| 1 | /* $Id: CoinPresolveSubst.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
| 2 | // Copyright (C) 2002, International Business Machines |
| 3 | // Corporation and others. All Rights Reserved. |
| 4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
| 5 | |
| 6 | #include <stdio.h> |
| 7 | #include <math.h> |
| 8 | |
| 9 | #include "CoinPresolveMatrix.hpp" |
| 10 | #include "CoinPresolveEmpty.hpp" // for DROP_COL/DROP_ROW |
| 11 | #include "CoinPresolvePsdebug.hpp" |
| 12 | #include "CoinPresolveFixed.hpp" |
| 13 | #include "CoinPresolveZeros.hpp" |
| 14 | #include "CoinPresolveSubst.hpp" |
| 15 | #include "CoinMessage.hpp" |
| 16 | #include "CoinHelperFunctions.hpp" |
| 17 | #include "CoinSort.hpp" |
| 18 | #include "CoinError.hpp" |
| 19 | #include "CoinFinite.hpp" |
| 20 | |
| 21 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 22 | #include "CoinPresolvePsdebug.hpp" |
| 23 | #endif |
| 24 | |
| 25 | namespace { // begin unnamed file-local namespace |
| 26 | |
| 27 | inline void prepend_elem(int jcol, double coeff, int irow, |
| 28 | CoinBigIndex *mcstrt, |
| 29 | double *colels, |
| 30 | int *hrow, |
| 31 | int *link, CoinBigIndex *free_listp) |
| 32 | { |
| 33 | CoinBigIndex kk = *free_listp; |
| 34 | assert(kk >= 0) ; |
| 35 | *free_listp = link[*free_listp]; |
| 36 | link[kk] = mcstrt[jcol]; |
| 37 | mcstrt[jcol] = kk; |
| 38 | colels[kk] = coeff; |
| 39 | hrow[kk] = irow; |
| 40 | } |
| 41 | |
| 42 | // add coeff_factor * rowy to rowx |
| 43 | static bool add_row(CoinBigIndex *mrstrt, |
| 44 | double *rlo, double * acts, double *rup, |
| 45 | double *rowels, |
| 46 | int *hcol, |
| 47 | int *hinrow, |
| 48 | presolvehlink *rlink, int nrows, |
| 49 | double coeff_factor, |
| 50 | int irowx, int irowy, |
| 51 | int *x_to_y) |
| 52 | { |
| 53 | CoinBigIndex krs = mrstrt[irowy]; |
| 54 | CoinBigIndex kre = krs + hinrow[irowy]; |
| 55 | CoinBigIndex krsx = mrstrt[irowx]; |
| 56 | CoinBigIndex krex = krsx + hinrow[irowx]; |
| 57 | // const int maxk = mrstrt[nrows]; // (22) |
| 58 | |
| 59 | // if irowx is very long, the searching gets very slow, |
| 60 | // so we always sort. |
| 61 | // whatever sorts rows should handle almost-sorted data efficiently |
| 62 | // (quicksort may not) |
| 63 | CoinSort_2(hcol+krsx,hcol+krsx+hinrow[irowx],rowels+krsx); |
| 64 | CoinSort_2(hcol+krs,hcol+krs+hinrow[irowy],rowels+krs); |
| 65 | //ekk_sort2(hcol+krsx, rowels+krsx, hinrow[irowx]); |
| 66 | //ekk_sort2(hcol+krs, rowels+krs, hinrow[irowy]); |
| 67 | |
| 68 | //printf("%s x=%d y=%d cf=%g nx=%d ny=%d\n", |
| 69 | // "ADD_ROW:", |
| 70 | // irowx, irowy, coeff_factor, hinrow[irowx], hinrow[irowy]); |
| 71 | |
| 72 | # if PRESOLVE_DEBUG |
| 73 | printf("%s x=%d y=%d cf=%g nx=%d ycols=(" , |
| 74 | "ADD_ROW:" , |
| 75 | irowx, irowy, coeff_factor, hinrow[irowx]); |
| 76 | # endif |
| 77 | |
| 78 | // adjust row bounds of rowx; |
| 79 | // analogous to adjusting bounds info of colx in doubleton, |
| 80 | // or perhaps adjustment to rlo/rup in elim_doubleton |
| 81 | // |
| 82 | // I believe that since we choose a column that is implied free, |
| 83 | // no other column bounds need to be updated. |
| 84 | // This is what would happen in doubleton if y's bounds were implied free; |
| 85 | // in that case, |
| 86 | // lo1 would never improve clo[icolx] and |
| 87 | // up1 would never improve cup[icolx]. |
| 88 | { |
| 89 | double rhsy = rlo[irowy]; |
| 90 | |
| 91 | // (1) |
| 92 | if (-PRESOLVE_INF < rlo[irowx]) { |
| 93 | # if PRESOLVE_DEBUG |
| 94 | if (rhsy * coeff_factor) |
| 95 | printf("ELIM_ROW RLO: %g -> %g\n" , |
| 96 | rlo[irowx], |
| 97 | rlo[irowx] + rhsy * coeff_factor); |
| 98 | # endif |
| 99 | rlo[irowx] += rhsy * coeff_factor; |
| 100 | } |
| 101 | // (2) |
| 102 | if (rup[irowx] < PRESOLVE_INF) { |
| 103 | # if PRESOLVE_DEBUG |
| 104 | if (rhsy * coeff_factor) |
| 105 | printf("ELIM_ROW RUP: %g -> %g\n" , |
| 106 | rup[irowx], |
| 107 | rup[irowx] + rhsy * coeff_factor); |
| 108 | # endif |
| 109 | rup[irowx] += rhsy * coeff_factor; |
| 110 | } |
| 111 | if (acts) |
| 112 | { acts[irowx] += rhsy * coeff_factor ; } |
| 113 | } |
| 114 | |
| 115 | CoinBigIndex kcolx = krsx; |
| 116 | CoinBigIndex krex0 = krex; |
| 117 | int x_to_y_i = 0; |
| 118 | |
| 119 | for (CoinBigIndex krowy=krs; krowy<kre; krowy++) { |
| 120 | int jcol = hcol[krowy]; |
| 121 | |
| 122 | // even though these values are updated, they remain consistent |
| 123 | PRESOLVEASSERT(krex == krsx + hinrow[irowx]); |
| 124 | |
| 125 | // see if row appears in colx |
| 126 | // do NOT look beyond the original elements of rowx |
| 127 | //CoinBigIndex kcolx = presolve_find_col1(jcol, krsx, krex, hcol); |
| 128 | while (kcolx < krex0 && hcol[kcolx] < jcol) |
| 129 | kcolx++; |
| 130 | |
| 131 | # if PRESOLVE_DEBUG |
| 132 | printf("%d%s " , jcol, (kcolx < krex0 && hcol[kcolx] == jcol) ? "+" : "" ); |
| 133 | # endif |
| 134 | |
| 135 | if (kcolx < krex0 && hcol[kcolx] == jcol) { |
| 136 | // before: both x and y are in the jcol |
| 137 | // after: only x is in the jcol |
| 138 | // so: number of elems in col x unchanged, and num elems in jcol is one less |
| 139 | |
| 140 | // update row rep - just modify coefficent |
| 141 | // column y is deleted as a whole at the end of the loop |
| 142 | # if PRESOLVE_DEBUG |
| 143 | printf("CHANGING %g + %g -> %g\n" , |
| 144 | rowels[kcolx], |
| 145 | rowels[krowy], |
