 | double li = rlo[i] ; |
| 905 | double ui = rup[i] ; |
| 906 | |
| 907 | if (CoinIsnan(evali) || CoinIsnan(lhsi)) |
| 908 | { printf("NaN RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 909 | i,li,evali,lhsi,ui) ; } |
| 910 | if (evali <= -PRESOLVE_INF || evali >= PRESOLVE_INF || |
| 911 | lhsi <= -PRESOLVE_INF || lhsi >= PRESOLVE_INF) |
| 912 | { printf("Inf RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 913 | i,li,evali,lhsi,ui) ; } |
| 914 | if (chkRowAct > 1) |
| 915 | { if (fabs(evali-lhsi) > tol) |
| 916 | { printf("Inacc RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 917 | i,li,evali,lhsi,ui) ; } |
| 918 | if (evali < li-tol || lhsi < li-tol) |
| 919 | { printf("low RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 920 | i,li,evali,lhsi,ui) ; } |
| 921 | else |
| 922 | if (evali > ui+tol || lhsi > ui+tol) |
| 923 | { printf("high RSOL: %d : lb = %g eval = %g (expected %g) ub = %g\n" , |
| 924 | i,li,evali,lhsi,ui) ; } } } |
| 925 | delete [] rsol ; } |
| 926 | return ; } |
| 927 | |
| 928 | /* |
| 929 | CoinPostsolveMatrix |
| 930 | |
| 931 | Make sure that the number of basic variables is correct. |
| 932 | */ |
| 933 | void presolve_check_nbasic (const CoinPostsolveMatrix *postObj) |
| 934 | |
| 935 | { |
| 936 | |
| 937 | int ncols0 = postObj->ncols0_ ; |
| 938 | int nrows0 = postObj->nrows0_ ; |
| 939 | |
| 940 | char *cdone = postObj->cdone_ ; |
| 941 | char *rdone = postObj->rdone_ ; |
| 942 | |
| 943 | int nbasic = 0 ; |
| 944 | int ncdone = 0; |
| 945 | int nrdone = 0; |
| 946 | int ncb = 0; |
| 947 | int nrb = 0; |
| 948 | |
| 949 | for (int j = 0 ; j < ncols0 ; j++) |
| 950 | { |
| 951 | if (cdone[j] != 0 && postObj->columnIsBasic(j)) |
| 952 | { nbasic++ ; |
| 953 | ncb++ ; } |
| 954 | if (cdone[j]) |
| 955 | ncdone++ ; |
| 956 | } |
| 957 | |
| 958 | for (int i = 0 ; i < nrows0 ; i++) |
| 959 | { |
| 960 | if (rdone[i] && postObj->rowIsBasic(i)) |
| 961 | { nbasic++ ; |
| 962 | nrb++ ; } |
| 963 | if (rdone[i]) |
| 964 | nrdone++ ; |
| 965 | } |
| 966 | |
| 967 | if (nbasic != postObj->nrows_) |
| 968 | { printf("WRONG NUMBER NBASIC: is %d, should be %d; " , |
| 969 | nbasic,postObj->nrows_) ; |
| 970 | printf("cdone %d, col basic %d, rdone %d, row basic %d.\n" , |
| 971 | ncdone,ncb,nrdone,nrb) ; |
| 972 | fflush(stdout) ; } |
| 973 | return ; } |
| 974 | |
| 975 | |
| 976 | /* |
| 977 | CoinPresolveMatrix |
| 978 | |
| 979 | Overload of presolve_check_nbasic for a CoinPresolveMatrix. There may not be |
| 980 | a solution, eh? |
| 981 | */ |
| 982 | void presolve_check_nbasic (const CoinPresolveMatrix *preObj) |
| 983 | |
| 984 | { |
| 985 | |
| 986 | if (preObj->sol_ == 0) return ; |
| 987 | |
| 988 | int ncols = preObj->ncols_ ; |
| 989 | int nrows = preObj->nrows_ ; |
| 990 | |
