1 | /* $Id: CoinPresolveTighten.cpp 1448 2011-06-19 15:34:41Z stefan $ */ |
2 | // Copyright (C) 2002, International Business Machines |
3 | // Corporation and others. All Rights Reserved. |
4 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
5 | |
6 | #include <stdio.h> |
7 | #include <math.h> |
8 | |
9 | #include "CoinPresolveMatrix.hpp" |
10 | #include "CoinPresolveFixed.hpp" |
11 | #include "CoinPresolveTighten.hpp" |
12 | #include "CoinPresolveUseless.hpp" |
13 | #include "CoinHelperFunctions.hpp" |
14 | #include "CoinFinite.hpp" |
15 | |
16 | #if PRESOLVE_DEBUG || PRESOLVE_CONSISTENCY |
17 | #include "CoinPresolvePsdebug.hpp" |
18 | #endif |
19 | |
20 | |
21 | const char *do_tighten_action::name() const |
22 | { |
23 | return ("do_tighten_action" ); |
24 | } |
25 | |
26 | // This is ekkredc2. |
27 | // This fairly simple transformation is not mentioned in the paper. |
28 | // Say there is a costless variable such all its constraints |
29 | // would be satisfied as it approaches plus or minus infinity, |
30 | // because all its constraints have only one bound, and increasing/decreasing |
31 | // the variable makes the row activity grow away from the bound |
32 | // (in the right direction). |
33 | // |
34 | // If the variable is unbounded in that direction, |
35 | // that means we can determine right now how large it needs |
36 | // to get in order to satisfy the constraints, so we can |
37 | // just drop the variable and those constraints from the problem. |
38 | // |
39 | // If the variable *is* bounded in that direction, |
40 | // there is no reason not to set it to that bound. |
41 | // This effectively weakens the constraints, and in fact |
42 | // may be subsequently presolved away. |
43 | // |
44 | // Note that none of the constraints may be bounded both above and below, |
45 | // since then we don't know which way to move the variable in order |
46 | // to satisfy the constraint. |
47 | // |
48 | // To drop constraints, we just make them useless and let other |
49 | // transformations take care of the rest. |
50 | // |
51 | // Note that more than one such costless unbounded variable |
52 | // may be part of a given constraint. |
53 | // In that case, the first one processed will make the |
54 | // constraint useless, and the second will ignore it. |
55 | // In postsolve, the first will be responsible for satisfying |
56 | // the constraint. |
57 | // |
58 | // Note that if the constraints are dropped (as in the first case), |
59 | // then we just make them useless. It is subsequently discovered |
60 | // the the variable does not appear in any constraints, and since it |
61 | // has no cost it is just set to some value (either zero or a bound) |
62 | // and removed (by remove_empty_cols). |
63 | // |
64 | // oddly, pilots and baxter do *worse* when this transform is applied. |
65 | const CoinPresolveAction *do_tighten_action::presolve(CoinPresolveMatrix *prob, |
66 | const CoinPresolveAction *next) |
67 | { |
68 | double startTime = 0.0; |
69 | int startEmptyRows=0; |
70 | int startEmptyColumns = 0; |
71 | if (prob->tuning_) { |
72 | startTime = CoinCpuTime(); |