| 146 | rowels[kcolx] + rowels[krowy] * coeff_factor); |
| 147 | # endif |
| 148 | rowels[kcolx] += rowels[krowy] * coeff_factor; |
| 149 | |
| 150 | // this is where this element in rowy ended up |
| 151 | x_to_y[x_to_y_i++] = kcolx - krsx; |
| 152 | kcolx++; |
| 153 | } else { |
| 154 | // before: only y is in the jcol |
| 155 | // after: only x is in the jcol |
| 156 | // so: number of elems in col x is one greater, but num elems in jcol remains same |
| 157 | { |
| 158 | bool outOfSpace=presolve_expand_row(mrstrt,rowels,hcol,hinrow,rlink,nrows,irowx) ; |
| 159 | if (outOfSpace) |
| 160 | return true; |
| 161 | // this may force a compaction |
| 162 | // this will be called excessively if the rows are packed too tightly |
| 163 | |
| 164 | // have to adjust various induction variables |
| 165 | krowy = mrstrt[irowy] + (krowy - krs); |
| 166 | krs = mrstrt[irowy]; // do this for ease of debugging |
| 167 | kre = mrstrt[irowy] + hinrow[irowy]; |
| 168 | |
| 169 | kcolx = mrstrt[irowx] + (kcolx - krsx); // don't really need to do this |
| 170 | krex0 = mrstrt[irowx] + (krex0 - krsx); |
| 171 | krsx = mrstrt[irowx]; |
| 172 | krex = mrstrt[irowx] + hinrow[irowx]; |
| 173 | } |
| 174 | // this is where this element in rowy ended up |
| 175 | x_to_y[x_to_y_i++] = krex - krsx; |
| 176 | |
| 177 | // there is now an unused entry in the memory after the column - use it |
| 178 | // mrstrt[nrows] == penultimate index of arrays hcol/rowels |
| 179 | hcol[krex] = jcol; |
| 180 | rowels[krex] = rowels[krowy] * coeff_factor; |
| 181 | hinrow[irowx]++, krex++; // expand the col |
| 182 | |
| 183 | // do NOT increment kcolx |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | # if PRESOLVE_DEBUG |
| 188 | printf(")\n" ); |
| 189 | # endif |
| 190 | return false; |
| 191 | } |
| 192 | |
| 193 | |
| 194 | // It is common in osl to copy from one representation to another |
| 195 | // (say from a col rep to a row rep). |
| 196 | // One such routine is ekkclcp. |
| 197 | // This is similar, except that it does not assume that the |
| 198 | // representation is packed, and it adds some slack space |
| 199 | // in the target rep. |
| 200 | // It assumes both hincol/hinrow are correct. |
| 201 | // Note that such routines automatically sort the target rep by index, |
| 202 | // because they sweep the rows in ascending order. |
| 203 | void copyrep(const int * mrstrt, const int *hcol, const double *rowels, |
| 204 | const int *hinrow, int nrows, |
| 205 | int *mcstrt, int *hrow, double *colels, |
| 206 | int *hincol, int ncols) |
| 207 | { |
| 208 | int pos = 0; |
| 209 | for (int j = 0; j < ncols; ++j) { |
| 210 | mcstrt[j] = pos; |
| 211 | pos += hincol[j]; |
| 212 | pos += CoinMin(hincol[j], 10); // slack |
| 213 | hincol[j] = 0; |
| 214 | } |
| 215 | |
| 216 | for (int i = 0; i < nrows; ++i) { |
| 217 | CoinBigIndex krs = mrstrt[i]; |
| 218 | CoinBigIndex kre = krs + hinrow[i]; |
| 219 | for (CoinBigIndex kr = krs; kr < kre; ++kr) { |
| 220 | int icol = hcol[kr]; |
| 221 | int iput = hincol[icol]; |
| 222 | hincol[icol] = iput + 1; |
| 223 | iput += mcstrt[icol]; |
| 224 | |
| 225 | hrow[iput] = i; |
| 226 | colels[iput] = rowels[kr]; |
| 227 | } |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | } // end unnamed file-local namespace |
| 232 | |
| 233 | |
| 234 | const char *subst_constraint_action::name() const |
| 235 | { |
| 236 | return ("subst_constraint_action" ); |
| 237 | } |
| 238 | |
| 239 | // add -x/y times row y to row x, thus cancelling out one column of rowx; |
| 240 | // afterwards, that col will be singleton for rowy, so we drop the row. |
| 241 | // |
| 242 | // This no longer maintains the col rep as it goes along. |
| 243 | // Instead, it reconstructs it from scratch afterward. |
| 244 | // |
| 245 | // This implements the functionality of ekkrdc3. |
| 246 | |
| 247 | /* |
| 248 | This routine is called only from implied_free_action. There are several |
| 249 | oddities and redundancies in the relationship. The two routines need a good |
| 250 | grooming. |
| 251 | |
| 252 | try_fill_level limits the allowable number of coefficients in a column |
| 253 | under consideration for substitution. There's some sort of hack going on |
| 254 | that has the following effect: if try_fill_level comes in as 2, and that |
| 255 | seems overly limiting (number of substitutions < 30), try increasing it to |
| 256 | 3. To trigger a wider examination of columns, this is actually passed back |
| 257 | as -3. The next entry of implied_free_action (and then this routine) will |
| 258 | override ColsToDo and examine all columns. |
| 259 | |
| 260 | Hence the initial loop triggered when try_fill_level < 0. Other positive |
| 261 | values of fill_level will have no effect. A value of -3 will be converted |
| 262 | (and passed back out) as +3. Arbitrary negative values of try_fill_level |
| 263 | will also trigger the expansion of search and be converted to positive |
| 264 | values. |
| 265 | |
| 266 | I would have thought that the columns considered by implied_free_action |
| 267 | should also be limited by fill_level, but that's not currently the case. |
| 268 | It's hard-wired to consider columns with 1 to 3 coefficients. |
| 269 | |
| 270 | There must be a better way. -- lh, 040818 -- |
| 271 | */ |
| 272 | |
| 273 | const CoinPresolveAction * |
| 274 | subst_constraint_action::presolve(CoinPresolveMatrix *prob, |
