| 1 | /** \file |
| 2 | * \brief Simple tests for generating various graphs. |
| 3 | * |
| 4 | * \author Christoph Schulz, Tilo Wiedera |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include "ogdf/basic/Graph.h" |
| 33 | #include "ogdf/basic/graph_generators.h" |
| 34 | #include "ogdf/basic/simple_graph_alg.h" |
| 35 | #include "ogdf/basic/extended_graph_alg.h" |
| 36 | #include <testing.h> |
| 37 | |
| 38 | /** |
| 39 | * Checks for a given graph \p G and a given list of |
| 40 | * pairs {\a d, \a n} in \p degNumberPairs, that there |
| 41 | * are \a n occurrences of degree \a d. |
| 42 | */ |
| 43 | static void assertNodeDegrees(const Graph &G, std::vector<std::pair<int,int>> degNumberPairs) { |
| 44 | Array<int> degdist; |
| 45 | degreeDistribution(G, degdist); |
| 46 | |
| 47 | for (auto degNumberPair : degNumberPairs) { |
| 48 | const int d = degNumberPair.first; |
| 49 | const int n = degNumberPair.second; |
| 50 | |
| 51 | AssertThat(d, !(IsGreaterThan(degdist.high()) || IsLessThan(degdist.low()))); |
| 52 | AssertThat(degdist[d], Equals(n)); |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * Checks if the nodes in a given graph \p G are constructed |
| 58 | * in a circulant way, with each node being connected to its |
| 59 | * (\a idx ± \a i) neighbors, for each \a i in \p jumps. |
| 60 | */ |
| 61 | static void assertCirculant(Graph &G, Array<int>& jumps) { |
| 62 | Array<node> nodes; |
| 63 | NodeArray<int> indices = NodeArray<int>(G); |
| 64 | G.allNodes(nodes); |
| 65 | for (int i = 0; i < nodes.size(); i++) { |
| 66 | indices[nodes[i]] = i; |
| 67 | } |
| 68 | |
| 69 | // Make sure our nodes are generated in order with our edges being of the requested length |
| 70 | for (node v : nodes) { |
| 71 | std::vector<node> expected; |
| 72 | for (int j : jumps) { |
| 73 | expected.push_back(nodes[(indices[v] + j + nodes.size()) % nodes.size()]); |
| 74 | expected.push_back(nodes[(indices[v] - j + nodes.size()) % nodes.size()]); |
| 75 | } |
| 76 | |
| 77 | List<edge> vEdges; |
| 78 | v->adjEdges(vEdges); |
| 79 | for (edge e : vEdges) { |
| 80 | AssertThat(expected, Contains(e->opposite(v))); |
| 81 | auto it = std::find(expected.begin(), expected.end(), e->opposite(v)); |
| 82 | if (it != expected.end()) { |
| 83 | expected.erase(it); |
| 84 | } |
| 85 | } |
| 86 | AssertThat(expected, IsEmpty()); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | /** |
| 91 | * Checks if \p clearFunction clears the graph |
| 92 | */ |
| 93 | static void itClearsGraph(std::function<void(Graph &G)> clearFunction) { |
| 94 | it("clears the graph" , [&] { |
| 95 | Graph G; |
| 96 | G.newEdge(G.newNode(), G.newNode()); |
| 97 | clearFunction(G); |
| 98 | AssertThat(G.empty(), IsTrue()); |
| 99 | }); |
| 100 | } |
| 101 | |
| 102 | static void testDeterministicGenerators() { |
| 103 | describe("circulantGraph" , [] { |
| 104 | itClearsGraph([](Graph &G) { |
| 105 | circulantGraph(G, 0, Array<int>{}); |
| 106 | }); |
| 107 | |
| 108 | it("generates two circulant graphs" ,[](){ |
| 109 | Graph G; |
| 110 | circulantGraph(G, 11, Array<int>{1, 2, 4}); |
| 111 | AssertThat(G.numberOfEdges(), Equals(33)); |
| 112 | AssertThat(G.numberOfNodes(), Equals(11)); |
| 113 | AssertThat(isConnected(G),Equals(true)); |
| 114 | |
| 115 | circulantGraph(G, 12, Array<int>{2, 4, 6}); |
| 116 | AssertThat(G.numberOfNodes(), Equals(12)); |
| 117 | AssertThat(isConnected(G),Equals(false)); |
| 118 | }); |
| 119 | |
| 120 | for (int n = 10; n < 40; n+=3) { |
| 121 | Array<int> jumps = Array<int>(3); |
| 122 | for (int jumpmod = 1; jumpmod*4+4 < n; jumpmod++) { |
| 123 | jumps[0] = jumpmod; |
| 124 | jumps[1] = jumpmod*2; |
| 125 | jumps[2] = jumpmod*2+2; |
| 126 | string jumpstr = "{" + to_string(jumps[0]) + ", " + to_string(jumps[1]) + ", " + to_string(jumps[2]) + "}" ; |
