1 | // Copyright (C) 2006, International Business Machines |
2 | // Corporation and others. All Rights Reserved. |
3 | // This code is licensed under the terms of the Eclipse Public License (EPL). |
4 | |
5 | #if defined(_MSC_VER) |
6 | // Turn off compiler warning about long names |
7 | # pragma warning(disable:4786) |
8 | #endif |
9 | #include <cassert> |
10 | #include <cstdlib> |
11 | #include <cmath> |
12 | #include <cfloat> |
13 | //#define OSI_DEBUG |
14 | #include "OsiSolverInterface.hpp" |
15 | #include "OsiBranchingObject.hpp" |
16 | #include "CoinHelperFunctions.hpp" |
17 | #include "CoinPackedMatrix.hpp" |
18 | #include "CoinSort.hpp" |
19 | #include "CoinError.hpp" |
20 | #include "CoinFinite.hpp" |
21 | |
22 | // Default Constructor |
23 | OsiObject::OsiObject() |
24 | :infeasibility_(0.0), |
25 | whichWay_(0), |
26 | numberWays_(2), |
27 | priority_(1000) |
28 | { |
29 | } |
30 | |
31 | |
32 | // Destructor |
33 | OsiObject::~OsiObject () |
34 | { |
35 | } |
36 | |
37 | // Copy constructor |
38 | OsiObject::OsiObject ( const OsiObject & rhs) |
39 | { |
40 | infeasibility_ = rhs.infeasibility_; |
41 | whichWay_ = rhs.whichWay_; |
42 | priority_ = rhs.priority_; |
43 | numberWays_ = rhs.numberWays_; |
44 | } |
45 | |
46 | // Assignment operator |
47 | OsiObject & |
48 | OsiObject::operator=( const OsiObject& rhs) |
49 | { |
50 | if (this!=&rhs) { |
51 | infeasibility_ = rhs.infeasibility_; |
52 | whichWay_ = rhs.whichWay_; |
53 | priority_ = rhs.priority_; |
54 | numberWays_ = rhs.numberWays_; |
55 | } |
56 | return *this; |
57 | } |
58 | // Return "up" estimate (default 1.0e-5) |
59 | double |
60 | OsiObject::upEstimate() const |
61 | { |
62 | return 1.0e-5; |
63 | } |
64 | // Return "down" estimate (default 1.0e-5) |
65 | double |
66 | OsiObject::downEstimate() const |
67 | { |
68 | return 1.0e-5; |
69 | } |
70 | // Column number if single column object -1 otherwise |
71 | int |
72 | OsiObject::columnNumber() const |
73 | { |
74 | return -1; |
75 | } |
76 | // Infeasibility - large is 0.5 |
77 | double |
78 | OsiObject::infeasibility(const OsiSolverInterface * solver, int & preferredWay) const |
79 | { |
80 | // Can't guarantee has matrix |
81 | OsiBranchingInformation info(solver,false,false); |
82 | return infeasibility(&info,preferredWay); |
83 | } |
84 | // This does NOT set mutable stuff |
85 | double |
86 | OsiObject::checkInfeasibility(const OsiBranchingInformation * info) const |
87 | { |
88 | int way; |
89 | double saveInfeasibility = infeasibility_; |
90 | short int saveWhichWay = whichWay_ ; |
91 | double value = infeasibility(info,way); |
92 | infeasibility_ = saveInfeasibility; |
93 | whichWay_ = saveWhichWay; |
94 | return value; |
95 | } |
96 | |
97 | /* For the variable(s) referenced by the object, |
98 | look at the current solution and set bounds to match the solution. |
99 | Returns measure of how much it had to move solution to make feasible |
100 | */ |
101 | double |
102 | OsiObject::feasibleRegion(OsiSolverInterface * solver) const |
103 | { |
104 | // Can't guarantee has matrix |
105 | OsiBranchingInformation info(solver,false,false); |
106 | return feasibleRegion(solver,&info); |
107 | } |
108 | |
109 | // Default Constructor |
110 | OsiObject2::OsiObject2() |
111 | : OsiObject(), |
112 | preferredWay_(-1), |
113 | otherInfeasibility_(0.0) |
114 | { |
115 | } |
116 | |
117 | |
118 | // Destructor |
119 | OsiObject2::~OsiObject2 () |
120 | { |
121 | } |
122 | |
123 | // Copy constructor |
124 | OsiObject2::OsiObject2 ( const OsiObject2 & rhs) |
125 | : OsiObject(rhs), |
126 | preferredWay_(rhs.preferredWay_), |
127 | otherInfeasibility_ (rhs.otherInfeasibility_) |
128 | { |
129 | } |
130 | |
131 | // Assignment operator |
132 | OsiObject2 & |
133 | OsiObject2::operator=( const OsiObject2& rhs) |
134 | { |
135 | if (this!=&rhs) { |
136 | OsiObject::operator=(rhs); |
137 | preferredWay_ = rhs.preferredWay_; |
138 | otherInfeasibility_ = rhs.otherInfeasibility_; |
139 | } |
140 | return *this; |
141 | } |
142 | // Default Constructor |
143 | OsiBranchingObject::OsiBranchingObject() |
144 | { |
145 | originalObject_=NULL; |
146 | branchIndex_=0; |
147 | value_=0.0; |
148 | numberBranches_=2; |
149 | } |
150 | |
151 | // Useful constructor |
152 | OsiBranchingObject::OsiBranchingObject (OsiSolverInterface * , |
153 | double value) |
154 | { |
155 | originalObject_=NULL; |
156 | branchIndex_=0; |
157 | value_=value; |
158 | numberBranches_=2; |
159 | } |
160 | |
161 | // Copy constructor |
162 | OsiBranchingObject::OsiBranchingObject ( const OsiBranchingObject & rhs) |
163 | { |
164 | originalObject_=rhs.originalObject_; |
165 | branchIndex_=rhs.branchIndex_; |
166 | value_=rhs.value_; |
167 | numberBranches_=rhs.numberBranches_; |
168 | } |
169 | |
170 | // Assignment operator |
171 | OsiBranchingObject & |
172 | OsiBranchingObject::operator=( const OsiBranchingObject& rhs) |
173 | { |
174 | if (this != &rhs) { |
175 | originalObject_=rhs.originalObject_; |
176 | branchIndex_=rhs.branchIndex_; |
177 | value_=rhs.value_; |
178 | numberBranches_=rhs.numberBranches_; |
179 | } |
180 | return *this; |
181 | } |
182 | |
183 | // Destructor |
184 | OsiBranchingObject::~OsiBranchingObject () |
185 | { |
186 | } |
187 | // For debug |
188 | int |
189 | OsiBranchingObject::columnNumber() const |
190 | { |
191 | if (originalObject_) |
192 | return originalObject_->columnNumber(); |
193 | else |
194 | return -1; |
195 | } |
196 | /** Default Constructor |
197 | |
198 | */ |
199 | OsiBranchingInformation::OsiBranchingInformation () |
200 | : objectiveValue_(COIN_DBL_MAX), |
201 | cutoff_(COIN_DBL_MAX), |
202 | direction_(COIN_DBL_MAX), |
203 | integerTolerance_(1.0e-7), |
204 | primalTolerance_(1.0e-7), |
205 | timeRemaining_(COIN_DBL_MAX), |
206 | defaultDual_(-1.0), |
207 | solver_(NULL), |
208 | numberColumns_(0), |
209 | lower_(NULL), |
210 | solution_(NULL), |
211 | upper_(NULL), |
212 | hotstartSolution_(NULL), |
213 | pi_(NULL), |
214 | rowActivity_(NULL), |
215 | objective_(NULL), |
216 | rowLower_(NULL), |
217 | rowUpper_(NULL), |
218 | elementByColumn_(NULL), |
219 | columnStart_(NULL), |
220 | columnLength_(NULL), |
221 | row_(NULL), |
222 | usefulRegion_(NULL), |
223 | indexRegion_(NULL), |
224 | numberSolutions_(0), |
225 | numberBranchingSolutions_(0), |
226 | depth_(0), |
227 | owningSolution_(false) |
228 | { |
229 | } |
230 | |
231 | /** Useful constructor |
232 | */ |
233 | OsiBranchingInformation::OsiBranchingInformation (const OsiSolverInterface * solver, |
234 | bool /*normalSolver*/, |
235 | bool owningSolution) |
236 | : timeRemaining_(COIN_DBL_MAX), |
237 | defaultDual_(-1.0), |
238 | solver_(solver), |
239 | hotstartSolution_(NULL), |
240 | usefulRegion_(NULL), |
241 | indexRegion_(NULL), |
242 | numberSolutions_(0), |
243 | numberBranchingSolutions_(0), |
244 | depth_(0), |
245 | owningSolution_(owningSolution) |
246 | { |
247 | direction_ = solver_->getObjSense(); |
248 | objectiveValue_ = solver_->getObjValue(); |
249 | objectiveValue_ *= direction_; |
250 | solver_->getDblParam(OsiDualObjectiveLimit,cutoff_) ; |
251 | cutoff_ *= direction_; |
252 | integerTolerance_ = solver_->getIntegerTolerance(); |
253 | solver_->getDblParam(OsiPrimalTolerance,primalTolerance_) ; |
254 | numberColumns_ = solver_->getNumCols(); |
255 | lower_ = solver_->getColLower(); |
256 | if (owningSolution_) |
257 | solution_ = CoinCopyOfArray(solver_->getColSolution(),numberColumns_); |
258 | else |
259 | solution_ = solver_->getColSolution(); |
260 | upper_ = solver_->getColUpper(); |
261 | pi_ = solver_->getRowPrice(); |
262 | rowActivity_ = solver_->getRowActivity(); |
263 | objective_ = solver_->getObjCoefficients(); |
264 | rowLower_ = solver_->getRowLower(); |
265 | rowUpper_ = solver_->getRowUpper(); |
266 | const CoinPackedMatrix* matrix = solver_->getMatrixByCol(); |
267 | if (matrix) { |
268 | // Column copy of matrix if matrix exists |
269 | elementByColumn_ = matrix->getElements(); |
270 | row_ = matrix->getIndices(); |
271 | columnStart_ = matrix->getVectorStarts(); |
272 | columnLength_ = matrix->getVectorLengths(); |
273 | } else { |
274 | // Matrix does not exist |
275 | elementByColumn_ = NULL; |
276 | row_ = NULL; |
277 | columnStart_ = NULL; |
278 | columnLength_ = NULL; |
279 | } |
280 | } |