| 275 | const int *implied_free, |
| 276 | const int * whichFree, |
| 277 | int numberFree, |
| 278 | const CoinPresolveAction *next, |
| 279 | int &try_fill_level) |
| 280 | { |
| 281 | double *colels = prob->colels_; |
| 282 | int *hrow = prob->hrow_; |
| 283 | CoinBigIndex *mcstrt = prob->mcstrt_; |
| 284 | int *hincol = prob->hincol_; |
| 285 | const int ncols = prob->ncols_; |
| 286 | |
| 287 | double *rowels = prob->rowels_; |
| 288 | int *hcol = prob->hcol_; |
| 289 | CoinBigIndex *mrstrt = prob->mrstrt_; |
| 290 | int *hinrow = prob->hinrow_; |
| 291 | const int nrows = prob->nrows_; |
| 292 | |
| 293 | double *rlo = prob->rlo_; |
| 294 | double *rup = prob->rup_; |
| 295 | double *acts = prob->acts_; |
| 296 | |
| 297 | double *dcost = prob->cost_; |
| 298 | |
| 299 | presolvehlink *clink = prob->clink_; |
| 300 | presolvehlink *rlink = prob->rlink_; |
| 301 | |
| 302 | const double tol = prob->feasibilityTolerance_; |
| 303 | |
| 304 | action *actions = new action [ncols]; |
| 305 | # ifdef ZEROFAULT |
| 306 | CoinZeroN(reinterpret_cast<char *>(actions),ncols*sizeof(action)) ; |
| 307 | # endif |
| 308 | int nactions = 0; |
| 309 | |
| 310 | int *zerocols = new int[ncols]; |
| 311 | int nzerocols = 0; |
| 312 | |
| 313 | int *x_to_y = new int[ncols]; |
| 314 | |
| 315 | #if 0 |
| 316 | // follmer.mps presents a challenge, since it has some very |
| 317 | // long rows. I started experimenting with how to deal with it, |
| 318 | // but haven't yet finished. |
| 319 | // The idea was to space out the rows to add some padding between them. |
| 320 | // Ideally, we shouldn't have to do this just here, but could try to |
| 321 | // do it a little everywhere. |
| 322 | |
| 323 | // sort the row rep by reconstructing from col rep |
| 324 | copyrep(mcstrt, hrow, colels, hincol, ncols, |
| 325 | mrstrt, hcol, rowels, hinrow, nrows); |
| 326 | presolve_make_memlists(/*mrstrt,*/ hinrow, rlink, nrows); |
| 327 | // NEED SOME ASSERTION ABOUT NELEMS |
| 328 | |
| 329 | copyrep(mrstrt, hcol, rowels, hinrow, nrows, |
| 330 | mcstrt, hrow, colels, hincol, ncols); |
| 331 | presolve_make_memlists(/*mcstrt,*/ hincol, clink, ncols); |
| 332 | #endif |
| 333 | |
| 334 | // in the original presolve, I don't think the two representations were |
| 335 | // kept in sync. It may be useful not to do that here, either, |
| 336 | // but rather just keep the columns with nfill_level rows accurate |
| 337 | // and resync at the end of the function. |
| 338 | |
| 339 | // DEBUGGING |
| 340 | #if PRESOLVE_DEBUGx |
| 341 | int maxsubst = atoi(getenv("MAXSUBST" )); |
| 342 | #else |
| 343 | const int maxsubst = 1000000; |
| 344 | #endif |
| 345 | |
| 346 | int nsubst = 0; |
| 347 | |
| 348 | // This loop does very nearly the same thing as |
| 349 | // the first loop in implied_free_action::presolve. |
| 350 | // We have to do it again in case constraints change while we process |
| 351 | // them (???). |
| 352 | /* |
| 353 | No --- given the hack with -3 coming in to implied_free_action and overriding |
| 354 | ColsToDo, we could have columns in implied_free that aren't in ColsToDo. |
| 355 | -- lh, 040818 -- |
| 356 | */ |
| 357 | int numberLook = prob->numberColsToDo_; |
| 358 | int iLook; |
| 359 | int * look = prob->colsToDo_; |
| 360 | int fill_level = try_fill_level; |
| 361 | int * look2 = NULL; |
| 362 | // if gone from 2 to 3 look at all |
| 363 | if (fill_level<0) { |
| 364 | //abort(); |
| 365 | fill_level=-fill_level; |
| 366 | try_fill_level=fill_level; |
| 367 | look2 = new int[ncols]; |
| 368 | look=look2; |
| 369 | if (!prob->anyProhibited()) { |
| 370 | for (iLook=0;iLook<ncols;iLook++) |
| 371 | look[iLook]=iLook; |
| 372 | numberLook=ncols; |
| 373 | } else { |
| 374 | // some prohibited |
| 375 | numberLook=0; |
| 376 | for (iLook=0;iLook<ncols;iLook++) |
| 377 | if (!prob->colProhibited(iLook)) |
| 378 | look[numberLook++]=iLook; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | |
| 383 | int * rowsUsed = prob->usefulRowInt_+prob->nrows_; |
| 384 | int nRowsUsed=0; |
| 385 | for (iLook=0;iLook<numberFree;iLook++) { |
| 386 | int jcoly=whichFree[iLook]; |
| 387 | int whichRow = implied_free[iLook]; |
| 388 | if (hincol[jcoly] <2 || hincol[jcoly] > fill_level) |
| 389 | continue; |
| 390 | CoinBigIndex kcs = mcstrt[jcoly]; |
| 391 | CoinBigIndex kce = kcs + hincol[jcoly]; |
| 392 | |
| 393 | int bestrowy_size = 0; |
| 394 | int bestrowy_row=-1; |
| 395 | int bestrowy_k=-1; |
| 396 | double bestrowy_coeff=0.0; |
| 397 | CoinBigIndex k; |
| 398 | for (k=kcs; k<kce; ++k) { |
| 399 | int row = hrow[k]; |
| 400 | double coeffj = colels[k]; |
| 401 | |
| 402 | // we don't clean up zeros in the middle of the routine. |
| 403 | // if there is one, skip this candidate. |
| 404 | if (fabs(coeffj) <= ZTOLDP2 || prob->rowUsed(row)) { |
| 405 | bestrowy_size = 0; |
| 406 | break; |
| 407 | } |
| 408 | |
| 409 | if (row==whichRow) { |
| 410 | // if its row is an equality constraint... |
| 411 | if (hinrow[row] > 1 && // don't bother with singleton rows |
| 412 | |
| 413 | fabs(rlo[row] - rup[row]) < tol && |
| 414 | !prob->rowUsed(row)) { |
| 415 | // both column bounds implied by the constraint bounds |
| 416 | |
| 417 | // we want coeffy to be smaller than x, BACKWARDS from in doubleton |
| 418 | bestrowy_size = hinrow[row]; |
| 419 | bestrowy_row = row; |
| 420 | bestrowy_coeff = coeffj; |
| 421 | bestrowy_k = k; |