73 | startEmptyRows = prob->countEmptyRows(); |
74 | startEmptyColumns = prob->countEmptyCols(); |
75 | } |
76 | double *colels = prob->colels_; |
77 | int *hrow = prob->hrow_; |
78 | CoinBigIndex *mcstrt = prob->mcstrt_; |
79 | int *hincol = prob->hincol_; |
80 | int ncols = prob->ncols_; |
81 | |
82 | //int nrows = prob->nrows_; |
83 | |
84 | double *clo = prob->clo_; |
85 | double *cup = prob->cup_; |
86 | |
87 | double *rlo = prob->rlo_; |
88 | double *rup = prob->rup_; |
89 | |
90 | double *dcost = prob->cost_; |
91 | |
92 | const unsigned char *integerType = prob->integerType_; |
93 | |
94 | int *fix_cols = prob->usefulColumnInt_; //new int[ncols]; |
95 | int nfixup_cols = 0; |
96 | |
97 | int nfixdown_cols = ncols; |
98 | |
99 | int *useless_rows = prob->usefulRowInt_; //new int[nrows]; |
100 | int nuseless_rows = 0; |
101 | |
102 | action *actions = new action [ncols]; |
103 | int nactions = 0; |
104 | |
105 | int numberLook = prob->numberColsToDo_; |
106 | int iLook; |
107 | int * look = prob->colsToDo_; |
108 | bool fixInfeasibility = (prob->presolveOptions_&16384)!=0; |
109 | |
110 | // singleton columns are especially likely to be caught here |
111 | for (iLook=0;iLook<numberLook;iLook++) { |
112 | int j = look[iLook]; |
113 | // modify bounds if integer |
114 | if (integerType[j]) { |
115 | clo[j] = ceil(clo[j]-1.0e-12); |
116 | cup[j] = floor(cup[j]+1.0e-12); |
117 | if (clo[j]>cup[j]&&!fixInfeasibility) { |
118 | // infeasible |
119 | prob->status_|= 1; |
120 | prob->messageHandler()->message(COIN_PRESOLVE_COLINFEAS, |
121 | prob->messages()) |
122 | <<j |
123 | <<clo[j] |
124 | <<cup[j] |
125 | <<CoinMessageEol; |
126 | } |
127 | } |
128 | if (dcost[j]==0.0) { |
129 | int iflag=0; /* 1 - up is towards feasibility, -1 down is towards */ |
130 | int nonFree=0; // Number of non-free rows |
131 | |
132 | CoinBigIndex kcs = mcstrt[j]; |
133 | CoinBigIndex kce = kcs + hincol[j]; |
134 | |
135 | // check constraints |
136 | for (CoinBigIndex k=kcs; k<kce; ++k) { |
137 | int i = hrow[k]; |
138 | double coeff = colels[k]; |
139 | double rlb = rlo[i]; |
140 | double rub = rup[i]; |
141 | |
142 | if (-1.0e28 < rlb && rub < 1.0e28) { |
143 | // bounded - we lose |
144 | iflag=0; |
145 | break; |
146 | } else if (-1.0e28 < rlb || rub < 1.0e28) { |
147 | nonFree++; |
148 | } |
149 | |
150 | PRESOLVEASSERT(fabs(coeff) > ZTOLDP); |
151 | |
152 | // see what this particular row says |
153 | // jflag == 1 ==> up is towards feasibility |
154 | int jflag = (coeff > 0.0 |
155 | ? (rub > 1.0e28 ? 1 : -1) |
156 | : (rlb < -1.0e28 ? 1 : -1)); |
157 | |
158 | if (iflag) { |
159 | // check that it agrees with iflag. |
160 | if (iflag!=jflag) { |
161 | iflag=0; |
162 | break; |
163 | } |
164 | } else { |
165 | // first row -- initialize iflag |
166 | iflag=jflag; |
167 | } |
168 | } |
169 | // done checking constraints |
170 | if (!nonFree) |
171 | iflag=0; // all free anyway |
172 | if (iflag) { |
173 | if (iflag==1 && cup[j]<1.0e10) { |
174 | #if PRESOLVE_DEBUG |
175 | printf("TIGHTEN UP: %d\n" , j); |
176 | #endif |
177 | fix_cols[nfixup_cols++] = j; |
178 | |
179 | } else if (iflag==-1&&clo[j]>-1.0e10) { |