281 | // Copy constructor |
282 | OsiBranchingInformation::OsiBranchingInformation ( const OsiBranchingInformation & rhs) |
283 | { |
284 | objectiveValue_ = rhs.objectiveValue_; |
285 | cutoff_ = rhs.cutoff_; |
286 | direction_ = rhs.direction_; |
287 | integerTolerance_ = rhs.integerTolerance_; |
288 | primalTolerance_ = rhs.primalTolerance_; |
289 | timeRemaining_ = rhs.timeRemaining_; |
290 | defaultDual_ = rhs.defaultDual_; |
291 | solver_ = rhs.solver_; |
292 | numberColumns_ = rhs.numberColumns_; |
293 | lower_ = rhs.lower_; |
294 | owningSolution_ = rhs.owningSolution_; |
295 | if (owningSolution_) |
296 | solution_ = CoinCopyOfArray(rhs.solution_,numberColumns_); |
297 | else |
298 | solution_ = rhs.solution_; |
299 | upper_ = rhs.upper_; |
300 | hotstartSolution_ = rhs.hotstartSolution_; |
301 | pi_ = rhs.pi_; |
302 | rowActivity_ = rhs.rowActivity_; |
303 | objective_ = rhs.objective_; |
304 | rowLower_ = rhs.rowLower_; |
305 | rowUpper_ = rhs.rowUpper_; |
306 | elementByColumn_ = rhs.elementByColumn_; |
307 | row_ = rhs.row_; |
308 | columnStart_ = rhs.columnStart_; |
309 | columnLength_ = rhs.columnLength_; |
310 | usefulRegion_ = rhs.usefulRegion_; |
311 | assert (!usefulRegion_); |
312 | indexRegion_ = rhs.indexRegion_; |
313 | numberSolutions_ = rhs.numberSolutions_; |
314 | numberBranchingSolutions_ = rhs.numberBranchingSolutions_; |
315 | depth_ = rhs.depth_; |
316 | } |
317 | |
318 | // Clone |
319 | OsiBranchingInformation * |
320 | OsiBranchingInformation::clone() const |
321 | { |
322 | return new OsiBranchingInformation(*this); |
323 | } |
324 | |
325 | // Assignment operator |
326 | OsiBranchingInformation & |
327 | OsiBranchingInformation::operator=( const OsiBranchingInformation& rhs) |
328 | { |
329 | if (this!=&rhs) { |
330 | objectiveValue_ = rhs.objectiveValue_; |
331 | cutoff_ = rhs.cutoff_; |
332 | direction_ = rhs.direction_; |
333 | integerTolerance_ = rhs.integerTolerance_; |
334 | primalTolerance_ = rhs.primalTolerance_; |
335 | timeRemaining_ = rhs.timeRemaining_; |
336 | defaultDual_ = rhs.defaultDual_; |
337 | numberColumns_ = rhs.numberColumns_; |
338 | lower_ = rhs.lower_; |
339 | owningSolution_ = rhs.owningSolution_; |
340 | if (owningSolution_) { |
341 | solution_ = CoinCopyOfArray(rhs.solution_,numberColumns_); |
342 | delete [] solution_; |
343 | } else { |
344 | solution_ = rhs.solution_; |
345 | } |
346 | upper_ = rhs.upper_; |
347 | hotstartSolution_ = rhs.hotstartSolution_; |
348 | pi_ = rhs.pi_; |
349 | rowActivity_ = rhs.rowActivity_; |
350 | objective_ = rhs.objective_; |
351 | rowLower_ = rhs.rowLower_; |
352 | rowUpper_ = rhs.rowUpper_; |
353 | elementByColumn_ = rhs.elementByColumn_; |
354 | row_ = rhs.row_; |
355 | columnStart_ = rhs.columnStart_; |
356 | columnLength_ = rhs.columnLength_; |
357 | usefulRegion_ = rhs.usefulRegion_; |
358 | assert (!usefulRegion_); |
359 | indexRegion_ = rhs.indexRegion_; |
360 | numberSolutions_ = rhs.numberSolutions_; |
361 | numberBranchingSolutions_ = rhs.numberBranchingSolutions_; |
362 | depth_ = rhs.depth_; |
363 | } |
364 | return *this; |
365 | } |
366 | |
367 | // Destructor |
368 | OsiBranchingInformation::~OsiBranchingInformation () |
369 | { |
370 | if (owningSolution_) |
371 | delete[] solution_; |
372 | } |
373 | // Default Constructor |
374 | OsiTwoWayBranchingObject::OsiTwoWayBranchingObject() |
375 | :OsiBranchingObject() |
376 | { |
377 | firstBranch_=0; |
378 | } |
379 | |
380 | // Useful constructor |
381 | OsiTwoWayBranchingObject::OsiTwoWayBranchingObject (OsiSolverInterface * solver, |
382 | const OsiObject * object, |
383 | int way , double value) |
384 | :OsiBranchingObject(solver,value) |
385 | { |
386 | originalObject_ = object; |
387 | firstBranch_=way; |
388 | } |
389 | |
390 | |
391 | // Copy constructor |
392 | OsiTwoWayBranchingObject::OsiTwoWayBranchingObject ( const OsiTwoWayBranchingObject & rhs) :OsiBranchingObject(rhs) |
393 | { |
394 | firstBranch_=rhs.firstBranch_; |
395 | } |
396 | |
397 | // Assignment operator |
398 | OsiTwoWayBranchingObject & |
399 | OsiTwoWayBranchingObject::operator=( const OsiTwoWayBranchingObject& rhs) |
400 | { |
401 | if (this != &rhs) { |
402 | OsiBranchingObject::operator=(rhs); |
403 | firstBranch_=rhs.firstBranch_; |
404 | } |
405 | return *this; |
406 | } |
407 | |
408 | // Destructor |
409 | OsiTwoWayBranchingObject::~OsiTwoWayBranchingObject () |
410 | { |
411 | } |
412 | |
413 | /********* Simple Integers *******************************/ |
414 | /** Default Constructor |
415 | |
416 | Equivalent to an unspecified binary variable. |
417 | */ |
418 | OsiSimpleInteger::OsiSimpleInteger () |
419 | : OsiObject2(), |
420 | originalLower_(0.0), |
421 | originalUpper_(1.0), |
422 | columnNumber_(-1) |
423 | { |
424 | } |
425 | |
426 | /** Useful constructor |
427 | |
428 | Loads actual upper & lower bounds for the specified variable. |
429 | */ |
430 | OsiSimpleInteger::OsiSimpleInteger (const OsiSolverInterface * solver, int iColumn) |
431 | : OsiObject2() |
432 | { |
433 | columnNumber_ = iColumn ; |
434 | originalLower_ = solver->getColLower()[columnNumber_] ; |
435 | originalUpper_ = solver->getColUpper()[columnNumber_] ; |
436 | } |
437 | |
438 | |
439 | // Useful constructor - passed solver index and original bounds |
440 | OsiSimpleInteger::OsiSimpleInteger ( int iColumn, double lower, double upper) |
441 | : OsiObject2() |
442 | { |
443 | columnNumber_ = iColumn ; |
444 | originalLower_ = lower; |
445 | originalUpper_ = upper; |
446 | } |
447 | |
448 | // Copy constructor |
449 | OsiSimpleInteger::OsiSimpleInteger ( const OsiSimpleInteger & rhs) |
450 | :OsiObject2(rhs) |
451 | |
452 | { |
453 | columnNumber_ = rhs.columnNumber_; |
454 | originalLower_ = rhs.originalLower_; |
455 | originalUpper_ = rhs.originalUpper_; |
456 | } |
457 | |
458 | // Clone |
459 | OsiObject * |
460 | OsiSimpleInteger::clone() const |
461 | { |
462 | return new OsiSimpleInteger(*this); |
463 | } |
464 | |
465 | // Assignment operator |
466 | OsiSimpleInteger & |
467 | OsiSimpleInteger::operator=( const OsiSimpleInteger& rhs) |
468 | { |
469 | if (this!=&rhs) { |
470 | OsiObject2::operator=(rhs); |
471 | columnNumber_ = rhs.columnNumber_; |
472 | originalLower_ = rhs.originalLower_; |
473 | originalUpper_ = rhs.originalUpper_; |
474 | } |
475 | return *this; |
476 | } |
477 | |
478 | // Destructor |
479 | OsiSimpleInteger::~OsiSimpleInteger () |
480 | { |
481 | } |
482 | /* Reset variable bounds to their original values. |
483 | |
484 | Bounds may be tightened, so it may be good to be able to reset them to |
485 | their original values. |
486 | */ |
487 | void |
488 | OsiSimpleInteger::resetBounds(const OsiSolverInterface * solver) |
489 | { |
490 | originalLower_ = solver->getColLower()[columnNumber_] ; |
491 | originalUpper_ = solver->getColUpper()[columnNumber_] ; |
492 | } |
493 | // Redoes data when sequence numbers change |
494 | void |
495 | OsiSimpleInteger::resetSequenceEtc(int numberColumns, const int * originalColumns) |
496 | { |
497 | int i; |
498 | for (i=0;i<numberColumns;i++) { |
499 | if (originalColumns[i]==columnNumber_) |
500 | break; |
501 | } |
502 | if (i<numberColumns) |
503 | columnNumber_=i; |
504 | else |
505 | abort(); // should never happen |
506 | } |
507 | |
508 | // Infeasibility - large is 0.5 |
509 | double |
510 | OsiSimpleInteger::infeasibility(const OsiBranchingInformation * info, int & whichWay) const |
511 | { |
512 | double value = info->solution_[columnNumber_]; |
513 | value = CoinMax(value, info->lower_[columnNumber_]); |
514 | value = CoinMin(value, info->upper_[columnNumber_]); |
515 | double nearest = floor(value+(1.0-0.5)); |
516 | if (nearest>value) { |
517 | whichWay=1; |
518 | } else { |
519 | whichWay=0; |
520 | } |
521 | infeasibility_ = fabs(value-nearest); |
522 | double returnValue = infeasibility_; |
523 | if (infeasibility_<=info->integerTolerance_) { |
524 | otherInfeasibility_ = 1.0; |
525 | returnValue = 0.0; |
526 | } else if (info->defaultDual_<0.0) { |
527 | otherInfeasibility_ = 1.0-infeasibility_; |
528 | } else { |
529 | const double * pi = info->pi_; |
530 | const double * activity = info->rowActivity_; |
531 | const double * lower = info->rowLower_; |
532 | const double * upper = info->rowUpper_; |
533 | const double * element = info->elementByColumn_; |
