| 1 | #include <set> |
| 2 | #include <ogdf/basic/Array.h> |
| 3 | #include <ogdf/basic/Graph.h> |
| 4 | #include <ogdf/basic/graph_generators.h> |
| 5 | #include <ogdf/basic/simple_graph_alg.h> |
| 6 | |
| 7 | #include <testing.h> |
| 8 | |
| 9 | /** |
| 10 | * Assert that there is a one-to-one mapping of values in assignedVals to values |
| 11 | * in expectedVals, e.g. [3,1,1,2,0,3,1] <=> [2,0,0,3,1,2,0]. |
| 12 | * @tparam ArrayType is the type of assignedVals. |
| 13 | * |
| 14 | * @param assignedVals is the first array. |
| 15 | * @param expVals is an initializer list with values for the second array. |
| 16 | */ |
| 17 | template<template<typename> class ArrayType> |
| 18 | void bijectiveMappingAssert(ArrayType<int> assignedVals, std::initializer_list<int> expVals) |
| 19 | { |
| 20 | std::set<int> expSet(expVals); |
| 21 | int size = expSet.size(); |
| 22 | Array<int> expectedVals(expVals); |
| 23 | |
| 24 | Array<int> expToAssign(0, size-1, -1); |
| 25 | Array<int> assignToExp(0, size-1, -1); |
| 26 | |
| 27 | int i = 0; |
| 28 | for (int assigned : assignedVals) { |
| 29 | int expected = expectedVals[i++]; |
| 30 | |
| 31 | AssertThat(assigned, IsGreaterThan(-1)); |
| 32 | |
| 33 | if (expToAssign[expected] == -1) { |
| 34 | AssertThat(assignToExp[assigned], Equals(-1)); |
| 35 | expToAssign[expected] = assigned; |
| 36 | assignToExp[assigned] = expected; |
| 37 | } else { |
| 38 | AssertThat(assigned, Equals(expToAssign[expected])); |
| 39 | AssertThat(expected, Equals(assignToExp[assigned])); |
| 40 | } |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | /** |
| 45 | * Assert that calling biconnectedComponents() on G returns the correct number |
| 46 | * of biconnected components and assigns the edges the correct biconnected |
| 47 | * component ids. The exptected ids can differ from the assigned ids in value as |
| 48 | * long as there is a one-to-one mapping of expected ids to assigned ids. |
| 49 | * |
| 50 | * @param G is the graph to be tested. |
| 51 | * @param expCount is the expected number of biconnected components. |
| 52 | * @param expectedComps is the expected biconnected component id for each edge. |
| 53 | */ |
| 54 | void biconnectedComponentsAssert(Graph &G, int expCount, std::initializer_list<int> expectedComps) |
| 55 | { |
| 56 | EdgeArray<int> comps(G,-1); |
| 57 | int nonEmptyBiComps; |
| 58 | AssertThat(biconnectedComponents(G, comps, nonEmptyBiComps), Equals(expCount)); |
| 59 | |
| 60 | bijectiveMappingAssert(comps, expectedComps); |
| 61 | |
| 62 | // nonEmptyBiComps-1 should be equal to max(component). |
| 63 | int maxUsedIndex = 0; |
| 64 | for (int c: comps) { |
| 65 | maxUsedIndex = std::max(maxUsedIndex, c); |
| 66 | } |
| 67 | AssertThat(maxUsedIndex, Equals(nonEmptyBiComps - 1)); |
| 68 | } |
| 69 | |
| 70 | /** |
| 71 | * Assert that calling strongComponents() on G returns the correct number |
| 72 | * of strong components and assigns the nodes the correct strong component ids. |
| 73 | * The exptected ids can differ from the assigned ids in value as long as there |
| 74 | * is a one-to-one mapping of expected ids to assigned ids. |
| 75 | * |
| 76 | * @param G is the graph to be tested. |
| 77 | * @param expectedComps is the expected strong component id for each node. |
| 78 | */ |
| 79 | void strongComponentsAssert(Graph &G, std::initializer_list<int> expectedComps) |
| 80 | { |
| 81 | std::set<int> expSet(expectedComps); |
| 82 | int expCount = expSet.size(); |
| 83 | NodeArray<int> comps(G,-1); |
| 84 | AssertThat(strongComponents(G, comps), Equals(expCount)); |
| 85 | bijectiveMappingAssert(comps, expectedComps); |
| 86 | } |
| 87 | |
| 88 | /** |
| 89 | * Assert that isAcylic()/isAcyclicUndirected() returns the correct value and |
| 90 | * that the list of collected backedges is filled correctly. For cyclic graphs |