| 991 | int nbasic = 0 ; |
| 992 | int ncb = 0; |
| 993 | int nrb = 0; |
| 994 | |
| 995 | for (int j = 0 ; j < ncols ; j++) |
| 996 | { |
| 997 | if (preObj->columnIsBasic(j)) |
| 998 | { nbasic++ ; |
| 999 | ncb++ ; } |
| 1000 | } |
| 1001 | |
| 1002 | for (int i = 0 ; i < nrows ; i++) |
| 1003 | { |
| 1004 | if (preObj->rowIsBasic(i)) |
| 1005 | { nbasic++ ; |
| 1006 | nrb++ ; } |
| 1007 | } |
| 1008 | |
| 1009 | if (nbasic != nrows) |
| 1010 | { printf("WRONG NUMBER NBASIC: is: %d should be: %d;" , |
| 1011 | nbasic,nrows) ; |
| 1012 | printf(" cb %d, rb %d.\n" ,ncb,nrb); |
| 1013 | fflush(stdout) ; } |
| 1014 | return ; } |
| 1015 | |
| 1016 | #endif |
| 1017 | /* |
| 1018 | Original comment: I've forgotton what this is all about |
| 1019 | |
| 1020 | Looks to me like it's confirming that the columns flagged as basic indeed |
| 1021 | have enough coefficients between them to cover the basis. It'd be serious |
| 1022 | work to get this going again. Waaaaaay out of date. -- lh, 040831 -- |
| 1023 | */ |
| 1024 | # if 0 |
| 1025 | void check_pivots (const int *mrstrt, const int *hinrow, const int *hcol, |
| 1026 | int nrows, const unsigned char *colstat, |
| 1027 | const unsigned char *rowstat, int ncols) |
| 1028 | { |
| 1029 | int i ; |
| 1030 | int nbasic = 0 ; |
| 1031 | int gotone = 1 ; |
| 1032 | int stillmore ; |
| 1033 | |
| 1034 | return ; |
| 1035 | |
| 1036 | int *bcol = new int[nrows] ; |
| 1037 | memset(bcol, -1, nrows*sizeof(int)) ; |
| 1038 | |
| 1039 | char *coldone = new char[ncols] ; |
| 1040 | memset(coldone, 0, ncols) ; |
| 1041 | |
| 1042 | while (gotone) { |
| 1043 | gotone = 0 ; |
| 1044 | stillmore = 0 ; |
| 1045 | for (i=0; i<nrows; i++) |
| 1046 | if (!postObj->rowIsBasic(i)) { |
| 1047 | int krs = mrstrt[i] ; |
| 1048 | int kre = mrstrt[i] + hinrow[i] ; |
| 1049 | int nb = 0 ; |
| 1050 | int kk ; |
| 1051 | for (int k=krs; k<kre; k++) |
| 1052 | if (postObj->columnIsBasic(hcol[k]) && !coldone[hcol[k]]) { |
| 1053 | nb++ ; |
| 1054 | kk = k ; |
| 1055 | if (nb > 1) |
| 1056 | break ; |
| 1057 | } |
| 1058 | if (nb == 1) { |
| 1059 | PRESOLVEASSERT(bcol[i] == -1) ; |
| 1060 | bcol[i] = hcol[kk] ; |
| 1061 | coldone[hcol[kk]] = 1 ; |
| 1062 | nbasic++ ; |
| 1063 | gotone = 1 ; |
| 1064 | } |
| 1065 | else |
| 1066 | stillmore = 1 ; |
| 1067 | } |
| 1068 | } |
| 1069 | PRESOLVEASSERT(!stillmore) ; |
| 1070 | |
| 1071 | for (i=0; i<nrows; i++) |
| 1072 | if (postObj->rowIsBasic(i)) { |
| 1073 | int krs = mrstrt[i] ; |
| 1074 | int kre = mrstrt[i] + hinrow[i] ; |
| 1075 | for (int k=krs; k<kre; k++) |
| 1076 | PRESOLVEASSERT(!postObj->columnIsBasic(hcol[k]) || coldone[hcol[k]]) ; |
| 1077 | nbasic++ ; |
| 1078 | } |
| 1079 | PRESOLVEASSERT(nbasic == nrows) ; |
| 1080 | } |
| 1081 | |
| 1082 | # endif |
| 1083 | |