534 | const int * row = info->row_; |
535 | const CoinBigIndex * columnStart = info->columnStart_; |
536 | const int * columnLength = info->columnLength_; |
537 | double direction = info->direction_; |
538 | double downMovement = value - floor(value); |
539 | double upMovement = 1.0-downMovement; |
540 | double valueP = info->objective_[columnNumber_]*direction; |
541 | CoinBigIndex start = columnStart[columnNumber_]; |
542 | CoinBigIndex end = start + columnLength[columnNumber_]; |
543 | double upEstimate = 0.0; |
544 | double downEstimate = 0.0; |
545 | if (valueP>0.0) |
546 | upEstimate = valueP*upMovement; |
547 | else |
548 | downEstimate -= valueP*downMovement; |
549 | double tolerance = info->primalTolerance_; |
550 | for (CoinBigIndex j=start;j<end;j++) { |
551 | int iRow = row[j]; |
552 | if (lower[iRow]<-1.0e20) |
553 | assert (pi[iRow]<=1.0e-4); |
554 | if (upper[iRow]>1.0e20) |
555 | assert (pi[iRow]>=-1.0e-4); |
556 | valueP = pi[iRow]*direction; |
557 | double el2 = element[j]; |
558 | double value2 = valueP*el2; |
559 | double u=0.0; |
560 | double d=0.0; |
561 | if (value2>0.0) |
562 | u = value2; |
563 | else |
564 | d = -value2; |
565 | // if up makes infeasible then make at least default |
566 | double newUp = activity[iRow] + upMovement*el2; |
567 | if (newUp>upper[iRow]+tolerance||newUp<lower[iRow]-tolerance) |
568 | u = CoinMax(u,info->defaultDual_); |
569 | upEstimate += u*upMovement; |
570 | // if down makes infeasible then make at least default |
571 | double newDown = activity[iRow] - downMovement*el2; |
572 | if (newDown>upper[iRow]+tolerance||newDown<lower[iRow]-tolerance) |
573 | d = CoinMax(d,info->defaultDual_); |
574 | downEstimate += d*downMovement; |
575 | } |
576 | if (downEstimate>=upEstimate) { |
577 | infeasibility_ = CoinMax(1.0e-12,upEstimate); |
578 | otherInfeasibility_ = CoinMax(1.0e-12,downEstimate); |
579 | whichWay = 1; |
580 | } else { |
581 | infeasibility_ = CoinMax(1.0e-12,downEstimate); |
582 | otherInfeasibility_ = CoinMax(1.0e-12,upEstimate); |
583 | whichWay = 0; |
584 | } |
585 | returnValue = infeasibility_; |
586 | } |
587 | if (preferredWay_>=0&&returnValue) |
588 | whichWay = preferredWay_; |
589 | whichWay_ = static_cast<short int>(whichWay) ; |
590 | return returnValue; |
591 | } |
592 | |
593 | // This looks at solution and sets bounds to contain solution |
594 | /** More precisely: it first forces the variable within the existing |
595 | bounds, and then tightens the bounds to fix the variable at the |
596 | nearest integer value. |
597 | */ |
598 | double |
599 | OsiSimpleInteger::feasibleRegion(OsiSolverInterface * solver, |
600 | const OsiBranchingInformation * info) const |
601 | { |
602 | double value = info->solution_[columnNumber_]; |
603 | double newValue = CoinMax(value, info->lower_[columnNumber_]); |
604 | newValue = CoinMin(newValue, info->upper_[columnNumber_]); |
605 | newValue = floor(newValue+0.5); |
606 | solver->setColLower(columnNumber_,newValue); |
607 | solver->setColUpper(columnNumber_,newValue); |
608 | return fabs(value-newValue); |
609 | } |
610 | /* Column number if single column object -1 otherwise, |
611 | so returns >= 0 |
612 | Used by heuristics |
613 | */ |
614 | int |
615 | OsiSimpleInteger::columnNumber() const |
616 | { |
617 | return columnNumber_; |
618 | } |
619 | // Creates a branching object |
620 | OsiBranchingObject * |
621 | OsiSimpleInteger::createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const |
622 | { |
623 | double value = info->solution_[columnNumber_]; |
624 | value = CoinMax(value, info->lower_[columnNumber_]); |
625 | value = CoinMin(value, info->upper_[columnNumber_]); |
626 | assert (info->upper_[columnNumber_]>info->lower_[columnNumber_]); |
627 | #ifndef NDEBUG |
628 | double nearest = floor(value+0.5); |
629 | assert (fabs(value-nearest)>info->integerTolerance_); |
630 | #endif |
631 | OsiBranchingObject * branch = new OsiIntegerBranchingObject(solver,this,way, |
632 | value); |
633 | return branch; |
634 | } |
635 | // Return "down" estimate |
636 | double |
637 | OsiSimpleInteger::downEstimate() const |
638 | { |
639 | if (whichWay_) |
640 | return 1.0-infeasibility_; |
641 | else |
642 | return infeasibility_; |
643 | } |
644 | // Return "up" estimate |
645 | double |
646 | OsiSimpleInteger::upEstimate() const |
647 | { |
648 | if (!whichWay_) |
649 | return 1.0-infeasibility_; |
650 | else |
651 | return infeasibility_; |
652 | } |
653 | |
654 | // Default Constructor |
655 | OsiIntegerBranchingObject::OsiIntegerBranchingObject() |
656 | :OsiTwoWayBranchingObject() |
657 | { |
658 | down_[0] = 0.0; |
659 | down_[1] = 0.0; |
660 | up_[0] = 0.0; |
661 | up_[1] = 0.0; |
662 | } |
663 | |
664 | // Useful constructor |
665 | OsiIntegerBranchingObject::OsiIntegerBranchingObject (OsiSolverInterface * solver, |
666 | const OsiSimpleInteger * object, |
667 | int way , double value) |
668 | :OsiTwoWayBranchingObject(solver,object, way, value) |
669 | { |
670 | int iColumn = object->columnNumber(); |
671 | down_[0] = solver->getColLower()[iColumn]; |
672 | down_[1] = floor(value_); |
673 | up_[0] = ceil(value_); |
674 | up_[1] = solver->getColUpper()[iColumn]; |
675 | } |
676 | /* Create a standard floor/ceiling branch object |
677 | Specifies a simple two-way branch in a more flexible way. One arm of the |
678 | branch will be lb <= x <= downUpperBound, the other upLowerBound <= x <= ub. |
679 | Specify way = -1 to set the object state to perform the down arm first, |
680 | way = 1 for the up arm. |
681 | */ |
682 | OsiIntegerBranchingObject::OsiIntegerBranchingObject (OsiSolverInterface * solver, |
683 | const OsiSimpleInteger * object, |
684 | int way , double value, double downUpperBound, |
685 | double upLowerBound) |
686 | :OsiTwoWayBranchingObject(solver,object, way, value) |
687 | { |
688 | int iColumn = object->columnNumber(); |
689 | down_[0] = solver->getColLower()[iColumn]; |
690 | down_[1] = downUpperBound; |
691 | up_[0] = upLowerBound; |
692 | up_[1] = solver->getColUpper()[iColumn]; |
693 | } |
694 | |
695 | |
696 | // Copy constructor |
697 | OsiIntegerBranchingObject::OsiIntegerBranchingObject ( const OsiIntegerBranchingObject & rhs) :OsiTwoWayBranchingObject(rhs) |
698 | { |
699 | down_[0] = rhs.down_[0]; |
700 | down_[1] = rhs.down_[1]; |
701 | up_[0] = rhs.up_[0]; |
702 | up_[1] = rhs.up_[1]; |
703 | } |
704 | |
705 | // Assignment operator |
706 | OsiIntegerBranchingObject & |
707 | OsiIntegerBranchingObject::operator=( const OsiIntegerBranchingObject& rhs) |
708 | { |
709 | if (this != &rhs) { |
710 | OsiTwoWayBranchingObject::operator=(rhs); |
711 | down_[0] = rhs.down_[0]; |
712 | down_[1] = rhs.down_[1]; |
713 | up_[0] = rhs.up_[0]; |
714 | up_[1] = rhs.up_[1]; |
715 | } |
716 | return *this; |
717 | } |
718 | OsiBranchingObject * |
719 | OsiIntegerBranchingObject::clone() const |
720 | { |
721 | return (new OsiIntegerBranchingObject(*this)); |
722 | } |
723 | |
724 | |
725 | // Destructor |
726 | OsiIntegerBranchingObject::~OsiIntegerBranchingObject () |
727 | { |
728 | } |
729 | |
730 | /* |
731 | Perform a branch by adjusting the bounds of the specified variable. Note |
732 | that each arm of the branch advances the object to the next arm by |
733 | advancing the value of branchIndex_. |
734 | |
735 | Providing new values for the variable's lower and upper bounds for each |
736 | branching direction gives a little bit of additional flexibility and will |
737 | be easily extensible to multi-way branching. |
738 | Returns change in guessed objective on next branch |
739 | */ |
740 | double |
741 | OsiIntegerBranchingObject::branch(OsiSolverInterface * solver) |
742 | { |
743 | const OsiSimpleInteger * obj = |
744 | dynamic_cast <const OsiSimpleInteger *>(originalObject_) ; |
745 | assert (obj); |
746 | int iColumn = obj->columnNumber(); |
747 | double olb,oub ; |
748 | olb = solver->getColLower()[iColumn] ; |
749 | oub = solver->getColUpper()[iColumn] ; |
750 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
751 | if (0) { |
752 | printf("branching %s on %d bounds %g %g / %g %g\n" , |
753 | (way==-1) ? "down" :"up" ,iColumn, |
754 | down_[0],down_[1],up_[0],up_[1]); |
755 | const double * lower = solver->getColLower(); |
756 | const double * upper = solver->getColUpper(); |
