| 1 | /** \file |
| 2 | * \brief Tests for various crossing minimization modules. |
| 3 | * |
| 4 | * \author Tilo Wiedera |
| 5 | * |
| 6 | * \par License: |
| 7 | * This file is part of the Open Graph Drawing Framework (OGDF). |
| 8 | * |
| 9 | * \par |
| 10 | * Copyright (C)<br> |
| 11 | * See README.md in the OGDF root directory for details. |
| 12 | * |
| 13 | * \par |
| 14 | * This program is free software; you can redistribute it and/or |
| 15 | * modify it under the terms of the GNU General Public License |
| 16 | * Version 2 or 3 as published by the Free Software Foundation; |
| 17 | * see the file LICENSE.txt included in the packaging of this file |
| 18 | * for details. |
| 19 | * |
| 20 | * \par |
| 21 | * This program is distributed in the hope that it will be useful, |
| 22 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 23 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 24 | * GNU General Public License for more details. |
| 25 | * |
| 26 | * \par |
| 27 | * You should have received a copy of the GNU General Public |
| 28 | * License along with this program; if not, see |
| 29 | * http://www.gnu.org/copyleft/gpl.html |
| 30 | */ |
| 31 | |
| 32 | #include <set> |
| 33 | |
| 34 | #include <ogdf/basic/graph_generators.h> |
| 35 | #include <ogdf/basic/simple_graph_alg.h> |
| 36 | #include <ogdf/basic/extended_graph_alg.h> |
| 37 | #include <ogdf/planarity/SubgraphPlanarizer.h> |
| 38 | #include <ogdf/planarity/FixedEmbeddingInserter.h> |
| 39 | #include <ogdf/planarity/MultiEdgeApproxInserter.h> |
| 40 | #include <ogdf/planarity/VariableEmbeddingInserter.h> |
| 41 | #include <ogdf/planarity/VariableEmbeddingInserterDyn.h> |
| 42 | #include <ogdf/energybased/FMMMLayout.h> |
| 43 | |
| 44 | #include <resources.h> |
| 45 | |
| 46 | constexpr edge none = nullptr; |
| 47 | |
| 48 | /** |
| 49 | * Verifies that \p graph resembles a planarization of the original graph. |
| 50 | * |
| 51 | * \param graph a supposed planarization to be verified |
| 52 | * \param cost a pointer to the cost of each edge in the original graph |
| 53 | * \return the weighted crossing number of the given planarization |
| 54 | */ |
| 55 | int verifyCrossings(const GraphCopy &graph, const EdgeArray<int> *cost) { |
| 56 | int result = 0; |
| 57 | |
| 58 | const Graph &original = graph.original(); |
| 59 | int numberOfDummies = graph.numberOfNodes() - original.numberOfNodes(); |
| 60 | AssertThat(graph.numberOfEdges() - original.numberOfEdges(), Equals(2*numberOfDummies)); |
| 61 | |
| 62 | int dummyCounter = 0; |
| 63 | for(node v : graph.nodes) { |
| 64 | if(graph.isDummy(v)) { |
| 65 | dummyCounter++; |
| 66 | |
| 67 | AssertThat(v->degree(), Equals(4)); |
| 68 | AssertThat(v->indeg(), Equals(2)); |
| 69 | |
| 70 | std::set<edge> set; |
| 71 | edge e = graph.original(v->firstAdj()->theEdge()); |
| 72 | edge f = graph.original(v->lastAdj()->theEdge()); |
| 73 | set.insert(e); |
| 74 | set.insert(f); |
| 75 | set.insert(graph.original(v->firstAdj()->cyclicSucc()->theEdge())); |
| 76 | set.insert(graph.original(v->lastAdj()->cyclicPred()->theEdge())); |
| 77 | AssertThat(set.size(), Equals(2u)); |
| 78 | |
| 79 | List<edge> inEdges; |
| 80 | v->inEdges(inEdges); |
| 81 | AssertThat(graph.original(inEdges.front()), !Equals(graph.original(inEdges.back()))); |
| 82 | |
| 83 | AssertThat(e, !Equals(none)); |
