| 1 | /** \file |
| 2 | * \brief Tests for ogdf::ConstCombinatorialEmbedding and ogdf::CombinatorialEmbedding. |
| 3 | * |
| 4 | * \author Mirko Wagner, Tilo Wiedera |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include <ogdf/basic/CombinatorialEmbedding.h> |
| 33 | #include <ogdf/basic/graph_generators.h> |
| 34 | #include <ogdf/basic/extended_graph_alg.h> |
| 35 | #include <ogdf/basic/Math.h> |
| 36 | #include <ogdf/basic/FaceArray.h> |
| 37 | |
| 38 | #include <testing.h> |
| 39 | |
| 40 | constexpr int NUMBER_OF_ITERATIONS = 17; |
| 41 | constexpr int NUMBER_OF_NODES = 100; |
| 42 | constexpr int NUMBER_OF_EDGES = 200; |
| 43 | |
| 44 | //! Runs a single iteration of generic tests that do not modify the \c graph. |
| 45 | template<typename T> |
| 46 | void testConstCombinatorialEmbedding(Graph &graph) { |
| 47 | OGDF_ASSERT(graph.representsCombEmbedding()); |
| 48 | |
| 49 | T emb(graph); |
| 50 | |
| 51 | it("returns its graph" , [&] { |
| 52 | AssertThat(emb.valid(), IsTrue()); |
| 53 | AssertThat(&emb.getGraph(), Equals(&graph)); |
| 54 | AssertThat(&((const Graph&)(emb)), Equals(&graph)); |
| 55 | }); |
| 56 | |
| 57 | it("iterates faces" , [&] { |
| 58 | face f = emb.firstFace(); |
| 59 | AssertThat(f->index(), Equals(0)); |
| 60 | AssertThat(f->pred(), IsNull()); |
| 61 | |
| 62 | int counter = 0; |
| 63 | for(; f != nullptr; f = f->succ()) { |
| 64 | counter++; |
| 65 | } |
| 66 | |
| 67 | AssertThat(counter, Equals(emb.numberOfFaces())); |
| 68 | }); |
| 69 | |
| 70 | it("iterates faces in reverse" , [&] { |
| 71 | face f = emb.lastFace(); |
| 72 | AssertThat(f->index(), Equals(emb.maxFaceIndex())); |
| 73 | AssertThat(f->succ(), IsNull()); |
| 74 | |
| 75 | int counter = 0; |
| 76 | for(; f != nullptr; f = f->pred()) { |
| 77 | counter++; |
| 78 | } |
| 79 | |
| 80 | AssertThat(counter, Equals(emb.numberOfFaces())); |
| 81 | }); |
| 82 | |
| 83 | it("returns a maximal face" , [&] { |
| 84 | int maxSize = -1; |
| 85 | for(face f : emb.faces) { |
| 86 | Math::updateMax(maxSize, f->size()); |
| 87 | } |
| 88 | |
| 89 | AssertThat(emb.maximalFace()->size(), Equals(maxSize)); |
| 90 | }); |
| 91 | |
| 92 | it("chooses a random face" , [&] { |
| 93 | for(int i = 0; i < 20; i++) { |
| 94 | AssertThat(emb.chooseFace(), !Equals(nullptr)); |
| 95 | } |
| 96 | }); |
| 97 | |
| 98 | it("supports setting an external face" , [&] { |
| 99 | AssertThat(emb.externalFace(), Equals(nullptr)); |
| 100 | face f = emb.chooseFace(); |
| 101 | emb.setExternalFace(f); |
| 102 | AssertThat(emb.externalFace(), Equals(f)); |
| 103 | }); |
| 104 | |
| 105 | it("creates faces with correct size" , [&] { |
| 106 | int sizesSum = 0; |
| 107 | for(face f : emb.faces) { |
| 108 | sizesSum += f->size(); |
| 109 | } |
| 110 | |
| 111 | AssertThat(sizesSum, Equals(graph.numberOfEdges() * 2)); |
| 112 | }); |
| 113 | |
| 114 | it("returns all left and right faces" , [&] { |