| 422 | } |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | if (bestrowy_size == 0) |
| 427 | continue; |
| 428 | |
| 429 | bool all_ok = true; |
| 430 | for (k=kcs; k<kce; ++k) { |
| 431 | double coeff_factor = fabs(colels[k] / bestrowy_coeff); |
| 432 | if (fabs(coeff_factor) > 10.0) |
| 433 | all_ok = false; |
| 434 | } |
| 435 | #if 0 // block A |
| 436 | // check fill-in |
| 437 | if (all_ok && hincol[jcoly] == 3) { |
| 438 | // compute fill-in |
| 439 | int row1 = -1; |
| 440 | int row2=-1; |
| 441 | CoinBigIndex kk; |
| 442 | for (kk=kcs; kk<kce; ++kk) |
| 443 | if (kk != bestrowy_k) { |
| 444 | if (row1 == -1) |
| 445 | row1 = hrow[kk]; |
| 446 | else |
| 447 | row2 = hrow[kk]; |
| 448 | } |
| 449 | |
| 450 | |
| 451 | CoinBigIndex krs = mrstrt[bestrowy_row]; |
| 452 | CoinBigIndex kre = krs + hinrow[bestrowy_row]; |
| 453 | CoinBigIndex krs1 = mrstrt[row1]; |
| 454 | CoinBigIndex kre1 = krs + hinrow[row1]; |
| 455 | CoinBigIndex krs2 = mrstrt[row2]; |
| 456 | CoinBigIndex kre2 = krs + hinrow[row2]; |
| 457 | |
| 458 | CoinSort_2(hcol+krs,hcol+krs+hinrow[bestrowy_row],rowels+krs); |
| 459 | CoinSort_2(hcol+krs1,hcol+krs1+hinrow[row1],rowels+krs1); |
| 460 | CoinSort_2(hcol+krs2,hcol+krs2+hinrow[row2],rowels+krs2); |
| 461 | //ekk_sort2(hcol+krs, rowels+krs, hinrow[bestrowy_row]); |
| 462 | //ekk_sort2(hcol+krs1, rowels+krs1, hinrow[row1]); |
| 463 | //ekk_sort2(hcol+krs2, rowels+krs2, hinrow[row2]); |
| 464 | |
| 465 | int nfill = -hinrow[bestrowy_row]; |
| 466 | CoinBigIndex kcol1 = krs1; |
| 467 | for (kk=krs; kk<kre; ++kk) { |
| 468 | int jcol = hcol[kk]; |
| 469 | |
| 470 | while (kcol1 < kre1 && hcol[kcol1] < jcol) |
| 471 | kcol1++; |
| 472 | if (! (kcol1 < kre1 && hcol[kcol1] == jcol)) |
| 473 | nfill++; |
| 474 | } |
| 475 | CoinBigIndex kcol2 = krs2; |
| 476 | for (kk=krs; kk<kre; ++kk) { |
| 477 | int jcol = hcol[kk]; |
| 478 | |
| 479 | while (kcol2 < kre2 && hcol[kcol2] < jcol) |
| 480 | kcol2++; |
| 481 | if (! (kcol2 < kre2 && hcol[kcol2] == jcol)) |
| 482 | nfill++; |
| 483 | } |
| 484 | #if PRESOLVE_DEBUG |
| 485 | printf("FILL: %d\n" , nfill); |
| 486 | #endif |
| 487 | |
| 488 | #if 0 |
| 489 | static int maxfill = atoi(getenv("MAXFILL" )); |
| 490 | |
| 491 | if (nfill > maxfill) |
| 492 | all_ok = false; |
| 493 | #endif |
| 494 | |
| 495 | // not too much |
| 496 | if (nfill <= 0) |
| 497 | ngood++; |
| 498 | |
| 499 | #if 0 |
| 500 | static int nts = 0; |
| 501 | if (++nts > atoi(getenv("NTS" ))) |
| 502 | all_ok = false; |
| 503 | else |
| 504 | nt++; |
| 505 | #endif |
| 506 | } |
| 507 | #endif // end block A |
| 508 | // probably never happens |
| 509 | if (all_ok && nzerocols + hinrow[bestrowy_row] >= ncols) |
| 510 | all_ok = false; |
| 511 | |
| 512 | if (nsubst >= maxsubst) { |
| 513 | all_ok = false; |
| 514 | } |
| 515 | |
| 516 | if (all_ok) { |
| 517 | nsubst++; |
| 518 | #if 0 |
| 519 | // debug |
| 520 | if (numberLook<ncols&&iLook==numberLook-1) { |
| 521 | printf("found last one?? %d\n" , jcoly); |
| 522 | } |
| 523 | #endif |
| 524 | |
| 525 | CoinBigIndex kcs = mcstrt[jcoly]; |
| 526 | int rowy = bestrowy_row; |
| 527 | double coeffy = bestrowy_coeff; |
| 528 | |
| 529 | PRESOLVEASSERT(fabs(colels[kcs]) > ZTOLDP); |
| 530 | PRESOLVEASSERT(fabs(colels[kcs+1]) > ZTOLDP); |
| 531 | |
| 532 | PRESOLVEASSERT(hinrow[rowy] > 1); |
| 533 | |
| 534 | const bool nonzero_cost = (fabs(dcost[jcoly]) > tol); |
| 535 | |
| 536 | double *costsx = nonzero_cost ? new double[hinrow[rowy]] : 0; |
| 537 | |
| 538 | int ntotels = 0; |
| 539 | for (k=kcs; k<kce; ++k) { |
| 540 | int irow = hrow[k]; |
| 541 | ntotels += hinrow[irow]; |
| 542 | // mark row as contaminated |
| 543 | assert (!prob->rowUsed(irow)); |
| 544 | prob->setRowUsed(irow); |
| 545 | rowsUsed[nRowsUsed++]=irow; |
| 546 | } |
| 547 | |
| 548 | { |
| 549 | action *ap = &actions[nactions++]; |
| 550 | int nincol = hincol[jcoly]; |
| 551 | |
| 552 | ap->col = jcoly; |
| 553 | ap->rowy = rowy; |
| 554 | PRESOLVE_DETAIL_PRINT(printf("pre_subst %dC %dR E\n" ,jcoly,rowy)); |
| 555 | |
| 556 | ap->nincol = nincol; |
| 557 | ap->rows = new int[nincol]; |
| 558 | ap->rlos = new double[nincol]; |
| 559 | ap->rups = new double[nincol]; |
| 560 | |
| 561 | // coefficients in deleted col |
| 562 | ap->coeffxs = new double[nincol]; |
| 563 | |
| 564 | ap->ninrowxs = new int[nincol]; |
| 565 | ap->rowcolsxs = new int[ntotels]; |
| 566 | ap->rowelsxs = new double[ntotels]; |
| 567 | |
| 568 | ap->costsx = costsx; |
| 569 | |
| 570 | // copy all the rows for restoring later - wasteful |
| 571 | { |
| 572 | int nel = 0; |
| 573 | for (CoinBigIndex k=kcs; k<kce; ++k) { |
| 574 | int irow = hrow[k]; |
| 575 | CoinBigIndex krs = mrstrt[irow]; |
| 576 | //#define COIN_SAFE_SUBST |
| 577 | #ifdef COIN_SAFE_SUBST |
| 578 | CoinBigIndex kre = krs + hinrow[irow]; |
| 579 | for (CoinBigIndex k1=krs; k1<kre; ++k1) { |
| 580 | int jcol = hcol[k1]; |
| 581 | if (jcol != jcoly) { |
| 582 | CoinBigIndex kcs = mcstrt[jcol]; |
| 583 | CoinBigIndex kce = kcs + hincol[jcol]; |
| 584 | for (CoinBigIndex k2=kcs; k2<kce; ++k2) { |
| 585 | int irow = hrow[k2]; |
| 586 | if (!prob->rowUsed(irow)) { |
| 587 | // mark row as contaminated |
| 588 | prob->setRowUsed(irow); |
| 589 | rowsUsed[nRowsUsed++]=irow; |
| 590 | } |
| 591 | } |
| 592 | } |
| 593 | } |
| 594 | #endif |
| 595 | |
| 596 | prob->addRow(irow); |
| 597 | ap->rows[k-kcs] = irow; |