| 127 | it("generates a circulant graphs with " + to_string(n) + " nodes and jumps " + jumpstr, [&](){ |
| 128 | Graph G; |
| 129 | circulantGraph(G, n, jumps); |
| 130 | AssertThat(G.numberOfEdges(), Equals(n*3)); |
| 131 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 132 | assertCirculant(G, jumps); |
| 133 | }); |
| 134 | } |
| 135 | } |
| 136 | }); |
| 137 | |
| 138 | describe("emptyGraph" , [] { |
| 139 | itClearsGraph([](Graph &G) { |
| 140 | emptyGraph(G, 0); |
| 141 | }); |
| 142 | |
| 143 | for (int n = 0; n < 20; n++) { |
| 144 | it("generates a graph with " + to_string(n) + " isolated nodes" , [&] { |
| 145 | Graph G; |
| 146 | emptyGraph(G, n); |
| 147 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 148 | AssertThat(G.numberOfEdges(), Equals(0)); |
| 149 | }); |
| 150 | } |
| 151 | }); |
| 152 | |
| 153 | describe("completeGraph" , [] { |
| 154 | itClearsGraph([](Graph &G) { |
| 155 | completeGraph(G, 0); |
| 156 | }); |
| 157 | |
| 158 | for (int n = 0; n < 20; n++) { |
| 159 | it("generates K_" + to_string(n), [&] { |
| 160 | Graph G; |
| 161 | completeGraph(G, n); |
| 162 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 163 | AssertThat(G.numberOfEdges(), Equals(n * (n-1) / 2)); |
| 164 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 165 | }); |
| 166 | } |
| 167 | }); |
| 168 | |
| 169 | describe("completeBipartiteGraph" , [] { |
| 170 | for (int n = 1; n <= 5; n++) { |
| 171 | for (int m = 1; m <= 5; m++) { |
| 172 | it("generates K_{" + to_string(n) + "," + to_string(m) + "}" , [&] { |
| 173 | Graph G; |
| 174 | completeBipartiteGraph(G, n, m); |
| 175 | AssertThat(G.numberOfNodes(), Equals(n + m)); |
| 176 | AssertThat(G.numberOfEdges(), Equals(n * m)); |
| 177 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 178 | AssertThat(isBipartite(G), IsTrue()); |
| 179 | }); |
| 180 | } |
| 181 | } |
| 182 | }); |
| 183 | |
| 184 | describe("completeKPartiteGraph" , [] { |
| 185 | itClearsGraph([](Graph &G) { |
| 186 | completeKPartiteGraph(G, {}); |
| 187 | }); |
| 188 | |
| 189 | it("generates K_{1,1,1}" , [] { |
| 190 | Graph G; |
| 191 | completeKPartiteGraph(G, {1, 1, 1}); |
| 192 | AssertThat(G.numberOfNodes(), Equals(3)); |
| 193 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 194 | AssertThat(isAcyclicUndirected(G), IsFalse()); |
| 195 | }); |
| 196 | |
| 197 | it("generates K_{4,1,1}" , [] { |
| 198 | Graph G; |
| 199 | completeKPartiteGraph(G, {4, 1, 1}); |
| 200 | AssertThat(G.numberOfNodes(), Equals(6)); |
| 201 | AssertThat(G.numberOfEdges(), Equals(9)); |
| 202 | AssertThat(isConnected(G), IsTrue()); |
| 203 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 204 | assertNodeDegrees(G, {{2, 4}, {5, 2}}); |
| 205 | }); |
| 206 | |
| 207 | it("generates K_{1,2,1,2}" , [] { |
| 208 | Graph G; |
| 209 | completeKPartiteGraph(G, {1, 2, 1, 2}); |
| 210 | AssertThat(G.numberOfNodes(), Equals(6)); |
| 211 | AssertThat(G.numberOfEdges(), Equals(13)); |
| 212 | AssertThat(isConnected(G), IsTrue()); |
| 213 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 214 | assertNodeDegrees(G, {{4, 4}, {5, 2}}); |
| 215 | }); |
| 216 | }); |
| 217 | |
| 218 | describe("regularLatticeGraph" , [] { |
| 219 | for (int n = 4; n < 50; n++) { |
| 220 | for (int k = 2; k < n-2; k+=2) { |
| 221 | it("generates graph with " + to_string(n) + " nodes and " + to_string(k) + " degrees" , [&] { |
| 222 | Graph G; |
| 223 | regularLatticeGraph(G, n, k); |
| 224 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 225 | AssertThat(G.numberOfEdges(), Equals(n*k/2)); |
| 226 | AssertThat(isConnected(G), IsTrue()); |
| 227 | AssertThat(isSimple(G), IsTrue()); |
| 228 | assertNodeDegrees(G, {{k, n}}); |