| 91 | * assert that removing all backedges makes the graph acyclic but maintains |
| 92 | * connectivity. |
| 93 | * |
| 94 | * @param G is the graph to be tested. |
| 95 | * @param directed sets whether isAcyclic() or isAcyclicUndirected() is tested. |
| 96 | * @param expected is the expected result of the function call. |
| 97 | */ |
| 98 | void isAcyclicAssert(Graph &G, bool directed, bool expected) |
| 99 | { |
| 100 | List<edge> backedges; |
| 101 | bool result = directed ? |
| 102 | isAcyclic(G, backedges) : isAcyclicUndirected(G, backedges); |
| 103 | |
| 104 | if (expected) { |
| 105 | AssertThat(result, IsTrue()); |
| 106 | AssertThat(backedges.empty(), IsTrue()); |
| 107 | } else { |
| 108 | AssertThat(result, IsFalse()); |
| 109 | AssertThat(backedges.size(), IsGreaterThan(0)); |
| 110 | AssertThat(backedges.size(), IsLessThan(G.numberOfEdges() + 1)); |
| 111 | |
| 112 | bool connected = isConnected(G); |
| 113 | |
| 114 | for (edge e : backedges) { |
| 115 | G.delEdge(e); |
| 116 | } |
| 117 | |
| 118 | result = directed ? |
| 119 | isAcyclic(G, backedges) : isAcyclicUndirected(G, backedges); |
| 120 | AssertThat(result, IsTrue()); |
| 121 | AssertThat(backedges.empty(), IsTrue()); |
| 122 | AssertThat(isConnected(G), Equals(connected)); |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | /** |
| 127 | * Perform tests for isAcylic() or isAcyclicUndirected(). |
| 128 | * |
| 129 | * @param directed sets whether isAcyclic() or isAcyclicUndirected() is tested. |
| 130 | */ |
| 131 | void describeIsAcyclic(bool directed) |
| 132 | { |
| 133 | Graph G; |
| 134 | |
| 135 | before_each([&](){ |
| 136 | G.clear(); |
| 137 | }); |
| 138 | |
| 139 | it("works on an empty graph" , [&](){ |
| 140 | emptyGraph(G, 0); |
| 141 | isAcyclicAssert(G, directed, true); |
| 142 | }); |
| 143 | |
| 144 | it("works on a graph with a single node" , [&](){ |
| 145 | G.newNode(); |
| 146 | isAcyclicAssert(G, directed, true); |
| 147 | }); |
| 148 | |
| 149 | it("works on a graph with a self-loop" , [&](){ |
| 150 | customGraph(G, 1, {{0,0}}); |
| 151 | isAcyclicAssert(G, directed, false); |
| 152 | }); |
| 153 | |
| 154 | it("works on a graph with parallel edges" , [&](){ |
| 155 | customGraph(G, 2, {{0,1}, {1,0}}); |
| 156 | isAcyclicAssert(G, directed, false); |
| 157 | }); |
| 158 | |
| 159 | it("works on an acylic graph" , [&](){ |
| 160 | customGraph(G, 3, {{0,1}, {0,2}}); |
| 161 | isAcyclicAssert(G, directed, true); |
| 162 | }); |
| 163 | |
| 164 | it("works on a cyclic graph" , [&](){ |
| 165 | customGraph(G, 3, {{0,1}, {1,2}, {2,1}}); |
| 166 | isAcyclicAssert(G, directed, false); |
| 167 | }); |
| 168 | |
| 169 | it("works on a disconnected acyclic graph" , [&](){ |
| 170 | customGraph(G, 4, {{1,2}, {1,3}}); |
| 171 | isAcyclicAssert(G, directed, true); |
| 172 | }); |
| 173 | |
| 174 | it("works on a disconnected cyclic graph" , [&](){ |
| 175 | customGraph(G, 4, {{1,2}, {2,3}, {3,1}}); |
| 176 | isAcyclicAssert(G, directed, false); |
| 177 | }); |
| 178 | |
| 179 | it("works on an acyclic graph requiring multiple dfs starts if directed" , [&](){ |
| 180 | customGraph(G, 4, {{0,1}, {1,2}, {3,1}}); |
| 181 | isAcyclicAssert(G, directed, true); |
| 182 | }); |
| 183 | |
| 184 | it("works on a cyclic graph requiring multiple dfs starts if directed" , [&](){ |
| 185 | customGraph(G, 4, {{0,1}, {1,2}, {2,0}, {3,1}}); |
| 186 | isAcyclicAssert(G, directed, false); |
| 187 | }); |
| 188 | |
| 189 | it("works on a directed acyclic but undirected cyclic graph" , [&](){ |
| 190 | customGraph(G, 3, {{0,1}, {0,2}, {1,2}}); |
| 191 | isAcyclicAssert(G, directed, directed); |
| 192 | }); |
| 193 | |
| 194 | it("works on an extremely large acyclic graph" , [&](){ |
| 195 | randomTree(G, 125000, 1, 0); |