| 598 | ap->ninrowxs[k-kcs] = hinrow[irow]; |
| 599 | ap->rlos[k-kcs] = rlo[irow]; |
| 600 | ap->rups[k-kcs] = rup[irow]; |
| 601 | |
| 602 | ap->coeffxs[k-kcs] = colels[k]; |
| 603 | |
| 604 | CoinMemcpyN( &hcol[krs],hinrow[irow], &ap->rowcolsxs[nel]); |
| 605 | CoinMemcpyN( &rowels[krs],hinrow[irow], &ap->rowelsxs[nel]); |
| 606 | nel += hinrow[irow]; |
| 607 | } |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | // rowy is supposed to be an equality row |
| 612 | PRESOLVEASSERT(fabs(rup[rowy] - rlo[rowy]) < ZTOLDP); |
| 613 | |
| 614 | // now adjust for the implied free row - COPIED |
| 615 | if (nonzero_cost) { |
| 616 | #if 0&&PRESOLVE_DEBUG |
| 617 | printf("NONZERO SUBST COST: %d %g\n" , jcoly, dcost[jcoly]); |
| 618 | #endif |
| 619 | double *cost = dcost; |
| 620 | double *save_costs = costsx; |
| 621 | double coeffj = coeffy; |
| 622 | CoinBigIndex krs = mrstrt[rowy]; |
| 623 | CoinBigIndex kre = krs + hinrow[rowy]; |
| 624 | |
| 625 | double rhs = rlo[rowy]; |
| 626 | double costj = cost[jcoly]; |
| 627 | |
| 628 | for (CoinBigIndex k=krs; k<kre; k++) { |
| 629 | int jcol = hcol[k]; |
| 630 | prob->addCol(jcol); |
| 631 | save_costs[k-krs] = cost[jcol]; |
| 632 | |
| 633 | if (jcol != jcoly) { |
| 634 | double coeff = rowels[k]; |
| 635 | |
| 636 | /* |
| 637 | * Similar to eliminating doubleton: |
| 638 | * cost1 x = cost1 (c - b y) / a = (c cost1)/a - (b cost1)/a |
| 639 | * cost[icoly] += cost[icolx] * (-coeff2 / coeff1); |
| 640 | */ |
| 641 | cost[jcol] += costj * (-coeff / coeffj); |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | // I'm not sure about this |
| 646 | prob->change_bias(costj * rhs / coeffj); |
| 647 | |
| 648 | // ?? |
| 649 | cost[jcoly] = 0.0; |
| 650 | } |
| 651 | |
| 652 | #if 0&&PRESOLVE_DEBUG |
| 653 | if (hincol[jcoly] == 3) { |
| 654 | CoinBigIndex krs = mrstrt[rowy]; |
| 655 | CoinBigIndex kre = krs + hinrow[rowy]; |
| 656 | printf("HROW0 (%d): " , rowy); |
| 657 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 658 | int jcol = hcol[k]; |
| 659 | double coeff = rowels[k]; |
| 660 | printf("%d:%g (%d) " , jcol, coeff, hincol[jcol]); |
| 661 | } |
| 662 | printf("\n" ); |
| 663 | } |
| 664 | #endif |
| 665 | |
| 666 | if (hincol[jcoly] != 2) { |
| 667 | CoinBigIndex krs = mrstrt[rowy]; |
| 668 | // CoinBigIndex kre = krs + hinrow[rowy]; |
| 669 | CoinSort_2(hcol+krs,hcol+krs+hinrow[rowy],rowels+krs); |
| 670 | //ekk_sort2(hcol+krs, rowels+krs, hinrow[rowy]); |
| 671 | } |
| 672 | |
| 673 | // substitute away jcoly in the other rows |
| 674 | // Use ap as mcstrt etc may move if compacted |
| 675 | kce = hincol[jcoly]; |
| 676 | action *ap = &actions[nactions-1]; |
| 677 | for (k=0; k<kce; ++k) { |
| 678 | int rowx = ap->rows[k]; |
| 679 | //assert(rowx==hrow[k+kcs]); |
| 680 | //assert(ap->coeffxs[k]==colels[k+kcs]); |
| 681 | if (rowx != rowy) { |
| 682 | double coeffx = ap->coeffxs[k]; |
| 683 | double coeff_factor = -coeffx / coeffy; // backwards from doubleton |
| 684 | |
| 685 | #if 0&&PRESOLVE_DEBUG |
| 686 | { |
| 687 | CoinBigIndex krs = mrstrt[rowx]; |
| 688 | CoinBigIndex kre = krs + hinrow[rowx]; |
| 689 | printf("HROW (%d %d %d): " , rowx, hinrow[rowx], jcoly); |
| 690 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 691 | int jcol = hcol[k]; |
| 692 | double coeff = rowels[k]; |
| 693 | printf("%d " , jcol); |
| 694 | } |
| 695 | printf("\n" ); |
| 696 | #if 0 |
| 697 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 698 | int jcol = hcol[k]; |
| 699 | prob->addCol(jcol); |
| 700 | double coeff = rowels[k]; |
| 701 | printf("%g " , coeff); |
| 702 | } |
| 703 | printf("\n" ); |
| 704 | #endif |
| 705 | } |
| 706 | #endif |
| 707 | { |
| 708 | CoinBigIndex krsx = mrstrt[rowx]; |
| 709 | CoinBigIndex krex = krsx + hinrow[rowx]; |
| 710 | int i; |
| 711 | for (i=krsx;i<krex;i++) |
| 712 | prob->addCol(hcol[i]); |
| 713 | if (hincol[jcoly] != 2) |
| 714 | CoinSort_2(hcol+krsx,hcol+krsx+hinrow[rowx],rowels+krsx); |
| 715 | //ekk_sort2(hcol+krsx, rowels+krsx, hinrow[rowx]); |
| 716 | } |
| 717 | |
| 718 | // add (coeff_factor * <rowy>) to rowx |
| 719 | // does not affect rowy |
| 720 | // may introduce (or cancel) elements in rowx |
| 721 | bool outOfSpace = add_row(mrstrt, |
| 722 | rlo, acts, rup, |
| 723 | rowels, hcol, |
| 724 | hinrow, |
| 725 | rlink, nrows, |
| 726 | coeff_factor, |
| 727 | rowx, rowy, |
| 728 | x_to_y); |
| 729 | if (outOfSpace) |
| 730 | throwCoinError("out of memory" , |
| 731 | "CoinImpliedFree::presolve" ); |
| 732 | |
| 733 | // update col rep of rowx from row rep: |
| 734 | // for every col in rowy, copy the elem for that col in rowx |
| 735 | // from the row rep to the col rep |
| 736 | { |
| 737 | CoinBigIndex krs = mrstrt[rowy]; |
| 738 | // CoinBigIndex kre = krs + hinrow[rowy]; |
| 739 | int niny = hinrow[rowy]; |
| 740 | |
| 741 | CoinBigIndex krsx = mrstrt[rowx]; |
| 742 | // CoinBigIndex krex = krsx + hinrow[rowx]; |
| 743 | for (CoinBigIndex ki=0; ki<niny; ++ki) { |
| 744 | CoinBigIndex k = krs + ki; |
| 745 | int jcol = hcol[k]; |
| 746 | prob->addCol(jcol); |
| 747 | CoinBigIndex kcs = mcstrt[jcol]; |
| 748 | CoinBigIndex kce = kcs + hincol[jcol]; |
| 749 | |
| 750 | //double coeff = rowels[presolve_find_col(jcol, krsx, krex, hcol)]; |
| 751 | if (hcol[krsx + x_to_y[ki]] != jcol) |
| 752 | abort(); |
| 753 | double coeff = rowels[krsx + x_to_y[ki]]; |
| 754 | |
| 755 | // see if rowx appeared in jcol in the col rep |