757 | for (int i=0;i<8;i++) |
758 | printf(" [%d (%g,%g)]" ,i,lower[i],upper[i]); |
759 | printf("\n" ); |
760 | } |
761 | if (way<0) { |
762 | #ifdef OSI_DEBUG |
763 | { double olb,oub ; |
764 | olb = solver->getColLower()[iColumn] ; |
765 | oub = solver->getColUpper()[iColumn] ; |
766 | printf("branching down on var %d: [%g,%g] => [%g,%g]\n" , |
767 | iColumn,olb,oub,down_[0],down_[1]) ; } |
768 | #endif |
769 | solver->setColLower(iColumn,down_[0]); |
770 | solver->setColUpper(iColumn,down_[1]); |
771 | } else { |
772 | #ifdef OSI_DEBUG |
773 | { double olb,oub ; |
774 | olb = solver->getColLower()[iColumn] ; |
775 | oub = solver->getColUpper()[iColumn] ; |
776 | printf("branching up on var %d: [%g,%g] => [%g,%g]\n" , |
777 | iColumn,olb,oub,up_[0],up_[1]) ; } |
778 | #endif |
779 | solver->setColLower(iColumn,up_[0]); |
780 | solver->setColUpper(iColumn,up_[1]); |
781 | } |
782 | double nlb = solver->getColLower()[iColumn]; |
783 | if (nlb<olb) { |
784 | #ifndef NDEBUG |
785 | printf("bad lb change for column %d from %g to %g\n" ,iColumn,olb,nlb); |
786 | #endif |
787 | solver->setColLower(iColumn,olb); |
788 | } |
789 | double nub = solver->getColUpper()[iColumn]; |
790 | if (nub>oub) { |
791 | #ifndef NDEBUG |
792 | printf("bad ub change for column %d from %g to %g\n" ,iColumn,oub,nub); |
793 | #endif |
794 | solver->setColUpper(iColumn,oub); |
795 | } |
796 | #ifndef NDEBUG |
797 | if (nlb<olb+1.0e-8&&nub>oub-1.0e-8) |
798 | printf("bad null change for column %d - bounds %g,%g\n" ,iColumn,olb,oub); |
799 | #endif |
800 | branchIndex_++; |
801 | return 0.0; |
802 | } |
803 | // Print what would happen |
804 | void |
805 | OsiIntegerBranchingObject::print(const OsiSolverInterface * solver) |
806 | { |
807 | const OsiSimpleInteger * obj = |
808 | dynamic_cast <const OsiSimpleInteger *>(originalObject_) ; |
809 | assert (obj); |
810 | int iColumn = obj->columnNumber(); |
811 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
812 | if (way<0) { |
813 | { double olb,oub ; |
814 | olb = solver->getColLower()[iColumn] ; |
815 | oub = solver->getColUpper()[iColumn] ; |
816 | printf("OsiInteger would branch down on var %d : [%g,%g] => [%g,%g]\n" , |
817 | iColumn,olb,oub,down_[0],down_[1]) ; } |
818 | } else { |
819 | { double olb,oub ; |
820 | olb = solver->getColLower()[iColumn] ; |
821 | oub = solver->getColUpper()[iColumn] ; |
822 | printf("OsiInteger would branch up on var %d : [%g,%g] => [%g,%g]\n" , |
823 | iColumn,olb,oub,up_[0],up_[1]) ; } |
824 | } |
825 | } |
826 | // Default Constructor |
827 | OsiSOS::OsiSOS () |
828 | : OsiObject2(), |
829 | members_(NULL), |
830 | weights_(NULL), |
831 | numberMembers_(0), |
832 | sosType_(-1), |
833 | integerValued_(false) |
834 | { |
835 | } |
836 | |
837 | // Useful constructor (which are indices) |
838 | OsiSOS::OsiSOS (const OsiSolverInterface * , int numberMembers, |
839 | const int * which, const double * weights, int type) |
840 | : OsiObject2(), |
841 | numberMembers_(numberMembers), |
842 | sosType_(type) |
843 | { |
844 | integerValued_ = type==1; // not strictly true - should check problem |
845 | if (numberMembers_) { |
846 | members_ = new int[numberMembers_]; |
847 | weights_ = new double[numberMembers_]; |
848 | memcpy(members_,which,numberMembers_*sizeof(int)); |
849 | if (weights) { |
850 | memcpy(weights_,weights,numberMembers_*sizeof(double)); |
851 | } else { |
852 | for (int i=0;i<numberMembers_;i++) |
853 | weights_[i]=i; |
854 | } |
855 | // sort so weights increasing |
856 | CoinSort_2(weights_,weights_+numberMembers_,members_); |
857 | double last = -COIN_DBL_MAX; |
858 | int i; |
859 | for (i=0;i<numberMembers_;i++) { |
860 | double possible = CoinMax(last+1.0e-10,weights_[i]); |
861 | weights_[i] = possible; |
862 | last=possible; |
863 | } |
864 | } else { |
865 | members_ = NULL; |
866 | weights_ = NULL; |
867 | } |
868 | assert (sosType_>0&&sosType_<3); |
869 | } |
870 | |
871 | // Copy constructor |
872 | OsiSOS::OsiSOS ( const OsiSOS & rhs) |
873 | :OsiObject2(rhs) |
874 | { |
875 | numberMembers_ = rhs.numberMembers_; |
876 | sosType_ = rhs.sosType_; |
877 | integerValued_ = rhs.integerValued_; |
878 | if (numberMembers_) { |
879 | members_ = new int[numberMembers_]; |
880 | weights_ = new double[numberMembers_]; |
881 | memcpy(members_,rhs.members_,numberMembers_*sizeof(int)); |
882 | memcpy(weights_,rhs.weights_,numberMembers_*sizeof(double)); |
883 | } else { |
884 | members_ = NULL; |
885 | weights_ = NULL; |
886 | } |
887 | } |
888 | |
889 | // Clone |
890 | OsiObject * |
891 | OsiSOS::clone() const |
892 | { |
893 | return new OsiSOS(*this); |
894 | } |
895 | |
896 | // Assignment operator |
897 | OsiSOS & |
898 | OsiSOS::operator=( const OsiSOS& rhs) |
899 | { |
900 | if (this!=&rhs) { |
901 | OsiObject2::operator=(rhs); |
902 | delete [] members_; |
903 | delete [] weights_; |
904 | numberMembers_ = rhs.numberMembers_; |
905 | sosType_ = rhs.sosType_; |
906 | integerValued_ = rhs.integerValued_; |
907 | if (numberMembers_) { |
908 | members_ = new int[numberMembers_]; |
909 | weights_ = new double[numberMembers_]; |
910 | memcpy(members_,rhs.members_,numberMembers_*sizeof(int)); |
911 | memcpy(weights_,rhs.weights_,numberMembers_*sizeof(double)); |
912 | } else { |
913 | members_ = NULL; |
914 | weights_ = NULL; |
915 | } |
916 | } |
917 | return *this; |
918 | } |
919 | |
920 | // Destructor |
921 | OsiSOS::~OsiSOS () |
922 | { |
923 | delete [] members_; |
924 | delete [] weights_; |
925 | } |
926 | |
927 | // Infeasibility - large is 0.5 |
928 | double |
929 | OsiSOS::infeasibility(const OsiBranchingInformation * info,int & whichWay) const |
930 | { |
931 | int j; |
932 | int firstNonZero=-1; |
933 | int lastNonZero = -1; |
934 | int firstNonFixed=-1; |
935 | int lastNonFixed = -1; |
936 | const double * solution = info->solution_; |
937 | //const double * lower = info->lower_; |
938 | const double * upper = info->upper_; |
939 | //double largestValue=0.0; |
940 | double integerTolerance = info->integerTolerance_; |
941 | double primalTolerance = info->primalTolerance_; |
942 | double weight = 0.0; |
943 | double sum =0.0; |
944 | |
945 | // check bounds etc |
946 | double lastWeight=-1.0e100; |
947 | for (j=0;j<numberMembers_;j++) { |
948 | int iColumn = members_[j]; |
949 | if (lastWeight>=weights_[j]-1.0e-12) |
950 | throw CoinError("Weights too close together in SOS" ,"infeasibility" ,"OsiSOS" ); |
951 | lastWeight = weights_[j]; |
952 | if (upper[iColumn]) { |
953 | double value = CoinMax(0.0,solution[iColumn]); |
954 | if (value>integerTolerance) { |
955 | // Possibly due to scaling a fixed variable might slip through |
956 | #ifdef COIN_DEVELOP |
957 | if (value>upper[iColumn]+10.0*primalTolerance) |
958 | printf("** Variable %d (%d) has value %g and upper bound of %g\n" , |
959 | iColumn,j,value,upper[iColumn]); |
960 | #endif |
961 | if (value>upper[iColumn]) { |
962 | value=upper[iColumn]; |
963 | } |
964 | sum += value; |
965 | weight += weights_[j]*value; |
966 | if (firstNonZero<0) |
967 | firstNonZero=j; |
968 | lastNonZero=j; |
969 | } |
970 | if (firstNonFixed<0) |
971 | firstNonFixed=j; |
972 | lastNonFixed=j; |
973 | } |
974 | } |
975 | whichWay=1; |
976 | whichWay_=1; |
977 | if (lastNonZero-firstNonZero>=sosType_) { |
978 | // find where to branch |
979 | assert (sum>0.0); |
980 | // probably best to use pseudo duals |
981 | double value = lastNonZero-firstNonZero+1; |
982 | value *= 0.5/static_cast<double> (numberMembers_); |
983 | infeasibility_=value; |
984 | otherInfeasibility_=1.0-value; |
985 | if (info->defaultDual_>=0.0) { |
986 | // Using pseudo shadow prices |
987 | weight /= sum; |
988 | int iWhere; |
989 | for (iWhere=firstNonZero;iWhere<lastNonZero;iWhere++) |
990 | if (weight<weights_[iWhere+1]) |
991 | break; |
992 | assert (iWhere!=lastNonZero); |
993 | /* Complicated - infeasibility is being used for branching so we |
994 | don't want estimate of satisfying set but of each way on branch. |
995 | So let us suppose that all on side being fixed to 0 goes to closest |
996 | */ |
997 | int lastDown=iWhere; |
998 | int firstUp=iWhere+1; |
999 | if (sosType_==2) { |
1000 | // SOS 2 - choose nearest |
1001 | if (weight-weights_[iWhere]>=weights_[iWhere+1]-weight) |
1002 | lastDown++; |
1003 | // But make sure OK |