| 196 | isAcyclicAssert(G, directed, true); |
| 197 | }); |
| 198 | |
| 199 | it("works on an extremely large cyclic graph" , [&](){ |
| 200 | randomBiconnectedGraph(G, 125000, 250000); |
| 201 | isAcyclicAssert(G, directed, false); |
| 202 | }); |
| 203 | } |
| 204 | |
| 205 | go_bandit([]() { |
| 206 | describe("Simple Graph Algorithms" , [](){ |
| 207 | describe("isTwoEdgeConnected" , [](){ |
| 208 | it("works on an empty graph" , [&](){ |
| 209 | Graph G; |
| 210 | AssertThat(isTwoEdgeConnected(G), IsTrue()); |
| 211 | }); |
| 212 | |
| 213 | it("works on a graph with one node" , [&](){ |
| 214 | Graph G; |
| 215 | G.newNode(); |
| 216 | AssertThat(isTwoEdgeConnected(G), IsTrue()); |
| 217 | }); |
| 218 | |
| 219 | it("works on a graph with two nodes" , [&](){ |
| 220 | Graph G; |
| 221 | customGraph(G, 2, {{0,1}}); |
| 222 | AssertThat(isTwoEdgeConnected(G), IsFalse()); |
| 223 | }); |
| 224 | |
| 225 | it("works on a disconnected graph" , [&](){ |
| 226 | Graph G; |
| 227 | customGraph(G, 5, {{0,1},{0,2},{1,2},{3,4}}); |
| 228 | edge bridge = G.chooseEdge(); |
| 229 | AssertThat(isTwoEdgeConnected(G, bridge), IsFalse()); |
| 230 | AssertThat(bridge, Equals(nullptr)); |
| 231 | }); |
| 232 | |
| 233 | it("works on a tree" , [&](){ |
| 234 | Graph G; |
| 235 | customGraph(G, 5, {{0,1},{1,2},{1,3},{3,4}}); |
| 236 | edge bridge = nullptr; |
| 237 | AssertThat(isTwoEdgeConnected(G, bridge), IsFalse()); |
| 238 | AssertThat(bridge, !Equals(nullptr)); |
| 239 | }); |
| 240 | |
| 241 | it("works on a connected but not two-edge-connected graph" , [&](){ |
| 242 | Graph G; |
| 243 | Array<node> nodes; |
| 244 | customGraph(G, 7, { |
| 245 | {0,1},{0,2},{1,2},{3,4},{4,5},{5,6},{6,2},{6,3} |
| 246 | }, nodes); |
| 247 | node v = nodes[6]; |
| 248 | node u = nodes[2]; |
| 249 | edge e = G.searchEdge(u,v); |
| 250 | edge bridge = nullptr; |
| 251 | AssertThat(isTwoEdgeConnected(G, bridge), IsFalse()); |
| 252 | AssertThat(bridge, Equals(e)); |
| 253 | }); |
| 254 | |
| 255 | it("works on a triangle" , [&](){ |
| 256 | Graph G; |
| 257 | customGraph(G, 3, {{0,1},{1,2},{2,0}}); |
| 258 | edge bridge = G.chooseEdge(); |
| 259 | AssertThat(isTwoEdgeConnected(G, bridge), IsTrue()); |
| 260 | AssertThat(bridge, Equals(nullptr)); |
| 261 | }); |
| 262 | |
| 263 | it("works on an extremely large tree" , [&](){ |
| 264 | Graph G; |
| 265 | randomTree(G, 250000); |
| 266 | AssertThat(isTwoEdgeConnected(G), IsFalse()); |
| 267 | }); |
| 268 | |
| 269 | it("works on an extremely large 2-edge-connected graph" , [&](){ |
| 270 | Graph G; |
| 271 | randomBiconnectedGraph(G, 250000, 500000); |
| 272 | AssertThat(isTwoEdgeConnected(G), IsTrue()); |
| 273 | }); |
| 274 | |
| 275 | it("works with selfloops" , [&](){ |
| 276 | Graph G; |
| 277 | customGraph(G, 1, {{0,0}}); |
| 278 | AssertThat(isTwoEdgeConnected(G), IsTrue()); |
| 279 | }); |
| 280 | |
| 281 | it("works with multiedges" , [&](){ |
| 282 | Graph G; |
| 283 | customGraph(G, 2, {{0,1},{0,1}}); |
| 284 | AssertThat(isTwoEdgeConnected(G), IsTrue()); |
| 285 | }); |
| 286 | }); |
| 287 | |
| 288 | describe("isBiconnected" , [](){ |
| 289 | Graph G; |
| 290 | node cutVertex; |
| 291 | |
| 292 | before_each([&](){ |
| 293 | G.clear(); |
| 294 | cutVertex = nullptr; |
| 295 | }); |
| 296 | |
| 297 | it("works on an empty graph" , [&](){ |
| 298 | AssertThat(isBiconnected(G), IsTrue()); |
| 299 | }); |
| 300 | |
| 301 | it("works on a graph with one node" , [&](){ |
| 302 | G.newNode(); |
| 303 | AssertThat(isBiconnected(G), IsTrue()); |
| 304 | }); |
| 305 | |
| 306 | it("works on a path of two nodes" , [&](){ |
| 307 | customGraph(G, 2, {{0,1}}); |
| 308 | AssertThat(isBiconnected(G), IsTrue()); |
| 309 | }); |
| 310 | |
| 311 | it("works on a disconnected graph" , [&](){ |
| 312 | customGraph(G, 3, {{0,1}}); |