| 756 | CoinBigIndex k2 = presolve_find_row1(rowx, kcs, kce, hrow); |
| 757 | |
| 758 | //PRESOLVEASSERT(fabs(coeff) > ZTOLDP); |
| 759 | |
| 760 | if (k2 < kce) { |
| 761 | // yes - just update the entry |
| 762 | colels[k2] = coeff; |
| 763 | } else { |
| 764 | // no - make room, then append |
| 765 | bool outOfSpace=presolve_expand_row(mcstrt,colels,hrow,hincol, |
| 766 | clink,ncols,jcol) ; |
| 767 | if (outOfSpace) |
| 768 | throwCoinError("out of memory" , |
| 769 | "CoinImpliedFree::presolve" ); |
| 770 | krsx = mrstrt[rowx]; |
| 771 | krs = mrstrt[rowy]; |
| 772 | kcs = mcstrt[jcol]; |
| 773 | kce = kcs + hincol[jcol]; |
| 774 | |
| 775 | hrow[kce] = rowx; |
| 776 | colels[kce] = coeff; |
| 777 | hincol[jcol]++; |
| 778 | } |
| 779 | } |
| 780 | } |
| 781 | // now colels[k] == 0.0 |
| 782 | |
| 783 | #if 1 |
| 784 | // now remove jcoly from rowx in the row rep |
| 785 | // better if this were first |
| 786 | presolve_delete_from_row(rowx, jcoly, mrstrt, hinrow, hcol, rowels); |
| 787 | #endif |
| 788 | #if 0&&PRESOLVE_DEBUG |
| 789 | { |
| 790 | CoinBigIndex krs = mrstrt[rowx]; |
| 791 | CoinBigIndex kre = krs + hinrow[rowx]; |
| 792 | printf("HROW (%d %d %d): " , rowx, hinrow[rowx], jcoly); |
| 793 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 794 | int jcol = hcol[k]; |
| 795 | double coeff = rowels[k]; |
| 796 | printf("%d " , jcol); |
| 797 | } |
| 798 | printf("\n" ); |
| 799 | #if 0 |
| 800 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 801 | int jcol = hcol[k]; |
| 802 | double coeff = rowels[k]; |
| 803 | printf("%g " , coeff); |
| 804 | } |
| 805 | printf("\n" ); |
| 806 | #endif |
| 807 | } |
| 808 | #endif |
| 809 | |
| 810 | // don't have to update col rep, since entire col deleted later |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | #if 0&&PRESOLVE_DEBUG |
| 815 | printf("\n" ); |
| 816 | #endif |
| 817 | |
| 818 | // the addition of rows may have created zero coefficients |
| 819 | CoinMemcpyN( &hcol[mrstrt[rowy]],hinrow[rowy], &zerocols[nzerocols]); |
| 820 | nzerocols += hinrow[rowy]; |
| 821 | |
| 822 | // delete rowy in col rep |
| 823 | { |
| 824 | CoinBigIndex krs = mrstrt[rowy]; |
| 825 | CoinBigIndex kre = krs + hinrow[rowy]; |
| 826 | for (CoinBigIndex k=krs; k<kre; ++k) { |
| 827 | int jcol = hcol[k]; |
| 828 | |
| 829 | // delete rowy from the jcol |
| 830 | presolve_delete_from_col(rowy,jcol,mcstrt,hincol,hrow,colels) ; |
| 831 | if (hincol[jcol] == 0) |
| 832 | { PRESOLVE_REMOVE_LINK(clink,jcol) ; } |
| 833 | } |
| 834 | } |
| 835 | // delete rowy in row rep |
| 836 | hinrow[rowy] = 0; |
| 837 | |
| 838 | // This last is entirely dual to doubleton, but for the cost adjustment |
| 839 | |
| 840 | // eliminate col entirely from the col rep |
| 841 | PRESOLVE_REMOVE_LINK(clink, jcoly); |
| 842 | hincol[jcoly] = 0; |
| 843 | |
| 844 | // eliminate rowy entirely from the row rep |
| 845 | PRESOLVE_REMOVE_LINK(rlink, rowy); |
| 846 | //cost[irowy] = 0.0; |
| 847 | |
| 848 | rlo[rowy] = 0.0; |
| 849 | rup[rowy] = 0.0; |
| 850 | |
| 851 | #if 0 && PRESOLVE_DEBUG |
| 852 | printf("ROWY COLS: " ); |
| 853 | for (CoinBigIndex k=0; k<save_ninrowy; ++k) |
| 854 | if (rowycols[k] != col) { |
| 855 | printf("%d " , rowycols[k]); |
| 856 | (void)presolve_find_col(rowycols[k], mrstrt[rowx], mrstrt[rowx]+hinrow[rowx], |
| 857 | hcol); |
| 858 | } |
| 859 | printf("\n" ); |
| 860 | #endif |
| 861 | # if PRESOLVE_CONSISTENCY |
| 862 | presolve_links_ok(prob) ; |
| 863 | presolve_consistent(prob) ; |
| 864 | # endif |
| 865 | } |
| 866 | |
| 867 | } |
| 868 | |
| 869 | // Clear row used flags |
| 870 | for (int i=0;i<nRowsUsed;i++) |
| 871 | prob->unsetRowUsed(rowsUsed[i]); |
| 872 | // general idea - only do doubletons until there are almost none left |
| 873 | if (nactions < 30&&fill_level<prob->maxSubstLevel_) |
| 874 | try_fill_level = -fill_level-1; |
| 875 | if (nactions) { |
| 876 | # if PRESOLVE_SUMMARY |
| 877 | printf("NSUBSTS: %d\n" , nactions); |
| 878 | //printf("NT: %d NGOOD: %d FILL_LEVEL: %d\n", nt, ngood, fill_level); |
| 879 | # endif |
| 880 | next = new subst_constraint_action(nactions, CoinCopyOfArray(actions,nactions), next); |
| 881 | |
| 882 | next = drop_zero_coefficients_action::presolve(prob, zerocols, nzerocols, next); |
| 883 | } |
| 884 | delete [] look2; |
| 885 | deleteAction(actions,action*); |
| 886 | |
| 887 | delete[]x_to_y; |
| 888 | delete[]zerocols; |
| 889 | |
| 890 | return (next); |
| 891 | } |
| 892 | |
| 893 | void subst_constraint_action::postsolve(CoinPostsolveMatrix *prob) const |
| 894 | { |
| 895 | const action *const actions = actions_; |
| 896 | const int nactions = nactions_; |
| 897 | |
| 898 | double *colels = prob->colels_; |
| 899 | int *hrow = prob->hrow_; |
| 900 | CoinBigIndex *mcstrt = prob->mcstrt_; |
| 901 | int *hincol = prob->hincol_; |
| 902 | int *link = prob->link_; |
| 903 | // int ncols = prob->ncols_; |
| 904 | |
| 905 | double *rlo = prob->rlo_; |
| 906 | double *rup = prob->rup_; |
| 907 | |
| 908 | double *dcost = prob->cost_; |
| 909 | |
| 910 | double *sol = prob->sol_; |
| 911 | double *rcosts = prob->rcosts_; |
| 912 | |
| 913 | double *acts = prob->acts_; |
| 914 | double *rowduals = prob->rowduals_; |
| 915 | |
| 916 | # if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 917 | char *cdone = prob->cdone_; |
| 918 | char *rdone = prob->rdone_; |
| 919 | # endif |