1004 | if (lastDown==firstNonFixed) { |
1005 | lastDown ++; |
1006 | } else if (lastDown==lastNonFixed) { |
1007 | lastDown --; |
1008 | } |
1009 | firstUp=lastDown; |
1010 | } |
1011 | // Now get current contribution and compute weight for end points |
1012 | double weightDown = 0.0; |
1013 | double weightUp = 0.0; |
1014 | const double * element = info->elementByColumn_; |
1015 | const int * row = info->row_; |
1016 | const CoinBigIndex * columnStart = info->columnStart_; |
1017 | const int * columnLength = info->columnLength_; |
1018 | double direction = info->direction_; |
1019 | const double * objective = info->objective_; |
1020 | // Compute where we would move to |
1021 | double objValue=0.0; |
1022 | double * useful = info->usefulRegion_; |
1023 | int * index = info->indexRegion_; |
1024 | int n=0; |
1025 | for (j=firstNonZero;j<=lastNonZero;j++) { |
1026 | int iColumn = members_[j]; |
1027 | double multiplier = solution[iColumn]; |
1028 | if (j>=lastDown) |
1029 | weightDown += multiplier; |
1030 | if (j<=firstUp) |
1031 | weightUp += multiplier; |
1032 | if (multiplier>0.0) { |
1033 | objValue += objective[iColumn]*multiplier; |
1034 | CoinBigIndex start = columnStart[iColumn]; |
1035 | CoinBigIndex end = start + columnLength[iColumn]; |
1036 | for (CoinBigIndex j=start;j<end;j++) { |
1037 | int iRow = row[j]; |
1038 | double value = element[j]*multiplier; |
1039 | if (useful[iRow]) { |
1040 | value += useful[iRow]; |
1041 | if (!value) |
1042 | value = 1.0e-100; |
1043 | } else { |
1044 | assert (value); |
1045 | index[n++]=iRow; |
1046 | } |
1047 | useful[iRow] = value; |
1048 | } |
1049 | } |
1050 | } |
1051 | if (sosType_==2) |
1052 | assert (fabs(weightUp+weightDown-sum-solution[members_[lastDown]])<1.0e-4); |
1053 | int startX[2]; |
1054 | int endX[2]; |
1055 | startX[0]=firstNonZero; |
1056 | startX[1]=firstUp; |
1057 | endX[0]=lastDown; |
1058 | endX[1]=lastNonZero; |
1059 | double fakeSolution[2]; |
1060 | int check[2]; |
1061 | fakeSolution[0]=weightDown; |
1062 | check[0]=members_[lastDown]; |
1063 | fakeSolution[1]=weightUp; |
1064 | check[1]=members_[firstUp]; |
1065 | const double * pi = info->pi_; |
1066 | const double * activity = info->rowActivity_; |
1067 | const double * lower = info->rowLower_; |
1068 | const double * upper = info->rowUpper_; |
1069 | int numberRows = info->solver_->getNumRows(); |
1070 | double * useful2 = useful+numberRows; |
1071 | int * index2 = index+numberRows; |
1072 | for (int i=0;i<2;i++) { |
1073 | double obj=0.0; |
1074 | int n2=0; |
1075 | for (j=startX[i];j<=endX[i];j++) { |
1076 | int iColumn = members_[j]; |
1077 | double multiplier = solution[iColumn]; |
1078 | if (iColumn==check[i]) |
1079 | multiplier=fakeSolution[i]; |
1080 | if (multiplier>0.0) { |
1081 | obj += objective[iColumn]*multiplier; |
1082 | CoinBigIndex start = columnStart[iColumn]; |
1083 | CoinBigIndex end = start + columnLength[iColumn]; |
1084 | for (CoinBigIndex j=start;j<end;j++) { |
1085 | int iRow = row[j]; |
1086 | double value = element[j]*multiplier; |
1087 | if (useful2[iRow]) { |
1088 | value += useful2[iRow]; |
1089 | if (!value) |
1090 | value = 1.0e-100; |
1091 | } else { |
1092 | assert (value); |
1093 | index2[n2++]=iRow; |
1094 | } |
1095 | useful2[iRow] = value; |
1096 | } |
1097 | } |
1098 | } |
1099 | // movement in objective |
1100 | obj = (obj-objValue) * direction; |
1101 | double estimate = (obj>0.0) ? obj : 0.0; |
1102 | for (j=0;j<n;j++) { |
1103 | int iRow = index[j]; |
1104 | // movement |
1105 | double movement = useful2[iRow]-useful[iRow]; |
1106 | useful[iRow]=0.0; |
1107 | useful2[iRow]=0.0; |
1108 | double valueP = pi[iRow]*direction; |
1109 | if (lower[iRow]<-1.0e20) |
1110 | assert (valueP<=1.0e-4); |
1111 | if (upper[iRow]>1.0e20) |
1112 | assert (valueP>=-1.0e-4); |
1113 | double value2 = valueP*movement; |
1114 | double thisEstimate = (value2>0.0) ? value2 : 0; |
1115 | // if makes infeasible then make at least default |
1116 | double newValue = activity[iRow] + movement; |
1117 | if (newValue>upper[iRow]+primalTolerance||newValue<lower[iRow]-primalTolerance) |
1118 | thisEstimate = CoinMax(thisEstimate,info->defaultDual_); |
1119 | estimate += thisEstimate; |
1120 | } |
1121 | for (j=0;j<n2;j++) { |
1122 | int iRow = index2[j]; |
1123 | // movement |
1124 | double movement = useful2[iRow]-useful[iRow]; |
1125 | useful[iRow]=0.0; |
1126 | useful2[iRow]=0.0; |
1127 | if (movement) { |
1128 | double valueP = pi[iRow]*direction; |
1129 | if (lower[iRow]<-1.0e20) |
1130 | assert (valueP<=1.0e-4); |
1131 | if (upper[iRow]>1.0e20) |
1132 | assert (valueP>=-1.0e-4); |
1133 | double value2 = valueP*movement; |
1134 | double thisEstimate = (value2>0.0) ? value2 : 0; |
1135 | // if makes infeasible then make at least default |
1136 | double newValue = activity[iRow] + movement; |
1137 | if (newValue>upper[iRow]+primalTolerance||newValue<lower[iRow]-primalTolerance) |
1138 | thisEstimate = CoinMax(thisEstimate,info->defaultDual_); |
1139 | estimate += thisEstimate; |
1140 | } |
1141 | } |
1142 | // store in fakeSolution |
1143 | fakeSolution[i]=estimate; |
1144 | } |
1145 | double downEstimate = fakeSolution[0]; |
1146 | double upEstimate = fakeSolution[1]; |
1147 | if (downEstimate>=upEstimate) { |
1148 | infeasibility_ = CoinMax(1.0e-12,upEstimate); |
1149 | otherInfeasibility_ = CoinMax(1.0e-12,downEstimate); |
1150 | whichWay = 1; |
1151 | } else { |
1152 | infeasibility_ = CoinMax(1.0e-12,downEstimate); |
1153 | otherInfeasibility_ = CoinMax(1.0e-12,upEstimate); |
1154 | whichWay = 0; |
1155 | } |
1156 | whichWay_=static_cast<short>(whichWay); |
1157 | value=infeasibility_; |
1158 | } |
1159 | return value; |
1160 | } else { |
1161 | infeasibility_=0.0; |
1162 | otherInfeasibility_=1.0; |
1163 | return 0.0; // satisfied |
1164 | } |
1165 | } |
1166 | |
1167 | // This looks at solution and sets bounds to contain solution |
1168 | double |
1169 | OsiSOS::feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const |
1170 | { |
1171 | int j; |
1172 | int firstNonZero=-1; |
1173 | int lastNonZero = -1; |
1174 | const double * solution = info->solution_; |
1175 | //const double * lower = info->lower_; |
1176 | const double * upper = info->upper_; |
1177 | double sum =0.0; |
1178 | // Find largest one or pair |
1179 | double movement=0.0; |
1180 | if (sosType_==1) { |
1181 | for (j=0;j<numberMembers_;j++) { |
1182 | int iColumn = members_[j]; |
1183 | double value = CoinMax(0.0,solution[iColumn]); |
1184 | if (value>sum&&upper[iColumn]) { |
1185 | firstNonZero=j; |
1186 | sum=value; |
1187 | } |
1188 | } |
1189 | lastNonZero=firstNonZero; |
1190 | } else { |
1191 | // type 2 |
1192 | for (j=1;j<numberMembers_;j++) { |
1193 | int iColumn = members_[j]; |
1194 | int jColumn = members_[j-1]; |
1195 | double value1 = CoinMax(0.0,solution[iColumn]); |
1196 | double value0 = CoinMax(0.0,solution[jColumn]); |
1197 | double value = value0+value1; |
1198 | if (value>sum) { |
1199 | if (upper[iColumn]||upper[jColumn]) { |
1200 | firstNonZero=upper[jColumn] ? j-1 : j; |
1201 | lastNonZero=upper[iColumn] ? j : j-1; |
1202 | sum=value; |
1203 | } |
1204 | } |
1205 | } |
1206 | } |
1207 | for (j=0;j<numberMembers_;j++) { |
1208 | if (j<firstNonZero||j>lastNonZero) { |
1209 | int iColumn = members_[j]; |
1210 | double value = CoinMax(0.0,solution[iColumn]); |
1211 | movement += value; |
1212 | solver->setColUpper(iColumn,0.0); |
1213 | } |
1214 | } |
1215 | return movement; |
1216 | } |
1217 | // Redoes data when sequence numbers change |
1218 | void |
1219 | OsiSOS::resetSequenceEtc(int numberColumns, const int * originalColumns) |
1220 | { |
1221 | int n2=0; |
1222 | for (int j=0;j<numberMembers_;j++) { |
1223 | int iColumn = members_[j]; |
1224 | int i; |
1225 | for (i=0;i<numberColumns;i++) { |
1226 | if (originalColumns[i]==iColumn) |
1227 | break; |
1228 | } |
1229 | if (i<numberColumns) { |
1230 | members_[n2]=i; |
1231 | weights_[n2++]=weights_[j]; |
1232 | } |
1233 | } |
1234 | if (n2<numberMembers_) { |
1235 | printf("** SOS number of members reduced from %d to %d!\n" ,numberMembers_,n2); |
1236 | numberMembers_=n2; |
1237 | } |
1238 | } |
1239 | // Return "down" estimate |
1240 | double |
1241 | OsiSOS::downEstimate() const |
1242 | { |
1243 | if (whichWay_) |
1244 | return otherInfeasibility_; |
1245 | else |