180 | // symmetric case |
181 | //mpre[j] = PRESOLVE_XUP; |
182 | |
183 | #if PRESOLVE_DEBUG |
184 | printf("TIGHTEN DOWN: %d\n" , j); |
185 | #endif |
186 | |
187 | fix_cols[--nfixdown_cols] = j; |
188 | |
189 | } else { |
190 | #if 0 |
191 | static int limit; |
192 | static int which = atoi(getenv("WZ" )); |
193 | if (which == -1) |
194 | ; |
195 | else if (limit != which) { |
196 | limit++; |
197 | continue; |
198 | } else |
199 | limit++; |
200 | |
201 | printf("TIGHTEN STATS %d %g %g %d: \n" , j, clo[j], cup[j], integerType[j]); |
202 | double *rowels = prob->rowels_; |
203 | int *hcol = prob->hcol_; |
204 | int *mrstrt = prob->mrstrt_; |
205 | int *hinrow = prob->hinrow_; |
206 | for (CoinBigIndex k=kcs; k<kce; ++k) { |
207 | int irow = hrow[k]; |
208 | CoinBigIndex krs = mrstrt[irow]; |
209 | CoinBigIndex kre = krs + hinrow[irow]; |
210 | printf("%d %g %g %g: " , |
211 | irow, rlo[irow], rup[irow], colels[irow]); |
212 | for (CoinBigIndex kk=krs; kk<kre; ++kk) |
213 | printf("%d(%g) " , hcol[kk], rowels[kk]); |
214 | printf("\n" ); |
215 | } |
216 | #endif |
217 | |
218 | { |
219 | action *s = &actions[nactions]; |
220 | nactions++; |
221 | s->col = j; |
222 | PRESOLVE_DETAIL_PRINT(printf("pre_tighten %dC E\n" ,j)); |
223 | if (integerType[j]) { |
224 | assert (iflag==-1||iflag==1); |
225 | iflag *= 2; // say integer |
226 | } |
227 | s->direction = iflag; |
228 | |
229 | s->rows = new int[hincol[j]]; |
230 | s->lbound = new double[hincol[j]]; |
231 | s->ubound = new double[hincol[j]]; |
232 | #ifdef PRESOLVE_DEBUG |
233 | printf("TIGHTEN FREE: %d " , j); |
234 | #endif |
235 | int nr = 0; |
236 | prob->addCol(j); |
237 | for (CoinBigIndex k=kcs; k<kce; ++k) { |
238 | int irow = hrow[k]; |
239 | // ignore this if we've already made it useless |
240 | if (! (rlo[irow] == -PRESOLVE_INF && rup[irow] == PRESOLVE_INF)) { |
241 | prob->addRow(irow); |
242 | s->rows [nr] = irow; |
243 | s->lbound[nr] = rlo[irow]; |
244 | s->ubound[nr] = rup[irow]; |
245 | nr++; |
246 | |
247 | useless_rows[nuseless_rows++] = irow; |
248 | |
249 | rlo[irow] = -PRESOLVE_INF; |
250 | rup[irow] = PRESOLVE_INF; |
251 | |
252 | #ifdef PRESOLVE_DEBUG |
253 | printf("%d " , irow); |
254 | #endif |
255 | } |
256 | } |
257 | s->nrows = nr; |
258 | |
259 | #ifdef PRESOLVE_DEBUG |
260 | printf("\n" ); |
261 | #endif |
262 | } |
263 | } |
264 | } |
265 | } |
266 | } |
267 | |
268 | |
269 | #if PRESOLVE_SUMMARY |
270 | if (nfixdown_cols<ncols || nfixup_cols || nuseless_rows) { |
271 | printf("NTIGHTENED: %d %d %d\n" , ncols-nfixdown_cols, nfixup_cols, nuseless_rows); |
272 | } |
273 | #endif |
274 | |
275 | if (nuseless_rows) { |
276 | next = new do_tighten_action(nactions, CoinCopyOfArray(actions,nactions), next); |
277 | |
278 | next = useless_constraint_action::presolve(prob, |
279 | useless_rows, nuseless_rows, |
280 | next); |
281 | } |
282 | deleteAction(actions, action*); |
283 | //delete[]useless_rows; |
284 | |
285 | if (nfixdown_cols<ncols) { |
286 | int * fixdown_cols = fix_cols+nfixdown_cols; |
287 | nfixdown_cols = ncols-nfixdown_cols; |
288 | next = make_fixed_action::presolve(prob, fixdown_cols, nfixdown_cols, |
289 | true, |