| 920 | |
| 921 | CoinBigIndex &free_list = prob->free_list_; |
| 922 | |
| 923 | // const double ztoldj = prob->ztoldj_; |
| 924 | const double maxmin = prob->maxmin_; |
| 925 | int k; |
| 926 | |
| 927 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
| 928 | int icol = f->col; |
| 929 | |
| 930 | int nincoly = f->nincol; |
| 931 | double *rlos = f->rlos; |
| 932 | double *rups = f->rups; |
| 933 | int *rows = f->rows; |
| 934 | |
| 935 | double *coeffxs = f->coeffxs; |
| 936 | |
| 937 | int jrowy = f->rowy; |
| 938 | |
| 939 | int *ninrowxs = f->ninrowxs; |
| 940 | const int *rowcolsxs = f->rowcolsxs; |
| 941 | const double *rowelsxs = f->rowelsxs; |
| 942 | |
| 943 | /* the row was in the reduced problem */ |
| 944 | for (int i=0; i<nincoly; ++i) { |
| 945 | if (rows[i] != jrowy) |
| 946 | PRESOLVEASSERT(rdone[rows[i]]); |
| 947 | } |
| 948 | PRESOLVEASSERT(cdone[icol]==DROP_COL); |
| 949 | PRESOLVEASSERT(rdone[jrowy]==DROP_ROW); |
| 950 | |
| 951 | // DEBUG CHECK |
| 952 | #if 1 && PRESOLVE_DEBUG |
| 953 | { |
| 954 | double actx = 0.0; |
| 955 | const double ztolzb = prob->ztolzb_; |
| 956 | for (int j=0; j<prob->ncols_; ++j) |
| 957 | if (hincol[j] > 0 && cdone[j]) { |
| 958 | CoinBigIndex krow = presolve_find_row1(jrowy, mcstrt[j], mcstrt[j] + hincol[j], hrow); |
| 959 | if (krow < mcstrt[j] + hincol[j]) |
| 960 | actx += colels[krow] * sol[j]; |
| 961 | } |
| 962 | if (! (fabs(acts[jrowy] - actx) < 100*ztolzb)) |
| 963 | printf("BAD ACTSX: acts[%d]==%g != %g\n" , |
| 964 | jrowy, acts[jrowy], actx); |
| 965 | if (! (rlo[jrowy] - 100*ztolzb <= actx && actx <= rup[jrowy] + 100*ztolzb)) |
| 966 | printf("ACTSX NOT IN RANGE: %d %g %g %g\n" , |
| 967 | jrowy, rlo[jrowy], actx, rup[jrowy]); |
| 968 | } |
| 969 | #endif |
| 970 | |
| 971 | int ninrowy=-1; |
| 972 | const int *rowcolsy=NULL; |
| 973 | const double *rowelsy=NULL; |
| 974 | double coeffy=0.0; |
| 975 | |
| 976 | double rloy=1.0e50; |
| 977 | { |
| 978 | int nel = 0; |
| 979 | for (int i=0; i<nincoly; ++i) { |
| 980 | int row = rows[i]; |
| 981 | rlo[row] = rlos[i]; |
| 982 | rup[row] = rups[i]; |
| 983 | if (row == jrowy) { |
| 984 | ninrowy = ninrowxs[i]; |
| 985 | rowcolsy = &rowcolsxs[nel]; |
| 986 | rowelsy = &rowelsxs[nel]; |
| 987 | |
| 988 | coeffy = coeffxs[i]; |
| 989 | rloy = rlo[row]; |
| 990 | |
| 991 | } |
| 992 | nel += ninrowxs[i]; |
| 993 | } |
| 994 | } |
| 995 | double rhsy = rloy; |
| 996 | |
| 997 | // restore costs |
| 998 | { |
| 999 | const double *costs = f->costsx; |
| 1000 | if (costs) |
| 1001 | for (int i = 0; i<ninrowy; ++i) { |
| 1002 | dcost[rowcolsy[i]] = costs[i]; |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | // solve for the equality to find the solution for the eliminated col |
| 1007 | // this is why we want coeffx < coeffy (55) |
| 1008 | { |
| 1009 | double sol0 = rloy; |
| 1010 | sol[icol] = 0.0; // to avoid condition in loop |
| 1011 | for (k = 0; k<ninrowy; ++k) { |
| 1012 | int jcolx = rowcolsy[k]; |
| 1013 | double coeffx = rowelsy[k]; |
| 1014 | sol0 -= coeffx * sol[jcolx]; |
| 1015 | } |
| 1016 | sol[icol] = sol0 / coeffy; |
| 1017 | |
| 1018 | # if PRESOLVE_DEBUG |
| 1019 | const double ztolzb = prob->ztolzb_; |
| 1020 | double *clo = prob->clo_; |
| 1021 | double *cup = prob->cup_; |
| 1022 | |
| 1023 | if (! (sol[icol] > clo[icol] - ztolzb && |
| 1024 | cup[icol] + ztolzb > sol[icol])) |
| 1025 | printf("NEW SOL OUT-OF-TOL: %g %g %g\n" , clo[icol], |
| 1026 | sol[icol], cup[icol]); |
| 1027 | # endif |
| 1028 | } |
| 1029 | |
| 1030 | // since this row is fixed |
| 1031 | acts[jrowy] = rloy; |
| 1032 | |
| 1033 | // acts[irow] always ok, since slack is fixed |
| 1034 | prob->setRowStatus(jrowy,CoinPrePostsolveMatrix::atLowerBound); |
| 1035 | |
| 1036 | // remove old rowx from col rep |
| 1037 | // we don't explicitly store what the current rowx is; |
| 1038 | // however, after the presolve, rowx contains a col for every |
| 1039 | // col in either the original rowx or the original rowy. |
| 1040 | // If there were cancellations, those were handled in subsequent |
| 1041 | // presolves. |
| 1042 | { |
| 1043 | // erase those cols in the other rows that occur in rowy |
| 1044 | // (with the exception of icol, which was deleted); |
| 1045 | // the other rows *must* contain these cols |
| 1046 | for (k = 0; k<ninrowy; ++k) { |
| 1047 | int col = rowcolsy[k]; |
| 1048 | |
| 1049 | // remove jrowx from col in the col rep |
| 1050 | // icol itself was deleted, so won't be there |
| 1051 | if (col != icol) |
| 1052 | for (int i = 0; i<nincoly; ++i) { |
| 1053 | if (rows[i] != jrowy) |
| 1054 | presolve_delete_from_col2(rows[i],col,mcstrt,hincol,hrow,/*colels,*/ |
| 1055 | link,&free_list) ; |
| 1056 | } |
| 1057 | } |
| 1058 | # if PRESOLVE_CONSISTENCY |
| 1059 | presolve_check_free_list(prob) ; |
| 1060 | # endif |
| 1061 | |
| 1062 | // initialize this for loops below |
| 1063 | hincol[icol] = 0; |
| 1064 | |
| 1065 | // now restore the original rows (other than rowy). |
| 1066 | // those cols that were also in rowy were just removed; |
| 1067 | // otherwise, they *must* already be there. |
| 1068 | // This loop and the next automatically create the rep for the new col. |
| 1069 | { |
| 1070 | const int *rowcolsx = rowcolsxs; |
| 1071 | const double *rowelsx = rowelsxs; |
| 1072 | |
| 1073 | for (int i = 0; i<nincoly; ++i) { |
| 1074 | int ninrowx = ninrowxs[i]; |
| 1075 | int jrowx = rows[i]; |