| 229 | Array<int> jumps = Array<int>(k/2); |
| 230 | for (int i = 0; i < k/2; i++) { |
| 231 | jumps[i] = i+1; |
| 232 | } |
| 233 | assertCirculant(G, jumps); |
| 234 | }); |
| 235 | } |
| 236 | } |
| 237 | }); |
| 238 | |
| 239 | describe("regularTree" , [] { |
| 240 | for (int n = 1; n < 50; n++) { |
| 241 | for (int d = 1; d < n; d++) { |
| 242 | it("generates the regular tree with " + to_string(n) + " nodes and " + to_string(d) + " children" , [&]() { |
| 243 | Graph G; |
| 244 | regularTree(G, n, d); |
| 245 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 246 | AssertThat(isTree(G), IsTrue()); |
| 247 | // Test on k-arity: |
| 248 | // Calculate number of expected inner nodes |
| 249 | int nodesOnLevel = 1; // Number of nodes on the current level |
| 250 | int sumNumberOfNodes = nodesOnLevel; // Total number of nodes up to current level |
| 251 | int numberOfNodes = G.numberOfNodes(); |
| 252 | while (sumNumberOfNodes < numberOfNodes) { |
| 253 | nodesOnLevel *= d; |
| 254 | sumNumberOfNodes += nodesOnLevel; |
| 255 | } |
| 256 | sumNumberOfNodes -= nodesOnLevel; |
| 257 | nodesOnLevel /= d; |
| 258 | sumNumberOfNodes -= nodesOnLevel + 1; |
| 259 | /* We now have: |
| 260 | - at least 1 node of degree d |
| 261 | - at least nodesOnLevel nodes of degree 1 (leaves) |
| 262 | - at least sumNumberOfNodes node of degree d+1. |
| 263 | */ |
| 264 | Array<int> degdist; |
| 265 | degreeDistribution(G, degdist); |
| 266 | AssertThat(degdist[d], IsGreaterThanOrEqualTo(1)); |
| 267 | // Our array is not initialized if no such nodes exist. |
| 268 | if (sumNumberOfNodes > 0) AssertThat(degdist[d+1], IsGreaterThanOrEqualTo(sumNumberOfNodes)); |
| 269 | AssertThat(degdist[1], IsGreaterThanOrEqualTo(nodesOnLevel)); |
| 270 | }); |
| 271 | } |
| 272 | } |
| 273 | }); |
| 274 | |
| 275 | describe("wheelGraph" , [] { |
| 276 | for (int n = 3; n < 50; n++) { |
| 277 | it("generates the wheel graph with " + to_string(n) + " exterior nodes" , [&]() { |
| 278 | Graph G; |
| 279 | wheelGraph(G, n); |
| 280 | AssertThat(G.numberOfNodes(), Equals(n+1)); |
| 281 | AssertThat(G.numberOfEdges(), Equals(n*2)); |
| 282 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 283 | AssertThat(isConnected(G), IsTrue()); |
| 284 | if (n == 3) { |
| 285 | // Special case: complete graph K_4 |
| 286 | AssertThat(isRegular(G, 3), IsTrue()); |
| 287 | } |
| 288 | else { |
| 289 | assertNodeDegrees(G, {{n, 1}, {3, n}}); |
| 290 | } |
| 291 | }); |
| 292 | } |
| 293 | }); |
| 294 | |
| 295 | describe("suspension" , [] { |
| 296 | for (int n = 1; n < 50; n++) { |
| 297 | for (int s = 1; s < 5; s++) { |
| 298 | string label; |
| 299 | if (s == 0) { |
| 300 | label = "does not modify a graph with " + to_string(n) + " nodes if no nodes added" ; |
| 301 | } |
| 302 | else { |
| 303 | label = "adds " + to_string(s) + " suspension nodes to a graph with " + to_string(n) + " nodes" ; |
| 304 | } |
| 305 | it(label, [&]() { |
| 306 | Graph G; |
| 307 | randomSimpleGraph(G, n, n/2); |
| 308 | int numberOfNodes = G.numberOfNodes(); |
| 309 | int numberOfEdges = G.numberOfEdges(); |
| 310 | bool connected = isConnected(G); |
| 311 | suspension(G, s); |
| 312 | AssertThat(G.numberOfNodes(), Equals(numberOfNodes + s)); |
| 313 | AssertThat(G.numberOfEdges(), Equals(numberOfEdges + s*numberOfNodes)); |
| 314 | if (s == 0) AssertThat(isConnected(G), Equals(connected)); |
| 315 | else AssertThat(isConnected(G), IsTrue()); |
| 316 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 317 | }); |
| 318 | } |
| 319 | } |
| 320 | }); |
| 321 | |
| 322 | describe("gridGraph" , [] { |
| 323 | for (int n = 2; n <= 10; n++) { |
| 324 | for (int m = 2; m <= 10; m++) { |
| 325 | for (bool loopN : {true, false}) { |
| 326 | for (bool loopM : {true, false}) { |