1246 | return infeasibility_; |
1247 | } |
1248 | // Return "up" estimate |
1249 | double |
1250 | OsiSOS::upEstimate() const |
1251 | { |
1252 | if (!whichWay_) |
1253 | return otherInfeasibility_; |
1254 | else |
1255 | return infeasibility_; |
1256 | } |
1257 | |
1258 | // Creates a branching object |
1259 | OsiBranchingObject * |
1260 | OsiSOS::createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const |
1261 | { |
1262 | int j; |
1263 | const double * solution = info->solution_; |
1264 | double tolerance = info->primalTolerance_; |
1265 | const double * upper = info->upper_; |
1266 | int firstNonFixed=-1; |
1267 | int lastNonFixed=-1; |
1268 | int firstNonZero=-1; |
1269 | int lastNonZero = -1; |
1270 | double weight = 0.0; |
1271 | double sum =0.0; |
1272 | for (j=0;j<numberMembers_;j++) { |
1273 | int iColumn = members_[j]; |
1274 | if (upper[iColumn]) { |
1275 | double value = CoinMax(0.0,solution[iColumn]); |
1276 | sum += value; |
1277 | if (firstNonFixed<0) |
1278 | firstNonFixed=j; |
1279 | lastNonFixed=j; |
1280 | if (value>tolerance) { |
1281 | weight += weights_[j]*value; |
1282 | if (firstNonZero<0) |
1283 | firstNonZero=j; |
1284 | lastNonZero=j; |
1285 | } |
1286 | } |
1287 | } |
1288 | assert (lastNonZero-firstNonZero>=sosType_) ; |
1289 | // find where to branch |
1290 | assert (sum>0.0); |
1291 | weight /= sum; |
1292 | int iWhere; |
1293 | double separator=0.0; |
1294 | for (iWhere=firstNonZero;iWhere<lastNonZero;iWhere++) |
1295 | if (weight<weights_[iWhere+1]) |
1296 | break; |
1297 | if (sosType_==1) { |
1298 | // SOS 1 |
1299 | separator = 0.5 *(weights_[iWhere]+weights_[iWhere+1]); |
1300 | } else { |
1301 | // SOS 2 |
1302 | if (iWhere==lastNonFixed-1) |
1303 | iWhere = lastNonFixed-2; |
1304 | separator = weights_[iWhere+1]; |
1305 | } |
1306 | // create object |
1307 | OsiBranchingObject * branch; |
1308 | branch = new OsiSOSBranchingObject(solver,this,way,separator); |
1309 | return branch; |
1310 | } |
1311 | // Default Constructor |
1312 | OsiSOSBranchingObject::OsiSOSBranchingObject() |
1313 | :OsiTwoWayBranchingObject() |
1314 | { |
1315 | } |
1316 | |
1317 | // Useful constructor |
1318 | OsiSOSBranchingObject::OsiSOSBranchingObject (OsiSolverInterface * solver, |
1319 | const OsiSOS * set, |
1320 | int way , |
1321 | double separator) |
1322 | :OsiTwoWayBranchingObject(solver, set,way,separator) |
1323 | { |
1324 | } |
1325 | |
1326 | // Copy constructor |
1327 | OsiSOSBranchingObject::OsiSOSBranchingObject ( const OsiSOSBranchingObject & rhs) :OsiTwoWayBranchingObject(rhs) |
1328 | { |
1329 | } |
1330 | |
1331 | // Assignment operator |
1332 | OsiSOSBranchingObject & |
1333 | OsiSOSBranchingObject::operator=( const OsiSOSBranchingObject& rhs) |
1334 | { |
1335 | if (this != &rhs) { |
1336 | OsiTwoWayBranchingObject::operator=(rhs); |
1337 | } |
1338 | return *this; |
1339 | } |
1340 | OsiBranchingObject * |
1341 | OsiSOSBranchingObject::clone() const |
1342 | { |
1343 | return (new OsiSOSBranchingObject(*this)); |
1344 | } |
1345 | |
1346 | |
1347 | // Destructor |
1348 | OsiSOSBranchingObject::~OsiSOSBranchingObject () |
1349 | { |
1350 | } |
1351 | double |
1352 | OsiSOSBranchingObject::branch(OsiSolverInterface * solver) |
1353 | { |
1354 | const OsiSOS * set = |
1355 | dynamic_cast <const OsiSOS *>(originalObject_) ; |
1356 | assert (set); |
1357 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
1358 | branchIndex_++; |
1359 | int numberMembers = set->numberMembers(); |
1360 | const int * which = set->members(); |
1361 | const double * weights = set->weights(); |
1362 | //const double * lower = solver->getColLower(); |
1363 | //const double * upper = solver->getColUpper(); |
1364 | // *** for way - up means fix all those in down section |
1365 | if (way<0) { |
1366 | int i; |
1367 | for ( i=0;i<numberMembers;i++) { |
1368 | if (weights[i] > value_) |
1369 | break; |
1370 | } |
1371 | assert (i<numberMembers); |
1372 | for (;i<numberMembers;i++) |
1373 | solver->setColUpper(which[i],0.0); |
1374 | } else { |
1375 | int i; |
1376 | for ( i=0;i<numberMembers;i++) { |
1377 | if (weights[i] >= value_) |
1378 | break; |
1379 | else |
1380 | solver->setColUpper(which[i],0.0); |
1381 | } |
1382 | assert (i<numberMembers); |
1383 | } |
1384 | return 0.0; |
1385 | } |
1386 | // Print what would happen |
1387 | void |
1388 | OsiSOSBranchingObject::print(const OsiSolverInterface * solver) |
1389 | { |
1390 | const OsiSOS * set = |
1391 | dynamic_cast <const OsiSOS *>(originalObject_) ; |
1392 | assert (set); |
1393 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
1394 | int numberMembers = set->numberMembers(); |
1395 | const int * which = set->members(); |
1396 | const double * weights = set->weights(); |
1397 | //const double * lower = solver->getColLower(); |
1398 | const double * upper = solver->getColUpper(); |
1399 | int first=numberMembers; |
1400 | int last=-1; |
1401 | int numberFixed=0; |
1402 | int numberOther=0; |
1403 | int i; |
1404 | for ( i=0;i<numberMembers;i++) { |
1405 | double bound = upper[which[i]]; |
1406 | if (bound) { |
1407 | first = CoinMin(first,i); |
1408 | last = CoinMax(last,i); |
1409 | } |
1410 | } |
1411 | // *** for way - up means fix all those in down section |
1412 | if (way<0) { |
1413 | printf("SOS Down" ); |
1414 | for ( i=0;i<numberMembers;i++) { |
1415 | double bound = upper[which[i]]; |
1416 | if (weights[i] > value_) |
1417 | break; |
1418 | else if (bound) |
1419 | numberOther++; |
1420 | } |
1421 | assert (i<numberMembers); |
1422 | for (;i<numberMembers;i++) { |
1423 | double bound = upper[which[i]]; |
1424 | if (bound) |
1425 | numberFixed++; |
1426 | } |
1427 | } else { |
1428 | printf("SOS Up" ); |
1429 | for ( i=0;i<numberMembers;i++) { |
1430 | double bound = upper[which[i]]; |
1431 | if (weights[i] >= value_) |
1432 | break; |
1433 | else if (bound) |
1434 | numberFixed++; |
1435 | } |
1436 | assert (i<numberMembers); |
1437 | for (;i<numberMembers;i++) { |
1438 | double bound = upper[which[i]]; |
1439 | if (bound) |
1440 | numberOther++; |
1441 | } |
1442 | } |
1443 | printf(" - at %g, free range %d (%g) => %d (%g), %d would be fixed, %d other way\n" , |
1444 | value_,which[first],weights[first],which[last],weights[last],numberFixed,numberOther); |
1445 | } |
1446 | /** Default Constructor |
1447 | |
1448 | */ |
1449 | OsiLotsize::OsiLotsize () |
1450 | : OsiObject2(), |
1451 | columnNumber_(-1), |
1452 | rangeType_(0), |
1453 | numberRanges_(0), |
1454 | largestGap_(0), |
1455 | bound_(NULL), |
1456 | range_(0) |
1457 | { |
1458 | } |
1459 | |
1460 | /** Useful constructor |
1461 | |
1462 | Loads actual upper & lower bounds for the specified variable. |
1463 | */ |
1464 | OsiLotsize::OsiLotsize (const OsiSolverInterface * , |
1465 | int iColumn, int numberPoints, |
1466 | const double * points, bool range) |
1467 | : OsiObject2() |
1468 | { |
1469 | assert (numberPoints>0); |
1470 | columnNumber_ = iColumn ; |
1471 | // sort ranges |
1472 | int * sort = new int[numberPoints]; |
1473 | double * weight = new double [numberPoints]; |
1474 | int i; |
1475 | if (range) { |
1476 | rangeType_=2; |
1477 | } else { |
1478 | rangeType_=1; |
1479 | } |
1480 | for (i=0;i<numberPoints;i++) { |
1481 | sort[i]=i; |
1482 | weight[i]=points[i*rangeType_]; |
1483 | } |
1484 | CoinSort_2(weight,weight+numberPoints,sort); |
1485 | numberRanges_=1; |
1486 | largestGap_=0; |
1487 | if (rangeType_==1) { |
1488 | bound_ = new double[numberPoints+1]; |
1489 | bound_[0]=weight[0]; |
1490 | for (i=1;i<numberPoints;i++) { |
1491 | if (weight[i]!=weight[i-1]) |
1492 | bound_[numberRanges_++]=weight[i]; |
1493 | } |
1494 | // and for safety |
1495 | bound_[numberRanges_]=bound_[numberRanges_-1]; |
1496 | for (i=1;i<numberRanges_;i++) { |
1497 | largestGap_ = CoinMax(largestGap_,bound_[i]-bound_[i-1]); |
1498 | } |
1499 | } else { |
1500 | bound_ = new double[2*numberPoints+2]; |
1501 | bound_[0]=points[sort[0]*2]; |
1502 | bound_[1]=points[sort[0]*2+1]; |
1503 | double lo=bound_[0]; |
1504 | double hi=bound_[1]; |
1505 | assert (hi>=lo); |
1506 | for (i=1;i<numberPoints;i++) { |
1507 | double thisLo =points[sort[i]*2]; |
1508 | double thisHi =points[sort[i]*2+1]; |
1509 | assert (thisHi>=thisLo); |
1510 | if (thisLo>hi) { |
1511 | bound_[2*numberRanges_]=thisLo; |