| 313 | AssertThat(isBiconnected(G, cutVertex), IsFalse()); |
| 314 | AssertThat(cutVertex, Equals(nullptr)); |
| 315 | }); |
| 316 | |
| 317 | it("works on a connected but not biconnected graph" , [&](){ |
| 318 | customGraph(G, 3, {{0,1}, {0,2}}); |
| 319 | AssertThat(isBiconnected(G, cutVertex), IsFalse()); |
| 320 | AssertThat(cutVertex, Equals(G.firstNode())); |
| 321 | }); |
| 322 | |
| 323 | it("works on a simple biconnected graph" , [&](){ |
| 324 | completeGraph(G, 3); |
| 325 | AssertThat(isBiconnected(G, cutVertex), IsTrue()); |
| 326 | AssertThat(cutVertex, Equals(nullptr)); |
| 327 | }); |
| 328 | |
| 329 | it("works on an extremely large tree" , [&](){ |
| 330 | randomTree(G, 250000); |
| 331 | AssertThat(isBiconnected(G), IsFalse()); |
| 332 | }); |
| 333 | |
| 334 | it("works on an extremely large biconnected graph" , [&](){ |
| 335 | randomBiconnectedGraph(G, 250000, 500000); |
| 336 | AssertThat(isBiconnected(G), IsTrue()); |
| 337 | }); |
| 338 | }); |
| 339 | |
| 340 | describe("makeBiconnected" , [](){ |
| 341 | Graph G; |
| 342 | List<edge> added; |
| 343 | |
| 344 | before_each([&](){ |
| 345 | G.clear(); |
| 346 | added.clear(); |
| 347 | }); |
| 348 | |
| 349 | it("works on a disconnected graph" , [&](){ |
| 350 | customGraph(G, 3, {{0,1}}); |
| 351 | makeBiconnected(G, added); |
| 352 | AssertThat(isBiconnected(G), IsTrue()); |
| 353 | AssertThat(added.size(), Equals(2)); |
| 354 | }); |
| 355 | |
| 356 | it("works on a connected but not biconnected graph" , [&](){ |
| 357 | customGraph(G, 3, {{0,1}, {0,2}}); |
| 358 | makeBiconnected(G, added); |
| 359 | AssertThat(isBiconnected(G), IsTrue()); |
| 360 | AssertThat(added.size(), Equals(1)); |
| 361 | }); |
| 362 | |
| 363 | it("works on a simple biconnected graph" , [&](){ |
| 364 | randomBiconnectedGraph(G, 10, 20); |
| 365 | AssertThat(isBiconnected(G), IsTrue()); |
| 366 | |
| 367 | makeBiconnected(G, added); |
| 368 | AssertThat(isBiconnected(G), IsTrue()); |
| 369 | AssertThat(added.empty(), IsTrue()); |
| 370 | }); |
| 371 | |
| 372 | it("works on an extremely large graph" , [&](){ |
| 373 | emptyGraph(G, 250000); |
| 374 | AssertThat(isBiconnected(G), IsFalse()); |
| 375 | |
| 376 | // A graph with n nodes needs at least n edges to be biconnected |
| 377 | makeBiconnected(G, added); |
| 378 | AssertThat(isBiconnected(G), IsTrue()); |
| 379 | AssertThat(added.size(), IsGreaterThan(250000)); |
| 380 | }); |
| 381 | }); |
| 382 | |
| 383 | describe("biconnectedComponents" , [](){ |
| 384 | Graph G; |
| 385 | |
| 386 | before_each([&](){ |
| 387 | G.clear(); |
| 388 | }); |
| 389 | |
| 390 | it("works on an empty graph" , [&](){ |
| 391 | EdgeArray<int> component(G,-1); |
| 392 | emptyGraph(G, 0); |
| 393 | AssertThat(biconnectedComponents(G, component), Equals(0)); |
| 394 | }); |
| 395 | |
| 396 | it("works on a graph with a self-loop" , [&](){ |
| 397 | customGraph(G, 2, {{0,0}, {0,1}}); |
| 398 | auto expectedComps = {0,1}; |
| 399 | biconnectedComponentsAssert(G, 2, expectedComps); |
| 400 | }); |
| 401 | |
| 402 | it("works on a disconnected graph" , [&](){ |
| 403 | customGraph(G, 3, {{0,1}}); |
| 404 | auto expectedComps = {0}; |
| 405 | biconnectedComponentsAssert(G, 2, expectedComps); |
| 406 | }); |
| 407 | |
| 408 | it("works on a connected but not biconnected graph" , [&](){ |
| 409 | customGraph(G, 3, {{0,1}, {0,2}}); |
| 410 | auto expectedComps = {0,1}; |
| 411 | biconnectedComponentsAssert(G, 2, expectedComps); |
| 412 | }); |
| 413 | |
| 414 | it("works on a biconnected graph" , [&](){ |
| 415 | completeGraph(G, 3); |
| 416 | auto expectedComps = {0,0,0}; |
| 417 | biconnectedComponentsAssert(G, 1, expectedComps); |
| 418 | }); |
| 419 | |
| 420 | it("works on a graph with 2 biconnected components" , [&](){ |