290 | next); |
291 | } |
292 | //delete[]fixdown_cols; |
293 | |
294 | if (nfixup_cols) { |
295 | next = make_fixed_action::presolve(prob, fix_cols, nfixup_cols, |
296 | false, |
297 | next); |
298 | } |
299 | //delete[]fixup_cols; |
300 | |
301 | if (prob->tuning_) { |
302 | double thisTime=CoinCpuTime(); |
303 | int droppedRows = prob->countEmptyRows() - startEmptyRows ; |
304 | int droppedColumns = prob->countEmptyCols() - startEmptyColumns; |
305 | printf("CoinPresolveTighten(16) - %d rows, %d columns dropped in time %g, total %g\n" , |
306 | droppedRows,droppedColumns,thisTime-startTime,thisTime-prob->startTime_); |
307 | } |
308 | return (next); |
309 | } |
310 | |
311 | void do_tighten_action::postsolve(CoinPostsolveMatrix *prob) const |
312 | { |
313 | const action *const actions = actions_; |
314 | const int nactions = nactions_; |
315 | |
316 | double *colels = prob->colels_; |
317 | int *hrow = prob->hrow_; |
318 | CoinBigIndex *mcstrt = prob->mcstrt_; |
319 | int *hincol = prob->hincol_; |
320 | int *link = prob->link_; |
321 | // int ncols = prob->ncols_; |
322 | |
323 | double *clo = prob->clo_; |
324 | double *cup = prob->cup_; |
325 | double *rlo = prob->rlo_; |
326 | double *rup = prob->rup_; |
327 | |
328 | double *sol = prob->sol_; |
329 | // double *dcost = prob->cost_; |
330 | // double *rcosts = prob->rcosts_; |
331 | |
332 | double *acts = prob->acts_; |
333 | // double *rowduals = prob->rowduals_; |
334 | |
335 | |
336 | // const double ztolzb = prob->ztolzb_; |
337 | |
338 | for (const action *f = &actions[nactions-1]; actions<=f; f--) { |
339 | int jcol = f->col; |
340 | int iflag = f->direction; |
341 | int nr = f->nrows; |
342 | const int *rows = f->rows; |
343 | const double *lbound = f->lbound; |
344 | const double *ubound = f->ubound; |
345 | |
346 | PRESOLVEASSERT(prob->getColumnStatus(jcol)!=CoinPrePostsolveMatrix::basic); |
347 | int i; |
348 | for (i=0;i<nr; ++i) { |
349 | int irow = rows[i]; |
350 | |
351 | rlo[irow] = lbound[i]; |
352 | rup[irow] = ubound[i]; |
353 | |
354 | PRESOLVEASSERT(prob->getRowStatus(irow)==CoinPrePostsolveMatrix::basic); |
355 | } |
356 | |
357 | // We have just tightened the row bounds. |
358 | // That means we'll have to compute a new value |
359 | // for this variable that will satisfy everybody. |
360 | // We are supposed to be in a position where this |
361 | // is always possible. |
362 | |
363 | // Each constraint has exactly one bound. |
364 | // The correction should only ever be forced to move in one direction. |
365 | // double orig_sol = sol[jcol]; |
366 | double correction = 0.0; |
367 | |
368 | int last_corrected = -1; |
369 | CoinBigIndex k = mcstrt[jcol]; |
370 | int nk = hincol[jcol]; |
371 | for (i=0; i<nk; ++i) { |
372 | int irow = hrow[k]; |
373 | double coeff = colels[k]; |
374 | k = link[k]; |
375 | double newrlo = rlo[irow]; |
376 | double newrup = rup[irow]; |
377 | double activity = acts[irow]; |
378 | |
379 | if (activity + correction * coeff < newrlo) { |
380 | // only one of these two should fire |
381 | PRESOLVEASSERT( ! (activity + correction * coeff > newrup) ); |
382 | |
383 | last_corrected = irow; |