1512 | bound_[2*numberRanges_+1]=thisHi; |
1513 | numberRanges_++; |
1514 | lo=thisLo; |
1515 | hi=thisHi; |
1516 | } else { |
1517 | //overlap |
1518 | hi=CoinMax(hi,thisHi); |
1519 | bound_[2*numberRanges_-1]=hi; |
1520 | } |
1521 | } |
1522 | // and for safety |
1523 | bound_[2*numberRanges_]=bound_[2*numberRanges_-2]; |
1524 | bound_[2*numberRanges_+1]=bound_[2*numberRanges_-1]; |
1525 | for (i=1;i<numberRanges_;i++) { |
1526 | largestGap_ = CoinMax(largestGap_,bound_[2*i]-bound_[2*i-1]); |
1527 | } |
1528 | } |
1529 | delete [] sort; |
1530 | delete [] weight; |
1531 | range_=0; |
1532 | } |
1533 | |
1534 | // Copy constructor |
1535 | OsiLotsize::OsiLotsize ( const OsiLotsize & rhs) |
1536 | :OsiObject2(rhs) |
1537 | |
1538 | { |
1539 | columnNumber_ = rhs.columnNumber_; |
1540 | rangeType_ = rhs.rangeType_; |
1541 | numberRanges_ = rhs.numberRanges_; |
1542 | range_ = rhs.range_; |
1543 | largestGap_ = rhs.largestGap_; |
1544 | if (numberRanges_) { |
1545 | assert (rangeType_>0&&rangeType_<3); |
1546 | bound_= new double [(numberRanges_+1)*rangeType_]; |
1547 | memcpy(bound_,rhs.bound_,(numberRanges_+1)*rangeType_*sizeof(double)); |
1548 | } else { |
1549 | bound_=NULL; |
1550 | } |
1551 | } |
1552 | |
1553 | // Clone |
1554 | OsiObject * |
1555 | OsiLotsize::clone() const |
1556 | { |
1557 | return new OsiLotsize(*this); |
1558 | } |
1559 | |
1560 | // Assignment operator |
1561 | OsiLotsize & |
1562 | OsiLotsize::operator=( const OsiLotsize& rhs) |
1563 | { |
1564 | if (this!=&rhs) { |
1565 | OsiObject2::operator=(rhs); |
1566 | columnNumber_ = rhs.columnNumber_; |
1567 | rangeType_ = rhs.rangeType_; |
1568 | numberRanges_ = rhs.numberRanges_; |
1569 | largestGap_ = rhs.largestGap_; |
1570 | delete [] bound_; |
1571 | range_ = rhs.range_; |
1572 | if (numberRanges_) { |
1573 | assert (rangeType_>0&&rangeType_<3); |
1574 | bound_= new double [(numberRanges_+1)*rangeType_]; |
1575 | memcpy(bound_,rhs.bound_,(numberRanges_+1)*rangeType_*sizeof(double)); |
1576 | } else { |
1577 | bound_=NULL; |
1578 | } |
1579 | } |
1580 | return *this; |
1581 | } |
1582 | |
1583 | // Destructor |
1584 | OsiLotsize::~OsiLotsize () |
1585 | { |
1586 | delete [] bound_; |
1587 | } |
1588 | /* Finds range of interest so value is feasible in range range_ or infeasible |
1589 | between hi[range_] and lo[range_+1]. Returns true if feasible. |
1590 | */ |
1591 | bool |
1592 | OsiLotsize::findRange(double value, double integerTolerance) const |
1593 | { |
1594 | assert (range_>=0&&range_<numberRanges_+1); |
1595 | int iLo; |
1596 | int iHi; |
1597 | double infeasibility=0.0; |
1598 | if (rangeType_==1) { |
1599 | if (value<bound_[range_]-integerTolerance) { |
1600 | iLo=0; |
1601 | iHi=range_-1; |
1602 | } else if (value<bound_[range_]+integerTolerance) { |
1603 | return true; |
1604 | } else if (value<bound_[range_+1]-integerTolerance) { |
1605 | return false; |
1606 | } else { |
1607 | iLo=range_+1; |
1608 | iHi=numberRanges_-1; |
1609 | } |
1610 | // check lo and hi |
1611 | bool found=false; |
1612 | if (value>bound_[iLo]-integerTolerance&&value<bound_[iLo+1]+integerTolerance) { |
1613 | range_=iLo; |
1614 | found=true; |
1615 | } else if (value>bound_[iHi]-integerTolerance&&value<bound_[iHi+1]+integerTolerance) { |
1616 | range_=iHi; |
1617 | found=true; |
1618 | } else { |
1619 | range_ = (iLo+iHi)>>1; |
1620 | } |
1621 | //points |
1622 | while (!found) { |
1623 | if (value<bound_[range_]) { |
1624 | if (value>=bound_[range_-1]) { |
1625 | // found |
1626 | range_--; |
1627 | break; |
1628 | } else { |
1629 | iHi = range_; |
1630 | } |
1631 | } else { |
1632 | if (value<bound_[range_+1]) { |
1633 | // found |
1634 | break; |
1635 | } else { |
1636 | iLo = range_; |
1637 | } |
1638 | } |
1639 | range_ = (iLo+iHi)>>1; |
1640 | } |
1641 | if (value-bound_[range_]<=bound_[range_+1]-value) { |
1642 | infeasibility = value-bound_[range_]; |
1643 | } else { |
1644 | infeasibility = bound_[range_+1]-value; |
1645 | if (infeasibility<integerTolerance) |
1646 | range_++; |
1647 | } |
1648 | return (infeasibility<integerTolerance); |
1649 | } else { |
1650 | // ranges |
1651 | if (value<bound_[2*range_]-integerTolerance) { |
1652 | iLo=0; |
1653 | iHi=range_-1; |
1654 | } else if (value<bound_[2*range_+1]+integerTolerance) { |
1655 | return true; |
1656 | } else if (value<bound_[2*range_+2]-integerTolerance) { |
1657 | return false; |
1658 | } else { |
1659 | iLo=range_+1; |
1660 | iHi=numberRanges_-1; |
1661 | } |
1662 | // check lo and hi |
1663 | bool found=false; |
1664 | if (value>bound_[2*iLo]-integerTolerance&&value<bound_[2*iLo+2]-integerTolerance) { |
1665 | range_=iLo; |
1666 | found=true; |
1667 | } else if (value>=bound_[2*iHi]-integerTolerance) { |
1668 | range_=iHi; |
1669 | found=true; |
1670 | } else { |
1671 | range_ = (iLo+iHi)>>1; |
1672 | } |
1673 | //points |
1674 | while (!found) { |
1675 | if (value<bound_[2*range_]) { |
1676 | if (value>=bound_[2*range_-2]) { |
1677 | // found |
1678 | range_--; |
1679 | break; |
1680 | } else { |
1681 | iHi = range_; |
1682 | } |
1683 | } else { |
1684 | if (value<bound_[2*range_+2]) { |
1685 | // found |
1686 | break; |
1687 | } else { |
1688 | iLo = range_; |
1689 | } |
1690 | } |
1691 | range_ = (iLo+iHi)>>1; |
1692 | } |
1693 | if (value>=bound_[2*range_]-integerTolerance&&value<=bound_[2*range_+1]+integerTolerance) |
1694 | infeasibility=0.0; |
1695 | else if (value-bound_[2*range_+1]<bound_[2*range_+2]-value) { |
1696 | infeasibility = value-bound_[2*range_+1]; |
1697 | } else { |
1698 | infeasibility = bound_[2*range_+2]-value; |
1699 | } |
1700 | return (infeasibility<integerTolerance); |
1701 | } |
1702 | } |
1703 | /* Returns floor and ceiling |
1704 | */ |
1705 | void |
1706 | OsiLotsize::floorCeiling(double & floorLotsize, double & ceilingLotsize, double value, |
1707 | double tolerance) const |
1708 | { |
1709 | bool feasible=findRange(value,tolerance); |
1710 | if (rangeType_==1) { |
1711 | floorLotsize=bound_[range_]; |
1712 | ceilingLotsize=bound_[range_+1]; |
1713 | // may be able to adjust |
1714 | if (feasible&&fabs(value-floorLotsize)>fabs(value-ceilingLotsize)) { |
1715 | floorLotsize=bound_[range_+1]; |
1716 | ceilingLotsize=bound_[range_+2]; |
1717 | } |
1718 | } else { |
1719 | // ranges |
1720 | assert (value>=bound_[2*range_+1]); |
1721 | floorLotsize=bound_[2*range_+1]; |
1722 | ceilingLotsize=bound_[2*range_+2]; |
1723 | } |
1724 | } |
1725 | |
1726 | // Infeasibility - large is 0.5 |
1727 | double |
1728 | OsiLotsize::infeasibility(const OsiBranchingInformation * info, int & preferredWay) const |
1729 | { |
1730 | const double * solution = info->solution_; |
1731 | const double * lower = info->lower_; |
1732 | const double * upper = info->upper_; |
1733 | double value = solution[columnNumber_]; |
1734 | value = CoinMax(value, lower[columnNumber_]); |
1735 | value = CoinMin(value, upper[columnNumber_]); |
1736 | double integerTolerance = info->integerTolerance_; |
1737 | /*printf("%d %g %g %g %g\n",columnNumber_,value,lower[columnNumber_], |
1738 | solution[columnNumber_],upper[columnNumber_]);*/ |
1739 | assert (value>=bound_[0]-integerTolerance |
1740 | &&value<=bound_[rangeType_*numberRanges_-1]+integerTolerance); |
1741 | infeasibility_=0.0; |
1742 | bool feasible = findRange(value,integerTolerance); |
1743 | if (!feasible) { |
1744 | if (rangeType_==1) { |
1745 | if (value-bound_[range_]<bound_[range_+1]-value) { |
1746 | preferredWay=-1; |
1747 | infeasibility_ = value-bound_[range_]; |
1748 | otherInfeasibility_ = bound_[range_+1] - value ; |
1749 | } else { |
1750 | preferredWay=1; |
1751 | infeasibility_ = bound_[range_+1]-value; |
1752 | otherInfeasibility_ = value-bound_[range_]; |
1753 | } |
1754 | } else { |
1755 | // ranges |
1756 | if (value-bound_[2*range_+1]<bound_[2*range_+2]-value) { |
1757 | preferredWay=-1; |
1758 | infeasibility_ = value-bound_[2*range_+1]; |
1759 | otherInfeasibility_ = bound_[2*range_+2]-value; |
1760 | } else { |
1761 | preferredWay=1; |
1762 | infeasibility_ = bound_[2*range_+2]-value; |
1763 | otherInfeasibility_ = value-bound_[2*range_+1]; |
1764 | } |
1765 | } |
1766 | } else { |
1767 | // always satisfied |
1768 | preferredWay=-1; |
1769 | otherInfeasibility_ = 1.0; |
1770 | } |
1771 | if (infeasibility_<integerTolerance) |
1772 | infeasibility_=0.0; |