| 421 | customGraph(G, 4, {{0,1}, {0,2}, {1,2}, {0,3}}); |
| 422 | auto expectedComps = {0,0,0,1}; |
| 423 | biconnectedComponentsAssert(G, 2, expectedComps); |
| 424 | }); |
| 425 | |
| 426 | it("works on a graph with 4 biconnected components" , [&](){ |
| 427 | customGraph(G, 10, {{0,1}, {1,2}, {2,3}, {3,1}, {3,4}, {4,1}, {1,5}, {5,6}, {6,0}, {0,7}, {7,8}, {8,9}, {9,7}}); |
| 428 | auto expectedComps = {0,1,1,1,1,1,0,0,0,2,3,3,3}; |
| 429 | biconnectedComponentsAssert(G, 4, expectedComps); |
| 430 | }); |
| 431 | |
| 432 | it("works on a graph with 5 biconnected components" , [&](){ |
| 433 | customGraph(G, 12, {{0,1}, {1,2}, {2,3}, {3,4}, {4,2}, {3,1}, {1,5}, {5,6}, {6,0}, {5,7}, {7,8}, {5,8}, {8,9}, {10,11}}); |
| 434 | auto expectedComps = {0,1,1,1,1,1,0,0,0,2,2,2,3,4}; |
| 435 | biconnectedComponentsAssert(G, 5, expectedComps); |
| 436 | }); |
| 437 | |
| 438 | it("works on an extremely large graph" , [&](){ |
| 439 | randomGraph(G, 250000, 500000); |
| 440 | |
| 441 | EdgeArray<int> component(G,-1); |
| 442 | NodeArray<int> conComp(G); |
| 443 | int result = biconnectedComponents(G,component); |
| 444 | |
| 445 | AssertThat(result, IsGreaterThan(0)); |
| 446 | AssertThat(result, !IsLessThan(connectedComponents(G,conComp))); |
| 447 | for (edge e : G.edges) { |
| 448 | AssertThat(component[e], IsGreaterThan(-1)); |
| 449 | } |
| 450 | }); |
| 451 | |
| 452 | it("works on an extremely large biconnected graph" , [&](){ |
| 453 | randomBiconnectedGraph(G, 250000, 500000); |
| 454 | |
| 455 | EdgeArray<int> component(G,-1); |
| 456 | AssertThat(biconnectedComponents(G,component), Equals(1)); |
| 457 | for (edge e : G.edges) { |
| 458 | AssertThat(component[e], Equals(0)); |
| 459 | } |
| 460 | }); |
| 461 | }); |
| 462 | |
| 463 | describe("strongComponents" , [](){ |
| 464 | Graph G; |
| 465 | |
| 466 | before_each([&](){ |
| 467 | G.clear(); |
| 468 | }); |
| 469 | |
| 470 | it("works on an empty graph" , [&](){ |
| 471 | NodeArray<int> component(G,-1); |
| 472 | emptyGraph(G, 0); |
| 473 | AssertThat(strongComponents(G, component), Equals(0)); |
| 474 | }); |
| 475 | |
| 476 | it("works on a graph with a self-loop" , [&](){ |
| 477 | customGraph(G, 2, {{0,0}, {0,1}}); |
| 478 | auto expectedComps = {0,1}; |
| 479 | strongComponentsAssert(G, expectedComps); |
| 480 | }); |
| 481 | |
| 482 | it("works on a disconnected graph" , [&](){ |
| 483 | customGraph(G, 3, {{0,1}}); |
| 484 | auto expectedComps = {0,1,2}; |
| 485 | strongComponentsAssert(G, expectedComps); |
| 486 | }); |
| 487 | |
| 488 | it("works on a connected but not strongly connected graph" , [&](){ |
| 489 | customGraph(G, 3, {{0,1}, {0,2}}); |
| 490 | auto expectedComps = {0,1,2}; |
| 491 | strongComponentsAssert(G, expectedComps); |
| 492 | }); |
| 493 | |
| 494 | it("works on a strongly connected graph" , [&](){ |
| 495 | customGraph(G, 3, {{0,1}, {1,2}, {2,0}}); |
| 496 | auto expectedComps = {0,0,0}; |
| 497 | strongComponentsAssert(G, expectedComps); |
| 498 | }); |
| 499 | |
| 500 | it("works on a graph with 2 strongly connected components" , [&](){ |
| 501 | customGraph(G, 4, {{0,1}, {1,2}, {2,0}, {0,3}}); |
| 502 | auto expectedComps = {0,0,0,1}; |
| 503 | strongComponentsAssert(G, expectedComps); |
| 504 | }); |
| 505 | |
| 506 | it("works on a graph with 3 strongly connected components" , [&](){ |
| 507 | customGraph(G, 10, {{0,1}, {1,2}, {2,3}, {3,1}, {3,4}, {4,1}, {0,5}, {5,6}, {6,0}, {0,7}, {7,8}, {8,9}, {9,7}}); |
| 508 | auto expectedComps = {0,1,1,1,1,0,0,2,2,2}; |
| 509 | strongComponentsAssert(G, expectedComps); |
| 510 | }); |
| 511 | |
| 512 | it("works on a graph with 5 strongly connected components" , [&](){ |
| 513 | customGraph(G, 12, {{0,1}, {1,2}, {2,3}, {3,4}, {4,2}, {1,3}, {1,5}, {5,6}, {6,0}, {5,7}, {7,8}, {8,5}, {8,9}, {10,11}}); |
| 514 | auto expectedComps = {0,0,1,1,1,0,0,0,0,2,3,4}; |