| 115 | FaceArray<bool> visited(emb, false); |
| 116 | |
| 117 | for(edge e : graph.edges) { |
| 118 | adjEntry adj = e->adjSource(); |
| 119 | visited[emb.leftFace(adj)] = true; |
| 120 | visited[emb.rightFace(adj)] = true; |
| 121 | } |
| 122 | |
| 123 | for(face f : emb.faces) { |
| 124 | AssertThat(visited[f], IsTrue()); |
| 125 | } |
| 126 | }); |
| 127 | } |
| 128 | |
| 129 | //! Create K4 rotation system with a single crossing |
| 130 | void createBadK4(Graph &graph) { |
| 131 | completeGraph(graph, 4); |
| 132 | planarEmbed(graph); |
| 133 | adjEntry adj = graph.chooseNode()->firstAdj(); |
| 134 | graph.moveAdjAfter(adj, adj->succ()); |
| 135 | } |
| 136 | |
| 137 | //! Runs tests that apply for ogdf::ConstCombinatorialEmbedding and ogdf::CombinatorialEmbedding. |
| 138 | //! Also executes several iterations of generic tests. |
| 139 | template<typename T> |
| 140 | void testConstCombinatorialEmbedding() { |
| 141 | Graph planarGraph; |
| 142 | randomPlanarConnectedGraph(planarGraph, NUMBER_OF_NODES, NUMBER_OF_EDGES); |
| 143 | Graph K5; |
| 144 | completeGraph(K5, 5); |
| 145 | Graph badK4; |
| 146 | createBadK4(badK4); |
| 147 | |
| 148 | describe("initialization" ,[&] { |
| 149 | it("works" , [&] { |
| 150 | T emb(planarGraph); |
| 151 | AssertThat(emb.valid(), IsTrue()); |
| 152 | AssertThat(&emb.getGraph(), Equals(&planarGraph)); |
| 153 | }); |
| 154 | |
| 155 | it("works w/o a graph" , [&] { |
| 156 | T emb; |
| 157 | AssertThat(emb.valid(), IsFalse()); |
| 158 | }); |
| 159 | |
| 160 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
| 161 | it("rejects graphs that are not embedded" , [&] { |
| 162 | AssertThrows(AssertionFailed, CombinatorialEmbedding(K5)); |
| 163 | AssertThrows(AssertionFailed, CombinatorialEmbedding(badK4)); |
| 164 | }); |
| 165 | #endif |
| 166 | |
| 167 | it("works using init()" , [&] { |
| 168 | T emb; |
| 169 | emb.init(planarGraph); |
| 170 | AssertThat(emb.valid(), IsTrue()); |
| 171 | AssertThat(&emb.getGraph(), Equals(&planarGraph)); |
| 172 | }); |
| 173 | |
| 174 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
| 175 | it("rejects graphs that are not embedded using init()" , [&] { |
| 176 | T emb; |
| 177 | AssertThrows(AssertionFailed, emb.init(K5)); |
| 178 | AssertThrows(AssertionFailed, emb.init(badK4)); |
| 179 | }); |
| 180 | #endif |
| 181 | }); |
| 182 | |
| 183 | it("works on a single loop" , [&] { |
| 184 | Graph graph; |
| 185 | node v = graph.newNode(); |
| 186 | graph.newEdge(v, v); |
| 187 | T emb(graph); |
| 188 | |
| 189 | AssertThat(emb.numberOfFaces(), Equals(2)); |
| 190 | adjEntry adj = v->firstAdj(); |
| 191 | AssertThat(emb.leftFace(adj), !Equals(emb.rightFace(adj))); |
| 192 | adj = v->lastAdj(); |
| 193 | AssertThat(emb.leftFace(adj), !Equals(emb.rightFace(adj))); |
| 194 | }); |
| 195 | |
| 196 | it("works on a K3 with a dangling node" , [&] { |