1773 | else |
1774 | infeasibility_ /= largestGap_; |
1775 | return infeasibility_; |
1776 | } |
1777 | /* Column number if single column object -1 otherwise, |
1778 | so returns >= 0 |
1779 | Used by heuristics |
1780 | */ |
1781 | int |
1782 | OsiLotsize::columnNumber() const |
1783 | { |
1784 | return columnNumber_; |
1785 | } |
1786 | /* Set bounds to contain the current solution. |
1787 | More precisely, for the variable associated with this object, take the |
1788 | value given in the current solution, force it within the current bounds |
1789 | if required, then set the bounds to fix the variable at the integer |
1790 | nearest the solution value. Returns amount it had to move variable. |
1791 | */ |
1792 | double |
1793 | OsiLotsize::feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const |
1794 | { |
1795 | const double * lower = solver->getColLower(); |
1796 | const double * upper = solver->getColUpper(); |
1797 | const double * solution = info->solution_; |
1798 | double value = solution[columnNumber_]; |
1799 | value = CoinMax(value, lower[columnNumber_]); |
1800 | value = CoinMin(value, upper[columnNumber_]); |
1801 | findRange(value,info->integerTolerance_); |
1802 | double nearest; |
1803 | if (rangeType_==1) { |
1804 | nearest = bound_[range_]; |
1805 | solver->setColLower(columnNumber_,nearest); |
1806 | solver->setColUpper(columnNumber_,nearest); |
1807 | } else { |
1808 | // ranges |
1809 | solver->setColLower(columnNumber_,bound_[2*range_]); |
1810 | solver->setColUpper(columnNumber_,bound_[2*range_+1]); |
1811 | if (value>bound_[2*range_+1]) |
1812 | nearest=bound_[2*range_+1]; |
1813 | else if (value<bound_[2*range_]) |
1814 | nearest = bound_[2*range_]; |
1815 | else |
1816 | nearest = value; |
1817 | } |
1818 | // Scaling may have moved it a bit |
1819 | // Lotsizing variables could be a lot larger |
1820 | #ifndef NDEBUG |
1821 | assert (fabs(value-nearest)<=(100.0+10.0*fabs(nearest))*info->integerTolerance_); |
1822 | #endif |
1823 | return fabs(value-nearest); |
1824 | } |
1825 | |
1826 | // Creates a branching object |
1827 | // Creates a branching object |
1828 | OsiBranchingObject * |
1829 | OsiLotsize::createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const |
1830 | { |
1831 | const double * solution = info->solution_; |
1832 | const double * lower = solver->getColLower(); |
1833 | const double * upper = solver->getColUpper(); |
1834 | double value = solution[columnNumber_]; |
1835 | value = CoinMax(value, lower[columnNumber_]); |
1836 | value = CoinMin(value, upper[columnNumber_]); |
1837 | assert (!findRange(value,info->integerTolerance_)); |
1838 | return new OsiLotsizeBranchingObject(solver,this,way, |
1839 | value); |
1840 | } |
1841 | |
1842 | |
1843 | /* |
1844 | Bounds may be tightened, so it may be good to be able to refresh the local |
1845 | copy of the original bounds. |
1846 | */ |
1847 | void |
1848 | OsiLotsize::resetBounds(const OsiSolverInterface * ) |
1849 | { |
1850 | } |
1851 | // Return "down" estimate |
1852 | double |
1853 | OsiLotsize::downEstimate() const |
1854 | { |
1855 | if (whichWay_) |
1856 | return otherInfeasibility_; |
1857 | else |
1858 | return infeasibility_; |
1859 | } |
1860 | // Return "up" estimate |
1861 | double |
1862 | OsiLotsize::upEstimate() const |
1863 | { |
1864 | if (!whichWay_) |
1865 | return otherInfeasibility_; |
1866 | else |
1867 | return infeasibility_; |
1868 | } |
1869 | // Redoes data when sequence numbers change |
1870 | void |
1871 | OsiLotsize::resetSequenceEtc(int numberColumns, const int * originalColumns) |
1872 | { |
1873 | int i; |
1874 | for (i=0;i<numberColumns;i++) { |
1875 | if (originalColumns[i]==columnNumber_) |
1876 | break; |
1877 | } |
1878 | if (i<numberColumns) |
1879 | columnNumber_=i; |
1880 | else |
1881 | abort(); // should never happen |
1882 | } |
1883 | |
1884 | |
1885 | // Default Constructor |
1886 | OsiLotsizeBranchingObject::OsiLotsizeBranchingObject() |
1887 | :OsiTwoWayBranchingObject() |
1888 | { |
1889 | down_[0] = 0.0; |
1890 | down_[1] = 0.0; |
1891 | up_[0] = 0.0; |
1892 | up_[1] = 0.0; |
1893 | } |
1894 | |
1895 | // Useful constructor |
1896 | OsiLotsizeBranchingObject::OsiLotsizeBranchingObject (OsiSolverInterface * solver, |
1897 | const OsiLotsize * originalObject, |
1898 | int way , double value) |
1899 | :OsiTwoWayBranchingObject(solver,originalObject,way,value) |
1900 | { |
1901 | int iColumn = originalObject->columnNumber(); |
1902 | down_[0] = solver->getColLower()[iColumn]; |
1903 | double integerTolerance = solver->getIntegerTolerance(); |
1904 | originalObject->floorCeiling(down_[1],up_[0],value,integerTolerance); |
1905 | up_[1] = solver->getColUpper()[iColumn]; |
1906 | } |
1907 | |
1908 | // Copy constructor |
1909 | OsiLotsizeBranchingObject::OsiLotsizeBranchingObject ( const OsiLotsizeBranchingObject & rhs) :OsiTwoWayBranchingObject(rhs) |
1910 | { |
1911 | down_[0] = rhs.down_[0]; |
1912 | down_[1] = rhs.down_[1]; |
1913 | up_[0] = rhs.up_[0]; |
1914 | up_[1] = rhs.up_[1]; |
1915 | } |
1916 | |
1917 | // Assignment operator |
1918 | OsiLotsizeBranchingObject & |
1919 | OsiLotsizeBranchingObject::operator=( const OsiLotsizeBranchingObject& rhs) |
1920 | { |
1921 | if (this != &rhs) { |
1922 | OsiTwoWayBranchingObject::operator=(rhs); |
1923 | down_[0] = rhs.down_[0]; |
1924 | down_[1] = rhs.down_[1]; |
1925 | up_[0] = rhs.up_[0]; |
1926 | up_[1] = rhs.up_[1]; |
1927 | } |
1928 | return *this; |
1929 | } |
1930 | OsiBranchingObject * |
1931 | OsiLotsizeBranchingObject::clone() const |
1932 | { |
1933 | return (new OsiLotsizeBranchingObject(*this)); |
1934 | } |
1935 | |
1936 | |
1937 | // Destructor |
1938 | OsiLotsizeBranchingObject::~OsiLotsizeBranchingObject () |
1939 | { |
1940 | } |
1941 | |
1942 | /* |
1943 | Perform a branch by adjusting the bounds of the specified variable. Note |
1944 | that each arm of the branch advances the object to the next arm by |
1945 | advancing the value of way_. |
1946 | |
1947 | Providing new values for the variable's lower and upper bounds for each |
1948 | branching direction gives a little bit of additional flexibility and will |
1949 | be easily extensible to multi-way branching. |
1950 | */ |
1951 | double |
1952 | OsiLotsizeBranchingObject::branch(OsiSolverInterface * solver) |
1953 | { |
1954 | const OsiLotsize * obj = |
1955 | dynamic_cast <const OsiLotsize *>(originalObject_) ; |
1956 | assert (obj); |
1957 | int iColumn = obj->columnNumber(); |
1958 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
1959 | if (way<0) { |
1960 | #ifdef OSI_DEBUG |
1961 | { double olb,oub ; |
1962 | olb = solver->getColLower()[iColumn] ; |
1963 | oub = solver->getColUpper()[iColumn] ; |
1964 | printf("branching down on var %d: [%g,%g] => [%g,%g]\n" , |
1965 | iColumn,olb,oub,down_[0],down_[1]) ; } |
1966 | #endif |
1967 | solver->setColLower(iColumn,down_[0]); |
1968 | solver->setColUpper(iColumn,down_[1]); |
1969 | } else { |
1970 | #ifdef OSI_DEBUG |
1971 | { double olb,oub ; |
1972 | olb = solver->getColLower()[iColumn] ; |
1973 | oub = solver->getColUpper()[iColumn] ; |
1974 | printf("branching up on var %d: [%g,%g] => [%g,%g]\n" , |
1975 | iColumn,olb,oub,up_[0],up_[1]) ; } |
1976 | #endif |
1977 | solver->setColLower(iColumn,up_[0]); |
1978 | solver->setColUpper(iColumn,up_[1]); |
1979 | } |
1980 | branchIndex_++; |
1981 | return 0.0; |
1982 | } |
1983 | // Print |
1984 | void |
1985 | OsiLotsizeBranchingObject::print(const OsiSolverInterface * solver) |
1986 | { |
1987 | const OsiLotsize * obj = |
1988 | dynamic_cast <const OsiLotsize *>(originalObject_) ; |
1989 | assert (obj); |
1990 | int iColumn = obj->columnNumber(); |
1991 | int way = (!branchIndex_) ? (2*firstBranch_-1) : -(2*firstBranch_-1); |
1992 | if (way<0) { |
1993 | { double olb,oub ; |
1994 | olb = solver->getColLower()[iColumn] ; |
1995 | oub = solver->getColUpper()[iColumn] ; |
1996 | printf("branching down on var %d: [%g,%g] => [%g,%g]\n" , |
1997 | iColumn,olb,oub,down_[0],down_[1]) ; } |
1998 | } else { |
1999 | { double olb,oub ; |
2000 | olb = solver->getColLower()[iColumn] ; |
2001 | oub = solver->getColUpper()[iColumn] ; |
2002 | printf("branching up on var %d: [%g,%g] => [%g,%g]\n" , |
2003 | iColumn,olb,oub,up_[0],up_[1]) ; } |
2004 | } |
2005 | } |
2006 | |