| 84 | AssertThat(f, !Equals(none)); |
| 85 | result += cost ? (*cost)[*set.begin()] * (*cost)[*set.rbegin()] : 1; |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | AssertThat(dummyCounter, Equals(numberOfDummies)); |
| 90 | |
| 91 | for(edge e : graph.edges) { |
| 92 | node s = e->source(); |
| 93 | node t = e->target(); |
| 94 | |
| 95 | AssertThat(graph.isDummy(e), IsFalse()); |
| 96 | |
| 97 | if(!graph.isDummy(s)) { |
| 98 | AssertThat(s, Equals(graph.copy(graph.original(e)->source()))); |
| 99 | } |
| 100 | |
| 101 | if(!graph.isDummy(t)) { |
| 102 | AssertThat(t, Equals(graph.copy(graph.original(e)->target()))); |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | return result; |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * Tests a planarization algorithm on a single instance. |
| 111 | * |
| 112 | * \param cmm an algorithm to be tested |
| 113 | * \param graph a graph that should be planarized |
| 114 | * \param expected the crossing number of the input graph |
| 115 | * \param isOptimal whether the algorithm is supposed to yield an optimal solution for this instance |
| 116 | * \param cost costs of all edges. If \c nullptr is given each edge is assumed to have cost 1 |
| 117 | */ |
| 118 | void testComputation(CrossingMinimizationModule &cmm, const Graph &graph, int expected, bool isOptimal, const EdgeArray<int> *cost = nullptr) { |
| 119 | using ReturnType = CrossingMinimizationModule::ReturnType; |
| 120 | |
| 121 | PlanRep planRep(graph); |
| 122 | planRep.initCC(0); |
| 123 | int actual(17); // an arbitrary nonzero number |
| 124 | ReturnType result = cmm.call(planRep, 0, actual, cost); |
| 125 | if(isOptimal) { |
| 126 | AssertThat(result, Equals(ReturnType::Optimal)); |
| 127 | } else { |
| 128 | AssertThat(result, Equals(ReturnType::Optimal) || Equals(ReturnType::Feasible) || Equals(ReturnType::TimeoutFeasible)); |
| 129 | } |
| 130 | |
| 131 | if(isOptimal) { |
| 132 | AssertThat(actual, Equals(expected)); |
| 133 | } else { |
| 134 | AssertThat(actual, !IsLessThan(expected)); |
| 135 | } |
| 136 | |
| 137 | bool planar = planarEmbed(planRep); |
| 138 | |
| 139 | // optimal algorithms don't need to return planarizations |
| 140 | if(!isOptimal) { |
| 141 | AssertThat(planar, IsTrue()); |
| 142 | } |
| 143 | |
| 144 | if(planar) { |
| 145 | AssertThat(verifyCrossings(planRep, cost), Equals(actual)); |
| 146 | } |
| 147 | if(planar && isLoopFree(graph)) { |
| 148 | AssertThat(isLoopFree(planRep), IsTrue()); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | /** |
| 153 | * Tests a ::CrossingMinimizationModule \p cmm for correctness. |
| 154 | * |
| 155 | * \param cmm an algorithm to be tested |
| 156 | * \param title a human-readable title of the algorithm |
| 157 | * \param isOptimal whether the algorithm is optimal |
| 158 | */ |
| 159 | void testModule(CrossingMinimizationModule &cmm, const std::string title, bool isOptimal) { |
| 160 | describe(title, [&]() { |
| 161 | Graph graph; |
| 162 | |
| 163 | it("works on a K4" , [&]() { |
| 164 | completeGraph(graph, 4); |
| 165 | testComputation(cmm, graph, 0, isOptimal); |
| 166 | }); |
| 167 | |
| 168 | it("works on a K5" , [&]() { |
| 169 | completeGraph(graph, 5); |
| 170 | testComputation(cmm, graph, 1, isOptimal); |
| 171 | }); |
| 172 | |
| 173 | it("works on a K6" , [&]() { |