| 327 | it("generates a grid of " + to_string(n) + "x" + to_string(m) + " (loop:" + (loopN ? "yes" : " no" ) + "/" + (loopM ? "yes" : "no " ) + ")" , [&](){ |
| 328 | Graph G; |
| 329 | gridGraph(G, n, m, loopN, loopM); |
| 330 | int expectedEdges = 2*n*m; |
| 331 | // Fewer edges if we do not close the torus in either direction. |
| 332 | if (!loopN) expectedEdges -= m; |
| 333 | if (!loopM) expectedEdges -= n; |
| 334 | AssertThat(G.numberOfNodes(), Equals(n*m)); |
| 335 | AssertThat(G.numberOfEdges(), Equals(expectedEdges)); |
| 336 | AssertThat(isLoopFree(G), IsTrue()); |
| 337 | // If the grid is two nodes wide or tall, parallel edges are inserted for the loop. |
| 338 | if ( (n > 2 || !loopN) && (m > 2 || !loopM)) { |
| 339 | AssertThat(isParallelFreeUndirected(G), IsTrue()); |
| 340 | } |
| 341 | AssertThat(isConnected(G), IsTrue()); |
| 342 | std::vector<std::pair<int, int>> expectedDegrees; |
| 343 | // We expect degree 2 only for the corners if we do not close the torus in either direction. |
| 344 | // We expect degree 4 for every node if we loop in all directions. For each direction that we |
| 345 | // do not loop in, the sides of that direction are degree 3 instead. |
| 346 | int e2 = 0; |
| 347 | int e3 = 0; |
| 348 | if ( loopN && !loopM) e3 = 2*n; |
| 349 | if (!loopN && loopM) e3 = 2*m; |
| 350 | if (!loopN && !loopM) { |
| 351 | e2 = 4; |
| 352 | e3 = 2*(m-2 + n-2); // Do not count corners |
| 353 | } |
| 354 | int e4 = n*m - (e2 + e3); |
| 355 | if (e2 > 0) expectedDegrees.push_back({2, e2}); |
| 356 | if (e3 > 0) expectedDegrees.push_back({3, e3}); |
| 357 | if (e4 > 0) expectedDegrees.push_back({4, e4}); |
| 358 | assertNodeDegrees(G, expectedDegrees); |
| 359 | }); |
| 360 | } |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | }); |
| 365 | |
| 366 | describe("petersenGraph" , [] { |
| 367 | it("generates the standard Petersen graph if no additional arguments are supplied" , [&]() { |
| 368 | Graph G; |
| 369 | petersenGraph(G); |
| 370 | AssertThat(G.numberOfNodes(), Equals(10)); |
| 371 | AssertThat(G.numberOfEdges(), Equals(15)); |
| 372 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 373 | AssertThat(isRegular(G, 3), IsTrue()); |
| 374 | }); |
| 375 | for (int n = 3; n <= 10; n++) { |
| 376 | for (int d = 1; d < n/2; d++) { |
| 377 | it("generates the generalized Petersen graph with " + to_string(n) + " outer nodes and an inner jump width of " + to_string(d), [&](){ |
| 378 | Graph G; |
| 379 | petersenGraph(G, n, d); |
| 380 | AssertThat(G.numberOfNodes(), Equals(2 * n)); |
| 381 | AssertThat(G.numberOfEdges(), Equals(3 * n)); |
| 382 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 383 | AssertThat(isRegular(G, 3), IsTrue()); |
| 384 | }); |
| 385 | } |
| 386 | } |
| 387 | }); |
| 388 | |
| 389 | describe("customGraph" , [] { |
| 390 | itClearsGraph([](Graph &G) { |
| 391 | customGraph(G, 0, {}); |
| 392 | }); |
| 393 | |
| 394 | for (int n = 0; n < 50; n++) { |
| 395 | int m = randomNumber(0, (n*(n-1))/2); |
| 396 | List<std::pair<int,int>> edges; |
| 397 | |
| 398 | for (int i = 0; i < m; i++) { |
| 399 | std::pair<int,int> e({randomNumber(0, n-1), |
| 400 | randomNumber(0, n-1)}); |
| 401 | edges.pushBack(e); |
| 402 | } |
| 403 | |
| 404 | it("generates a custom graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&]() { |
| 405 | Graph G; |
| 406 | customGraph(G, n, edges); |
| 407 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 408 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 409 | |
| 410 | Array<node> nodes(n); |
| 411 | int i = 0; |
| 412 | for (auto v : G.nodes) { |
| 413 | nodes[i++] = v; |
| 414 | } |
| 415 | |
| 416 | for (auto e : G.edges) { |
| 417 | std::pair<int,int> nodePair = edges.popFrontRet(); |