| 515 | strongComponentsAssert(G, expectedComps); |
| 516 | }); |
| 517 | |
| 518 | it("works on an extremely large graph" , [&](){ |
| 519 | randomGraph(G, 250000, 500000); |
| 520 | |
| 521 | NodeArray<int> component(G,-1); |
| 522 | NodeArray<int> conComp(G); |
| 523 | int result = strongComponents(G,component); |
| 524 | |
| 525 | AssertThat(result, IsGreaterThan(0)); |
| 526 | AssertThat(result, !IsLessThan(connectedComponents(G,conComp))); |
| 527 | for (node v : G.nodes) { |
| 528 | AssertThat(component[v], IsGreaterThan(-1)); |
| 529 | } |
| 530 | }); |
| 531 | |
| 532 | it("works on an extremely large strongly connected graph" , [&](){ |
| 533 | randomBiconnectedGraph(G, 250000, 250000); |
| 534 | |
| 535 | // Ensure that G is strongly connected. |
| 536 | List<edge> edges; |
| 537 | G.allEdges(edges); |
| 538 | for (edge e : edges) { |
| 539 | G.newEdge(e->target(), e->source()); |
| 540 | } |
| 541 | |
| 542 | NodeArray<int> component(G,-1); |
| 543 | AssertThat(strongComponents(G,component), Equals(1)); |
| 544 | for (node v : G.nodes) { |
| 545 | AssertThat(component[v], Equals(0)); |
| 546 | } |
| 547 | }); |
| 548 | }); |
| 549 | |
| 550 | describe("isAcyclic" , [](){ |
| 551 | describeIsAcyclic(true); |
| 552 | }); |
| 553 | |
| 554 | describe("isAcyclicUndirected" , [](){ |
| 555 | describeIsAcyclic(false); |
| 556 | }); |
| 557 | |
| 558 | describe("isArborescenceForest" , [](){ |
| 559 | Graph G; |
| 560 | List<node> roots; |
| 561 | |
| 562 | before_each([&](){ |
| 563 | G.clear(); |
| 564 | roots.clear(); |
| 565 | }); |
| 566 | |
| 567 | it("works on an empty graph" , [&](){ |
| 568 | emptyGraph(G, 0); |
| 569 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 570 | AssertThat(roots.empty(), IsTrue()); |
| 571 | }); |
| 572 | |
| 573 | it("works on a graph with a single node" , [&](){ |
| 574 | G.newNode(); |
| 575 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 576 | AssertThat(roots.size(), Equals(1)); |
| 577 | AssertThat(roots.front(), Equals(G.firstNode())); |
| 578 | }); |
| 579 | |
| 580 | it("works on a graph with a self-loop" , [&](){ |
| 581 | customGraph(G, 2, {{0,1}, {1,1}}); |
| 582 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 583 | }); |
| 584 | |
| 585 | it("works on a graph with parallel edges" , [&](){ |
| 586 | customGraph(G, 2, {{0,1}, {0,1}}); |
| 587 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 588 | }); |
| 589 | |
| 590 | it("works on a graph without a source" , [&](){ |
| 591 | customGraph(G, 2, {{0,0}, {0,1}}); |
| 592 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 593 | }); |
| 594 | |
| 595 | it("works on a cyclic graph" , [&](){ |
| 596 | customGraph(G, 3, {{0,1}, {0,2}, {1,2}}); |
| 597 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 598 | }); |
| 599 | |
| 600 | it("works on a cyclic graph with different edge order" , [&](){ |
| 601 | customGraph(G, 3, {{0,2}, {0,1}, {1,2}}); |
| 602 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 603 | }); |
| 604 | |
| 605 | it("works on an arborescence" , [&](){ |
| 606 | customGraph(G, 4, {{0,1}, {0,2}, {1,3}}); |
| 607 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 608 | AssertThat(roots.size(), Equals(1)); |
| 609 | AssertThat(roots.front(), Equals(G.firstNode())); |
| 610 | }); |
| 611 | |
| 612 | it("works on a disconnected forest" , [&](){ |
| 613 | customGraph(G, 3, {{0,1}}); |
| 614 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 615 | AssertThat(roots.size(), Equals(2)); |
| 616 | }); |
| 617 | |
| 618 | it("works on a graph with one tree and one cyclic subgraph" , [&](){ |
| 619 | customGraph(G, 5, {{0,1}, {2,3}, {3,4}, {4,2}}); |
| 620 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 621 | }); |
| 622 | |
| 623 | it("works on a directed tree that is not an arborescence" , [&](){ |