| 1076 | |
| 1077 | if (jrowx != jrowy) |
| 1078 | for (k = 0; k<ninrowx; ++k) { |
| 1079 | int col = rowcolsx[k]; |
| 1080 | CoinBigIndex kcolx = presolve_find_row3(jrowx, mcstrt[col], hincol[col], hrow, link); |
| 1081 | |
| 1082 | if (kcolx != -1) { |
| 1083 | PRESOLVEASSERT(presolve_find_col1(col, 0, ninrowy, rowcolsy) == ninrowy); |
| 1084 | // overwrite the existing entry |
| 1085 | colels[kcolx] = rowelsx[k]; |
| 1086 | } else { |
| 1087 | PRESOLVEASSERT(presolve_find_col1(col, 0, ninrowy, rowcolsy) < ninrowy); |
| 1088 | |
| 1089 | { |
| 1090 | CoinBigIndex kk = free_list; |
| 1091 | assert(kk >= 0 && kk < prob->bulk0_) ; |
| 1092 | free_list = link[free_list]; |
| 1093 | |
| 1094 | link[kk] = mcstrt[col]; |
| 1095 | mcstrt[col] = kk; |
| 1096 | colels[kk] = rowelsx[k]; |
| 1097 | hrow[kk] = jrowx; |
| 1098 | } |
| 1099 | ++hincol[col]; |
| 1100 | } |
| 1101 | } |
| 1102 | rowcolsx += ninrowx; |
| 1103 | rowelsx += ninrowx; |
| 1104 | } |
| 1105 | # if PRESOLVE_CONSISTENCY |
| 1106 | presolve_check_free_list(prob) ; |
| 1107 | # endif |
| 1108 | } |
| 1109 | |
| 1110 | // finally, add original rowy elements |
| 1111 | for (k = 0; k<ninrowy; ++k) { |
| 1112 | int col = rowcolsy[k]; |
| 1113 | |
| 1114 | { |
| 1115 | prepend_elem(col, rowelsy[k], jrowy, mcstrt, colels, hrow, link, &free_list); |
| 1116 | ++hincol[col]; |
| 1117 | } |
| 1118 | } |
| 1119 | # if PRESOLVE_CONSISTENCY |
| 1120 | presolve_check_free_list(prob) ; |
| 1121 | # endif |
| 1122 | } |
| 1123 | |
| 1124 | // my guess is that the CLAIM in doubleton generalizes to |
| 1125 | // equations with more than one x-style variable. |
| 1126 | // Since I can't see how to distinguish among them, |
| 1127 | // I assume that any of them will do. |
| 1128 | |
| 1129 | { |
| 1130 | // CoinBigIndex k; |
| 1131 | double dj = maxmin*dcost[icol]; |
| 1132 | double bounds_factor = rhsy/coeffy; |
| 1133 | for (int i=0; i<nincoly; ++i) |
| 1134 | if (rows[i] != jrowy) { |
| 1135 | int row = rows[i]; |
| 1136 | double coeff = coeffxs[i]; |
| 1137 | |
| 1138 | // PROBABLY DOESN'T MAKE SENSE |
| 1139 | acts[row] += coeff * bounds_factor; |
| 1140 | |
| 1141 | dj -= rowduals[row] * coeff; |
| 1142 | } |
| 1143 | |
| 1144 | // DEBUG CHECK |
| 1145 | double acty = 0.0; |
| 1146 | for (k = 0; k<ninrowy; ++k) { |
| 1147 | int col = rowcolsy[k]; |
| 1148 | acty += rowelsy[k] * sol[col]; |
| 1149 | } |
| 1150 | |
| 1151 | PRESOLVEASSERT(fabs(acty - acts[jrowy]) < 100*ZTOLDP); |
| 1152 | |
| 1153 | // RECOMPUTING |
| 1154 | { |
| 1155 | const int *rowcolsx = rowcolsxs; |
| 1156 | const double *rowelsx = rowelsxs; |
| 1157 | |
| 1158 | for (int i=0; i<nincoly; ++i) { |
| 1159 | int ninrowx = ninrowxs[i]; |
| 1160 | |
| 1161 | if (rows[i] != jrowy) { |
| 1162 | int jrowx = rows[i]; |
| 1163 | |
| 1164 | double actx = 0.0; |
| 1165 | for (k = 0; k<ninrowx; ++k) { |
| 1166 | int col = rowcolsx[k]; |
| 1167 | actx += rowelsx[k] * sol[col]; |
| 1168 | } |
| 1169 | PRESOLVEASSERT(rlo[jrowx] - prob->ztolzb_ <= actx |
| 1170 | && actx <= rup[jrowx] + prob->ztolzb_); |
| 1171 | acts[jrowx] = actx; |
| 1172 | if (prob->getRowStatus(jrowx)!=CoinPrePostsolveMatrix::basic) { |
| 1173 | if (actx-rlo[jrowx]<rup[jrowx]-actx) |
| 1174 | prob->setRowStatus(jrowx,CoinPrePostsolveMatrix::atLowerBound); |
| 1175 | else |
| 1176 | prob->setRowStatus(jrowx,CoinPrePostsolveMatrix::atUpperBound); |
| 1177 | } |
| 1178 | } |
| 1179 | rowcolsx += ninrowx; |
| 1180 | rowelsx += ninrowx; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | // this is the coefficient we need to force col y's reduced cost to 0.0; |
| 1185 | // for example, this is obviously true if y is a singleton column |
| 1186 | rowduals[jrowy] = dj / coeffy; |
| 1187 | rcosts[icol] = 0.0; |
| 1188 | |
| 1189 | // furthermore, this should leave rcosts[colx] for all colx |
| 1190 | // in jrowx unchanged (????). |
| 1191 | } |
| 1192 | |
| 1193 | // Unlike doubleton, there should never be a problem with keeping |
| 1194 | // the reduced costs the way they were, because the other |
| 1195 | // variable's bounds are never changed, since col was implied free. |
| 1196 | //rowstat[jrowy] = 0; |
| 1197 | prob->setColumnStatus(icol,CoinPrePostsolveMatrix::basic); |
| 1198 | |
| 1199 | # if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
| 1200 | cdone[icol] = SUBST_ROW; |
| 1201 | rdone[jrowy] = SUBST_ROW; |
| 1202 | # endif |
| 1203 | } |
| 1204 | |
| 1205 | # if PRESOLVE_CONSISTENCY |
| 1206 | presolve_check_threads(prob) ; |
| 1207 | # endif |
| 1208 | |
| 1209 | return ; |
| 1210 | } |
| 1211 | |
| 1212 | |
| 1213 | |
| 1214 | subst_constraint_action::~subst_constraint_action() |
| 1215 | { |
| 1216 | const action *actions = actions_; |
| 1217 | |
| 1218 | for (int i=0; i<nactions_; ++i) { |
| 1219 | delete[]actions[i].rows; |
| 1220 | delete[]actions[i].rlos; |
| 1221 | delete[]actions[i].rups; |
| 1222 | delete[]actions[i].coeffxs; |
| 1223 | delete[]actions[i].ninrowxs; |
| 1224 | delete[]actions[i].rowcolsxs; |
| 1225 | delete[]actions[i].rowelsxs; |
| 1226 | |
| 1227 | |
| 1228 | //delete [](double*)actions[i].costsx; |
| 1229 | deleteAction(actions[i].costsx,double*); |
| 1230 | } |
| 1231 | |
| 1232 | // Must add cast to placate MS compiler |
| 1233 | //delete [] (subst_constraint_action::action*)actions_; |
| 1234 | deleteAction(actions_,subst_constraint_action::action*); |
| 1235 | } |
| 1236 | |