| 197 | Graph graph; |
| 198 | completeGraph(graph, 3); |
| 199 | node w = graph.chooseNode(); |
| 200 | node v = graph.newNode(); |
| 201 | edge e = graph.newEdge(v, w); |
| 202 | T emb(graph); |
| 203 | |
| 204 | AssertThat(emb.numberOfFaces(), Equals(2)); |
| 205 | adjEntry adj = v->firstAdj(); |
| 206 | AssertThat(emb.leftFace(adj), Equals(emb.rightFace(adj))); |
| 207 | |
| 208 | for(edge f : graph.edges) { |
| 209 | AssertThat(emb.isBridge(f), Equals(f == e)); |
| 210 | } |
| 211 | }); |
| 212 | |
| 213 | it("works on a triconnected graph" , [&] { |
| 214 | Graph graph; |
| 215 | randomPlanarTriconnectedGraph(graph, NUMBER_OF_NODES, NUMBER_OF_EDGES); |
| 216 | T emb(graph); |
| 217 | |
| 218 | int counter = 0; |
| 219 | int size = 0; |
| 220 | for(face f : emb.faces){ |
| 221 | counter++; |
| 222 | size += f->size(); |
| 223 | } |
| 224 | |
| 225 | AssertThat(size, Equals(graph.numberOfEdges()*2)); |
| 226 | AssertThat(counter, Equals(emb.numberOfFaces())); |
| 227 | }); |
| 228 | |
| 229 | it("knows which faces are incident to a node or edge on a K3" , [&] { |
| 230 | Graph graph; |
| 231 | node u = graph.newNode(); |
| 232 | node v = graph.newNode(); |
| 233 | node w = graph.newNode(); |
| 234 | edge e = graph.newEdge(u, v); |
| 235 | edge f = graph.newEdge(v, w); |
| 236 | edge g = graph.newEdge(w, u); |
| 237 | T emb(graph); |
| 238 | AssertThat(u->firstAdj()->theEdge(), Equals(e)); |
| 239 | face rightFace = emb.rightFace(e->adjSource()); |
| 240 | AssertThat(emb.rightFace(f->adjSource()), Equals(rightFace)); |
| 241 | AssertThat(emb.rightFace(g->adjSource()), Equals(rightFace)); |
| 242 | face leftFace = emb.leftFace(e->adjSource()); |
| 243 | AssertThat(emb.leftFace(f->adjSource()), Equals(leftFace)); |
| 244 | AssertThat(emb.leftFace(g->adjSource()), Equals(leftFace)); |
| 245 | AssertThat(emb.numberOfFaces(), Equals(2)); |
| 246 | }); |
| 247 | |
| 248 | it("detects bridges on a tree" , [&] { |
| 249 | Graph graph; |
| 250 | randomTree(graph, NUMBER_OF_NODES); |
| 251 | T emb(graph); |
| 252 | |
| 253 | AssertThat(emb.numberOfFaces(), Equals(1)); |
| 254 | |
| 255 | for(edge e : graph.edges){ |
| 256 | AssertThat(emb.isBridge(e), IsTrue()); |
| 257 | } |
| 258 | }); |
| 259 | |
| 260 | it("detects bridges" , [&] { |
| 261 | Graph graph; |
| 262 | randomPlanarBiconnectedGraph(graph, NUMBER_OF_NODES, NUMBER_OF_EDGES); |
| 263 | |
| 264 | EdgeArray<bool> isBridge(graph, false); |
| 265 | node chosenNode = graph.chooseNode(); |
| 266 | node v = chosenNode; |
| 267 | for(int i = 0; i < NUMBER_OF_NODES; i++) { |
| 268 | node u = graph.newNode(); |
| 269 | edge e = graph.newEdge(v, u); |
| 270 | v = u; |
| 271 | isBridge[e] = true; |
| 272 | } |
| 273 | |
| 274 | T emb(graph); |
| 275 | |
| 276 | for(edge e : graph.edges) { |
| 277 | AssertThat(emb.isBridge(e), Equals(isBridge[e])); |
| 278 | } |
| 279 | |