| 624 | customGraph(G, 4, {{0,1}, {1,2}, {3,1}}); |
| 625 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 626 | }); |
| 627 | |
| 628 | it("works on an extremely large biconnected graph" , [&](){ |
| 629 | randomBiconnectedGraph(G, 250000, 500000); |
| 630 | AssertThat(isArborescenceForest(G, roots), IsFalse()); |
| 631 | }); |
| 632 | |
| 633 | it("works on an extremely large arborescence" , [&](){ |
| 634 | constexpr int n = 125000; |
| 635 | node nodes[n]; |
| 636 | nodes[0] = G.newNode(); |
| 637 | |
| 638 | for (int i = 1; i < n; i++) { |
| 639 | nodes[i] = G.newNode(); |
| 640 | G.newEdge(nodes[randomNumber(0, i-1)], nodes[i]); |
| 641 | } |
| 642 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 643 | AssertThat(roots.size(), Equals(1)); |
| 644 | AssertThat(roots.front(), Equals(G.firstNode())); |
| 645 | }); |
| 646 | |
| 647 | it("works on an extremely large path" , [&](){ |
| 648 | node v = G.newNode(); |
| 649 | for (int i = 0; i < 125000; i++) { |
| 650 | node w = G.newNode(); |
| 651 | G.newEdge(v, w); |
| 652 | v = w; |
| 653 | } |
| 654 | AssertThat(isArborescenceForest(G, roots), IsTrue()); |
| 655 | AssertThat(roots.size(), Equals(1)); |
| 656 | AssertThat(roots.front(), Equals(G.firstNode())); |
| 657 | }); |
| 658 | }); |
| 659 | |
| 660 | describe("degreeDistribution" , [] { |
| 661 | it("works on an empty graph" , [] { |
| 662 | Graph G; |
| 663 | Array<int> dist; |
| 664 | degreeDistribution(G, dist); |
| 665 | AssertThat(dist.empty(), IsTrue()); |
| 666 | }); |
| 667 | |
| 668 | it("works on isolated nodes" , [] { |
| 669 | Graph G; |
| 670 | emptyGraph(G, 100); |
| 671 | Array<int> dist; |
| 672 | degreeDistribution(G, dist); |
| 673 | AssertThat(dist.low(), Equals(0)); |
| 674 | AssertThat(dist.size(), Equals(1)); |
| 675 | AssertThat(dist[0], Equals(100)); |
| 676 | }); |
| 677 | |
| 678 | it("works on a complete graph" , [] { |
| 679 | Graph G; |
| 680 | const int n = 12; |
| 681 | completeGraph(G, n); |
| 682 | Array<int> dist; |
| 683 | degreeDistribution(G, dist); |
| 684 | AssertThat(dist.low(), Equals(n-1)); |
| 685 | AssertThat(dist.size(), Equals(1)); |
| 686 | AssertThat(dist[n-1], Equals(n)); |
| 687 | }); |
| 688 | |
| 689 | it("works on an isolated node with a lot of self-loops" , [] { |
| 690 | Graph G; |
| 691 | node v = G.newNode(); |
| 692 | const int n = 42; |
| 693 | for (int i = 0; i < n; ++i) { |
| 694 | G.newEdge(v, v); |
| 695 | } |
| 696 | Array<int> dist; |
| 697 | degreeDistribution(G, dist); |
| 698 | AssertThat(dist.low(), Equals(2*n)); |
| 699 | AssertThat(dist.size(), Equals(1)); |
| 700 | AssertThat(dist[2*n], Equals(1)); |
| 701 | }); |
| 702 | |
| 703 | it("works with a very untypical distribution" , [] { |
| 704 | Graph G; |
| 705 | const int n = 30; |
| 706 | completeGraph(G, n); |
| 707 | for (int i = 0; i < n; ++i) { |
| 708 | node u = G.newNode(); |
| 709 | node v = G.newNode(); |
| 710 | G.newEdge(u, v); |
| 711 | } |
| 712 | Array<int> dist; |
| 713 | degreeDistribution(G, dist); |
| 714 | AssertThat(dist.low(), Equals(1)); |
| 715 | AssertThat(dist.high(), Equals(n-1)); |
| 716 | AssertThat(dist[dist.low()], Equals(2*n)); |
| 717 | for (int i = dist.low() + 1; i < dist.high(); ++i) { |
| 718 | AssertThat(dist[i], Equals(0)); |
| 719 | } |
| 720 | AssertThat(dist[dist.high()], Equals(n)); |
| 721 | }); |
| 722 | |
| 723 | it("works with a multigraph" , [] { |
| 724 | Graph G; |
| 725 | customGraph(G, 7, |
| 726 | {{0, 1}, {1, 2}, {2, 3}, {2, 4}, {3, 4}, {3, 4}, {3, 5}, {4, 5}, {4, 5}, {5, 5}}); |
| 727 | Array<int> dist; |
| 728 | degreeDistribution(G, dist); |
| 729 | AssertThat(dist.low(), Equals(0)); |
| 730 | AssertThat(dist.high(), Equals(5)); |
| 731 | for (int i = dist.low(); i < dist.high(); ++i) { |