| 418 | AssertThat(nodes[std::get<0>(nodePair)], Equals(e->source())); |
| 419 | AssertThat(nodes[std::get<1>(nodePair)], Equals(e->target())); |
| 420 | } |
| 421 | }); |
| 422 | } |
| 423 | |
| 424 | it("returns a correct mapping" , [] { |
| 425 | Graph G; |
| 426 | Array<node> nodes; |
| 427 | customGraph(G, 5, {{0, 2}, {1, 2}, {2, 2}, {3, 2}, {4, 2}}, nodes); |
| 428 | AssertThat(G.numberOfNodes(), Equals(5)); |
| 429 | AssertThat(G.numberOfEdges(), Equals(5)); |
| 430 | G.delNode(nodes[2]); |
| 431 | AssertThat(G.numberOfNodes(), Equals(4)); |
| 432 | AssertThat(G.numberOfEdges(), Equals(0)); |
| 433 | }); |
| 434 | }); |
| 435 | } |
| 436 | |
| 437 | static void testRandomGenerators() { |
| 438 | describe("randomGraph" , [](){ |
| 439 | itClearsGraph([](Graph &G) { |
| 440 | randomGraph(G, 0, 0); |
| 441 | }); |
| 442 | |
| 443 | for(int n = 0; n < 100; n++) { |
| 444 | int m = randomNumber(0, (n*(n-1))/2); |
| 445 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&] { |
| 446 | Graph G; |
| 447 | randomGraph(G, n, m); |
| 448 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 449 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 450 | }); |
| 451 | } |
| 452 | }); |
| 453 | |
| 454 | describe("randomSimpleGraph" , [](){ |
| 455 | itClearsGraph([](Graph &G) { |
| 456 | randomSimpleGraph(G, 0, 0); |
| 457 | }); |
| 458 | |
| 459 | for(int n = 0; n < 100; n++) { |
| 460 | int m = randomNumber(0, (n*(n-1))/2); |
| 461 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&] { |
| 462 | Graph G; |
| 463 | randomSimpleGraph(G, n, m); |
| 464 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 465 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 466 | AssertThat(isSimple(G), Equals(true)); |
| 467 | }); |
| 468 | } |
| 469 | }); |
| 470 | |
| 471 | describe("randomSimpleConnectedGraph" , []() { |
| 472 | itClearsGraph([](Graph &G) { |
| 473 | randomSimpleConnectedGraph(G, 0, 0); |
| 474 | }); |
| 475 | |
| 476 | it("fails if it cannot be simple" , []() { |
| 477 | Graph G; |
| 478 | AssertThat(randomSimpleConnectedGraph(G, 1, 1), IsFalse()); |
| 479 | AssertThat(randomSimpleConnectedGraph(G, 2, 2), IsFalse()); |
| 480 | AssertThat(randomSimpleConnectedGraph(G, 3, 4), IsFalse()); |
| 481 | }); |
| 482 | |
| 483 | it("fails if it cannot be connected" , []() { |
| 484 | Graph G; |
| 485 | AssertThat(randomSimpleConnectedGraph(G, 2, 0), IsFalse()); |
| 486 | AssertThat(randomSimpleConnectedGraph(G, 3, 1), IsFalse()); |
| 487 | }); |
| 488 | |
| 489 | for (int n = 0; n < 100; n++) { |
| 490 | int m = randomNumber(max(0, n-1), (n*(n-1))/2); |
| 491 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&]() { |
| 492 | Graph G; |
| 493 | bool ret = randomSimpleConnectedGraph(G, n, m); |
| 494 | AssertThat(ret, IsTrue()); |
| 495 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 496 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 497 | AssertThat(isSimple(G), IsTrue()); |
| 498 | AssertThat(isConnected(G), IsTrue()); |
| 499 | }); |
| 500 | } |
| 501 | }); |
| 502 | |
| 503 | describe("randomBiconnectedGraph" , [](){ |
| 504 | for(int n = 3; n < 100; n++) { |
| 505 | int m = randomNumber(n, (n*(n-1))/2); |
| 506 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&] { |
| 507 | Graph G; |
| 508 | randomBiconnectedGraph(G, n, m); |
| 509 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 510 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 511 | AssertThat(isBiconnected(G), Equals(true)); |
| 512 | }); |
| 513 | } |
| 514 | }); |
| 515 | |
| 516 | describe("randomTriconnectedGraph" , [](){ |
| 517 | for(int n = 4; n < 100; n++) { |
| 518 | it("generates a graph with " + to_string(n) + " nodes" , [&] { |
| 519 | Graph G; |
| 520 | randomTriconnectedGraph(G, n, .5, .5); |