| 280 | graph.newEdge(v, chosenNode); |
| 281 | planarEmbed(graph); |
| 282 | |
| 283 | emb.computeFaces(); |
| 284 | |
| 285 | for(edge e : graph.edges) { |
| 286 | AssertThat(emb.isBridge(e), IsFalse()); |
| 287 | } |
| 288 | }); |
| 289 | |
| 290 | it("returns a sane size of its face array" , [&] { |
| 291 | Graph graph; |
| 292 | randomPlanarTriconnectedGraph(graph, NUMBER_OF_NODES*10, NUMBER_OF_EDGES*10); |
| 293 | T emb(graph); |
| 294 | AssertThat(emb.faceArrayTableSize(), IsGreaterThan(emb.numberOfFaces() - 1)); |
| 295 | }); |
| 296 | |
| 297 | for(int i = 1; i <= NUMBER_OF_ITERATIONS; i++) { |
| 298 | describe("iteration #" + to_string(i), [&] { |
| 299 | Graph graph; |
| 300 | randomPlanarConnectedGraph(graph, NUMBER_OF_NODES, NUMBER_OF_EDGES); |
| 301 | testConstCombinatorialEmbedding<T>(graph); |
| 302 | }); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | //! Performs single iteration of generic tests that modify the \c graph. |
| 307 | void testCombinatorialEmbedding(Graph &graph) { |
| 308 | CombinatorialEmbedding emb(graph); |
| 309 | int numberOfNodes; |
| 310 | int numberOfEdges; |
| 311 | int numberOfFaces; |
| 312 | |
| 313 | before_each([&] { |
| 314 | emb.computeFaces(); |
| 315 | numberOfNodes = graph.numberOfNodes(); |
| 316 | numberOfEdges = graph.numberOfEdges(); |
| 317 | numberOfFaces = emb.numberOfFaces(); |
| 318 | }); |
| 319 | |
| 320 | describe("updating" , [&] { |
| 321 | it("clears itself" ,[&] { |
| 322 | emb.clear(); |
| 323 | |
| 324 | AssertThat(graph.numberOfNodes(), Equals(0)); |
| 325 | AssertThat(graph.numberOfEdges(), Equals(0)); |
| 326 | AssertThat(emb.numberOfFaces(), Equals(0)); |
| 327 | }); |
| 328 | |
| 329 | it("adds edges to isolated nodes" , [&] { |
| 330 | adjEntry adj = graph.chooseNode()->firstAdj(); |
| 331 | |
| 332 | face f = emb.rightFace(adj); |
| 333 | int size = f->size(); |
| 334 | |
| 335 | edge e = emb.addEdgeToIsolatedNode(graph.newNode(), adj); |
| 336 | |
| 337 | AssertThat(emb.numberOfFaces(), Equals(numberOfFaces)); |
| 338 | AssertThat(emb.rightFace(e->adjSource()), Equals(f)); |
| 339 | AssertThat(emb.leftFace(e->adjSource()), Equals(f)); |
| 340 | AssertThat(f->size(), Equals(size + 2)); |
| 341 | }); |
| 342 | |
| 343 | it("splits an edge" , [&] { |
| 344 | edge splitEdgeBeginning = graph.chooseEdge(); |
| 345 | face leftFace = emb.leftFace(splitEdgeBeginning->adjSource()); |
| 346 | int leftFaceSize = leftFace->size(); |
| 347 | face rightFace = emb.rightFace(splitEdgeBeginning->adjSource()); |
| 348 | int rightFaceSize = rightFace->size(); |
| 349 | |
| 350 | edge splitEdgeEnd = emb.split(splitEdgeBeginning); |
| 351 | |
| 352 | AssertThat(graph.numberOfNodes(), Equals(numberOfNodes + 1)); |
| 353 | AssertThat(graph.numberOfEdges(), Equals(numberOfEdges + 1)); |
| 354 | AssertThat(emb.numberOfFaces(), Equals(numberOfFaces)); |