384 | |
385 | // adjust to just meet newrlo (solve for correction) |
386 | double new_correction = (newrlo - activity) / coeff; |
387 | //adjust if integer |
388 | if (iflag==-2||iflag==2) { |
389 | new_correction += sol[jcol]; |
390 | if (fabs(floor(new_correction+0.5)-new_correction)>1.0e-4) { |
391 | new_correction = ceil(new_correction)-sol[jcol]; |
392 | #ifdef COIN_DEVELOP |
393 | printf("integer postsolve changing correction from %g to %g - flag %d\n" , |
394 | (newrlo-activity)/coeff,new_correction,iflag); |
395 | #endif |
396 | } |
397 | } |
398 | correction = new_correction; |
399 | } else if (activity + correction * coeff > newrup) { |
400 | last_corrected = irow; |
401 | |
402 | double new_correction = (newrup - activity) / coeff; |
403 | //adjust if integer |
404 | if (iflag==-2||iflag==2) { |
405 | new_correction += sol[jcol]; |
406 | if (fabs(floor(new_correction+0.5)-new_correction)>1.0e-4) { |
407 | new_correction = ceil(new_correction)-sol[jcol]; |
408 | #ifdef COIN_DEVELOP |
409 | printf("integer postsolve changing correction from %g to %g - flag %d\n" , |
410 | (newrup-activity)/coeff,new_correction,iflag); |
411 | #endif |
412 | } |
413 | } |
414 | correction = new_correction; |
415 | } |
416 | } |
417 | |
418 | if (last_corrected>=0) { |
419 | sol[jcol] += correction; |
420 | |
421 | // by construction, the last row corrected (if there was one) |
422 | // must be at its bound, so it can be non-basic. |
423 | // All other rows may not be at a bound (but may if the difference |
424 | // is very small, causing a new correction by a tiny amount). |
425 | |
426 | // now adjust the activities |
427 | k = mcstrt[jcol]; |
428 | for (i=0; i<nk; ++i) { |
429 | int irow = hrow[k]; |
430 | double coeff = colels[k]; |
431 | k = link[k]; |
432 | // double activity = acts[irow]; |
433 | |
434 | acts[irow] += correction * coeff; |
435 | } |
436 | // if the col happens to get pushed to its bound, |
437 | // we may as well leave it non-basic. |
438 | if (fabs(sol[jcol] - clo[jcol]) > ZTOLDP && |
439 | fabs(sol[jcol] - cup[jcol]) > ZTOLDP) { |
440 | |
441 | prob->setColumnStatus(jcol,CoinPrePostsolveMatrix::basic); |
442 | if (acts[last_corrected]-rlo[last_corrected]<rup[last_corrected]-acts[last_corrected]) |
443 | prob->setRowStatus(last_corrected,CoinPrePostsolveMatrix::atLowerBound); |
444 | else |
445 | prob->setRowStatus(last_corrected,CoinPrePostsolveMatrix::atUpperBound); |
446 | } |
447 | } |
448 | |
449 | // leave until desctructor |
450 | // deleteAction(rows,int *); |
451 | // deleteAction(lbound,double *); |
452 | // deleteAction(ubound,double *); |
453 | } |
454 | // leave until desctructor |
455 | // deleteAction(actions_,action *); |
456 | |
457 | # if PRESOLVE_CONSISTENCY |
458 | presolve_check_threads(prob) ; |
459 | # endif |
460 | |
461 | } |
462 | |
463 | do_tighten_action::~do_tighten_action() |
464 | { |
465 | if (nactions_ > 0) { |
466 | for (int i = nactions_ - 1; i >= 0; --i) { |
467 | delete[] actions_[i].rows; |
468 | delete[] actions_[i].lbound; |
469 | delete[] actions_[i].ubound; |
470 | } |
471 | deleteAction(actions_, action*); |
472 | } |
473 | } |
474 | |