| 732 | AssertThat(dist[i], Equals(1)); |
| 733 | } |
| 734 | AssertThat(dist[dist.high()], Equals(2)); |
| 735 | }); |
| 736 | }); |
| 737 | |
| 738 | describe("isBipartite" , [](){ |
| 739 | it("works on an empty graph" , [&](){ |
| 740 | Graph G; |
| 741 | AssertThat(isBipartite(G), IsTrue()); |
| 742 | }); |
| 743 | |
| 744 | it("works on a graph with one node" , [&](){ |
| 745 | Graph G; |
| 746 | G.newNode(); |
| 747 | AssertThat(isBipartite(G), IsTrue()); |
| 748 | }); |
| 749 | |
| 750 | it("works on a path of two nodes" , [&](){ |
| 751 | Graph G; |
| 752 | NodeArray<bool> color(G, false); |
| 753 | customGraph(G, 2, {{0,1}}); |
| 754 | AssertThat(isBipartite(G, color), IsTrue()); |
| 755 | AssertThat(color[G.firstNode()], !Equals(color[G.lastNode()])); |
| 756 | }); |
| 757 | |
| 758 | it("works on a disconnected bipartite graph" , [&](){ |
| 759 | Graph G; |
| 760 | NodeArray<bool> color(G, false); |
| 761 | Array<node> nodes; |
| 762 | customGraph(G, 3, {{0,1}}, nodes); |
| 763 | AssertThat(isBipartite(G, color), IsTrue()); |
| 764 | AssertThat(color[nodes[0]], !Equals(color[nodes[1]])); |
| 765 | }); |
| 766 | |
| 767 | it("works on a disconnected non-bipartite graph" , [&](){ |
| 768 | Graph G; |
| 769 | customGraph(G, 4, {{1,2}, {2,3}, {3,1}}); |
| 770 | AssertThat(isBipartite(G), IsFalse()); |
| 771 | }); |
| 772 | |
| 773 | it("works on a bipartite graph with multi-edges" , [&](){ |
| 774 | Graph G; |
| 775 | NodeArray<bool> color(G, false); |
| 776 | Array<node> nodes; |
| 777 | customGraph(G, 3, {{0,1}, {1,0}, {1,2}}, nodes); |
| 778 | AssertThat(isBipartite(G, color), IsTrue()); |
| 779 | AssertThat(color[nodes[0]], !Equals(color[nodes[1]])); |
| 780 | AssertThat(color[nodes[1]], !Equals(color[nodes[2]])); |
| 781 | AssertThat(color[nodes[0]], Equals(color[nodes[2]])); |
| 782 | }); |
| 783 | |
| 784 | it("works on a non-bipartite graph with multi-edges" , [&](){ |
| 785 | Graph G; |
| 786 | customGraph(G, 4, {{1,2}, {2,3}, {3,1}}); |
| 787 | AssertThat(isBipartite(G), IsFalse()); |
| 788 | }); |
| 789 | |
| 790 | it("works on a graph with a self-loop" , [&](){ |
| 791 | Graph G; |
| 792 | customGraph(G, 2, {{0,1}, {1,1}}); |
| 793 | AssertThat(isBipartite(G), IsFalse()); |
| 794 | }); |
| 795 | |
| 796 | it("works on an extremely large tree" , [&](){ |
| 797 | Graph G; |
| 798 | randomTree(G, 250000); |
| 799 | AssertThat(isBipartite(G), IsTrue()); |
| 800 | }); |
| 801 | |
| 802 | it("works on an extremely large non-bipartite graph" , [&](){ |
| 803 | Graph G; |
| 804 | randomTree(G, 250000); |
| 805 | node u = G.chooseNode(); |
| 806 | node v = G.chooseNode(); |
| 807 | node w = G.chooseNode(); |
| 808 | G.newEdge(u, v); |
| 809 | G.newEdge(u, w); |
| 810 | G.newEdge(v, w); |
| 811 | AssertThat(isBipartite(G), IsFalse()); |
| 812 | }); |
| 813 | }); |
| 814 | |
| 815 | describe("nodeDistribution" , [] { |
| 816 | it("can compute an indegree distribution" , [] { |
| 817 | Graph G; |
| 818 | customGraph(G, 3, {{0, 1}, {1, 2}, {2, 0}}); |
| 819 | Array<int> dist; |
| 820 | nodeDistribution(G, dist, [](node v) { |
| 821 | return v->indeg(); |
| 822 | }); |
| 823 | AssertThat(dist.low(), Equals(1)); |
| 824 | AssertThat(dist.size(), Equals(1)); |
| 825 | AssertThat(dist[1], Equals(3)); |
| 826 | }); |
| 827 | |
| 828 | it("can compute the number of nodes that belong to connected components" , [] { |
| 829 | Graph G; |
| 830 | customGraph(G, 4, {{0, 0}, {1, 2}}); |
| 831 | NodeArray<int> comp(G); |
| 832 | Array<int> dist; |
| 833 | connectedComponents(G, comp); |
| 834 | nodeDistribution(G, dist, comp); |
| 835 | AssertThat(dist.low(), Equals(0)); |
| 836 | AssertThat(dist.size(), Equals(3)); |
| 837 | AssertThat(dist[0] + dist[1] + dist[2], Equals(G.numberOfNodes())); |
| 838 | }); |
| 839 | }); |
| 840 | }); |
| 841 | }); |
| 842 | |