| 174 | completeGraph(graph, 6); |
| 175 | testComputation(cmm, graph, 3, isOptimal); |
| 176 | }); |
| 177 | |
| 178 | it("works on a K3,3" , [&]() { |
| 179 | completeBipartiteGraph(graph, 3, 3); |
| 180 | testComputation(cmm, graph, 1, isOptimal); |
| 181 | }); |
| 182 | |
| 183 | it("works on a K4,3" , [&]() { |
| 184 | completeBipartiteGraph(graph, 4, 3); |
| 185 | testComputation(cmm, graph, 2, isOptimal); |
| 186 | }); |
| 187 | |
| 188 | it("works on a K4,4" , [&]() { |
| 189 | completeBipartiteGraph(graph, 4, 4); |
| 190 | testComputation(cmm, graph, 4, isOptimal); |
| 191 | }); |
| 192 | |
| 193 | it("works on a petersen graph" , [&]() { |
| 194 | petersenGraph(graph, 5, 2); |
| 195 | testComputation(cmm, graph, 2, isOptimal); |
| 196 | }); |
| 197 | |
| 198 | it("works on a generalized petersen graph (9,2)" , [&]() { |
| 199 | petersenGraph(graph, 9, 2); |
| 200 | testComputation(cmm, graph, 3, isOptimal); |
| 201 | }); |
| 202 | |
| 203 | it("works on a weighted K3,3" , [&]() { |
| 204 | completeBipartiteGraph(graph, 3, 3); |
| 205 | |
| 206 | EdgeArray<int> cost(graph, 2); |
| 207 | testComputation(cmm, graph, 4, isOptimal, &cost); |
| 208 | |
| 209 | cost[graph.chooseEdge()] = 1; |
| 210 | testComputation(cmm, graph, 2, isOptimal, &cost); |
| 211 | }); |
| 212 | |
| 213 | // TODO test forbidden edges ? |
| 214 | |
| 215 | if(isOptimal) { |
| 216 | #ifdef OGDF_USE_ASSERT_EXCEPTIONS |
| 217 | // optimal algorithms should throw exceptions on non-pre-processed instances |
| 218 | |
| 219 | it("aborts if the graph contains self-loops" , [&](){ |
| 220 | completeGraph(graph, 5); |
| 221 | node v = graph.chooseNode(); |
| 222 | graph.newEdge(v, v); |
| 223 | AssertThrows(AssertionFailed, testComputation(cmm, graph, 1, true)); |
| 224 | }); |
| 225 | |
| 226 | it("aborts if the graph contains parallel edges" , [&](){ |
| 227 | completeGraph(graph, 5); |
| 228 | graph.newEdge(graph.firstNode(), graph.lastNode()); |
| 229 | AssertThrows(AssertionFailed, testComputation(cmm, graph, 1, true)); |
| 230 | }); |
| 231 | |
| 232 | it("aborts if the graph contains nodes with degree 2" , [&](){ |
| 233 | completeGraph(graph, 5); |
| 234 | node v = graph.newNode(); |
| 235 | graph.newEdge(graph.chooseNode(), v); |
| 236 | graph.newEdge(graph.chooseNode(), v); |
| 237 | AssertThrows(AssertionFailed, testComputation(cmm, graph, 1, true)); |
| 238 | }); |
| 239 | |
| 240 | it("aborts if the graph isn't biconnected" , [&](){ |
| 241 | completeGraph(graph, 5); |
| 242 | List<node> nodes = { graph.chooseNode() }; |
| 243 | |
| 244 | for(int i = 0; i < 4; i++) { |
| 245 | nodes.pushBack(graph.newNode()); |
| 246 | } |
| 247 | |
| 248 | for(node v : nodes) { |
| 249 | for(node w : nodes) { |
| 250 | if(w->index() < v->index()) { |
| 251 | graph.newEdge(v, w); |
| 252 | } |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | AssertThrows(AssertionFailed, testComputation(cmm, graph, 1, true)); |
| 257 | }); |
| 258 | #endif |
| 259 | } else { |
| 260 | // we assume non-optimal algorithms to be faster |
| 261 | |
| 262 | it("works on a generalized petersen graph (15,3)" , [&]() { |
| 263 | petersenGraph(graph, 15, 3); |
| 264 | testComputation(cmm, graph, 5, isOptimal); |
| 265 | }); |
| 266 | |
| 267 | it("works on a K10" , [&]() { |
| 268 | completeGraph(graph, 10); |