| 355 | AssertThat(emb.leftFace(splitEdgeBeginning->adjSource()), Equals(leftFace)); |
| 356 | AssertThat(emb.rightFace(splitEdgeBeginning->adjSource()), Equals(rightFace)); |
| 357 | AssertThat(emb.leftFace(splitEdgeEnd->adjSource()), Equals(leftFace)); |
| 358 | AssertThat(emb.rightFace(splitEdgeEnd->adjSource()), Equals(rightFace)); |
| 359 | |
| 360 | if(leftFace == rightFace) { |
| 361 | AssertThat(leftFace->size(), Equals(leftFaceSize + 2)); |
| 362 | } else { |
| 363 | AssertThat(leftFace->size(), Equals(leftFaceSize + 1)); |
| 364 | AssertThat(rightFace->size(), Equals(rightFaceSize + 1)); |
| 365 | } |
| 366 | }); |
| 367 | |
| 368 | it("unsplits an edge" , [&] { |
| 369 | edge splitEdgeBeginning = graph.chooseEdge(); |
| 370 | face leftFace = emb.leftFace(splitEdgeBeginning->adjSource()); |
| 371 | int leftFaceSize = leftFace->size(); |
| 372 | face rightFace = emb.rightFace(splitEdgeBeginning->adjSource()); |
| 373 | int rightFaceSize = rightFace->size(); |
| 374 | |
| 375 | edge splitEdgeEnd = emb.split(splitEdgeBeginning); |
| 376 | emb.unsplit(splitEdgeBeginning, splitEdgeEnd); |
| 377 | |
| 378 | AssertThat(graph.numberOfNodes(), Equals(numberOfNodes)); |
| 379 | AssertThat(graph.numberOfEdges(), Equals(numberOfEdges)); |
| 380 | AssertThat(emb.numberOfFaces(), Equals(numberOfFaces)); |
| 381 | AssertThat(leftFace->size(), Equals(leftFaceSize)); |
| 382 | AssertThat(rightFace->size(), Equals(rightFaceSize)); |
| 383 | }); |
| 384 | |
| 385 | auto pickNode = [&] { |
| 386 | for(node v : graph.nodes) { |
| 387 | if(v->degree() > 1) { |
| 388 | return v; |
| 389 | } |
| 390 | } |
| 391 | OGDF_ASSERT(false); // there should be a node with degree > 1 |
| 392 | return node(nullptr); |
| 393 | }; |
| 394 | |
| 395 | it("splits a node" , [&] { |
| 396 | node vl = pickNode(); |
| 397 | int degree = vl->degree(); |
| 398 | adjEntry adjStartLeft = vl->firstAdj(); |
| 399 | adjEntry adjStartRight = vl->lastAdj(); |
| 400 | |
| 401 | node vr = emb.splitNode(adjStartLeft, adjStartRight); |
| 402 | |
| 403 | AssertThat(graph.numberOfNodes(), Equals(numberOfNodes + 1)); |
| 404 | AssertThat(graph.numberOfEdges(), Equals(numberOfEdges + 1)); |
| 405 | AssertThat(vl->degree(), Equals(degree)); |
| 406 | AssertThat(vr->degree(), Equals(2)); |
| 407 | AssertThat(graph.searchEdge(vl, vr), !Equals(nullptr)); |
| 408 | AssertThat(vl->firstAdj()->theEdge(), Equals(vr->firstAdj()->theEdge())); |
| 409 | }); |
| 410 | |
| 411 | it("contracts a node" , [&] { |
| 412 | node vl = pickNode(); |
| 413 | int degree = vl->degree(); |
| 414 | adjEntry adjStartLeft = vl->firstAdj(); |
| 415 | adjEntry adjStartRight = vl->lastAdj(); |
| 416 | node vr = emb.splitNode(adjStartLeft, adjStartRight); |
| 417 | |
| 418 | node contractedNode = emb.contract(graph.searchEdge(vl, vr)); |
| 419 | |
| 420 | AssertThat(graph.numberOfNodes(), Equals(numberOfNodes)); |