| 521 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 522 | AssertThat(isTriconnected(G), Equals(true)); |
| 523 | }); |
| 524 | } |
| 525 | }); |
| 526 | |
| 527 | describe("randomPlanarBiconnectedGraph" , [](){ |
| 528 | for(int n = 3; n < 100; n++) { |
| 529 | int m = randomNumber(n, 3*n-6); |
| 530 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&] { |
| 531 | Graph G; |
| 532 | randomPlanarBiconnectedGraph(G, n, m, false); |
| 533 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 534 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 535 | AssertThat(isSimple(G), IsTrue()); |
| 536 | AssertThat(isPlanar(G), IsTrue()); |
| 537 | AssertThat(isBiconnected(G), IsTrue()); |
| 538 | }); |
| 539 | } |
| 540 | }); |
| 541 | |
| 542 | describe("randomPlanarCNBGraph" , [](){ |
| 543 | for(int b = 2; b < 15; b++) { |
| 544 | for(int n = 3; n < 30; n++) { |
| 545 | int m = randomNumber(n, 3*n-6); |
| 546 | it("generates a graph with " + to_string(b) + |
| 547 | " biconnected components and max. " + to_string(n) + |
| 548 | " nodes per component" , [&] { |
| 549 | Graph G; |
| 550 | EdgeArray<int> comps(G); |
| 551 | randomPlanarCNBGraph(G, n, m, b); |
| 552 | AssertThat(G.numberOfNodes(), IsLessThanOrEqualTo(n*b)); |
| 553 | AssertThat(G.numberOfEdges(), IsLessThanOrEqualTo(m*b)); |
| 554 | AssertThat(isConnected(G), IsTrue()); |
| 555 | AssertThat(isSimple(G), IsTrue()); |
| 556 | AssertThat(isPlanar(G), IsTrue()); |
| 557 | AssertThat(biconnectedComponents(G, comps), Equals(b)); |
| 558 | }); |
| 559 | } |
| 560 | } |
| 561 | }); |
| 562 | |
| 563 | |
| 564 | describe("randomTree" , [](){ |
| 565 | itClearsGraph([](Graph &G) { |
| 566 | randomTree(G, 0); |
| 567 | }); |
| 568 | |
| 569 | for(int n = 0; n < 100; n++) { |
| 570 | it("generates a graph with " + to_string(n) + " nodes" , [&] { |
| 571 | Graph G; |
| 572 | randomTree(G, n); |
| 573 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 574 | AssertThat(isTree(G), Equals(true)); |
| 575 | }); |
| 576 | } |
| 577 | }); |
| 578 | |
| 579 | // TODO: dont skip me |
| 580 | describe_skip("randomHierarchy" , [](){ |
| 581 | for(int n = 1; n < 100; n++) { |
| 582 | int m = randomNumber(n-1, (n*(n-1))/2); |
| 583 | it("generates a graph with " + to_string(n) + " nodes and " + to_string(m) + " edges" , [&] { |
| 584 | Graph G; |
| 585 | randomHierarchy(G, n, m, false, false, true); |
| 586 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 587 | AssertThat(G.numberOfEdges(), Equals(m)); |
| 588 | }); |
| 589 | } |
| 590 | }); |
| 591 | |
| 592 | describe("randomDigraph" , [](){ |
| 593 | for(int n = 1; n < 100; n++) { |
| 594 | it("generates a graph with " + to_string(n) + " nodes" , [&] { |
| 595 | Graph G; |
| 596 | randomDigraph(G, n, .5); |
| 597 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 598 | AssertThat(isSimple(G), Equals(true)); |
| 599 | }); |
| 600 | } |
| 601 | }); |
| 602 | |
| 603 | describe("randomRegularGraph" , []() { |
| 604 | for (int n = 10; n <= 30; n += 5) { |
| 605 | for (int d = 2; d <= 6; d += 2) { |
| 606 | it("generates a graph with degree " + to_string(d) + " and " + to_string(n) + " nodes" , [&] { |
| 607 | Graph G; |
| 608 | randomRegularGraph(G, n, d); |
| 609 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 610 | AssertThat(isSimple(G), Equals(true)); |
| 611 | AssertThat(isRegular(G, d), Equals(true)); |
| 612 | }); |
| 613 | } |
| 614 | } |
| 615 | }); |
| 616 | |
| 617 | describe("randomGeometricCubeGraph" , [](){ |
| 618 | for(int d = 1; d < 4; d++){ |
| 619 | for(double t : {0.0, 0.1, 0.5}) { |
| 620 | for(int n = 0; n < 100; n++) { |
| 621 | it("generates a graph with " + to_string(n) + |
| 622 | " nodes in dim " + to_string(d) + |
| 623 | " and threshold " + to_string(t), [&] { |