| 269 | testComputation(cmm, graph, 60, false); |
| 270 | }); |
| 271 | |
| 272 | std::vector<string> instances = { |
| 273 | "rome/grafo3703.45.lgr.gml.pun" , |
| 274 | "rome/grafo5745.50.lgr.gml.pun" |
| 275 | }; |
| 276 | |
| 277 | for_each_graph_it("works" , instances, |
| 278 | [&](Graph &gr) { |
| 279 | testComputation(cmm, gr, -1, false); |
| 280 | }); |
| 281 | } |
| 282 | }); |
| 283 | } |
| 284 | |
| 285 | template<typename EdgeInserter> |
| 286 | void setRemoveReinsert(EdgeInserter &edgeInserter, RemoveReinsertType rrType) { |
| 287 | edgeInserter.removeReinsert(rrType); |
| 288 | } |
| 289 | |
| 290 | template<> |
| 291 | void setRemoveReinsert(MultiEdgeApproxInserter &edgeInserter, RemoveReinsertType rrType) { |
| 292 | edgeInserter.removeReinsertVar(rrType); |
| 293 | edgeInserter.removeReinsertFix(rrType); |
| 294 | } |
| 295 | |
| 296 | /** |
| 297 | * Test the ::SubgraphPlanarizer with a specific type of edge remove-reinsert post-processing. |
| 298 | */ |
| 299 | template<typename EdgeInserter> |
| 300 | void testSPRRType(SubgraphPlanarizer &heuristic, EdgeInserter *edgeInserter, RemoveReinsertType rrType, const std::string name, bool skipMe) { |
| 301 | auto performTest = [&]() { |
| 302 | setRemoveReinsert(*edgeInserter, rrType); |
| 303 | heuristic.permutations(1); |
| 304 | testModule(heuristic, "single run" , false); |
| 305 | heuristic.permutations(4); |
| 306 | testModule(heuristic, "4 permutations" , false); |
| 307 | }; |
| 308 | |
| 309 | string title = "remove-reinsert: " + name; |
| 310 | |
| 311 | if(skipMe) { |
| 312 | describe_skip(title, performTest); |
| 313 | } else { |
| 314 | describe(title, performTest); |
| 315 | } |
| 316 | } |
| 317 | |
| 318 | /** |
| 319 | * Test the ::SubgraphPlanarizer with a specific ::EdgeInsertionModule . |
| 320 | */ |
| 321 | template<typename EdgeInserter> |
| 322 | void testSPEdgeInserter(EdgeInserter *edgeInserter, const std::string name, bool skipMe = false) { |
| 323 | describe("edge insertion: " + name, [&]() { |
| 324 | SubgraphPlanarizer heuristic; |
| 325 | heuristic.setInserter(edgeInserter); |
| 326 | |
| 327 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::None, "none" , skipMe); |
| 328 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::Inserted, "inserted" , skipMe); |
| 329 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::MostCrossed, "most-crossed" , skipMe); |
| 330 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::All, "all" , skipMe); |
| 331 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::Incremental, "incremental" , skipMe); |
| 332 | testSPRRType(heuristic, edgeInserter, RemoveReinsertType::IncInserted, "inc-inserted" , skipMe); |
| 333 | }); |
| 334 | } |
| 335 | |
| 336 | /** |
| 337 | * Test variants of the ::SubgraphPlanarizer . |
| 338 | */ |
| 339 | void testSubgraphPlanarizer() { |
| 340 | describe("SubgraphPlanarizer" , []() { |
| 341 | testSPEdgeInserter(new FixedEmbeddingInserter, "FixedEmbedding" ); |
| 342 | testSPEdgeInserter(new MultiEdgeApproxInserter, "MultiEdgeApprox" ); |
| 343 | testSPEdgeInserter(new VariableEmbeddingInserter, "VariableEmbedding" ); |
| 344 | testSPEdgeInserter(new VariableEmbeddingInserterDyn, "VariableEmbeddingDyn" ); |
| 345 | }); |
| 346 | } |
| 347 | |
| 348 | go_bandit([]() { |
| 349 | testSubgraphPlanarizer(); |
| 350 | }); |
| 351 | |