| 421 | AssertThat(graph.numberOfEdges(), Equals(numberOfEdges)); |
| 422 | AssertThat(contractedNode->degree(), Equals(degree)); |
| 423 | }); |
| 424 | |
| 425 | it("reverses an edge" , [&] { |
| 426 | edge e = graph.chooseEdge(); |
| 427 | node src = e->source(); |
| 428 | node tgt = e->target(); |
| 429 | adjEntry adjSrc = e->adjSource(); |
| 430 | face rightFace = emb.rightFace(adjSrc); |
| 431 | face leftFace = emb.leftFace(adjSrc); |
| 432 | |
| 433 | emb.reverseEdge(e); |
| 434 | |
| 435 | AssertThat(e->source(), Equals(tgt)); |
| 436 | AssertThat(e->target(), Equals(src)); |
| 437 | adjSrc = e->adjSource(); |
| 438 | AssertThat(emb.rightFace(adjSrc), Equals(leftFace)); |
| 439 | AssertThat(emb.leftFace(adjSrc), Equals(rightFace)); |
| 440 | }); |
| 441 | |
| 442 | it("removes a degree-1 node" , [&] { |
| 443 | node v = graph.newNode(); |
| 444 | node w = graph.chooseNode([&](node u) { return u != v; }); |
| 445 | |
| 446 | graph.newEdge(w, v); |
| 447 | emb.computeFaces(); |
| 448 | |
| 449 | face f = emb.rightFace(v->firstAdj()); |
| 450 | int size = f->size(); |
| 451 | |
| 452 | AssertThat(emb.leftFace(v->firstAdj()), Equals(f)); |
| 453 | |
| 454 | emb.removeDeg1(v); |
| 455 | |
| 456 | AssertThat(emb.numberOfFaces(), Equals(numberOfFaces)); |
| 457 | AssertThat(f->size(), Equals(size - 2)); |
| 458 | }); |
| 459 | }); |
| 460 | |
| 461 | describe("splitting faces" , [&] { |
| 462 | int sizeOfFace; |
| 463 | face fSplitMe; |
| 464 | adjEntry adjFirst; |
| 465 | adjEntry adjSecond; |
| 466 | |
| 467 | before_each([&](){ |
| 468 | fSplitMe = emb.chooseFace([](face f) { return f->size() > 4; }); |
| 469 | adjFirst = fSplitMe->firstAdj(); |
| 470 | adjSecond = adjFirst->faceCycleSucc()->faceCycleSucc(); |
| 471 | sizeOfFace = fSplitMe->size(); |
| 472 | }); |
| 473 | |
| 474 | it("works given two adjacency entries" , [&] { |
| 475 | edge e = emb.splitFace(adjFirst, adjSecond); |
| 476 | |
| 477 | AssertThat(e, !Equals(nullptr)); |
| 478 | AssertThat(e->source(), Equals(adjFirst->theNode())); |
| 479 | AssertThat(e->target(), Equals(adjSecond->theNode())); |
| 480 | |
| 481 | face f = emb.leftFace(e->adjSource()); |
| 482 | face g = emb.rightFace(e->adjSource()); |
| 483 | |
| 484 | AssertThat(f, !Equals(g)); |
| 485 | AssertThat(fSplitMe, Equals(f) || Equals(g)); |
| 486 | |
| 487 | AssertThat(f->size(), Equals(3)); |
| 488 | AssertThat(g->size(), Equals(sizeOfFace - 1)); |
| 489 | |
| 490 | AssertThat(emb.rightFace(adjFirst), Equals(f)); |
| 491 | AssertThat(emb.rightFace(adjSecond), Equals(g)); |
| 492 | }); |
| 493 | |
| 494 | it("works given a deg-0 node and an adjacency entry as target" , [&] { |
| 495 | node v = graph.newNode(); |
| 496 | |
| 497 | edge e = emb.addEdgeToIsolatedNode(v, adjFirst); |
| 498 | |
| 499 | AssertThat(e, !Equals(nullptr)); |
| 500 | AssertThat(e->source(), Equals(v)); |
| 501 | AssertThat(e->target(), Equals(adjFirst->theNode())); |