| 624 | Graph G; |
| 625 | randomGeometricCubeGraph(G,n,t,d); |
| 626 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 627 | AssertThat(isSimple(G), Equals(true)); |
| 628 | }); |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | }); |
| 633 | |
| 634 | describe("randomGeographicalThresholdGraph" , [](){ |
| 635 | for (int d = 1; d < 4; d++) { |
| 636 | for (double l : {0.5, 1.0, 2.0}) { |
| 637 | for (int a = 1; a < 4; a++) { |
| 638 | for (double t : {0.0, 0.1, 0.5}) { |
| 639 | for (int n = 0; n < 50; n+=10) { |
| 640 | it("generates a graph with " + to_string(n) + |
| 641 | " nodes in dim " + to_string(d) + |
| 642 | " with alpha " + to_string(a) + |
| 643 | " and threshold " + to_string(t), [&] { |
| 644 | Graph G; |
| 645 | Array<int> weights = Array<int>(n); |
| 646 | for (int &w : weights) { |
| 647 | w = randomNumber(0, n); |
| 648 | } |
| 649 | std::exponential_distribution<double> dist(l); |
| 650 | randomGeographicalThresholdGraph(G, weights, dist, t, a, d); |
| 651 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 652 | AssertThat(isSimple(G), Equals(true)); |
| 653 | }); |
| 654 | } |
| 655 | } |
| 656 | } |
| 657 | } |
| 658 | } |
| 659 | for (int n = 0; n < 100; n+=10) { |
| 660 | it("generates a graph with " + to_string(n) + " nodes with custom function" , [&] { |
| 661 | Graph G; |
| 662 | Array<int> weights = Array<int>(n); |
| 663 | for (int &w : weights) { |
| 664 | w = randomNumber(0, n); |
| 665 | } |
| 666 | std::uniform_int_distribution<> dist(0, n); |
| 667 | randomGeographicalThresholdGraph(G, weights, dist, 0.7, [](double r) { return 1/r; }); |
| 668 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 669 | AssertThat(isSimple(G), Equals(true)); |
| 670 | }); |
| 671 | } |
| 672 | }); |
| 673 | |
| 674 | describe("randomEdgesGraph" , [](){ |
| 675 | std::minstd_rand rng(randomSeed()); |
| 676 | std::uniform_real_distribution<> dist(0, 1); |
| 677 | for (int n = 2; n < 50; n++) { |
| 678 | it("randomly generates edges in an empty graph with " + to_string(n) + " nodes" , [&] { |
| 679 | Graph G; |
| 680 | emptyGraph(G, n); |
| 681 | randomEdgesGraph(G, [&](node, node){ return dist(rng); }); |
| 682 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 683 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 684 | }); |
| 685 | } |
| 686 | for (int n = 2; n < 50; n++) { |
| 687 | it("does not generate edges if probability is 0.0 on a graph with " + to_string(n) + " nodes" , [&] { |
| 688 | Graph G; |
| 689 | emptyGraph(G, n); |
| 690 | randomEdgesGraph(G, [](node,node) { return 0.0; }); |
| 691 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 692 | AssertThat(G.numberOfEdges(), Equals(0)); |
| 693 | }); |
| 694 | } |
| 695 | for (int n = 2; n < 50; n++) { |
| 696 | int e = n * (n-1) / 2; // probability 1.0 should lead to a complete graph |
| 697 | it("generates " + to_string(e) + " edges if probability is 1.0 on a graph with " + to_string(n) + " nodes" , [&] { |
| 698 | Graph G; |
| 699 | emptyGraph(G, n); |
| 700 | randomEdgesGraph(G, [](node,node) { return 1.0; }); |
| 701 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 702 | AssertThat(G.numberOfEdges(), Equals(e)); |
| 703 | }); |
| 704 | } |
| 705 | for (int n = 2; n < 50; n++) { |
| 706 | it("generates edges on a simple graph with " + to_string(n) + " nodes and keeps it free of self-loops" , [&] { |
| 707 | Graph G; |
| 708 | randomSimpleGraph(G, n, n/2); |
| 709 | randomEdgesGraph(G, [&](node,node) { return dist(rng); }); |
| 710 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 711 | AssertThat(G.numberOfEdges(), IsGreaterThanOrEqualTo(n/2)); |
| 712 | AssertThat(isLoopFree(G), IsTrue()); |
| 713 | }); |
| 714 | } |
| 715 | }); |
| 716 | |
| 717 | describe("randomWaxmanGraph" , []() { |