| 502 | |
| 503 | AssertThat(fSplitMe->size(), Equals(sizeOfFace + 2)); |
| 504 | AssertThat(emb.rightFace(e->adjSource()), Equals(fSplitMe)); |
| 505 | AssertThat(emb.leftFace(e->adjSource()), Equals(fSplitMe)); |
| 506 | }); |
| 507 | |
| 508 | it("works given an adjacency entry as source and a deg-0 node" , [&] { |
| 509 | node v = graph.newNode(); |
| 510 | |
| 511 | edge e = emb.addEdgeToIsolatedNode(adjFirst, v); |
| 512 | |
| 513 | AssertThat(e, !Equals(nullptr)); |
| 514 | AssertThat(e->source(), Equals(adjFirst->theNode())); |
| 515 | AssertThat(e->target(), Equals(v)); |
| 516 | |
| 517 | AssertThat(fSplitMe->size(), Equals(sizeOfFace + 2)); |
| 518 | AssertThat(emb.rightFace(e->adjSource()), Equals(fSplitMe)); |
| 519 | AssertThat(emb.leftFace(e->adjSource()), Equals(fSplitMe)); |
| 520 | }); |
| 521 | |
| 522 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
| 523 | it("rejects splitting given adjacency entries from different faces" , [&] { |
| 524 | adjEntry v = graph.chooseEdge()->adjSource(); |
| 525 | adjEntry w; |
| 526 | |
| 527 | do { |
| 528 | w = graph.chooseEdge()->adjSource(); |
| 529 | } while(emb.rightFace(v) == emb.rightFace(w) || |
| 530 | emb.rightFace(v) == emb.leftFace(w) || |
| 531 | emb.leftFace(v) == emb.rightFace(w) || |
| 532 | emb.leftFace(v) == emb.leftFace(w)); |
| 533 | |
| 534 | AssertThrows(AssertionFailed, emb.splitFace(v, w)); |
| 535 | }); |
| 536 | #endif |
| 537 | |
| 538 | it("removes the edge when joining two faces" , [&] { |
| 539 | int embNumberOfFaces = emb.numberOfFaces(); |
| 540 | edge nonBridgeEdge = graph.chooseEdge([&](edge e) { return !emb.isBridge(e); }); |
| 541 | |
| 542 | face faceLeft = emb.leftFace(nonBridgeEdge->adjSource()); |
| 543 | face faceRight = emb.rightFace(nonBridgeEdge->adjSource()); |
| 544 | |
| 545 | int sizeLeft = faceLeft->size(); |
| 546 | int sizeRight = faceRight->size(); |
| 547 | |
| 548 | face jointFace = emb.joinFaces(nonBridgeEdge); |
| 549 | |
| 550 | AssertThat(jointFace->size(), Equals(sizeLeft + sizeRight - 2)); |
| 551 | AssertThat(emb.numberOfFaces(), Equals(embNumberOfFaces - 1)); |
| 552 | }); |
| 553 | }); |
| 554 | } |
| 555 | |
| 556 | go_bandit([] { |
| 557 | describe("ConstCombinatorialEmbedding" , [&] { |
| 558 | testConstCombinatorialEmbedding<ConstCombinatorialEmbedding>(); |
| 559 | }); |
| 560 | |
| 561 | describe("CombinatorialEmbedding" , [&] { |
| 562 | for(int i = 1; i <= NUMBER_OF_ITERATIONS; i++) { |
| 563 | describe("iteration #" + to_string(i), [&] { |
| 564 | Graph graph; |
| 565 | |
| 566 | before_each([&] { |
| 567 | randomPlanarConnectedGraph(graph, NUMBER_OF_NODES, NUMBER_OF_EDGES); |
| 568 | }); |
| 569 | |
| 570 | testCombinatorialEmbedding(graph); |
| 571 | }); |
| 572 | } |
| 573 | |
| 574 | testConstCombinatorialEmbedding<CombinatorialEmbedding>(); |
| 575 | }); |
| 576 | }); |
| 577 | |