| 718 | for(int n = 1; n < 100; n+=10) { |
| 719 | it("generates a graph with " + to_string(n) + " nodes" , [&] { |
| 720 | Graph G; |
| 721 | randomWaxmanGraph(G, n, 0.5, 0.5); |
| 722 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 723 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 724 | }); |
| 725 | } |
| 726 | for(int n = 1; n < 100; n+=10) { |
| 727 | it("generates a graph with " + to_string(n) + " nodes" , [&] { |
| 728 | Graph G; |
| 729 | randomWaxmanGraph(G, n, 0.5, 0.5, 10, 10); |
| 730 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 731 | AssertThat(isSimpleUndirected(G), IsTrue()); |
| 732 | }); |
| 733 | } |
| 734 | }); |
| 735 | |
| 736 | describe("preferentialAttachmentGraph" , [](){ |
| 737 | for (int n = 0; n < 100; n+=10) { |
| 738 | for (int d = 1; d < 5; d++) { |
| 739 | it("generates a graph with " + to_string(n) + " nodes with degree " + to_string(d) + " on an empty input graph" , [&] { |
| 740 | Graph G; |
| 741 | preferentialAttachmentGraph(G, n, d); |
| 742 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 743 | AssertThat(isSimple(G), Equals(true)); |
| 744 | }); |
| 745 | } |
| 746 | } |
| 747 | for (int n = 3; n < 20; n++) { |
| 748 | it("fills a tree with " + to_string(n) + " nodes with 50 nodes and stays connected" , [&] { |
| 749 | Graph G; |
| 750 | randomSimpleConnectedGraph(G, n, n-1); |
| 751 | preferentialAttachmentGraph(G, 50, 3); |
| 752 | AssertThat(isConnected(G), Equals(true)); |
| 753 | AssertThat(isSimple(G), Equals(true)); |
| 754 | }); |
| 755 | } |
| 756 | for (int n = 5; n < 20; n++) { |
| 757 | it("fills a connected graph with " + to_string(n) + " nodes and " + to_string(n*2) + " edges with 50 nodes and stays connected" , [&] { |
| 758 | Graph G; |
| 759 | randomSimpleConnectedGraph(G, n, n*2); |
| 760 | preferentialAttachmentGraph(G, 50, 3); |
| 761 | AssertThat(isConnected(G), Equals(true)); |
| 762 | AssertThat(isSimple(G), Equals(true)); |
| 763 | }); |
| 764 | } |
| 765 | }); |
| 766 | |
| 767 | describe("randomWattsStrogatzGraph" , [] { |
| 768 | it("does not modify generated lattice graph at 0.0 probability" , [] { |
| 769 | Graph G; |
| 770 | randomWattsStrogatzGraph(G, 20, 4, 0.0); |
| 771 | AssertThat(G.numberOfEdges(), Equals(40)); |
| 772 | AssertThat(G.numberOfNodes(), Equals(20)); |
| 773 | AssertThat(isConnected(G), IsTrue()); |
| 774 | AssertThat(isSimple(G), IsTrue()); |
| 775 | assertNodeDegrees(G, {{4, 20}}); |
| 776 | |
| 777 | }); |
| 778 | for (int n = 4; n <= 50; n+=7) { |
| 779 | for (int k = 2; k < n-2; k+=2) { |
| 780 | it("generates graph with " + to_string(n) + " nodes and " + to_string(k) + " degrees at 0.5 probability" , [&] { |
| 781 | Graph G; |
| 782 | randomWattsStrogatzGraph(G, n, k, 0.5); |
| 783 | AssertThat(G.numberOfNodes(), Equals(n)); |
| 784 | AssertThat(G.numberOfEdges(), Equals(n*k/2)); |
| 785 | AssertThat(isSimple(G), IsTrue()); |
| 786 | for (node v : G.nodes) { |
| 787 | AssertThat(v->degree(), IsGreaterThanOrEqualTo(k/2)); |
| 788 | } |
| 789 | }); |
| 790 | } |
| 791 | } |
| 792 | }); |
| 793 | |
| 794 | describe("randomChungLuGraph" , [](){ |
| 795 | it("generates graph" , []() { |
| 796 | Graph G; |
| 797 | randomChungLuGraph(G, {1, 2, 2, 3, 3, 3}); |
| 798 | AssertThat(G.numberOfNodes(), Equals(6)); |
| 799 | AssertThat(isSimpleUndirected(G), Equals(true)); |
| 800 | }); |
| 801 | }); |
| 802 | } |
| 803 | |
| 804 | // TODO: Test overloaded functions |
| 805 | |
| 806 | go_bandit([] { |
| 807 | describe("Graph generators" , [] { |
| 808 | describe("Deterministic graph generators" , [] { |
| 809 | testDeterministicGenerators(); |
| 810 | }); |
| 811 | describe("Random generators" , [] { |
| 812 | testRandomGenerators(); |
| 813 | }); |
| 814 | }); |
| 815 | }); |
| 816 | |